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1. КОНСПЕКТ ЛЕКЦИЙ 

1.1 Лекция №1 (2 часа) 

Тема: «Дифференциальные уравнения первого порядка. Классификация и методы реше-
ния основных видов дифференциальных уравнений первого порядка»  

1.1.1  Вопросы лекции: 
1.Задачи геометрического и физического содержания, приводящие к дифференци-

альным уравнениям. Дифференциальное уравнение, его порядок, нормальная форма, ре-
шения и интегральные кривые. 

2. Уравнения с разделяющимися переменными. 
3.Однородные дифференциальные уравнения первого порядка. 
4.Линейное дифференциальные уравнения первого порядка. Уравнение Бернулли. 
5. Дифференциальные уравнения первого порядка в полных дифференциалах 
 
1.1.2. Краткое содержание вопросов: 
1.Задачи геометрического и физического содержания, приводящие к диффе-

ренциальным уравнениям. Дифференциальное уравнение, его порядок, нормальная 
форма, решения и интегральные кривые 

Решение различных геометрических, физических и инженерных задач часто приво-
дят к уравнениям, которые связывают независимые переменные, характеризующие ту ил 
иную задачу, с какой – либо функцией этих переменных и производными этой функции 
различных порядков. 

 В качестве примера можно рассмотреть простейший случай равноускорен-
ного движения материальной точки. 

 Известно, что перемещение материальной точки при равноускоренном дви-
жении является функцией времени и выражается по формуле: 

2

2

0

at
tVS +=

 
 В свою очередь ускорение a является производной по времени t от скорости 

V, которая также является производной по времени t от перемещения S.  Т.е. 

;;
2

2

dt

Sd

dt

dV
a

dt

dS
V ===

 

Тогда получаем: 2

)(
)( 0

ttf
tVtfS

⋅′′
+==

 - уравнение связывает функцию f(t) с не-
зависимой переменной t и производной второго порядка функции f(t). 

 Определение. Дифференциальным уравнением называется уравнение, свя-
зывающее независимые переменные, их функции и производные (или дифференциалы) 
этой функции. 

 Определение. Если дифференциальное уравнение имеет одну независимую 
переменную, то оно называется обыкновенным дифференциальным уравнением, если же 
независимых переменных две или более, то такое дифференциальное уравнение называет-
ся дифференциальным уравнением в частных производных. 

 Определение. Наивысший порядок производных, входящих в уравнение, на-
зывается порядком дифференциального уравнения. 

Пример. 
0583 =+−+′ xyyx  - обыкновенное дифференциальное уравнение 1 – го порядка. 

В общем виде записывается 0),,( =′yyxF . 
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yx
dx

dy
xy

dx

yd
x =++ 2

2

2

 - обыкновенное дифференциальное уравнение 2 – го поряд-

ка. В общем виде записывается 0),,,( =′′′ yyyxF  

02 =
∂
∂

+
∂
∂

y

z
xy

x

z
y

 - дифференциальное уравнение в частных производных первого 
порядка. 

 Определение. Общим решением дифференциального уравнения называется 
такая дифференцируемая функция y = ϕ(x, C), которая при подстановке в исходное урав-
нение вместо неизвестной функции обращает уравнение в тождество. 

Свойства общего решения. 
 1) Т.к. постоянная С – произвольная величина, то вообще говоря дифферен-

циальное уравнение имеет бесконечное множество решений. 
 2) При каких- либо начальных условиях х = х0, у(х0) = у0 существует такое 

значение С = С0, при котором решением дифференциального уравнения является функция 
у = ϕ(х, С0). 

 Определение. Решение вида у = ϕ(х, С0) называется частным решением 
дифференциального уравнения. 

 Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский 
математик) называется нахождение любого частного решения дифференциального урав-
нения вида у = ϕ(х, С0), удовлетворяющего начальным условиям у(х0) = у0. 

 Теорема Коши. (теорема о существовании и единственности решения диф-
ференциального уравнения 1- го порядка) 

 Если функция f(x, y) непрерывна в некоторой области  D в плоскости XOY и 

имеет в этой области непрерывную частную производную ),( yxfy =′ , то какова бы не 

была точка (х0, у0) в области D, существует единственное решение )(xy ϕ=  уравнения 
),( yxfy =′ , определеннофе в некотором интервале, содержащем точку х0, принимающее 

при х = х0 значение ϕ(х0) = у0, т.е. существует единственное решение дифференциально-
го уравнения. 

 Определение. Интегралом дифференциального уравнения называется любое 
уравнение, не содержащее производных, для которого данное дифференциальное уравне-

ние является следствием.  

Пример.  Найти общее решение дифференциального уравнения 0=+′ yyx . 
Общее решение дифференциального уравнения ищется с помощью интегрирования  

левой и правой частей уравнения, которое предварительно преобразовано следующим об-
разом: 

0=+ y
dx

dy
x

, ydxxdy −= , x

dx

y

dy
−=

  . 

Теперь интегрируем:  
∫ ∫−=

x

dx

y

dy

,  0lnln Cxy +−= ,  0lnln Cxy =+ , 0ln Cxy = , 

Cexy
C == 0

.             x

C
y =

 - это общее решение исходного дифференциального 
уравнения. 

  
 Интегральные кривые. Поле направлений. Задача Коши. Геометрический 

смысл дифференциального уравнения первого порядка. 
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 Определение. Интегральной кривой называется график y = ϕ(x) решения 
дифференциального уравнения  на плоскости ХОY. 

Определение. Особым решением дифференциального уравнения называется такое 
решение, во всех точках которого условие единственности Коши не выполняется, т.е. в 
окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.  

Особые решения не зависят от постоянной С. 
 Особые решения нельзя получить из общего решения ни при каких значени-

ях постоянной С.  Если построить семейство интегральных кривых дифференциального 
уравнения, то особое решение будет изображаться линией, которая в каждой своей точке 
касается по крайней мере одной интегральной кривой. 

 Отметим, что не каждое дифференциальное уравнение имеет особые реше-
ния. 

Пример. Найти общее решение дифференциального уравнения: .0=+′ yy  Найти 
особое решение, если оно существует. 

y
dx

dy
−=

, 
dx

y

dy
−=

,  
∫ ∫−= dx

y

dy

,  Cxy +−=ln ,  
Cx eey ⋅= −

, 
xeCy −⋅= 1 . 

 Данное дифференциальное уравнение имеет также особое решение у = 0. 
Это решение невозможно получить из общего, однако при подстановке в исходное урав-
нение получаем тождество. Мнение, что решение y = 0  можно получить из общего реше-
ния при С1 = 0 ошибочно, ведь C1 = eC ≠ 0. 

 Далее рассмотрим подробнее приемы и методы, которые используются при 
решении дифференциальных уравнений различных типов. 

Дифференциальные уравнения первого порядка. 
 Определение. Дифференциальным уравнением первого порядка называется 

соотношение, связывающее функцию, ее первую производную и независимую перемен-
ную, т.е. соотношение вида: 

0),,( =′yyxF  
 Если такое соотношение преобразовать к виду ),( yxfy =′  то это диффе-

ренциальное уравнение первого порядка будет называться уравнением, разрешенным от-
носительно производной. 

 Преобразуем такое выражение далее: 

;0),(;),();,( =−== dydxyxfdxyxfdyyxf
dx

dy

 

Функцию f(x,y) представим в виде: 
;0),(,

),(

),(
),( ≠−= yxQ

yxQ

yxP
yxf

 тогда при под-
становке в полученное выше уравнение  имеем: 

0),(),( =+ dyyxQdxyxP  
это так называемая дифференциальная форма уравнения первого порядка. 
Геометрическая интерпретация решений дифференциальных уравнений первого 

порядка.                                                                                                                   
 Как уже говорилось выше, линия S, которая задается функцией, являющейся 

каким- либо решением дифференциального уравнения, называется интегральной кривой 

уравнения ).,( yxfy =′  
 Производная y’ является угловым коэффициентом касательной к интеграль-

ной кривой. 
 В любой точке А(х, у) интегральной кривой этот угловой  коэффициент ка-

сательной может быть найден еще до решения дифференциального уравнения. 
Т.к. касательная указывает направление интегральной кривой еще до ее непосред-

ственного построения, то при условии непрерывности функции f(x, y) и непрерывного пе-
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ремещения точки А можно наглядно изобразить поле направлений кривых, которые полу-
чаются в результате интегрирования дифференциального уравнения, т.е. представляют 
собой его общее решение. 

 Определение. Множество касательных в каждой точке рассматриваемой об-
ласти называется полем направлений. 

 С учетом сказанного выше можно привести следующее геометрическое ис-
толкование дифференциального уравнения: 

 1) Задать дифференциальное уравнение первого порядка – это значит задать 
поле направлений. 

 2) Решить или проинтегрировать дифференциальное уравнение – это значит 
найти всевозможные кривые, у которых направление касательных в каждой точке совпа-
дает с полем направлений. 

 Определение. Линии равного наклона в поле направлений называются изо-
клинами. 

 
2. Уравнения с разделяющимися переменными 
 
Далее рассмотрим подробнее типы уравнений первого порядка и методы их реше-

ния. 
Уравнения вида y’ = f(x). 
 Пусть функция f(x) – определена и непрерывна на некотором интервале 
a < x < b. В таком случае все решения данного дифференциального уравнения на-

ходятся как 
Cdxxfy += ∫ )(

. Если заданы начальные условия х0 и у0, то можно опреде-
лить постоянную С. 

 Определение. Дифференциальное уравнение ),( yxfy =′ называется уравне-
нием с разделяющимися переменными, если его можно записать в виде 

)()( yxy βα=′ . 
 Такое уравнение можно представить также в виде: 

;0)(0)(
)(

;0)()(;0)()( ≠β=α−
β

=βα−=βα−′ yприdxx
y

dy
dxyxdyyxy

 

Перейдем к новым обозначениям 
);(

)(

1
);()( yY

y
xXx =

β
−=α

 

Получаем:           ;0)()( =+ dyyYdxxX  
 

CdyyYdxxX =+ ∫∫ )()(
 

 После нахождения соответствующих интегралов получается общее решение 
дифференциального уравнения с разделяющимися переменными. 

 Если заданы начальные условия, то при их подстановке в общее решение 
находится постоянная величина С, а, соответственно, и частное решение. 

Пример. Найти общее решение дифференциального уравнения: y

x
yy

cos

2−
=′

  

x
dx

dy
yy 2cos −=⋅

, xdxydyy 2cos −= , ∫∫ −= xdxydyy 2cos
 

Интеграл, стоящий в левой части, берется по частям 
Cxyyy +−=+ 2cossin , 0cossin 2 =+++ Cxyyy  
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это  есть общий интеграл исходного дифференциального уравнения, т.к. искомая 
функция и не выражена через независимую переменную. В этом и заключается отличие 
общего (частного) интеграла от общего (частного) решения. 

Чтобы проверить правильность полученного ответа продифференцируем его по пе-
ременной х. 

02sincossin =+′−′+′ xyyyyyyy  

y

x
yy

cos

2
−=′

 - верно 

Пример. Найти решение дифференциального уравнения 
y

y

y
ln=

′  при условии у(2) 
= 1. 

y
dy

ydx
ln=

, y

ydy
dx

ln
=

, 
∫∫ =

y

ydy
dx

ln

, ∫=+ )(lnln yydCx
, 2

ln 2 y
Cx =+

 

при у(2) = 1 получаем 
;2;02;

2

1ln
2

2

−=⇒=+⇒=+ CCC
 

Итого: ;ln)2(2 2 yx =−    или 
42 −±= xey  - частное решение; 

Проверка: 422

242

−±
⋅=′ −±

x
ey x

 , итого 

yx
e

xe

y

y
x

x

ln42
)42(

42

42

=−±=
−±

=
′ −±

−±

 - верно. 

Пример. Решить уравнение .3
2

yy =′  

3
2

y
dx

dy
=

,  dxdyy =
− 3

2

, ∫∫ =
−

dxdyy 3
2

, Cxy +=3
1

3 ,  

 
3)(27 Cxy += - общий интеграл,  

3)(
27

1
Cxy +=

 - общее решение 

Пример. Решить уравнение 
0=+

′ ye
x

yy

при условии у(1) = 0. 

0=+ yxe
dx

ydy

, 
;;0 xdxdy

e

y
dxxeydy

y

y −==+
 

;∫∫ −= xdxdy
e

y
y

 
Интеграл, стоящий в левой части будем брать по частям : 

;
2

)1( 0

2

C
x

ye y +=+−

 Cxye y +=+− 2)1(2 . 

Если у(1) = 0, то ;1;12;1)10(2 0 =⇒+=⇒+=+ CCCe  

 Итого, частный интеграл: 1)1(2 2+=+− xye y

. 

Пример. Решить уравнение )1( 2 +=′ yxy . 

)1( 2 += yx
dx

dy

, 
xdx

y

dy
=

+12

, 
∫ ∫=

+
xdx

y

dy

12

; 
C

x
arctgy +=

2

2

; 








+= C

x
tgy

2

2

 
Допустим, заданы некоторые начальные условия х0 и у0. Тогда: 

;
2

;
2

2
0

000

2
0

0

x
arctgyCC

x
arctgy −=⇒+=
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           Получаем частное решение 
.

22

2
0

0

2









−+=

x
arctgy

x
tgy

 
 
3. Однородные дифференциальные уравнения первого порядка 
 
 Определение.  Функция f(x, y) называется однородной n – го измерения от-

носительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) 
выполняется тождество: 

).,(),( yxfttytxf n=  

Пример.   Является ли однородной функция  ?3),( 23 yxxyxf +=  
),()3(3)(3)(),( 3233233323 yxftyxxtyxtxttytxtxtytxf =+=+=+=  

Таким образом, функция f(x, y) является однородной 3- го порядка. 

 Определение. Дифференциальное уравнение вида ),( yxfy =′ называется 
однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения 
относительно своих аргументов. 

 Любое уравнение вида 0),(),( =+ dyyxQdxyxP  является однородным, если 
функции P(x, y) и Q(x, y) – однородные функции одинакового измерения. 

 Решение любого однородного уравнения основано на приведении этого 
уравнения к уравнению с разделяющимися переменными.  

 Рассмотрим однородное уравнение ).,( yxfy =′  
Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать: 

).,(),( yxftytxf =  

Т.к. параметр t вообще говоря произвольный, предположим, что x
t

1
=

. Получаем: 








=
x

y
fyxf ,1),(

 
 Правая часть полученного равенства зависит фактически только от одного 

аргумента x

y
u =

, т.е. 

);(),( u
x

y
yxf ϕ=







ϕ=
 

Исходное дифференциальное уравнение таким образом можно записать в виде: 
)(uy ϕ=′  

Далее заменяем y = ux, xuxuy ′+′=′ . 

;
)(

);();(
x

uu
uuuxuuxuxu

−ϕ
=′ϕ=+′ϕ=′+′

 
таким образом, получили уравнение с разделяющимися переменными относитель-

но неизвестной функции u. 

∫ ∫ +=
−ϕ

=
−ϕ

;
)(

;
)(

C
x

dx

uu

du

x

dx

uu

du

 
Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя 

интегралы, получим общее решение однородного дифференциального уравнения. 

Пример. Решить уравнение 







 +=′ 1ln
x

y

x

y
y

. 
Введем вспомогательную функцию u. 
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uxuyuxy
x

y
u +′=′== ;;

. 
Отметим, что введенная нами функция u всегда положительна, т.к. в противном 

случае теряет смысл исходное дифференциальное уравнение, содержащее x

y
u lnln =

. 
Подставляем в исходное уравнение:  

;ln;ln);1(ln uuxuuuuuxuuuuxu =′+=+′+=+′  

Разделяем переменные: 
∫ ∫== ;

ln
;

ln x

dx

uu

du

x

dx

uu

du

 
 

Интегрируя, получаем: 
;;ln;lnlnln CxeuCxuCxu ==+=
 

Переходя от вспомогательной функции обратно к функции у, получаем общее ре-
шение: 

.Cxxey =  
 
4. Линейное дифференциальные уравнения первого порядка. Уравнение Бер-

нулли. 
 Определение. Дифференциальное уравнение называется линейным относи-

тельно неизвестной функции и ее производной, если оно может быть записано в виде: 
),()( xQyxPy =+′  

при этом, если правая часть Q(x) равна нулю, то такое уравнение называется ли-
нейным однородным дифференциальным уравнением, если правая часть Q(x) не равна ну-
лю, то такое уравнение называется линейным неоднородным дифференциальным уравне-
нием. 

 P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b. 
 Рассмотрим методы нахождения общего решения линейного однородного 

дифференциального уравнения первого порядка вида 
0)( =+′ yxPy . 

 Для этого типа дифференциальных уравнений разделение переменных не 
представляет сложностей. 

dxxP
y

dy
)(−=

, 
;ln)(ln ∫ +−= CdxxPy
 

∫−= ;)(ln dxxP
C

y

 

 Общее решение:   
∫=

− dxxP

Cey
)(

 
 Для интегрирования линейных неоднородных уравнений (Q(x)≠0) применя-

ются в основном два метода: метод Бернулли и метод Лагранжа. 
 Суть метода заключается в том, что искомая функция представляется в виде 

произведения двух функций  uvy = . 

При этом очевидно, что dx

du
v

dx

dv
uy ⋅+⋅=′

 - дифференцирование по частям. 
Подставляя в исходное уравнение, получаем: 

)()( xQuvxP
dx

du
v

dx

dv
u =++

,  
)()( xQuxP

dx

du
v

dx

dv
u =







 ++
 

 Далее следует важное замечание – т.к. первоначальная функция была пред-
ставлена нами в виде произведения, то каждый из сомножителей, входящих в это произ-
ведение, может быть произвольным, выбранным по нашему усмотрению. 
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Например, функция 
22xy =  может быть представлена как ;2;21 22 xyxy ⋅=⋅=  

;2 xxy ⋅=  и т.п.  
 Таким образом, можно одну из составляющих произведение функций вы-

брать так, что выражение 
0)( =+ uxP

dx

du

. 
 Таким образом, возможно получить функцию u, проинтегрировав, получен-

ное соотношение как однородное дифференциальное уравнение по описанной выше схе-
ме: 

∫ ∫ ∫−=−=−= ;)(ln;)(;)( dxxPudxxP
u

du
dxxP

u

du

 

∫ =∫=−=+
−

;/1;;)(lnln 1

)(

1 CCCeudxxPuC
dxxP

 
 Для нахождения второй неизвестной функции v подставим поученное выра-

жение для функции u в исходное уравнение 
)()( xQuxP

dx

du
v

dx

dv
u =







 ++
 с учетом того, 

что выражение, стоящее в скобках, равно нулю. 

;)();(
)()(

dxexQCdvxQ
dx

dv
Сe

dxxPdxxP ∫==∫−

 
Интегрируя, можем найти функцию v: 

1

)(
)( CdxexQCv

dxxP
+∫= ∫ ;             

2

)(
)(

1
CdxexQ

C
v

dxxP

+∫= ∫
; 

 Т.е. была получена вторая составляющая произведения uvy = , которое и 
определяет искомую функцию. Подставляя полученные значения,  получаем: 







 +∫⋅∫== ∫

−

2

)()(
)(

1
CdxexQ

C
Ceuvy

dxxPdxxP

 
 Окончательно получаем формулу:  







 +∫⋅∫= ∫

−

2

)()(
)( CdxexQey

dxxPdxxP

,     С2 - произвольный коэффициент. 
Это соотношение может считаться решением неоднородного линейного дифферен-

циального уравнения  в общем виде по способу Бернулли. 
Метод Лагранжа  решения неоднородных линейных дифференциальных уравнений 

еще называют методом  вариации произвольной постоянной. 
             Вернемся к поставленной задаче: 

)()( xQyxPy =+′  
Первый шаг данного метода состоит в отбрасывании правой части уравнения и за-

мене ее нулем. 
0)( =+′ yxPy  

 Далее находится решение получившегося однородного дифференциального 
уравнения: 

∫=
− dxxP

eCy
)(

1 . 
Для того, чтобы найти соответствующее решение неоднородного дифференциаль-

ного уравнения, будем считать постоянную С1 некоторой функцией от х. 
Тогда по правилам дифференцирования произведения  функций получаем: 

));(()(
)( )(

1

)(1 xPexCe
dx

xdC

dx

dy
y

dxxPdxxP

−⋅∫+∫==′
−−

 
Подставляем полученное соотношение в исходное уравнение 
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)()()()()(
)( )(

1

)(

1

)(1 xQexCxPexPxCe
dx

xdC dxxPdxxPdxxP

=∫+∫−∫ −−−

 

);(
)( )(1 xQe

dx

xdC dxxP

=∫−

 
Из этого уравнения определим  переменную функцию С1(х): 

;)()(
)(

1 dxexQxdC
dxxP∫=  

Интегрируя, получаем:  
;)(

)(

1 CdxexQC
dxxP

+∫= ∫  
 Подставляя это значение в исходное уравнение, получаем: 







 +∫∫= ∫

−
CdxexQey

dxxPdxxP )()(
)(

. 
 Таким образом, мы получили результат, полностью совпадающий с резуль-

татом расчета по методу Бернулли.  
При выборе метода решения линейных дифференциальных уравнений  следует ру-

ководствоваться  простотой интегрирования функций, входящих в исходный интеграл. 
 Далее рассмотрим примеры решения различных дифференциальных уравне-

ний различными методами и сравним  результаты.  

Пример.  Решить уравнение .
1

22 xeaxyyx =+′  

Сначала приведем данное уравнение к стандартному виду: 
.

1 1

2
xaey

x
y =+′

 

Применим полученную выше формулу: 
;;

1 1

2
xaeQ

x
P ==

 











+

∫∫
= ∫

−

Cdxeaeey
dx

xx
dx

x 22

111

, 

( )∫∫ +=









+=

−
CadxeCdxeaeey xxxx

1111

 

).(
1

Caxey x +=  
                                                    Уравнение Бернулли 
 
 Определение. Уравнением Бернулли называется уравнение вида 

,nyQPyy ⋅=+′  
где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 

1. 

Для решения уравнения Бернулли применяют подстановку 
1

1
−

=
ny

z

, с помощью 
которой, уравнение Бернулли приводится к линейному. 

 Для этого разделим исходное уравнение на yn. 

;
1

1
Q

y
P

y

y
nn

=+
′

−

  

Применим подстановку, учтя, что 
nn

n

y

yn
y

y

yn
z

′−
−=′⋅

−
−=′

−

− )1()1(
22

2

. 

QPz
n

z
=+

−

′
−

1 ,  QnPznz )1()1( −−=−−′  
Т.е. получилось линейное уравнение относительно неизвестной функции z. 
Решение этого уравнения будем искать в виде: 
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





 +∫∫= ∫

−
CdxeQez

dxPPdx 1

1

 
.)1(;)1( 11 PnPQnQ −−=−−=  

Пример.  Решить уравнение .ln2 xxyyyx =+′  

Разделим уравнение на xy2:  
.ln

11
2

x
yxy

y
=⋅+

′

 

Полагаем 
.;

1
2y

y
z

y
z

′
−=′=

 

xz
x

zxz
x

z ln
1

;ln
1

−=−′=+′−
. 

Полагаем 
.ln,

1
xQ

x
P −=−=

 

( );ln;ln lnln CdxxeezCdxxeez xxx

dx

x

dx

+−=









+∫−∫= ∫∫ −

−

 

( );)(lnln;ln CxxdxzC
x

dx
xxz +−=







 +⋅−= ∫∫
 









+−= C

x
xz

2
ln 2

 
Произведя обратную подстановку, получаем: 

.
2

ln1 2









+−= C

x
x

y
 

Пример. Решить уравнение .4 2 yxyyx =−′  

Разделим обе части уравнения на .yx  

.
41

xy
xdx

dy

y
=−

 

Полагаем 

;2;
2

1
; zyyy

y
zyz ′=′′=′=

 

;
2

2
;

4
2

1 x

x

z

dx

dz
xz

x
zy

y
=−=−′

 
Получили линейное неоднородное дифференциальное уравнение. Рассмотрим со-

ответствующее ему линейное однородное уравнение: 

;
2

;
2

;0
2

x

dx

z

dz

x

z

dx

dz

x

z

dx

dz
===−

 

∫ ∫ =+=+= ;;lnln2ln;2 2
1 CxzCxzC

x

dx

z

dz

 
Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное 

уравнение, с учетом того, что: 

;
)(

)(2 2

dx

xdC
xxxC

dx

dz
+=

  
;

2

)(2)(
)(2

2
2 x

x

xCx

dx

xdC
xxxC =−+

 

;ln
2
1

)(;
2
1)(

2CxxC
xdx

xdC
+==
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Получаем: 
;ln

2

1
2

2 






 += xCxz

 
Применяя обратную подстановку, получаем окончательный ответ: 

;ln
2

1
2

2
4 







 += xCxy

 
 
5 . Дифференциальные уравнения первого порядка в полных дифференциалах 
 
 Определение. Дифференциальное уравнение первого порядка вида: 

0),(),( =+ dyyxNdxyxM  
называется уравнением в полных дифференциалах, если левая часть этого уравне-

ния представляет собой полный дифференциал некоторой функции ).,( yxFu =  
 Интегрирование такого уравнения сводится к нахождению функции u, после 

чего решение легко находится в виде: .;0 Cudu ==  
 Таким образом, для решения надо определить: 
1) в каком случае левая часть уравнения представляет собой полный дифференциал 

функции u; 
2) как найти эту функцию. 

Если дифференциальная форма dyyxNdxyxM ),(),( + является полным дифферен-
циалом некоторой функции u, то можно записать: 

.),(),( dy
y

u
dx

x

u
dyyxNdxyxMdu

∂
∂

+
∂
∂

=+=
 

Т.е. 









=
∂
∂

=
∂
∂

),(

),(

yxN
y

u

yxM
x

u

.          
Найдем смешанные производные второго порядка, продифференцировав первое 

уравнение по у, а второе – по х: 











∂
∂

=
∂∂

∂

∂
∂

=
∂∂

∂

x

yxN

yx

u

y

yxM

yx

u

),(

),(

2

2

 
Приравнивая левые части уравнений, получаем необходимое и достаточное усло-

вие того, что левая часть дифференциального уравнения является полным дифференциа-
лом. Это условие также называется условием тотальности. 

x

yxN

y

yxM

∂
∂

=
∂

∂ ),(),(

 
 Теперь рассмотрим вопрос о нахождении собственно функции u. 

Проинтегрируем равенство 
),( yxM

x

u
=

∂
∂

: 
).(),( yCdxyxMu += ∫  

Вследствие интегрирования получаем не постоянную величину С, а некоторую 
функцию С(у), т.к. при интегрировании переменная у полагается постоянным параметром. 

 Определим функцию С(у). 
Продифференцируем полученное равенство по у. 
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).(),(),( yCdxyxM
y

yxN
y

u
′+

∂
∂

==
∂
∂

∫
 

Откуда получаем: 
∫∂

∂
−=′ .),(),()( dxyxM

y
yxNyC

 
Для нахождения функции С(у) необходимо проинтегрировать приведенное выше 

равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от 
х. Это условие будет выполнено, если производная этой функции по х равна нулю. 

[ ]

.0
),(),(

),(
),(

),(
),(

)(

=
∂

∂
−

∂
∂

=

=







∂
∂

∂
∂

−
∂

∂
=

∂
∂

∂
∂

−
∂

∂
=′′ ∫∫

y

yxM

x

yxN

dxyxM
xyx

yxN
dxyxM

yxx

yxN
yС

x

 
Теперь определяем функцию С(у): 

CdydxyxM
y

yxNyC +








∂
∂

−= ∫ ∫ ),(),()(
 

Подставляя этот результат в выражение для функции u, получаем: 

.),(),(),( CdydxyxM
y

yxNdxyxMu +








∂
∂

−+= ∫∫
 

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид: 

.),(),(),( CdydxyxM
y

yxNdxyxM =








∂
∂

−+ ∫∫
 

 Следует отметить, что при решении уравнений в полных дифференциалах не 
обязательно использовать полученную формулу. Решение может получиться более ком-
пактным, если просто следовать методу, которым формула была получена. 

Пример. Решить уравнение 0)15()103( 22 =−++ dyxdxxyx  

Проверим условие тотальности: 
;10

)103(),( 2

x
y

xyx

y

yxM
=

∂
+∂

=
∂

∂

 

                                                        
.10

)15(),( 2

x
x

x

x

yxN
=

∂
−∂

=
∂

∂

 
Условие тотальности выполняется, следовательно, исходное дифференциальное 

уравнение является уравнением в полных дифференциалах. 
Определим функцию u. 

);(5)()103()(),( 232 yCyxxyCdxxyxyCdxyxMu ++=++=+= ∫∫  

;15),()(5 22 −==′+=
∂
∂

xyxNyCx
y

u

 
1)1()(;1)( CydyyCyC +−=−=−=′ ∫ ; 

Итого, .5 1
23 Cyyxxu +−+=  

Находим общий интеграл исходного дифференциального уравнения: 
;.5 21

23 СCyyxxu =+−+=  
.5 23 Cyyxx =−+  
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1.2 Лекция №2 (2 часа)   

Тема: «Приближенные методы решения уравнений и систем уравнений» 
 
1.2.1  Вопросы лекции: 
1. Отделение корней. Метод Горнера 
2. Метод хорд, касательных. 
3. Метод итерации, его сходимость. 
4. Метод Ньютона. 
5. Метод Зейделя. 
 
1.2.2. Краткое содержание вопросов: 
 
1. Отделение корней. Метод Горнера 
 
В общем случае отделение корней уравнения f(x)=0 базируется на 

известной теореме, утверждающей, что если непрерывная функция f(x) на 

концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b)< 0 , то в указанном 
промежутке содержится хотя бы один корень. Например, для уравнения f(x)=x3 -

6x+2=0 видим, что при при что уже свидетельствует о 
наличии хотя бы одного корня. 

Для уравнения видим, что Обнаружив, 

что устанавливаем факт наличия единственного корня, и остается 
лишь найти его (как говорится, за немногим стало дело). 

Если предварительный анализ функции затруднителен, можно “пойти в лобовую 
атаку”. При уверенности в том, что все корни различны, выбираем некоторый диапазон 
возможного существования корней (никаких универсальных рецептов!) и производим 
“прогулку” по этому интервалу с некоторым шагом, вычисляя значения f(x)и фиксируя 
перемены знаков. При выборе шага приходится брать его по возможности большим для 
минимизации объема вычислений, но достаточно малым, чтобы не пропустить перемену 
знаков. 

 

Графический метод 

Этот метод основан на построении графика функции y=f(x). Если построить график 
данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет от-
резок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее 
функцию f(x) представить в виде разности двух более простых функций, т.е.

 и строить графики функций  и . Абсцисса точки пе-
ресечения этих графиков и будет являться корнем уравнения (1), а отрезок на оси абсцисс 
которому принадлежит данный корень, будет являться интервалом изоляции. Этот метод 
отделения корней хорошо работает только в том случае, если исходное уравнение не име-
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ет близких корней. Данный метод дает тем точнее результат, чем мельче берется сетка по 
оси Ох. 

Пример. Графически решить уравнение . 

Решение. Запишем исходное уравнение в виде: , 

т.е.  и . 

Таким образом, корни данного уравнения могут быть найдены как абсциссы точек 

пересечения кривых  и . 

Теперь построим графики функций и определим интервал изоляции корня. 

Рис. 1. 

Из рис.1 видно, что корень находится на отрезке 
[1,2]. В качестве приближенного значения этого корня 
можно взять значение х=1.5. Если взять шаг по оси Ох 
меньше, то и значение корня можно получить более 
точное. 

Аналитический метод (табличный или шаговый). 

Для отделения корней полезно помнить следующие известные теоремы: 

1) если непрерывная функция f(x) принимает значения разных знаков на концах от-
резка [a,b], т.е. f(a)f(b)<0, то внутри этого отрезка содержится, по крайне мере, один ко-
рень уравнения f(x)=0; 

2) если непрерывная и монотонная функция f(x) на отрезке [a,b] принимает на кон-
цах отрезка значения разных знаков, то внутри данного отрезка содержится единственный 
корень; 

3) если функция f(x) непрерывна на отрезка [a,b] и принимает на концах отрезка 
значения разных знаков, а производная ее сохраняет постоянный знак внутри отрезка, то 
внутри отрезка существует корень уравнения (1) и притом единственный. 

Если исходное уравнение имеет близкие корни или функция f(x) сложная, то для 
отделения отрезков изоляции можно воспользоваться методом деления отрезка на части 
(шаговым методом). 

Сначала определяют знаки функции в граничных точках области. Затем отрезок 
разбивается с помощью промежуточных точек x=a1 ,a2 ,…. Если окажется, что в двух со-
седних точках ak и ak +1 функция f(x) имеет разные знаки, то в силу приведенной теоре-
мы, можно утверждать, то на этом отрезке имеется по крайне мере один корень. 
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Теперь необходимо убедиться, что на выбранном отрезке находится единственный 
корень. Для этого можно проверить меняет ли знак производная функции f(x) на этом ин-
тервале. 

Пример. Найти интервалы изоляции корня уравнения  на [0,4] 

Решение. Построим таблицу значений, где : 

x y(x) 

0 -2 

1 -1 

2 2 

3 7 

4 14 

Из таблицы значений видно, что функция y(x) меняет знак на отрезке [1,2], поэтому 
корень находится на этом отрезке. 

Отделение корней алгебраических уравнений 

Для отделения корней алгебраического уравнения (2) с действительными коэффи-
циентами полезно помнить следующие известные теоремы алгебры: 

1) если , , то все корни уравнения 
(2) расположены в кольце 

, (3) 

2) если а максимум модулей отрицательных коэффициентов уравнения,  и 

первый отрицательный коэффициент последовательности  есть , то все по-

ложительные корни уравнения меньше  (если отрицательных коэффициентов 
нет, то нет и положительных корней). 

3) если  и при  имеют место неравенства , , 

¼, , то число с служит верхней границей положительных корней уравнения (2). 

4) Пусть заданы многочлены 

, 
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, 

, 

 

и N0 , N1 , N2 , N3 верхние границы положительных корней соответственно много-

членов f(x), , , . Тогда все положительные корни уравнения (2) лежат на 

отрезке , а все отрицательные корни на отрезке . 

Пример. Отделить корни данного алгебраического уравнения, используя теорему 

4: . 

Решение. , , 

, , 

, , 

, . 

Таким образом корни уравнения могут лежать на интервалах 

, . 

Для определения количества действительных корней уравнения (2) необходимо 
воспользоваться теоремой Декарта: число положительных корней уравнения (2) с учетом 
их кратности равно числу перемен знаков в последовательности коэффициентов

 (при этом равные нулю коэффициенты не учитываются) или меньше этого 
числа на четное число. 

Теорема Декарта не требует больших вычислений, но не всегда дает точное коли-
чество действительных корней уравнения (2). 

Замечание. Для определения количества отрицательных корней достаточно приме-

нить теорему Декарта к многочлену . 

Если уравнение (2) не имеет кратных корней на [a,b], то точное число действитель-
ных корней дает теорема Штурма. 
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Предположим, что уравнение (2)не имеет кратных корней. Обозначим 

рез  производную ; через  остаток от деления  на , взятый с 

обратным знаком; через  остаток от деления  на , взятый с обратным 
знаком и т.д., до тех пор пока не придем к постоянной. Полученную последовательность 

, , , …,  (4) 

назовем рядом Штурма. 

Теорема Штурма: Число действительных корней уравнения f(x)=0, расположенных 
на отрезке [a,b], равно разности между числом перемен знаков в последовательности (4) 
при х=a и числом перемен знаков в последовательности (4) при х=b. 

Замечание. Использование теоремы Штурма на практике, связано с большой вы-
числительной работой при построении рядя Штурма. 

Пример. Отделить корни данного алгебраического уравнения, используя теорему 

Штурма:  

Решение. , ,   ,   

. Построим таблицу для подсчета смены знаков: 

-¥ 
1 

-
0.4 .5 

1 ¥ 

 

- + + +

 

+ + + +

 

- - - +

 

- - - - 

Число перемен 
знаков 

2 1 1 1 

Из таблицы подсчета смены знаков видно, что есть один корень данного уравнения, 
и он находится на [-1;-0.4]. 

Схема Горнера 
Схема Горнера – способ деления многочлена 
Pn(x)=∑i=0naixn−i=a0xn+a1xn−1+a2xn−2+…+an−1x+an 
на бином x−a. Работать придётся с таблицей, первая строка которой содержит ко-

эффициенты заданного многочлена. Первым элементом второй строки будет число a, взя-
тое из бинома x−a: 



 

После деления мно
пень которого на единицу 
ние схемы Горнера проще 

 
Пример №1 
 
Разделить 5x4+5x3+
Решение 

Составим таблицу и
члена 5x4+5x3+x2−11, расп
данный многочлен не сод
степени равен 0. Так как мы

Начнем заполнять п
ки запишем число 5, прост

Следующую ячейку

Аналогично заполни

Для пятой ячейки по

И, наконец, для посл

Задача решена, оста

Как видите, числа, 
есть коэффициенты многоч
ственно, что так как степен
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я многочлена n-ой степени на бином x−a, пол
ницу меньше исходного, т.е. равна n−1. Непос

роще всего показать на примерах. 

+5x3+x2−11 на x−1, используя схему Горнера.

ицу из двух строк: в первой строке запишем к
расположенные по убыванию степеней перем

е содержит x в первой степени, т.е. коэффици
как мы делим на x−1, то во второй строке запиш

 
нять пустые ячейки во второй строке. Во вторую
просто перенеся его из соответствующей ячейки

 
чейку заполним по такому принципу: 1⋅5+5=10:

 
полним и четвертую ячейку второй строки: 1⋅

 
йки получим: 1⋅11+0=11: 

 
я последней, шестой ячейки, имеем: 1⋅11+(−11)

 
, осталось только записать ответ: 

 
исла, расположенные во второй строке (межд
ногочлена, полученного после деления 5x4+5x

степень исходного многочлена 5x4+5x3+x2−11

 
получим многочлен, сте-

Непосредственное примене-

ера. 

шем коэффициенты много-
переменной x. Заметьте, что 
ффициент перед x в первой 
 запишем единицу: 

вторую ячейку второй стро-
ячейки первой строки: 

5=10: 

⋅10+1=11: 

−11)=0: 

(между единицей и нулём), 
x4+5x3+x2−11 на x−1. Есте-

−11 равнялась четырём, то 



 

степень полученного мног
Последнее число во вто
на 5x4+5x3+x2−11 на x−1. 
нацело. Этот результат 
на 5x4+5x3+x2−11 при x=1

Можно сформулиро
на 5x4+5x3+x2−11 при x=1
на 5x4+5x3+x2−11. 

Пример №2 
 
Разделить многочле
Решение 

Сразу оговорим, чт
Горнера будет учавство
на x4+3x3+4x2−5x−47 равн
степени: 

Полученный резуль
x4+3x3+4x2−5x−47=
В этой ситуации ос

самое, значение многочле
перепроверить непосредств

x4+3x3+4x2−5x−47=
Т.е. схему Горнера 

члена при заданном значен
то схему Горнера можно п
паем все корни, как рассмо

 
Пример №3 
 
Найти все целочис

используя схему Горнера.
Решение 

Коэффициенты рас
перед старшей степенью п
численные корни многочле
делителей числа 45. Для
ла 45;15;9;5;3;1 и −45;−15;−

 
Табл. №1 
 

 
Как 

на x6+2x5−21x4−20x3+71x
ке), а не 0, посему единица
единицы окончилась неуд
ставлять не будем, а продо
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 многочлена 5x3+10x2+11x+11на единицу мен
о второй строке (ноль) означает остачу от

−1. В нашем случае остача равна нулю, т.е
льтат ещё можно охарактеризовать так: 

x=1 равно нулю. 
улировать вывод и в такой форме: так как

x=1равно нулю, то единица является 

гочлен x4+3x3+4x2−5x−47 на x+3 по схеме Гор

м, что выражение x+3 нужно представить в ф
вствовать именно −3. Так как степень и
равна четырём, то в результате деления получ

 
езультат означает, что 
x−47=(x+3)(x3+0⋅x2+4x−17)+4=(x+3)(x3+4x−17
ии остача от деления x4+3x3+4x2−5x−47 на x+
гочлена x4+3x3+4x2−5x−47 при x=−3 равно 4. К
редственной подстановкой x=−3 в заданный мн
x−47=(−3)4+3⋅(−3)3−5⋅(−3)−47=4. 
нера можно использовать, если необходимо н
начении переменной. Если наша цель – найти в

жно применять несколько раз подряд, – до тех п
ассмотрено в примере №3. 

лочисленные корни многочлена x6+2x5−21x4
нера. 

ы рассматриваемого многочлена есть целые ч
нью переменной (т.е. перед x6) равен единице
огочлена нужно искать среди делителей свобод
. Для заданного многочлена такими корня
;−15;−9;−5;−3;−1. Проверим, к примеру, число

 

видите, значение 
3+71x2+114x+45 при x=1 равно 192(последнее 
иница не является корнем данного многочлена.
 неудачей, проверим значение x=−1. Новую т
 продолжим использование табл. №1, дописав 

у меньше, т.е. равна трём. 
чу от деления многочле-
ю, т.е. многочлены делятся 
так: значение многочле-

к как значение многочле-
яется корнем многочле-

е Горнера. 

ь в форме x−(−3). В схеме 
ень исходного многочле-
получим многочлен третьей 

4x−17)+4 
x+3 равна 4. Или, что то 
4. Кстати, это несложно 

й многочлен: 

имо найти значение много-
айти все корни многочлена, 
 тех пор, пока мы не исчер-

−21x4−20x3+71x2+114x+45, 

лые числа, а коэффициент 
инице. В этом случае цело-
вободного члена, т.е. среди 

корнями могут быть чис-
исло 1: 

 многочле-
днее число в второй стро-
члена. Так как проверка для 
вую таблицу для этого со-
писав в нее новую (третью) 



 

строку. Вторую строку, в 
дальнейших рассуждениях

Можно, конечно, пр
это займет немало времени
может быть несколько, и к
числении «на бумаге» крас

 
Табл. №2 
 

Итак, значение мно
лю, т.е. число −1 есть 
на x6+2x5−21x4−20x3+71x
член x5+x4−22x3+2x2+69x
(см. пример №1). Результат

x6+2x5−21x4−20x3+
Продолжим поиск ц

члена x5+x4−22x3+2x2+69
ищут среди делителей его
число −1. Новую таблицу 
табл. №2, т.е. допишем в н

 

Итак, число −1 явля
тат можно записать так: 

x5+x4−22x3+2x2+69
Учитывая равенство
x6+2x5−21x4−20x3+

4−22x2+24x+45)=(x+1)2(x4
Теперь уже нужно и

делителей его свободного ч

Число −1 является к
писать так: 

x4−22x2+24x+45=(x
С учетом равенства 
x6+2x5−21x4−20x3+

21x+45)=(x+1)3(x3−x2−21x
Теперь ищем корни 
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ку, в которой проверялось значение 1, выделим
ениях использовать её не будем. 
но, просто переписать таблицу заново, но при
емени. Тем более, что чисел, проверка которых
о, и каждый раз записывать новую таблицу зат
» красные строки можно просто вычёркивать. 

 
многочлена x6+2x5−21x4−20x3+71x2+114x+4

есть корень этого многочлена. После 
3+71x2+114x+45 на бином x−(−1)=x+1 
2+69x+45, коэффициенты которого взяты из тре
ультат вычислений можно также представить в 
20x3+71x2+114x+45=(x+1)(x5+x4−22x3+2x2+69

оиск целочисленных корней. Теперь уже нужно
x2+69x+45. Опять-таки, целочисленные корн
й его свободного члена, – числа 45. Попробуе
лицу составлять не будем, а продолжим испол
м в нее еще одну строку: 

 
является корнем многочлена x5+x4−22x3+2x2

x2+69x+45=(x+1)(x4−22x2+24x+45)(2) 
нство (2), равенство (1) можно переписать в так
20x3+71x2+114x+45=(x+1)(x5+x4−22x2+2x2+69
1)2(x4−22x2+24x+45)(3) 
жно искать корни многочлена x4−22x2+24x+45
ного члена (числа 45). Проверим еще раз число

 
ется корнем многочлена x4−22x2+24x+45. Этот

45=(x+1)(x3−x2−21x+45)(4) 
нства (4), равенство (3) перепишем в такой форм
20x3+71x2+114x+45=(x+1)2(x4−22x3+24x+45)=
2−21x+45)(5) 
орни многочлена x3−x2−21x+45. Проверим еще

делим красным цветом и в 

о при заполнении вручную 
торых окончится неудачей, 

цу затруднительно. При вы-
 

14x+45 при x=−1 равно ну-
осле деления многочле-

 получим много-
 из третьей строки табл. №2 
ить в такой форме: 
x2+69x+45)(1) 
нужно искать корни много-
 корни этого многочлена 
робуем ещё раз проверить 

использование предыдущей 

3+2x2+69x+45. Этот резуль-

ь в такой форме: 
x2+69x+45)==(x+1)(x+1)(x

4x+45, – естественно, среди 
число −1: 

Этот результат можно за-

й форме: 
+45)==(x+1)2(x+1)(x3−x2−

м еще раз число −1: 



 

 

Проверка окончилас
буем проверить иное число

 

В остаче ноль, 
Итак, x3−x2−21x+45=(x−3)

x6+2x5−21x4−20x3+
(6) 

Проверим ещё раз ч

Полученный резуль
x6+2x5−21x4−20x3+

=(x+1)3(x−3)2(x+5)(7) 
Из последней скобк

члена. Можно, конечно, ф
но необходимости в этом н

x6+2x5−21x4−20x3+
Числа −1;3;5 – корн

степени, то −1 – корень тр
корень второго порядка; та
порядка (простой корень).

Вообще, обычно оф
бираются возможные вариа
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чилась неудачей. Выделим шестую строку кра

 число, например, число 3: 

 
оль, посему число 3 – корень рассматрив
(x−3)(x2+2x−15). Теперь равенство (5) можно п
20x3+71x2+114x+45==(x+1)3(x3−x2−21x+45)=(

 раз число 3: 

 
езультат можно записать так (это продолжение 
20x3+71x2+114x+45=(x+1)3(x−3)(x2+2x−15)==(

 скобки видно, что число −5 также является ко
но, формально продолжить схему Горнера, про

этом нет. Итак, 
20x3+71x2+114x+45=(x+1)3(x−3)(x2+2x−15)=(x
корни данного многочлена. Причем, так как с

ень третьего порядка; так как скобка (x−3) во в
дка; так как скобка (x+5) в первой степени, то
ень). 
но оформление таких примеров состоит из таб
 варианты корней, и ответа: 

у красным цветом и попро-

атриваемого многочлена. 
жно переписать так: 
45)=(x+1)3(x−3)(x2+2x−15)

ение равенства (6)): 
15)==(x+1)3(x−3)(x−3)(x+5)

тся корнем данного много-
проверив значение x=−5, 

15)=(x+1)3(x−3)2(x+5) 
 как скобка (x+1) в третьей 

во второй степени, то 3 – 
и, то x=−5 – корень первого 

з таблицы, в которой пере-
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Из таблицы следует вывод, полученный нами ранее с подробным решением: 
x6+2x5−21x4−20x3+71x2+114x+45=(x+1)3(x−3)(x2+2x−15)=(x+1)3(x−3)2(x+5) 
 
2. Метод хорд, касательных 
Метод дихотомии (половинного деления) 
Метод дихотомии (метод деления отрезка пополам) основан на известной теореме 

Больцано-Коши: 

 Если непрерывная на отрезке  функция  на концах его имеет противо-

положные знаки, т.е. , то на интервале  она хотя бы раз обраща-

ется в нуль. 
Данная теорема не дает вопрос о количестве корней (он может быть как один, так и 

произвольное нечетное число) в случае выполнения данного условия  и не позволяет ут-
верждать, что корней точно нет, если условие не выполняется (их может быть произволь-
ное четное число). 

А вот если функция на отрезке является строго монотонной, то тогда можно утвер-
ждать 

Если непрерывная и строго монотонная  на отрезке  функция  на кон-

цах его имеет противоположные знаки, т.е. , то на интервале 

 имеется один и только один корень. 
Метод дихотомии основан на последовательном делении отрезка локализации кор-

ня пополам. 

Для этого выбирается начальное приближение к отрезку , такое, что 

, затем определяется знак функции в точке  - середине отрезка 

. Если он противоположен  знаку функции в точке a, то корень локализован на от-

резке , если же нет – то на отрезке . 
Алгоритм можно записать так 

1.      представить решаемое уравнение в виде  
2.      выбрать такие a, b, что  

3.      вычислить  

4.      если , то b = с   иниче  a = c 
5.      если критерий сходимости не выполнен, то перейти к п. 3 
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6.      напечатать корень из переменной с 
Для нашего примера решение принимает вид:  
 

 
 
Точность до седьмой значащей цифры достигается за 20 итераций. 
Скорость сходимости этого метода является линейной.  
При выполнении начального условия он сходится к решению всегда. 
Если задана точность, то можно точно вычислить число необходимых итераций. 

Действительно, на шаге k длина отрезка локализации корня составит  

Тогда  
Метод половинного деления удобен при решении физически реальных уравнений, 

когда заранее известен отрезок локализации решения уравнения и затруднено использова-
ние метода Ньютона. 

Близким по алгоритму к методу половинного деления является метод хорд.  
Равновесные концентрации веществ при протекании химического процесса  

 связаны по закону действующих масс константой равновесия 
реакции 

 

Обозначим начальные концентрации веществ через , через x 
обозначим глубину протекания химической реакции от начального состояния, тогда рав-
новесные концентрации веществ можно выразить через начальные и величину x 

 
Подставим и получим уравнение относительно величины х 

 

Преобразовав его к виду  получим 
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Данное уравнение можно решать методом Ньютона (найдя аналитически соответ-

ствующую производную) либо методом половинного деления 
Зная начальные концентрации веществ можно довольно легко найти интервал воз-

можных значений глубины протекания реакции x. Для этого воспользуемся физическим 
ограничением – равновесные концентрации веществ должны быть неотрицательными ве-
личинами. 

                   
Первые два неравенства ограничивают значение сверху, последние два – снизу, что 

окончательно приводит к 

 
Наиболее часто решаются задачи, в которых начальные концентрации продуктов 

реакции равны 0. В этом случае, как видно, нижней границей для x будет как раз значение 
0. 

3. Метод итерации, его сходимость 
Часто встречающейся численной задачей в рамках математического моделирова-

ния  химических систем и процессов является задача нахождения решения уравнений од-
ной переменной (корней уравнений). 

В общем виде любое уравнение одной переменной принято записывать так 

, при этом корнем (решением) называется такое значение , что 

 оказывается верным тождеством. Уравнение может иметь один, несколько 
(включая бесконечное число) или ни одного корня. 

Как легко видеть, для действительных корней задача отыскания решения уравне-
ния легко интерпретируется графически: корень есть такое значение независимой пере-
менной, при котором происходит пересечение графика функции, стоящей в левой части 

уравнения , с осью абсцисс. Например, пусть есть уравнение 

 

Преобразуем его в   и определим, что 

 
График функции имеет вид 
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Таким образом можно приблизительно определять область локализации корней 

уравнения. Так, видно, что данное уравнение имеет два действительных корня – один на 
отрезке [-1, 0] , а второй – [1, 2]. Решением с семью значащими цифрами являются : x1 = -
0.6367327   x2=1.409624 

Некоторые виды уравнений допускают аналитическое решение. Например,  алгеб-

раические уравнения степени  n 

  при . 
Однако, в общем виде, аналитическое решение, как правило, отсутствует. В этом 

случае и применяются  численные методы. 
Все численные методы решения уравнений представляют собой итерационные ал-

горитмы последовательного приближения к корню уравнения. То есть, выбирается на-

чальное приближение к корню  и затем с помощью итерационной формулы генериру-

ется последовательность  сходящаяся  к корню уравнения 

 
Критерии сходимости при решении уравнений 
1.      Абсолютное изменение  приближения на соседних шагах итерации 

 
2.      Относительное изменение  приближения на соседних шагах итерации 

 
3.      Близость к нулю вычисленного значения левой части уравнения (иногда  это 

значение называют невязкой уравнения, так как для корня невязка равна ну-

лю)   
Метод простой итерации 
Это простейший из предложенных методов нахождения корней. В качестве итера-

ционной формулы используется  выражение независимой переменной из исходного урав-
нения: 

Исходное уравнение -  путем арифметических преобразований приводит-

ся к виду  ,  
который может использоваться в качестве итерационной формулы. 
Данное преобразование, как правило, не однозначно и совершенно отдельной зада-

чей является оценка применимости и эффективности того или иного способа преобразо-
вания. 

Например, уравнение  можно преобразовать, например, так 
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  или так   или так   и т.д. 
Задавшись начальным приближением к корню (например, из анализа графика 

функции или априорных соображений физически реальной модели)  можно найти реше-
ние. 

, затем   …..   
Ниже приведена таблица вычислений для представленных выражений, начиная с 

одного и того же начального приближения.  
 

 
 
Точность до семи значащих цифр достигается при данном выборе начального при-

ближения для первой итерационной формулы уже на шестом шаге итерационной проце-
дуры, для третьей – на 115-м (в таблице не показано).  А вот для второй формулы уже на 
третьем итерационном шаге  вычисления прекращаются, так как под знаком арксинуса 
оказывается число, большее единицы (нарушается область определения функции). 

Сходимость метода простой итерации является локальной и резко зависит от вы-
бора итерационной формулы, что является его недостатком. В случае сходимости ско-
рость схождения не выше первой степени. 

 
4. Метод Ньютона 

Метод Ньютона основан на линеаризации функции   вблизи приближенного 
значения и нахождения точки пересечения полученной линии с осью абсцисс 

Тангенс угла наклона касательной  равен значению производной в точке касания. 

 
Координата точки пересечения будет 

 - это и есть итерационная формула метода Ньюто-
на. 

Пример     

Для уравнения   имеем 
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Сходимость к положительному корню достигается за четыре шага 
 

 
 
Сходимость к отрицательному корню – всего за три. 
Метод Ньютона  является локальным квадратично сходящимся методом. Причем 

область сходимости, как правило, достаточно широкая. Это основные достоинства метода. 
К недостаткам можно отнести необходимость вычисления производной функции и 

плохая обусловленность метода вблизи экстремумов функции  
 
5. Метод Зейделя 
Системы n линейных уравнений с n неизвестными x1, x2, ..., xn  в общем случае 

принято записывать следующим образом:  

 
где аij  и  bi – произвольные константы. Число n неизвестных называется порядком 

системы.  
Решением уравнения является такая совокупность значений переменных х1, х2,…, 

хn, которая одновременно обращает все уравнения системы в тождество.  
Необходимым и достаточным условием существования и единственности решения 

системы  уравнений является линейная независимость уравнений. Или, более точно, нера-
венство нулю определителя, составленного из коэффициентов системы уравнений:  

 
Эквивалентной (и весьма удобной!!!) записью системы линейных уравнений явля-

ется матричная запись  

   или сокращенно    ,  
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в чем легко убедится, если воспользоваться правилами перемножения матриц: эле-
мент, стоящий на пересечении i-й строки и j-го столбца матрицы-результата есть скаляр-
ное произведение i-й вектор-строки первой матрицы и j-го вектор-столбца второй матри-
цы.  

Коэффициенты при неизвестных образуют квадратную матрицу размером n x n, 
(A), переменные и свободные члены уравнений – векторы-столбцы длиной n(Х) и (В), со-
ответственно.  

Решение системы уравнений есть вектор (X*), который обращает это матричное 
уравнение в тождество.  

 
Для решения системы линейных уравнений применяются точные методы (прямые) 

в которых количество арифметических, необходимых для нахождения решения, операций 
точно определяется порядком системы и итерационные (приближенные) методы, в кото-
рых проводится пошаговое, итерационное  уточнение решения.  

Оценить близость какого-либо вектора (Х)i к решению системы уравнений можно 
оценив близость  вектора невязок , вычисляемого приведенным ниже образом, к нулевому 
вектору:  

 
Для выражения меры близости в виде числа используется какая-либо норма векто-

ра, например, Евклидова норма или длина вектора в n-мерном пространстве (другое опре-
деление – это корень квадратный из скалярного произведения вектора на себя):  

 
Иногда используются другие векторные нормы: норма-максимум (равна наиболь-

шей по абсолютной величине компоненте вектора)  

 
или  норма-сумма (равна сумме абсолютных величин компонентов вектора)  

 
Обусловленность линейных алгебраических систем  
Численное решение систем алгебраических уравнений является часто решаемой в 

рамках математического моделирования задачей. При этом как размерность задачи, так и 
характер матриц может существенно меняться. Вычисления, проводимые с определенной 
точностью, так же оказывают влияние на результат решения линейных систем. Кроме то-
го, сами коэффициенты системы – матрица (А) и свободные члены – (В) могут быть пред-
ставлены с определенной погрешностью.  

Приведем такой пример:  
Система уравнений  

 
Имеет, как нетрудно убедиться подстановкой, единственное решение x = 1, y = 1.  
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Предположим, что при подготовке системы к решению, правая часть первого урав-
нения была определена с небольшой абсолютной погрешностью в +0.01, то есть, правая 
часть первого из уравнений вместо 11 была взята равной 11,01.  

 
Единственным решение этой системы уравнений уже будет вектор  x=11,01    y=0.  
Как нетрудно убедится, в этом случае погрешность определения значений пере-

менных оказывается существенно больше, чем погрешность коэффициента. Задачи, в ко-
торых малое изменение исходных параметров кардинально сказывается на результате на-
зываются плохо обусловленными.  

Рассмотрим в общем виде систему линейных уравнений, в которой вектор свобод-
ных членов (В) представлен с некоторой абсолютной погрешностью  (∆В).  

Если вектор  (X) является точным решением уравнения с "точным" вектором (В).  

 
то при наличии погрешности в правой части  (∆В)  решение системы уравнений 

будет отличаться от  (X)  на некоторый вектор (∆X), что можно записать следующим об-
разом:  

, раскроем скобки в правой части  

и учтем точное уравнение  

 

, умножая обе части равенства на матрицу, обратную матрице 
коэффициентов  

   получим   
т.е. абсолютная погрешность (∆X) вычисления вектора решения (X) равна произве-

дению матрицы, обратной матрице коэффициентов системы уравнений, на вектор абсо-
лютной погрешности (∆В) . 

Если перейти от матриц и векторов к соответствующим нормам, то получим, что 
норма вектора (∆X) будет меньше либо равна произведению норм обратной матрицы и 
нормы вектора  погрешности  

 
Таким образом, если норма обратной матрицы будет велика, то абсолютная по-

грешность решения может быть существенно больше абсолютной погрешности правых 
частей  уравнений системы.  

Оценим, как будут при этом соотноситься относительная погрешность решения и 
относительной погрешностью коэффициентов. Для этого пронормируем два полученных 
ранее уравнения:  

        
Перемножим отдельно левые и правые части неравенств, что, очевидно, не изменит 

знак неравенства и разделим обе части на и, окончательно получим:  

 



32 
 

 Величина  называется числом (мерой) обусловленности матрицы А. От 
этой величины зависит степень влияния погрешности коэффициентов системы уравнений 
на погрешность полученного решения. Если это число невелико, то относительная по-
грешность решения будет не сильно отличаться от относительной погрешности коэффи-
циентов. Чем больше число обусловленности тем больше будет влияние погрешности ко-
эффициентов на погрешность решения.  

Аналогичный анализ можно провести и для случая наличия погрешности задания 
матрицы коэффициентов системы (∆A) . И в этом случае, так же, возникает число обу-
словленности.  

 
Для рассмотренного числового примера  

    и         
Если взять, например, матричную норму-максимум,  

, то получим  
для матрицы  (А) норму   1011, а для матрицы, обратной (А) - (А)-1   – 1101. Таким 

образом, число обусловленности оказывается равным более 1000000! 
 

Метод простых итераций, метод Зейделя 

 
Данные методы рассмотрены на примере систем нелинейных уравнений. 
 
Метод минимальных невязок 

 
Для решения линейных систем уравнений можно применять и различные методы 

поиска экстремумов. Проблема решения системы уравнений заменяется эквивалентной 
задачей нахождения экстремума функции n переменных. 

Одним из примеров является метод минимальных невязок. Вектор невязок опреде-
ляется следующим образом. 

 
Очевидно, что если на место вектора (Х) подставить вектор решения, то второе 

слагаемое окажется равным вектору свободных членов и вектор невязок становится нуле-
вым. 

Таким образом, минимизация компонентов вектора невязок эквивалентна задаче 
решения уравнений. Что бы знак невязок не влиял на результат, минимизируют сумму 
квадратов невязок (скалярное произведение вектора на себя): 

 
Запишем итерационную формулу поиска решения в следующем виде 

 
где индекс k обозначает номер итерационного шага, тау – константа, которую нам 

необходимо определить, ∆(k)(дельта) – вектор невязок на этом шаге. 
Рассмотрим разность векторов невязок на двух последовательных шагах k и k+1 
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после подстановки имеем 

 

 
Скалярное произведение этого вектора на себя имеет вид 

 
Параметр тау можно выбрать таким образом, чтобы левая часть была минималь-

ной. Условием экстремума является равенство нулю производной по тау правой части вы-
ражения 

 
откуда, 

 
Окончательно,  k-ый шаг метода выглядит следующим образом: 
1.  Задается начальное приближение (Х(k)) 
2.  Рассчитывается вектор невязок 

 
3.  Рассчитывается параметр тау. Для этого перемножается матрица коэффициентов 

и вектор невязок. Затем вычисляется его скалярный квадрат и произведение на матрицу 
невязок. 

4.  Рассчитывается новое приближение к вектору-решению 

 
5.  Проверяется один из критериев сходимости и, при необходимости, происходит 

переход к пункту 2. 
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2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ 

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

 
2.1 Практическое занятие №1 (2 часа)  

Тема: «Дифференциальные уравнения n-го порядка. Основные понятия. ЛОДУ, методы 
их решения, свойства» 

 
2.2.1 Задание для работы: 
1. Уравнения, допускающие понижение порядка. Уравнения, не содержащие иско-

мой функции. 
2. Уравнения, допускающие понижение порядка. Уравнения, не содержащие неза-

висимой переменной. 
3. ЛОДУ, ФСР, определитель Вронского. 
4.Построение общего решения однородного линейного уравнения по ФСР. 
5. Метод Лагранжа. 

 
2.2.2  Краткое описание проводимого занятия: 
 
1. Уравнения, допускающие понижение порядка. Уравнения, не содержащие 

искомой функции. 
 

Найти общее решение дифференциального уравнения ( )2
yyyx ′=′+′′ . 

Решение. Поскольку данное уравнение не содержит в явном виде переменной y , то 

замена ( )y p x′ =
 ( )y p x′′ ′=

 позволяет преобразовать его в уравнение первого порядка с 

разделяющимися переменными 
2xp p p′ + = . 

,,
2

2

x

dx

pp

dp
pp

dx

dp
x =

−
−=

 
1 12

0,5 0,5
, ln ln ln ln

0,5 0,5

dp dx p
x C C x

x pp p

− −
= = + =

− +−∫ ∫
; 

( )1 2
1 1 1

1 1 1
1 1, , ln

1

dy
p C x y x C

dx C x C C
− = = = − − +

− . Учтя, что 1C  – произвольная 

постоянная, то полученное решение можно упростить: 1 1 2lny C x C C= + +
. 

Ответ. 1 1 2lny C x C C= + +
. 

 
2. Уравнения, допускающие понижение порядка. Уравнения, не содержащие 

независимой переменной. 

1. Найти общее решение дифференциального уравнения ( )2
y y′′ ′=

. 
Решение. Так как решаемое уравнение не содержит явно переменной x , будем по-

лучать его решение с помощью введения новой переменной ( )y p y′ =
, откуда yy p p′′ ′=

, 
так как в этом случае мы вычисляем производную сложной функции. Заданное уравнение 

в результате такой замены будет иметь вид: 
2

yp p p′ =
. Решение 0p =  является особым, и, 

делая обратную замену в этой ситуации, запишем: 0y y C const′ = ⇒ = = . Оставшееся 
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уравнение yp p′ =
 является уравнением в разделяющихся переменных: 

y

dp dp
p p p dy

dy p
′ = ⇒ = ⇒ =

. Интегрируя последнее равенство, получим 1ln p y C= + . Вы-

разим теперь функцию p : 
1 1

1
y C Cy yp e e e e C
+= = = . Делая вновь обратную замену 

( )y p y′ =
, получим: 

1 1
y ydy

y e C e C
dx

′ = ⇒ =
. В данном уравнении можно разделить пере-

менные: 
1 1

y ydy
e C e dy C dx

dx

−= ⇒ =
. Интегрируя последнее выражение, получим 

1
ye Cx C−− = + . Получившаяся неявная функция также является решением заданного диф-

ференциального уравнения. 

Ответ. y C const= = ; 1 2
ye C x C− = + . 

2. Решить задачу Коши:  
2 42 0yy y y′′ ′ ′+ + = ,   у(0)=1,у'(0)=1. 

Решение.                                                     
2 4

2 4

3

2 2
2 2

2

2 0;

( ); ;

2 0; 0; 0;

2 0;

2 ; 2 ln ; 1;
( 1) 1

1, 1; 0;

1 1
2 ln ; 2 ln l

21

yy y y

dp dy dp
y p y y p

dy dx dy

yp p p p p y y C первое решение

yp p p

dp dy A Bp C
dp Cy Ap A Bp Cp

y pp p p

A B C

p
dp Cy p

p p

′′ ′ ′+ + =

′ ′′= = =

′ ′+ + = = = = −

′ + + =

 +
= − + = − + + + = + + 

= = − =

 
− = − − + 

∫

∫

( )

( )

2

2 2

2 2 2

2

3

2
1

3

2
2

n( 1) ln ;

1 1
ln ln ; ; 1 ;

1

1 1
; ;

1 1

2
1 ; 1 ;

3

2 1 3 ;

p Cy

p p
Cy Cy Cy

p p p

dy
p

Cy dx Cy

Cy dy dx Cy x C
C

Cy Cx C общий интеграл

 + = − 
 

+
= − = = +

+

= = ±
− −

± − = ± − = +

± − = +  
При  х=0  у'=1/√с-1,→С=2; С²=2. 

3. а) Найти общее решение дифференциального уравнения 
2y x′′ = . 

Решение. Так как производная в данном случае является функцией, зависящей 
только от переменной x, то его решение может быть получено в результате последова-
тельного интегрирования:  

2 3 4
1 1 2/ 3 /12y x y x C y x C x C′′ ′= ⇒ = + ⇒ = + + . 

 Ответ. 
4

1 2/12y x C x C= + + . 



 

 
3. ЛОДУ, ФСР, опр
 
1. Исследовать на л

определения. 
Решение 
Областью определен

Так как существуе
при x=1 имеем W=e), то фу

 
2. Исследовать на ли
y1(x)=1, y2(x)=x, y3

Решение 
Осуществим исслед

проводим в области опреде

Так как W≠0, то дан
 
 
 
4. Построение обще

 Дано ДУ II порядк
решение. 

Решение 
По теореме об обще

что 

                                

где – произвол
Покажем, что 

ции  
Действительно, 

            

но;             

Проверяем линейну
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Р, определитель Вронского. 

ь на линейную зависимость функции y1(x)=x,

еделения данных функций есть вся числовая пр

ствует хотя бы одно значение x∈R, при кот
, то функции y1(x)=x и y2(x)=xex линейно незав

ь на линейную зависимость функции  
3(x)=x2, y4(x)=x3, y5(x)=x4 в их области опред

сследование с помощью определителя Вронск
пределения данных функций, т.е. на R. 

данные функции линейно независимы на R.

 общего решения однородного линейного ура

орядка, линейное, однородное:  

 общем решении линейных однородных уравне

    , 

извольные постоянные,  – это ФСЧР. 
то частными решениями данного ДУ

 . 

нейную независимость  и : 

, y2(x)=xex в их области 

ая прямая, т.е. x∈(−∞;+∞). 

 
и котором W≠0 (например, 

 независимы на R. 

 определения. 

ронского. Все рассуждения 

 
. 

го уравнения по ФСР 

. Найти его общее 

равнений II порядка имеем, 

 ДУ являются функ-

- 

 - верно. 
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 функции  и являются линейно независимыми, 
то есть образуют ФСР. 

Составляем ответ: . 
 
5. Метод Лагранжа. 

Найти общее решение уравнения . 

Решим сначала однородное уравнение . Заметим, 

что . Откуда  или . Еще раз 

интегрируем, получим  . 

Считаем, что . Составим систему 

 

Откуда  или  . 
Общее решение уравнения 

 
 
2.2.3 Результаты и выводы: В результате проведенного занятия студенты: 
- усвоили основные определения и теоремы теории ЛОДУ;  
- освоили построение общего решения по ФСР, алгоритм метода вариации произ-

вольной постоянной;  
- выработали навыки применения метода Лагранжа.  
- усвоили классификацию уравнений, допускающих понижение порядка, основные 

определения и теоремы теории ЛОДУ; 
- освоили основные алгоритмы, применяемые в решении;  
- выработали навыки построения ФСР, вычисления определителя Вронского.  
 
 
2.2 Практическое занятие №2,3 (4 часа)  

Тема: «Приближенные методы решения уравнений и систем уравнений» 
 
2.2.1 Задание для работы: 
1.Метод касательных 
2. Метод итерации. 
3. Метод простых итераций. 
4. Метод Ньютона. 
5. Метод Зейделя. 
 
 
2.2.2  Краткое описание проводимого занятия: 
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1.Метод касательных (метод Ньютона) 
  

Пусть корень х уравнения  , можно отделить  

на отрезке  причём  и  непрерывны и сохраняют определённые 

знаки при . Найдя какое-нибудь n-ое приближённое значение кор-

ня  , можно его  уточнить методом Ньютона следующим образом. 
                                      Предположим 

                                                            (2) 

где  является малой величиной. Отсюда, применяя формулу Тейлора, получим 

                             

Следовательно    
Внеся эту поправку в формулу (2), найдём следующее (по порядку) приближение 

корня 

                                                                 (3) 
  
Применяя метод Ньютона, следует руководствоваться следующим правилом: в ка-

честве исходной точки  выбирается тот конец интервала , которому отвечает 

ордината того же знака, что и знак . 
  
Замечание 1:                       
Если 

1)    Функция определяется, например при ; 

2)    ; 

3)     при ; 

4)    существует всюду и сохраняет постоянный знак, 

то при применении метода Ньютона для нахождения корня уравнения , 

лежащего на интервале , за  начальное приближение  можно принять любое значе-

ние  в частности можно взять x или . 
  
Замечание 2: 

Из формулы (3) видно, что чем больше значение производной  в окрестности 
данного корня, тем меньше поправка, которую можно прибавить к полученному прибли-

жению, чтобы получить  приближение. 

 Для оценки погрешности n-ого приближения  можно воспользоваться форму-
лой  

  где - наименьшее значение  на отрезке . 

Если процесс Ньютона сходится, то  при  

. 
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Пример: Вычислить методом Ньютона отрицательный корень уравнения 

 с пятью верными знаками. 
  
Решение. 

Полагая в левой части уравнения  получим 

, 

, 

. 

Следовательно, искомый корень  находиться в интервале . Сузим 

найденный интервал т.к. , то . В этом последнем интерва-

ле  и т.к.   и , то можем принять за начальное 

приближение . Последовательные приближения  
   

   

-11 3453 -5183 0,7 
-

10,3 
134,3 -4234 0,03 

-
10,27 

37,8 -4196 0,009 

-
10,216 

0,2 -------------
--- 

-----------
--- 

Останавливаясь на , проверяем знак 

т.к. ,  то , и любое из этих чисел даёт искомое при-
ближение. 

  
2. Метод итерации 
Метод итераций предполагает замену уравнения f(x)=0 равносильным уравнением 

x=(x). Если корень уравнения отделен на отрезке [a;b], то исходя из начального прибли-
жения x0[a;b], можно получить последовательность приближений к корню 

x1 = (x0), x2 = (x1), …, где функция (x) называется итерирующей функцией. 
Условие сходимости метода простой итерации определяется следующей теоремой. 
Пусть корень х* уравнения x=(x) отделен на отрезке [a;b] и построена последова-

тельность приближений по правилу xn=(xn-1). Тогда, если все члены последовательно-

сти xn=(xn-1) [a;b] и существует такое q (0,что для всех х [a; b]выполняется |’(x)| = q<1, 

то эта последовательность является сходящейся и пределом последовательности явля-

ется значение корня x*, т.е. процесс итерации сходится к корню уравнения независимо 

от начального приближения. 
Таким образом, если выполняется условие сходимости метода итераций, то после-

довательность x0, x1, x2, …, xn,…,полученная с помощью формулы xn+1 = (xn), сходится к 
точному значению корня:  

Использование итерационной формулы xn+1=(xn) позволяет получить значение кор-
ня уравнения f(x)=0 с любой степенью точности. 

Геометрическая иллюстрация метода итераций. Построим на плоскости X0Y гра-
фики функций y=x и y=(x).Корень уравнения х=(x) является абсциссой точки пересечения 
графиков функции y = (x) и прямой y=x. Возьмем некоторое начальное приближение 
x0 [a;b]. На кривой y = (x) ему соответствует точка А0 = (x0). Чтобы найти очередное при-
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ближение, проведем через точку А0прямую горизонтальную линию до пересечения с пря-
мой y = x (точкаВ1) и опустим перпендикуляр до пересечения с кривой (точкаА1), то 
естьх1=(x0). Продолжив построение аналогичным образом, имеем ломаную линию А0, В1, 
А1, В2, А2…, для которой общие абсциссы точек представляют собой последовательное 
приближение х1, х2, …, хn («лестницу») к корню х*. Из рис. 1.2.3-3а видно, что процесс 
сходится к корню уравнения. 

 
a)                                                                                                  b) 
Рис. 1.2.3-3 
Теперь рассмотрим случаи, когда |’(x)|>1. На рис. 1.2.3-4а показан случай, когда 

’(x)>1, а на рис. 1.2.3-4b – когда ’(x) < -1.В обоих случаях процесс итерации расходится, то 
есть, полученное на очередной итерации значение х все дальше удаляется от истинного 
значения корня. 

 
а)                                                                                                 b) 
Рис. 1.2.3-4 
Способы улучшения сходимости процесса итераций. Рассмотрим два варианта 

представления функции (x) при переходе от уравнения f(x) кx=(x). 
Пусть функция (x) дифференцируема и монотонна в окрестностях корня и сущест-

вует число k |‘(x)|, где k 1 (т.е. процесс расходится). Заменим уравнение х=(x) эквивалент-
ным ему уравнением х=(х),где (х) = 1/(x)(перейдем к обратной функции). Тогда 

а значит q=1/k<1 и процесс будет сходиться. 
Представим функцию (x) как (x) = х - f(x), где - коэффициент, не равный 
нулю. Для того чтобы процесс сходился, необходимо, чтобы 0< |(x)|=|1 - f(x)|<1. 

Возьмем = 2/(m1+M1), где m1иM1– минимальное и максимальное значения f ’(x) (m1=min|f’(x)|, 
M1=max|f’(x)|)для х[a;b],т.е.0 m1 f(x) M11.Тогда и процесс будет сходящимся. 

Если f(x) < 0, то в рекуррентной формуле f(x) следует умножить на -1. 
 
3. Метод простых итераций. 
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Пример. Методом половинного деления с точностью  найдём корень 

уравнения  при   
Решение. Выше, при отделении корней табличным способом, было установлено, 

что искомый корень  принадлежит отрезку . На каждом шаге вычислений значе-
ние корня принимаем равным 

  

 

с погрешностью                           
Будем производить вычисления и выбирать последовательность вложенных отрез-

ков  используя условие . 

Шаг 1.   

Так как  и  то полагаем 

 

 

Шаг 2.   

Так как  и  то полагаем 

 

 

Шаг 3.   

Так как  и  то полагаем 

 

 

Шаг 4.   

Так как  и  то полагаем 

 

 

Шаг 5.   

Так как  и  то полагаем 
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Шаг 6.   

Так как  и  то полагаем 

 

 

Шаг 7.   

Так как  и  то полагаем 

 

 
Таким образом, заданная точность достигается на седьмом шаге метода половинно-

го деления, поэтому приближённым значением корня с точностью  будем считать 

число  

Пример. Методом простых итераций найти корни уравнения  с точно-

стью  
Решение. Для отделения корней воспользуемся графическим методом. Для этого 

преобразуем исходное уравнение к виду   и построим  

графики  функций  и  в одной системе координат (рис. 1). 
 
Абсцисса точки пересечения этих графиков является приближённым значением 

корня . Из рисунка видно, что единственный корень  находится на отрезке 

: , , т. е. на концах отрезка функция  меня-

ет знак и производная  на отрезке  
Запишем исходное уравнение в эквивалентном 

виде: 

 
где                                    

                                         
                                                                                            Рис. 1 

Выберем для получения корня . Процесс итераций 

    сходится, так как 

 
Таким образом, формула метода простых итераций для данного уравнения будет 

иметь вид: 

. 



 

Пусть                      

тогда           

Далее 
  

При этом погрешнос

Следовательно, с то

ного уравнения можно взят
 

4. Метод Ньютона.

Рассмотрим нелиней

С действительными
виде 

 (2).  Здесь

- вектор ар

Для решения систем
Предположим, что найде
изолированных корней X
корень уравнения (2) можн

где 
шаге. 

Подставив выражен

Предположим, что ф
пуклой области, содержащ
Тейлора по степеням малог
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 и  

  

ешность составит  т. е.  

о, с точностью  в качестве приближённого

о взять число  

тона. 

елинейную систему уравнений 

(1) 

ными левыми частями. Систему (1) можно пре

  Здесь приняты следующие обозначения: 

ор аргументов, а  - вектор – функция.

системы (2) воспользуемся методом последоват
найдено Р-ое приближение Xp = (X1(P), X2(P)

X = (X1, X2,X3, ..., Xn) векторного уравнения
 можно представить в виде 

(3) 

 - поправка (погрешно

ражение (3) в (2), получим 

(4) 

, что функция F(X) - непрерывно дифференцир
ержащей X и X(P). Тогда левую часть уравнени
 малого вектора ε(P), ограничиваясь линейными

, (5) 

  

 

 

нного значения корня дан-

о представить в матричном 

ция. 

довательных приближений. 
(P) , ..., Xn(P)) одного из 

нения (5.2). Тогда точный 

решность) корня на N – ом 

енцируема в некоторой вы-
внения (4) разложим в ряд 
ными членами: 



 

Или в развернутом в

Из анализа формул 
матрицу Якоби системы 
..., Xn, то есть: 

Выражение (5.7) в к

Выражение (6) пр

вок  (I = 1, 2, ..., N) с 
следующем виде: 

Отсюда, предполага

Теперь, подставив в

Таким образом, пол
стве нулевого приближени
корня. 

Пример. Рассмотри
нейных уравнений 
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утом виде: 

рмул (5) и (6) следует, что под производной F¢

темы функций F1 , F2, ..., Fn, относительно п

(7) 

.7) в краткой записи можно представить: 

(8) 

6) представляет собой линейную систему 

) с матрицей W(X), поэтому формула (5) мо

(9) 

олагая, что матрица W(X(P)) - неособенная, пол

(10) 

авив выражение (10) в формулу (3), окончательн

(11) 

м, получили вычислительную формулу (метод 
ижения X(0) можно взять приближенное (грубо

мотрим применение метода Ньютона на пример

(6) 

F¢(X) следует понимать 
ьно переменных X1, X2, X3, 

ему относительно попра-

(5) может быть записана в 

я, получим: 

ательно получим: 

 

етод Ньютона), где в каче-
(грубое) значение искомого 

римере системы двух нели-



 

Прежде чем разбир
общем виде якобиан для си

Здесь A, B, C, D –
ет W-1. Пусть матрица W-

Теперь вернемся к с
пересечения: М1 (1.4; -1.5) 

Используя формулу

Аналогично получи

 
5. Метод Зейделя.
 
Этот метод предста

ции. Основная его идея за
неизвестной XI учитывают
1). 

Пусть дана приведен

Выберем произволь
ясь, конечно, чтобы они в к

Предположим, что
идеей метода будем строит
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(12) 

азбирать конкретные шаги по решению систе
для системы из двух уравнений 

 

– функционалы от переменных x 1, x2. Нас 
- неособенная, тогда обратная матрица вычи

 

ся к системе (12). Графическое решение этой си
1.5) и М2 (3.4; 2.2). Зададим начальное прибли

рмулу (11), получим: 

олучим: 

еля. 

редставляет собой некоторую модификацию м
дея заключается в том, что при вычислении (
ваются уже вычисленные ранее (K+1)-е прибл

иведенная линейная система: 

 (I = 1, 2, …N). (*) 

звольно начальные приближения корней 
ни в какой-то мере соответствовали неизвестны

, что K-е приближение  корней известно, т
троить (K+1) – е приближение по следующим ф

 системы (12), распишем в 

. Нас фактически интересу-
а вычисляется 

той системы дает две точки 
риближение: 

 

 

 

 

ию метода простой итера-
нии (K+1)-го приближения 

приближения (X1 X2, ..., Xi-

, стара-
естным x 1, x2, x3, ..., xn. 

тно, тогда в соответствии с 
щим формулам: 



 

(K = 0, 1, 2,...). 
Обычно процесс Зей

Зейделя сходится, когда пр
Во всяком случае, достато
сходимости метода Зейдел
темы (3.35) – по строкам, 
чтобы первое уравнение си

. (**
Пример: Решить ме

Для того чтобы обе
цесса (преобладающие зна
му и приведем к удобному
значим уравнения исходно

Х1= -0.2Х2 +0.1Х3 –
Х2 = -0.2Х1 – 0.2Х3

Х3 = 0.2Х1 – 0.4Х2 
Х4 = 0.333х1 - 1.111.
Преобразованную с

вания (**), окончательно п

В качестве нулевого
итераций K = 2 и все резул
 
Таблица 1 
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 (**) 

сс Зейделя сходится быстрее, чем метод Якоби
гда простая итерация расходится и, т. п. Правд
статочные условия сходимости для метода Як
ейделя. Если выполняется достаточное условие
окам, то в методе Зейделя выгодно расположит
ние системы имело наименьшую сумму модулей

***) 
ить методом Зейделя систему: 

 
ы обеспечить достаточные условия сходимост

ие значения диагональных элементов), преобра
бному виду. Чтобы дальнейшие преобразовани
ходной системы буквами А, Б, В и Г соответств

– 0.2Х4 – 0.4; (Г) 
3 + 0.2; (А – Б) 
 + 0.2Х4 – 0.4; (Б) 

1.111. (2А – Б + 2В – Г) 
ную систему будем решать методом Зейделя, т
ьно получим: 

 

 

 

 

левого приближения (K = 0) возьмем 
 результаты вычислений сведем в табл. 3.1. 

Якоби. Бывает, что процесс 
Правда, бывает и наоборот. 
да Якоби достаточны и для 
словие сходимости для сис-
ложить уравнения (**) так, 

одулей коэффициентов: 

имости итерационного про-
еобразуем исходную систе-
ования были понятны, обо-
етственно: 

еля, тогда, с учетом требо-

. Зададим количество 



 

Итерация, kЗначения неизв
X1 X2 
0 -0.4 
1 -0.263 
2 -0.329 
 

В приведенной таб

лись Невязки. Вспомним, ч
неизвестных, которые прев
(приближенный) метод, зн
ка после десятичной точк
справа получим не ноль, а 
уравнений на K –ом шаге.

 
2.2.3 Результаты и 
- усвоили основные 
- освоили, алгоритм
- выработали навыки
- усвоили основные

Зейделя; 
- освоили, алгоритм
- выработали навыки
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 неизвестныхНевязки 
X3 X4 ε1 ε2 ε3 
0.2 -0.4 -1.111 -2.711-1.911
0.36 -0.846-1.244 -0.3091.0 
0.422 -0.874-1.199 0.095 -0.000

й таблице кроме значений неизвестных на к

ним, что корнями уравнения  назыв
е превращают его в тождество. Так как мы испо

д, значения неизвестных вычисляем приближе
 точки), то, подставляя значения неизвестных
ль, а некоторые значения, называемые Невязко

шаге. 

ты и выводы: В результате проведенного заня
вные теоремы и формулы, применяемые при ут

оритм метода касательных, итерации, простой и
авыки приближенного отыскания корней уравн

овные теоремы и формулы, применяемые в мет

оритм метода Ньютона, метода Зейделя;  
авыки приближенного решения систем уравнен

ε4 
.9110.444-1.422 

0.7340.446 
.0000.0090.029 

 на каждом шаге оценива-

называются такие значения 
 используем итерационный 

ближенно (три, четыре зна-
стных в Исходную систему, 
вязкой первого, второго, … 

о занятия студенты: 
при уточнении корней; 
стой итерации;  

внений; 
 в методе Ньютона, методе 

равнений. 


