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1. КОНСПЕКТ ЛЕКЦИЙ 

1.1 Лекция № 1 (2 часа).  

Тема: «Производная функции в точке. Свойства производных. Дифференциал, его 

свойства и приложения. Приложения дифференциального исчисления функций одной 

действительной переменной» 

1.1.1 Вопросы лекции: 

1. Производная функции. 

2. Геометрический смысл производной. 

3. Механический смысл производной. 

4. Дифференциал функции. 

5. Формулы дифференцирования и таблица производных. 

6. Производная сложной и обратной функции. 

7. Логарифмическое дифференцирование. 
1.1.2 Краткое содержание вопросов: 

1. Производная функции 

Пусть задана функция f(x) на интервале (a,b). Зафиксируем точку x внутри (a,b) и 
придадим x приращение ∆x, MP секущая, приращение функции ∆y = f(x+∆x)-f(x).  Рассмот-
рим отношение 

  это тангенс угла наклона секущей MP, он зависит от  ∆x. 

Определение. Производной называется предел отношения приращения функции к 
приращению аргумента, когда приращение аргумента стремится к нулю: 

 

Существует несколько способов обозначения производной, самые важные это 

. 

Пример нахождения , используя определение: 

 

 

2. Геометрический смысл производной 



 

По определению устремим точку M к точке P , это эквивалентно 

стремлению .  
Предельное положение секущей MP это касательная к кривой в точке M , ее угловой 

коэффициент равен  

 
Следовательно, производная в точке х равна тангенсу угла наклона касательной в этой 

точке. 

Уравнение касательной в точке имеет вид , т.к. 

, то уравнение касательной примет вид . Найдем урав-

нение нормали, перпендикулярной данной касательной и проходящей через точку . Из ус-

ловия перпендикулярности прямых  угловой коэффициент нормали равен 

, а уравнение нормали в точке примет вид 

 

3. Механический смысл производной 

Пусть прямолинейное движение материальной точки задано законом S = S(t). Путь, 

который проследует точка за время ∆ равен ∆S = S(t+∆t)-S( t). Средняя скорость есть , 

мгновенная скорость  
Пример. 

Пусть дан закон движения материальной точки , найти скорость точки через t 
= 3 сек. 

 

4. Дифференциал функции 

Пусть задана y = f(x) на интервале (a,b). Функция y = f(x) называется дифференцируе-
мой в точке x, если ∆y можно представить с помощью следующего выражения: 

∆y = A∆x + α(∆)∆x 

где А= const при фиксированном  х и при  
Теорема. Для дифференцируемости функции в точке х необходимо и достаточно, что-

бы функция имела в этой точке конечную производную. 

Дифференциалом функции y = f(x) называется выражение вида dy=A - это главная 

линейная часть приращения ∆y , на основании предыдущей теоремы , обозначив 
дифференциал независимой переменной через dx=∆x, получим  выражение для дифферен-
циала: 

 
Геометрический смысл дифференциала виден из следующего рисунка: 



 

 

, т.е. дифференциал функции равен отрезку PQ это 

приращение ординаты касательной, а приращение ∆y это отрезок  

5. Формулы дифференцирования и таблица производных 

Формулы дифференцирования 

  

  

 

 

Таблица производных 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

6. Производная сложной и обратной функции 

Производная сложной функции 

Если y = f(x) и u = u(x), то есть y=f[u(x)] сложная функция, где f(u) и u(x) имеют 
производные, то 

 
это правило дифференцирования сложной функции. 

Пример. 

 
Производная обратной функции 

Пусть задана y = f(x), тогда определена обратная функция x = ϕ(y). Для y = 5x обрат-

ная функция , для  обратная функция .  Пусть y = f(x) возрастает или 
убывает на (a,b) и непрерывна, тогда существует обратная функция x = ϕ(y) и ее производная 

. 
Примеры. Найти производную обратной тригонометрической функции y = arcsinx.  

Обратная функция  x = siny и , по формуле для обратной функции 

. 

Найдем для y = arctgx Обратная функция  x = tgy 

. 
7. Логарифмическое дифференцирование 

Пусть имеется функция найдем ее производную. Сначала прологарифми-
руем данное выражение, получим lny = v(x)lnu(x). Теперь продифференцируем 

;  

 



 

Пример. Найти функции  
Логарифмируем данную функцию lny = xlnx, теперь дифференцируем 

;  

Пример: Вычислить  

Решение: Используем приближенное равенство  

 

 
 

1.2 Лекция № 2 (2 часа).  

Тема: «Неопределенный интеграл, его свойства, методы вычисления. Определенный 

интеграл, его свойства, методы вычисления» 

1.2.1 Вопросы лекции: 

1. Неопределенный интеграл, его геометрический смысл и свойства. Таблица основ-

ных интегралов. 

2. Задачи, приводящие к понятию определенного интеграла. Интегральные суммы. 

Определенный интеграл, его геометрический смысл. 

3. Простейшие свойства определенного интеграла, теорема о среднем значении. Инте-

грал с переменным верхним пределом, формула Ньютона - Лейбница. 

4.Методы вычисления определенного интеграла 

5. Вычисление площадей плоских фигур в декартовых и полярных координатах 

6. Вычисление объема тела с известным поперечным сечением, задача о нахождении 

объема тела вращения. 

7. Длина дуги плоской кривой. Дифференциал дуги. 

8. Площадь поверхности вращения. 

9. Несобственные интегралы, их признаки сходимости расходимости. 

1.2.2 Краткое содержание вопросов: 

1. Неопределенный интеграл, его геометрический смысл и свойства. Таблица ос-

новных интегралов. 

Основная задача дифференциального исчисления состоит в нахождении дифферен-
циала данной функции или ее производной. Интегральное исчисление решает обратную за-
дачу: по заданному дифференциалу, а, следовательно, и производной неизвестной функции 
F(x), требуется определить эту функцию. Иными словами, имея выражение 

                                       dxxfxdF )()( =                                       (1) 
или соответственно  



 

)(
)(

)( xf
dx

xdF
xF ==′ , 

где f(x) – известная функция, нужно найти функцию F(x). Искомая функция F(x) называется 
при этом первообразной функцией по отношению к функции f(x). Для простоты мы будем 
предполагать, что равенство (1) выполняется на некотором конечном или бесконечном про-
межутке. 

Определение: Первообразной функцией для данной функции f(x) на данном проме-
жутке называется такая функция F(x), производная которой равна f(x) или дифференциал ко-
торой равен f(x)dx на рассматриваемом промежутке. 

Например, одной из первообразных функций для функции 
23х  будет 

3х , ибо 
23 3)( хх =′ . Первообразная функция не единственна, так как 

2323 3)5(,3)1( хххх =′−=′+ и т.д., и поэтому функции 5,1 33 −+ хх  и т.п. также являют-

ся первообразными для функции 
23х . Следовательно, данная функция имеет бесчисленное 

множество первообразных. 
В нашем примере каждые две первообразные отличались друг от друга на некоторое 

постоянное слагаемое. Покажем, что это будет иметь место и в общем случае. 
Теорема: Две различные первообразные одной и той же функции, определенной на 

некотором промежутке, отличаются друг от друга на этом промежутке на постоянное сла-
гаемое. 

Доказательство: В самом деле, пусть f(x) – некоторая функция, определенная на 

промежутке ba, , и F1(x), F2(x) – ее перво-

образные, т.е. 

и )()(2 xfxF =′
. )()(1 xfxF =′

 

)()( 21 xFxF
′=′

. Отсюда 
Но если две функции имеют одина-

ковые производные, то эти функции отли-
чаются друг от друга на постоянное слагае-
мое. Следовательно,  

F1(x) - F2(x) = С, 
где С – посто- янная величина. Теоре-

ма доказана. 
Рассмотрим геометрическую иллю-

страцию. Если   у = F1(x) и Y = F2(x) 
- первообразные одной и той же функции f(x), то касательные к их графикам в точках 

с общей абсциссой х параллельны между собой (рис. 1):  

tgα = )()( 21 xFxF
′=′

= f(x). 
В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным:

 F2(x) – F1(x) = С, т.е. эти кривые в некотором смысле «параллельны» друг другу. 
Следствие: Прибавляя к какой-либо первообразной функции f(x), определенной на 

промежутке ba, , все  возможные постоянные С, мы получим все первообразные для функ-

ции f(x). 
В самом деле, если F(x) есть первообразная функция для f(x), то функция F(x)+C, где 

С- любая постоянная, также будет первообразной функции f(x), так как                              

[ ] )()()( xfCxFCxF =′+′=′+ . 

y
=F (x) 

y
=F (x) 

(x) 

(x) 

Рис. 1. 
 



 

С другой стороны, мы доказали, что каждая первообразная функции f(x) может быть 
получена из функции F(x) путем прибавления к ней надлежащим образом подобранного по-
стоянного слагаемого С. 

Следовательно, выражение    F(x) + С,    где );( +∞−∞∈С ,      (2) 
где F(x) – какая-либо первообразная для функции f(x), исчерпывает всю совокупность 

первообразных для данной функции f(x). 
В дальнейшем мы будем предполагать, если явно не оговорено противное, что рас-

сматриваемая функция f(x) определена и непрерывна на некотором конечном или бесконеч-
ном промежутке ba, . 

Введем теперь основное понятие интегрального исчисления – понятие неопределен-
ного интеграла. 

Определение: Общее выражение для всех первообразных данной непрерывной функ-
ции f(x) называется неопределенным интегралом от функции f(x) или от дифференциального 

выражения f(x)dx и обозначается символом ∫ f(x)dx . 

При этом функция f(x) называется подынтегральной функцией, а выражение f(x)dx на-
зывается подынтегральным выражением. 

Согласно определению неопределенного ин-
теграла можно записать 

                  CxF +=∫ )(f(x)dx ,               (3) 

где )()( xfxF =′ , постоянная С может принимать 
любое значение, и поэтому называется произволь-
ной постоянной. 

Пример. Как мы видели, для функции 23х  

одной из первообразных является функция 
3х . По-

этому Cxdxх +=∫ 323 . 

Геометрически неопределенный интеграл у=F(x)+C представляет собой семейство 
«параллельных» кривых (рис.2). 

Основные свойства неопределенного интеграла 
Опираясь на формулу (3), выведем основные свойства неопределенного интеграла. 
I. Дифференциал неопределенного интеграла равен подынтегральному выражению, а 

производная неопределенного интеграла равна подынтегральной функции. 
Это свойство непосредственно вытекает из определения неопределенного интеграла. 
Таким образом, имеем 

                dxxfdxxfd )()( =∫       и     ( ) )()( xfdxxf =
′

∫ .             (4) 

II. Неопределенный интеграл от дифференциала непрерывно дифференцируемой 
функции равен самой этой функции с точностью до постоянного слагаемого. 

В самом деле, пусть ∫ ∫ ′= dxxxd )()( ϕϕ , где функция )(xϕ ′  непрерывна. Функция 

)(xϕ , очевидно, является первообразной для )(xϕ ′ . Поэтому имеем  

                                                       ∫ += Cxxd )()( ϕϕ .                  (5) 

Замечание: В формулах (4) и (5) знаки d и ∫ , следующие друг за другом в том или 

другом порядке, взаимно уничтожают друг друга (если не учитывать постоянного слагаемо-
го). В этом смысле дифференцирование и интегрирование и являются взаимно обратными 
математическими операциями. 

Р
ис. 2. 



 

III. Отличный от нуля постоянный множитель можно выносить за знак неопределен-
ного интеграла, т.е. если постоянная  А ≠ 0, то  

                                      ∫ ∫= dxxfAdxxАf )()( .                          (6) 

В самом деле, пусть F(x)- первообразная для f(x). В силу формулы (3) имеем:                 

[ ] 1)()()( CxAFCxFAdxxfA +=+=∫ ,                              (7) 

где С1=АС, причем С и С1 – произвольные постоянные при А ≠ 0. Но AF(x) есть перво-
образная для функции Af(x), так как  

[ ] )()()( xAfxFAxAF =′=′ . 
Поэтому из формулы (7) получаем требуемую формулу (6). 
Замечание: При А=0 формула (3) неверна, так как левая часть ее представляет собой 

произвольную постоянную, а правая часть тождественна равна нулю. 
IV. Неопределенный интеграл от алгебраической суммы конечного числа непрерыв-

ных функций равен такой же алгебраической сумме неопределенных интегралов от этих 
функций, т.е. если, например, функция f(x), g(x), h(x) непрерывны в интервале (a,b), то  

[ ] ∫ ∫∫∫ −+=−+ dxxhdxxgdxxfdxxhxgxf )()()()()()(   при х∈(a,b).  (8)                           

Действительно, пусть F(x), G(x), H(x) – первообразные соответственно функций f(x), 
g(x), h(x). На основании формулы (3) имеем: 

[ ] [ ] [ ]=+−+++=−+ ∫∫∫ 321 C)x(HC)x(GC)x(Fdx)x(hdx)x(gdx)x(f       

[ ] C)x(H)x(G)x(F +−+=  ,                                                           (9)           
где С1, С2, С3 − произвольные постоянные и С=С1+С2-С3, очевидно, также является 

произвольной постоянной. Но функция F(x)+G(x)-H(x) есть первообразная для функции 
f(x)+g(x)-h(x), так как  

[ ] ).()()()()()()()()( xhxgxfxHxGxFxHxGxF −+=′−′+′=′−+  
Следовательно,  

[ ] CxHxGxFdxxhxgxf +−+=−+∫ )()()()()()( .                        (10)                                   

Из формул (9) и (10) вытекает равенство (8). 
Зная формулы для производных основных элементарных функций, можно составить 

таблицу неопределенных интегралов (первообразных), которую мы дополним еще несколь-
кими часто встречающимися интегралами. 

Таблица основных интегралов (ТОИ) 

1. ∫∫ +==⋅ Cxdxdx1  

2. С
а

х
dxх

а
а

+
+

=
+

∫ 1

1

, 1−≠а      







+=∫ Сх

х

dx
2  

3. Cxln
х

dx
+=∫   

4. С
aln

а
dxа

х
х +=∫                       ( )∫ += Cedxe xx

 

5. ∫ += Cxsinxdxcos             6. ∫ +−= Cxcosdxsin  

7. Ctgx
хcos

dx
+=∫ 2                          8. ∫ +−= Cctgx

хsin

dx
2  



 

9. ∫ +=
−

Cxarcsin
х

dx
21

           10. ∫ +=
+

Carctgx
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2. Задачи, приводящие к понятию определенного интеграла. Интегральные сум-
мы. Определенный интеграл, его геометрический смысл. 

Задача о площади криволинейной трапеции. 
Пусть на плоскости введена прямоугольная декартова система координат xOy на от-

резке , где b>a, определена непрерывная неотрицательная функция , 

т.е. . Фигура aABb, ограниченная снизу отрезком оси Ox, сверху – дугой 
AB графика функции f, а слева и справа – отрезка-

ми прямых и , 
называется криволинейной трапецией. 

Дадим определение площади криволинейной 
трапеции на aABb. Разобьем отрезок на n малых 
отрезков; абсциссы точек разбиения обозначим че-

рез Набор точек деле-

ния назовем разбиением отрезка . 

Через точки разбиения проведем прямые , 
параллельные оси Oy. Эти прямые разобьют кри-
волинейную трапецию aABb на n узких полос, ка-

ждая из которых тоже является криволинейной трапецией с основанием . Площадь 
S трапеции aABb равна сумме площадей полос ее составляющих. Если n достаточно велико и 
все отрезки малы, то площадь каждой из полос можно заменить площадью соответствующе-
го прямоугольника, которая вычисляется легко. На каждом отрезке выберем какую-нибудь 

точку , вычислим значение в этой точке и примем за высоту прямоугольника. В силу 
непрерывности функция мало изменяется на отрезках, если они малы. 

Поэтому на таких отрезках ее можно считать постоянной и равной. 
Так как площадь одной полосы приближенно равна площади прямоугольни-

ка , то для площади S криволинейной трапеции aABb получим приближенное 
равенство 

, где (1) 

Приближенное равенство (1) тем точнее, чем меньше величина . Величи-
на d называется диаметром разбиения. По определению, площадью криволинейной трапеции 

называется предел суммы площадей прямоугольников при стремлении диаметра разбие-
ния к нулю, т.е. 

(2) 



 

Следовательно, вычисление площади криволинейной трапеции приводит к вычисле-
нию предела суммы вида (2) при . 

Задача о пройденном пути. Если закон движения какой – либо точки задан уравнени-

ем вида , где t – время, а s – пройденный путь, производная функции равна 

скорости v движения, т.е. . В физике часто приходится решать следующую обратную 
задачу. Пусть точка движется по прямой со скоростью v. Будем считать, что эта скорость яв-
ляется непрерывной функцией от времени t. Определим путь, пройденный точкой за некото-
рый отрезок времени от момента t-a до момента t=b. Разобьем отрезок точка-

ми на n достаточно малых отрезков времени. Так как за короткий от-

резок времени скорость почти не изменяется, то можно приближенно считать ее 

за этот отрезок времени постоянной и равной , где . Это означает, что дви-
жение точки на отрезке считается равномерным. Тогда путь, пройденный точкой за это вре-

мя, равен , а путь, пройденный за отрезок времени , составля-

ет , где . Это приближенное равенство тем точнее, чем 

меньше величина . По определению, путем s называется предел суммы при 
стремлении диаметра разбиения к нулю, т.е. 

(3) 
Следовательно, вычисление пройденного пути приводит к вычислению предела сум-

мы вида (3). 
Задача о массе стержня 
Если стержень однороден, то его истинная плотность одинакова во всех его точках и 

равна его средней плотности. У неоднородного же стержня истинная плотность p меняется 
от точки к точке. Если определять положение каждой точки M стержня с помощью расстоя-
ния x ее от одного из концов стержня (см. рис. 1), то его плотность p в точке x будет функци-
ей от x, p = p(x). Поставим задачу, как, зная эту функцию и длину l стержня, найти его мас-
су m. 

 

При решении этой задачи будем считать плотность p(x) непрерывной функцией. 
Переходя к решению, разделим стержень точками x1 < x2 < ... < xn-1 (0 < xk < l) 
на n небольших участков (см. рис. 2). 

 

Для единообразия обозначений положим еще x0 = 0, xn = l, и 
пусть λ есть наибольшая из разностей xk+1 - xk. Отдельный участок [xk, xk+1] стержня при-
ближенно можно считать однородным [т. к. из-за его малости (непрерывная) функция p(x) не 



 

успевает на нем сколько-нибудь заметно измениться]. Делая такое допущение, мы тем самым 
принимаем плотность p(x) на участке [xk, xk+1] за постоянную. Пусть значение этой постоян-
ной есть p(ξk), где ξk есть произвольно выбранная точка участка [xk, xk+1]. Тогда масса участка 
[xk,xk+1] будет равна p(ξk)(xk+1 - xk), а полная масса стержня будет 

 

     Полученное выражение массы является, однако, лишь приближенным, т. к. на са-
мом деле отдельные участки стержня не однородны. Тем не менее, чем короче эти участки, т. 
е. чем меньше число λ, тем более точным будет найденное выражение m. Отсюда следует, 
что точное значение массы таково: 

     (1) 

В рассмотренных задачах применялся один и тот же метод, сводившийся к нахожде-
нию предела сумм некоторого вида. К нахождению предела сумм, аналогичных рассмотрен-
ным выше, приводит ряд задач естествознания и техники. Поэтому займемся изучением вы-
ражений (1) и (2), называемых определенными интегралами, уже не интересуясь их конкрет-
ными истолкованиями. 

 Определенный интеграл, как предел интегральных сумм. 
Пусть на отрезке, где b>a, задана функция . Выполним следующие четыре операции: 
1. разобьем отрезок на части точками Положим. Набор точек деления назовем раз-

биением отрезка, а величину d –диаметром разбиения; 
2. на каждом отрезке выберем какую-нибудь точку, вычислим значение в этой точке. 

Точки назовем отмеченными точками; 
3. умножим значение на длину соответствующего отрезка и сложим все найденные 

произведения. Суммы вида 

, где (4) 
назовем (одномерными) интегральными суммами Римана для функции f по заданно-

му разбиению отрезка ; 
4. измельчим разбиение , т.е. добавим новые точки деления и найдем предел инте-

гральных сумм (4) при (если он существует). 

Введем понятие предела интегральных сумм при . 
Определение 1.Число I называется пределом интегральных сумм Римана при , если 

для любого существует такое, что при любом разбиении отрезка с диа-

метром разбиения независимо от выбора отмеченных точек . 

Принята следующая запись этого определения: . 
Замечание. Очевидно, что число I не зависит от разбиения отрезка и от выбора отме-

ченных точек . 
Определение 2.Если интегральные суммы Римана (4) имеют предел при , то этот пре-

дел называется определенным (однократным) интегралом от функции f по отрезку и обозна-

чается .                                                
 



 

3. Простейшие свойства определенного интеграла, теорема о среднем значении. 
Интеграл с переменным верхним пределом, формула Ньютона - Лейбница. 

Основные свойства определенного интеграла 
При выводе основных свойств определенного интеграла мы будем исходить из фор-

мулы (13) Ньютона-Лейбница: 

                                             )()()( aFbFdxxf
b

a

−=∫ ,                                        

где f(x) непрерывна на отрезке [a,b] и F′(x)=f(x) при х∈[a,b]. 
Пример. Найти интеграл от х2 в пределах от 2 до 4. 

Так как 
3

3

1
x есть первообразная для х2, то согласно формуле (14) имеем 
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2
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dxx . 

Заметим, что тот же результат мы получили бы, если бы использовали другую перво-

образную для х2, например, 1
3

3

+
x

 или 2
3

3

−
x

.  

Это явление носит общий характер. 
Теорема: Определенный интеграл от непрерывной функции не зависит от выбора пер-

вообразной для подынтегральной функции. 
 
Будем рассматривать свойства определенного интеграла по группам. 
А. Общие свойства. 
1. Величина определенного интеграла не зависит от обозначения переменной интегри-

рования, т.е. 

∫∫ =
b

a

b

a

dttfdxxf )()( , 

где x, t – любые переменные. 
Это свойство непосредственно вытекает из формулы (13). 
2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю.  
Проверим по формуле Ньютона-Лейбница: 

0)()()( =−=∫ aFaFdxxf
a

a

. 

3. При перестановке пределов интегрирования определенный интеграл меняет свой 
знак на противоположный. 

В самом деле, переставляя пределы интегрирования, в силу формулы (13) имеем: 

[ ] ∫∫ −=−−=−=
b

a

a

b

dxxfaFbFbFaFdxxf )()()()()()( . 

Б. Свойство аддитивности. 
4. Если промежуток интегрирования [a,b] разбит на конечное число частичных проме-

жутков, то определенный интеграл, взятый по промежутку  [a,b], равен сумме определенных 
интегралов, взятых по всем его частичным промежуткам. 

 
 Пусть,  например,  [a,b]=[a,c]∪  [c,b],   где a ≤ c≤ b.  

 



 

[ ] [ ] ∫ ∫∫ +=−+−=−=
c

a

b

c

b

a

dxxfdxxfcFbFaFcFaFbFdxxf )()()()()()()()()( .          

Замечание: Формула остается верной, если с лежит вне отрезка [a,b] и подынтегральная 
функция f(x) непрерывна на отрезках [a,c] и [c,b]. 

В. Свойство линейности. 
5. Постоянный множитель можно выносить за знак определенного интеграла. 
Действительно, пусть F(x) – первообразная для f(x) на [a,b] и А – постоянная величина, 

тогда А F(x) есть первообразная для Аf(x), так как 

[ ] )()()( xAfxFAxAF =′=′ . 
Следовательно, имеем 

[ ] ∫∫ =−=−==
b

a

b

a

b

a
dxxfAaFbFAaAFbAFxAFdxxAf )()()()()()()( . 

6.  Определенный интеграл от алгебраической суммы конечного числа непрерывных 
функций равен такой же алгебраической сумме определенных интегралов от этих функций. 

Рассмотрим, например, алгебраическую сумму   f(x)+g(x)-h(x) трех непрерывных функ-
ций f(x), g(x), h(x) и пусть F(x), G(x), H(x) – их первообразные, т.е.  F′(x)= f(x), G′(x)= g(x), 
H′(x)= h(x). 

Тогда F(x)+G(x) - H(x) является первообразной для суммы f(x)+g(x)-h(x), так как 

[ ] )()()()()()()()()( xhxgxfxHxGxFxHxGxF −+=′−′+′=′−+ . 
Отсюда имеем 

[ ] [ ] [ ] [ ]=−+−−+=−+=−+∫ )a(H)a(G)a(F)b(H)b(G)b(F)x(H)x(G)x(Fdx)x(h)x(g)x(f
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dx)x(hdx)x(gdx)x(f)a(H)b(H)a(G)b(G)a(F)b(F . 

Г. Свойство монотонности. 
7.  Если подынтегральная функция определенного интеграла непрерывна и неотрица-

тельна, а верхний предел интегрирования больше нижнего или равен ему, то определенный 
интеграл также неотрицателен. 

В самом деле, пусть f(x)≥0 при a ≤ x ≤ b. Так как F′(x)= f(x)≥0, то первообразная F(x) 
есть неубывающая функция. В таком случае при b≥a  имеем  

0)()()( ≥−=∫ aFbFdxxf
b

a

. 

8. Неравенство между непрерывными функциями можно интегрировать почленно при 
условии, что верхний предел интегрирования больше нижнего. 

Действительно, пусть f(x)≤g(x), a ≤ x ≤ b, где f(x), g(x) непрерывны на отрезке [a,b]. Так 
как g(x)- f(x) ≥0, то при b≥а в силу свойств 6, 7 имеем: 

[ ] 0)()()()( ≥−=− ∫∫∫
b
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b

a

b

a

dxxfdxxgdxxfxg ,отсюда ∫∫ ≤
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a

b
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Замечание: Пусть f(x) – знакопеременная непрерывная функция на отрезке [a,b], где 
b≥а. Например (рис. З),    f(x)≤0    при    a ≤ x ≤β,    

 f(x)>0   при   β ≤ x ≤ γ   и f(x)≤0  при  γ≤ x ≤ b. 
 
 



 

 
 
 
 
 
 
 
 
 
 
В силу свойства аддитивности 6, учитывая геометрический смысл интеграла, имеем 

       321)()()()( SSSdxxfdxxfdxxfdxxf
b

a

b
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β

β

α

α

,                                     

где S1, S2, S3 – площади соответствующих криволинейных трапеций. 
Таким образом, определенный интеграл, в общем случае при a<b представляет собой 

алгебраическую сумму площадей соответствующих криволинейных трапеций, где площади 
трапеций, расположенных выше оси Ох, берутся со знаком «плюс», а площади трапеций, 
расположенных ниже оси Ох, - со знаком «минус».  Для   b < a   наоборот. 

Заметим, что площадь заштрихованной на рис. 3 фигуры, выражается интегралом  

321)( SSSdxxf
b

a

++=∫               (b < a). 

9. Теорема о среднем: Определенный интеграл от непрерывной функции равен про-
изведению длины промежутка интегрирования на значение подынтегральной функции при 
некотором промежуточном значении аргумента (предполагается, что верхний предел интег-
рирования больше нижнего). 

Доказательство. В самом деле, в силу формулы Ньютона-Лейбница имеем   

)()()( aFbFdxxf
b

a

−=∫ ,   где F′(x)=f(x). Применяя к разности первообразных теорему о ко-

нечном приращении функции, получим 
F(b)-F(a)=(b-a)F′(c)=(b-a)f(c), где a < c < b. 

Отсюда      )()()( cfabdxxf
b

a

−=∫  ,  где a < c < b.                                   (15) 

Таким образом, формула (15) геометрически означает, что можно всегда подобрать на 
дуге АВ такую точку С с абсциссой с, заключенной между а и b, что площадь соответст-
вующего прямоугольника aDEb с высотой сС будет в точности равна площади криволиней-
ной трапеции aABb. 

Итак, площадь криволинейной трапеции, ограниченной непрерывной линией, равно-
велика площади прямоугольника с тем же «основанием» и высотой, равной некоторой сред-
ней ординате линии. 

Число f(c)=µ носит название среднего значения функции f(x) на промежутке [a,b]. Из 
формулы (15) имеем: 

                                     ∫=
b

a

dxxf )(
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µ .                                                 (16) 

4. Методы вычисления определенного интеграла 

1. Интегрирование по частям  

у
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1 

Р
ис. 3. 



 

Пусть u=u(x), υ=υ(х) – непрерывно дифференцируемые на отрезке [a,b] функции.   

Имеем:              [ ] )()()()()()( xdxuxduxxxud υυυ += . 
Интегрируя это равенство в пределах от a до b и учитывая, что  

dxxuxdu )()( ′=   и, dxxxd )()( υυ ′= , 
Находим  

∫ ∫ ′+′=
b

a

b

a

b

a
dxxxudxxuxxxu )()()()()()( υυυ . 

Отсюда получаем формулу интегрирования по частям в определенном интеграле 
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dxxuxaaubbudxxxu )()()()()()()()( υυυυ .                  (17) 

Для краткости употребляется обозначение 
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2. Замена переменной в определенном интеграле 

Пусть дан определенный интеграл    ∫
b

a

dxxf )( , где f(x) – непрерывная на отрезке 

[a,b] функция.  Допустим, по каким-то соображениям нам желательно ввести новую пере-
менную t, связанную с прежней переменной х соотношением: х=φ(t) (α≤t≤ β), где φ(t) – не-
прерывно дифференцируемая на отрезке [a,b] функция. Если при этом: 1) при изменении t от 
α до β переменная х меняется от a до b, т.е.  φ(α)=а,  φ(β ) =b;  2) сложная функция f(φ(t)) оп-
ределена и непрерывна на отрезке [α,β],  то справедлива формула                      

∫∫ ′=
β

α

ϕϕ (t)dt(t))f()(
b

a

dxxf . 

Замечание: При вычислении определенного интеграла с помощью замены перемен-
ной нет необходимости возвращаться к прежней переменной, достаточно лишь ввести новые 
пределы интегрирования.  

Пример. Вычислить   dxxx∫ +
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5. Вычисление площадей плоских фигур в декартовых и полярных координатах 
Формулы для нахождения площади плоской фигуры: 

в декартовой системе координат (рис.5)     ∫ −=
b

a

;dx))x(f)x(f(S 12          (18) 

в полярной системе координат (рис.6)      ∫ −=
β

α

ϕϕϕ ;d))(r)(r(S 2
1

2
22

1
        (19) 

 
  в случае параметрического  задания кривой  

∫ ′=
T

t

dttxtyS

0

.)()(  (20) 

    
  6. Вычисление объема тела с известным попе-

речным сечением, задача о нахождении объема тела 
вращения. 

 Пусть Т – те-
ло, полученное вра-
щением криволиней-
ной трапеции вокруг 
ОХ, тогда объем тела 
Т определяется по 

формуле:      ∫=
b

a

dxxfV .)(2π    (24). 

Пример. Найти объем прямого кругового конуса (радиус основания -R, высота- Н), 
полученного вращением треугольника ОАН вокруг оси ОХ . 

Решение: уравнение ОА: ,x
H

R
Y =  следовательно  

).ед.(HR
x

H

R
dxx

H

R
dx
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xR
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Замечание: Если кривая f(x) задана параметрически или в полярной системе коорди-
нат, то в определенном интеграле надо сделать замену переменных. При этом не следует за-
бывать про новые пределы интегрирования. 
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   Пример. Найти объем эллипсоида, полученного вращением эллипса 




=

=
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          7. Длина дуги плоской кривой. Дифференциал дуги. 
 
Формулы для нахождения длины дуги незамкнутой плоской кривой без точек са-

мопересечения: 

в декартовой системе координат      [ ] dxxfl
b

a

∫ ′+= 2)(1 ,                       (21) 

где   f(x) – непрерывно дифференцируема на [a,b]; 

в полярной системе координат        [ ] ϕρρ
β

α

dl ∫ ′+= 22
,                            (22) 

где ( )ϕρρ =  имеет непрерывную производную [ ].,βαϕ∈∀  

в случае параметрического задания кривой dtyxl
T

t

tt∫
′+′=

0

22 )()( ,    (23) где про-

изводные от х и у по t  непрерывны на [t0,T]. 
Примеры: 
1. Найти площадь области, ограни-

ченной графиками функций 
e

x
y =  и y=xe-x.  

Решение. Строим графики функций 

e

x
y = и   y=xe-x  в одной системе 

координат. При этом график функции 
y=xe-x строим, предварительно проведя ее 
полное исследование. 

  Находим точки пересечения кривых  
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   Площадь области находим по формуле (18): ∫ ∫ ∫−=−= −−
1
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0

dx
e

x
dxxedx)

e

x
xe(S xx  

Первый интеграл берется методом интегрирования по частям, второй интеграл таб-
личный (предлагаем выполнить интегрирование самостоятельно). Окончательно 

e

e

ee
S

2
52

2
12

1
−

=−−=  (кв. ед.). 

2. Найти площадь области, ограниченной кривой ϕρ 3sin⋅= a  (a>0). Установим 
область определения этой функции, а так как в полярной системе координат 

   20 и 0 πϕρ <≤≥ , то построим вспомогательный график функции sin3φ на промежутке 
[0,2π]. Он получается из графика функции sinφ сжатием в 3 раза по оси φ (рис.9). 

Т.к. ρ≥0 => sin3φ≥0, то из графика находим:  .
3

5
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Составим таблицу значений функции ρ= ρ(φ) на отрезке [0,
3
π

].   Строим кривую в 

полярной системе координат при 
3

0
π

ϕ ≤≤ . Т.к. график функции sin3φ симметричен отно-

сительно прямой  
6
π

ϕ = , то полученная кривая симметрична относительно луча с уравне-

нием 
6
π

ϕ = . Получаем один «лепесток» кривой. Остальные два «лепестка»  (при 

πϕ
π

≤≤
3

2
 и при 

3
5

3
4 π

ϕ
π

≤≤ ) получаются аналогично. 

В силу симметрии кривой достаточно вычислить площадь половины одного «лепест-
ка»  и умножить результат на 6. Для этого применим формулу площади плоской фигуры в 
полярных координатах (19). 
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         Ответ: 
4

2a
S

π
= (кв.ед.). 

3. Найдите длину дуги кардиоиды ).cos1( ϕρ += a  
  Решение. Построение кривой в полярной системе координат подробно разъяснено в 

предыдущем примере. Т.к. данная функция ρ=ρ(φ) четная, то кардиоида симметрична отно-
сительно луча φ=0, т.е. относительно полярной оси (рис.11).   Составим таблицу значений 
функции ρ(φ). 
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Применяем формулу (22) для вычисления длины дуги кривой, заданной в полярных 

координатах: [ ] .dl ϕρρ
π

∫ ′+=
0

22

2
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Имеем: ( ) ;sin)cos1()( ϕϕϕρ aa −=′+=′  

[ ] =+=+++=++=′+ )cos1(2)sincoscos21(sin)cos1( 2222222222 ϕϕϕϕϕϕρρ aaaa  

2
4 2 ϕcosа= .    Т.к. ,πϕ ≤≤0  то 220 πϕ ≤≤  и ( ) .02cos ≥ϕ  Поэтому  
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 Ответ: l=8а (ед.) 

 
   8. Площадь поверхности тела вращения Т вычисляется по формулам: 

1) в декартовой системе координат   [ ]∫ ′+=
b

a

dxxfxfP
2)(1)(2π ,           (25)                

где   f(x) – непрерывно дифференцируема на [a,b]; 

2) в полярной системе координат     ( )∫ ′+=
β

α

ϕρρϕρπ dsinP
222 ,        (26)           

где ( )ϕρρ =  имеет непрерывную производную [ ]βαϕ ,∈∀ ; 

3) в случае параметрического задания кривой Ttt,
)t(yy
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   Пример.  
1. Найдите площадь поверхности ка-

теноида, образованного вращение вокруг 
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2. Определить площадь поверхности параболоида, образованного вращением дуги па-

раболы у2 = 2х вокруг оси Ox от х = 0 до х = 2. 

Решение. В нашем случае  . Поэтому 

 

1 

 



 

3. Найти площадь поверхности эллипсоида, образованного вращением эллип-

са Вокруг оси Ох. 

Решение. Из уравнения эллипса имеем: . Найдем производ-

ную:  

Тогда . Так как полуось эллипса И, 
следовательно, 

 

9. Несобственные интегралы, их признаки сходимости расходимости. 

Определение: Пусть f(x) определена на [а, +∞) и для любого b≥a существует 

∫
b

a

dx)x(f ,  тогда ∫ ∫
+∞

+∞→
=

a

b

a
b

dx)x(flimdx)x(f  называется несобственным интегралом 

первого рода от f(x). Если этот предел конечен, то интеграл называется сходящимся, если 
предел бесконечен или вовсе не существует, то интеграл называется расходящимся.   

Примеры: 
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Определение: Пусть f(x) определена и интегрируема в [a, b-ε], ab −<<∀ εε 0: и 

неограниченна в [b-ε, b], тогда  ∫
−

→

ε

ε

b

a

dx)x(flim
0

 называется несобственным интегралом 

второго рода. Интеграл называется сходящимся, если этот предел конечен, и расходящимся, 
если предел бесконечен или не существует.  
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интеграл сходится. 
 

1.3 Лекция № 3 (2 часа) . 

Тема: «Числовые ряды. Функциональные последовательности и ряды в действитель-

ной области» 

1.3.1 Вопросы лекции: 

1. Определение функциональной последовательности.  

2. Равномерная сходимость функциональной последовательности 

3. Функциональный ряд в комплексной области 

4. Область сходимости и равномерная сходимость рядов 

5. Признак Вейерштрасса и равномерная сходимость 

6. Нахождение области сходимости рядов 

1.3.2 Краткое содержание вопросов: 

1. Определение функциональной последовательности  

Рассмотрим функции f1(z),f2(z),…,fn(z), определенные на некотором множестве M. 
Для любой точки z0этого множества (z0∈M) получаем последовательность комплексных чи-
сел {cn}, n=1,2…, где cn = fn(z0). Если последовательность {cn}сходится, т.е. существует 
предел последовательности lim n → ∞ cn=A, или, что то же самое, lim n → ∞  fn (z0) = A, то 
говорят, что функциональная последовательность {fn(z0)}сходится в точке z0. 

Множество точек z, для которых существует предел последовательности {fn(z)}n∈N, 
называется областью сходимости функциональной последовательности (область D). 

Пределом функциональной последовательности является функция, которая называет-
ся предельной функцией последовательности:  

Limn → ∞fn(z) = f(z), z∈D, что можно записать, учитывая определение сходимости чи-
словой последовательности, следующим образом: 

limn→∞fn(z)=f(z), z∈D⇔∀ε>0∃N(ε,z):∣∣fn(z)−f(z)∣∣<ε для n>N(ε,z), z∈D. 

Заметим, что в отличие от числовой последовательности (см. соответствующее опре-
деление) номер Nзависит не только от ε, но и от z. 

Это естественно, так как для каждого фиксированного z∈Dполучает определенная чи-
словая последовательность и для нее номер N, начиная с которого выполняется соответст-
вующее неравенство, свой при одном и том же выбранном значении ε. Для различных значе-
ний zk∈Dполучаем различные N(ε,zk), т.е. последовательность номеров Nk, k=1,2,….\ 

2. Равномерная сходимость функциональной последовательности 
Если последовательность Nk, k=1,2,…ограничена, т.е. существует N=N(ε), такое, что 

Nk<N для любого k, то говорят, что функциональная последовательность fn(z)сходится к f(z) 
на множестве D равномерно, что обозначается fn(z)⇒f(z). Таким образом, 

fn(z)⇒f(z), z∈D ⇔ ∀ε> 0 ∃N(ε): ∣fn(z)−f(z)∣ <ε для n> N(ε)и ∀z∈D. 
3. Функциональный ряд в комплексной области 



 

Ряд, членами которого являются функции комплексного переменного un(z), n=1,2,…, 
определенные на некотором множестве M комплексной плоскости, называется функцио-
нальным рядом в комплексной плоскости и обозначается  

                                               ∑n=1∞un(z)                                               (3.1) 

Последовательность {Sn(z)}n∈N, где Sn(z)=∑k=1nuk(z), называется последователь-

ностью частичных сумм ряда (3.1), где S1(z)=u1(z),S2(z)=u1(z)+u2(z),…— частичные 
суммы. 
 

Ряд (3.1) называется сходящимся ни множестве D, если на множестве D сходится по-
следовательность его частичных сумм, т.е. существует предел этой последовательности, ко-
торый называется суммой ряда S(z): 

                  limn→∞Sn(z)=S(z), z∈D; ∑n=1∞un(z)=S(z), z∈D.                    (3.2) 
 

4. Область сходимости и равномерная сходимость рядов 
 

Множество точек z∈D, для которых сходится ряд, называется областью сходимости 
ряда (3.1). Очевидно, для суммы S(z) ряда в области сходимости D 
справедливо неравенство 

                ∣Sn(z)−S(z)∣ < εforn > N(ε,z), z∈D.            (3.3) 
Ряд (3.1) называется равномерно сходящимся на множестве D, если на этом множест-

ве равномерно сходится последовательность {Sn(z)}, то есть  

      ∣Sn(z)−S(z)∣ < εforn > N(ε), ∀z∈D.              (3.4) 

Равномерно сходящиеся ряды (и последовательности) непрерывных функций ком-
плексной переменной, как и аналогичные ряды в действительной области, обладают свойст-
вами конечных сумм, в частности сумма такого ряда является функцией, непрерывной на 
множестве, где ряд сходится равномерно. Кроме того, ряд можно почленно интегрировать. 
Это означает, что полученный ряд, т.е. ряд, членами которого являются интегралы от членов 
данного ряда, сходится и его сумма равна интегралу от суммы данного ряда: 
 

                 ∑n=1∞∫un(z)dz=∫∑n=1∞un(z)dz=∫S(z)dz.            (3.5) 
 

5. Признак Вейерштрасса и равномерная сходимость 
 

Для исследования функционального ряда на равномерную сходимость и нахождения 
области его равномерной сходимости можно использовать, как и в действительной области, 
достаточный признак равномерной сходимости. 

Теорема (признак Вейерштрасса). Если ряд (3.1) на множестве D мажорируется 
сходящимся числовым рядом с положительными членами, то он сходится на D равномерно, 
т.е. из условия 
 

∣un(z)∣<cn, n>k, k⩾1, z∈D;∑n=1∞cn shoditsya, cn>0       (3.6) 
 
следует равномерная сходимость ряда (3.1) на множестве D. 
 

Для равномерно сходящихся рядов аналитических функций справедливы отмеченные 
выше свойства непрерывности суммы ряда и почленного интегрирования. Кроме того, имеет 
место свойство, связанное с почленным дифференцированием ряда. 



 

Теорема Вейерштрасса для рядов аналитических функций 
 

Теорема (теорема Вейерштрасса для рядов аналитических функций). Если ряд 
(3.1) аналитических в области D функций un(z)равномерно сходится внутри  

D, т.е. на любом замкнутом подмножестве B¯¯¯¯⊂D, то сумма S(z)ряда аналитична 
в D; ряд можно почленно дифференцировать любое число раз, причем ряд, членами которого 
являются производные u(k)n(z), равномерно сходится на любом B¯¯¯¯⊂D, и сумма такого 
ряда равна производной S(k)(z) от суммы исходного ряда, т.е. 
 

∑n=1∞u(k)n(z)=S(k)n(z),k∈N.        (3.7) 
 

6. Нахождение области сходимости рядов 
 

Так как по определению ряд (3.1) сходится в точке z0, если сходится числовой ряд 
∑n=1∞un(z0), то для нахождения всех таких точек, т.е. области сходимости ряда, можно ис-
пользовать известные признаки сходимости числовых рядов (признаки абсолютной сводимо-
сти). Так, можно найти пределы: 

limn→∞∣un+1(z)/un(z)∣ = ∣f(z)∣, limn→∞√n∣un(z)∣ = ∣f(z)∣   (3.8) 

Согласно признакам Даламбера (в первом случае) и Коши (во втором случае) область 
D абсолютной сходимости ряда образуют те точки z, для которых |f(z)|<1. 

Граничные точки, т.е. точки, для которых выполняется равенство  
|f(z)|<1, могут быть как точками абсолютной или условной сходимости, так и точками рас-
ходимости. 
 

2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ                                                                
ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

2.1 Практическое занятие № 1 (2 часа). 

Тема: «Производная функции в точке. Свойства производных. Дифференциал, его 
свойства и приложения. Приложения дифференциального исчисления функций одной 
действительной переменной» 

2.1.1 Задание для работы: 

1. Определение производной, правая и левая производная 

3. Дифференцируемость функции и дифференциал 

4. Геометрический и физический смысл производной и дифференциала 

5. Свойства производных, связанные с арифметическими операциями 

2.1.2 Краткое описание проводимого занятия: 

Пусть функция ( )xfy =  определена в некоторой окрестности ( )0; xU δ точки 0x . Если 
фиксированное значение аргумента 0x  получает приращение x∆  (положительное или отри-
цательное), такое, что ( )00 ; xUxx δ∈∆+ , то приращение функции определяется выражением 

( ) ( ) ( )000 xfxxfxf −∆+=∆ . 
Производной функции ( )xfy =  в произвольной фиксированной точке 0x  называется 

предел (если он существует и конечен) отношения приращения функции к приращению ар-
гумента при условии, что последнее стремится к нулю: 



 

( ) ( ) ( ) ( )
x

xfxxf

x

xf
xy

xx ∆

−∆+
=

∆

∆
=′

→∆→∆

00

0

0

0
0 limlim . 

Обозначается: ( )0xy′ , ( )0xf ′ , 
( )
dx

xdf 0 , 
0xxdx

dy

=

. 

Производная функции ( )xfy =  в произвольной точке x  обозначается так: ( )xf ′ , y′ , 

dx

dy
, 

dx

df
. 

При каждом конкретном числовом значении x  производная ( )xf ′  (если она существу-
ет при данном x ) функции ( )xfy =  представляет собой определенное число. Значениям пе-
ременной x  ставятся в соответствие определенные значения переменной ( )xf ′ . Поэтому 
производная является функцией аргумента x . 

Если для некоторого значения x  предел +∞=
∆
∆

→∆ x

y

x 0
lim  или −∞=

∆
∆

→∆ x

y

x 0
lim , то говорят, что 

функция ( )xfy =  в точке x  имеет бесконечную производную. 
Если функция ( )xfy =  определена в левосторонней (правосторонней) окрестности 

точки 0x  и существует конечный или бесконечный предел: 

( ) ( )
x

xfxxf

x ∆
−∆+

−→∆

00

00
lim  (

( ) ( )
x

xfxxf

x ∆

−∆+
+→∆

00

00
lim ), 

то он называется соответственно конечной или бесконечной производной слева (спра-
ва) функции ( )xf  в точке 0x  

Обозначается: ( )00 −′ xf  или ( )0
' xf−  ( ( )00 +′ xf  или ( )0

' xf+ ). 
Левая и правая производные называются односторонними производными. 
Если функция ( )xf , определенная в некоторой окрестности точки 0x , имеет конечную 

производную ( )0xf ′ , то существуют производные слева и справа, причем 
( ) ( ) ( )00 000 +′=−′=′ xfxfxf . 

Вместе с тем существуют функции, имеющие в данной точке 0x  левую и правую про-
изводные, но не имеющие производной в этой точке. 

Операция нахождения производной функции f  называется дифференцированием. 
Дифференцируемость функции и дифференциал 
Пусть функция ( )xfy =  определена в некоторой окрестности точки 0x . 
Функция ( )xfy =  называется дифференцируемой в точке 0x , если ее приращение в 

этой точке ( ) ( )00 xfxxff −∆+=∆  может быть представлено в виде: 
( )xoxAf ∆+∆⋅=∆ , 

где A  – некоторое действительное число и 
( )

0lim
0

=
∆
∆

→∆ x

xo

x
. 

Дифференцируемость функции в точке 0x  означает, что с точностью до бесконечно 
малых более высокого порядка, чем приращение аргумента x∆ , приращение функции пред-
ставимо в виде линейной функции от x∆ . 

Для того чтобы функция ( )xfy =  была дифференцируема в точке 0x , необходимо и 
достаточно, чтобы в точке 0x  существовала конечная производная ( ) Axf =′ 0 . Если функция 

( )xfy =  дифференцируема в некоторой точке, то она и непрерывна в этой точке. Если функ-
ция ( )xfy =  в некоторой точке имеет производную, то она непрерывна в этой точке. Обрат-
ное верно не всегда, т. е. из непрерывности функции ( )xfy =  в точке 0x  еще не следует ее 
дифференцируемость в этой точке. 

Функция ( )xf  называется дифференцируемой на [ ]ba; , если она дифференцируема в 
любой точке [ ]bax ;∈ . 



 

Пусть функция ( )xf  дифференцируема в точке 0x . Тогда ее приращение в этой точке 
представимо в виде: 

( ) ( ) ( )xoxxfxf ∆+∆′=∆ 00 . 
Отсюда, если ( ) 00 ≠′ xf , то 

( )
( )

( )
( )

11limlim
0

0
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0
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Следовательно, при 0→∆x  приращение функции ( )0xf∆  и выражение ( ) xxf ∆′ 0  явля-
ются эквивалентными бесконечно малыми функциями. Поэтому при 0→∆x  можно прибли-
женно считать, что ( ) ( ) xxfxf ∆′≈∆ 00 . 

Дифференциалом функции ( )xf  называется величина ( ) xxf ∆′ 0 , являющаяся главным 
(линейным) членом приращения функции в точке 0x  и обозначается ( )0xdf :  

( ) ( ) xxfxdf ∆′= 00 . 
В частности, если xy = , то 1=′y , и, следовательно, xdxdy ∆== , т. е. дифференциал и 

приращение независимой переменной равны между собой. Поэтому дифференциал функции 
( )xf  в точке 0x  можно представить в виде  

( ) ( )dxxfxdf 00 ′= . 
Тогда приращение функции можно записать в виде  

( ) ( ) ( )xoxdfxf ∆+=∆ 00 . 
Видно, что дифференциал функции в точке 0x  отличается от соответствующего при-

ращения функции на бесконечно малую величину более высокого порядка, чем x∆  при 
0→∆x . 

На практике дифференциал используется при приближенных вычислениях следую-
щим образом: 

( ) ( ) ( ) xxfxfxxf ∆′+≈∆+ 000 .   (1.1) 
Геометрический и физический смысл производной и дифференциала 
Рассмотрим задачу о проведении касательной к произвольной плоской кривой. Пусть 

L  – дуга плоской кривой, 0M  – точка этой кривой, MM 0  – секущая (рисунок 1.1). Если точ-
ка M  движется по кривой к точке 0M , то секущая поворачивается вокруг точки 0M  и стре-
мится к некоторому предельному положению TM 0 . 

Касательной к кривой L  в точке 0M  называется прямая TM 0 , которая представляет 
собой предельное положение секущей MM 0  при стремлении по кривой точки M  к точке 0M  
(рисунок 1.1). 

 
Рисунок 1.1 – Секущая MM 0   
и касательная TM 0  
 
Если предельного положения секущей не существует, то говорят, что в точке 0M  про-

вести касательную нельзя. Это бывает в случае, когда точка 0M  является точкой излома, или 
заострения, кривой (рисунок 1.2, а, б, в). 

 



 

 
Рисунок 1.2 – Точки излома графика функции 
 
Пусть кривая L  является графиком функции ( )xf  и точка ( )( ) LxfxM ∈00 ;  (рисунок 

1.3).  
 

 
Рисунок 1.3 – Геометрический смысл касательной 
 
Предположим, что касательная к кривой в точке 0M  существует. Угловой коэффици-

ент секущей MM 0  есть 
( )
x

xf
k

∆

∆
== 0tgϕ . 

Если 0→∆x , то точка M  движется по кривой к точке 0M  и секущая 0MM  стремится 
к своему предельному положению TM 0 . Таким образом, 

( ) ( )0
0

0
limtglimtg
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xf
x

xf
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∆
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===

→∆→
ϕα .  (1.2) 

Отсюда следует геометрический смысл производной: производная от функции ( )xf  
при 0xx =  равна угловому коэффициенту касательной к графику функции в точке с абсцис-
сой 0x . 

Уравнение касательной имеет вид  
( )( )000 xxxfyy −′=− .    (1.3) 

Так как угловые коэффициенты касательной и нормали связаны условием перпенди-

кулярности 
кас

норм
1

k
k −= , то уравнение нормали в точке ( )000 ; yxM  имеет вид: 

( )
( )0

0
0

1
xx

xf
yy −

′
−=− .   (1.4) 

Углом между кривыми называют угол между касательными к кривым в точке их пере-
сечения. 

Геометрический смысл дифференциала: дифференциал dy  функции ( )xfy =  в точке 

0x  изображается приращением ординаты точки касательной, проведенной в ( )( )00 ; xfxM  к 
линии ( )xfy =  (рисунок 1.4). 

 



 

 
Рисунок 1.4 – Геометрический смысл дифференциала 
Рассмотрим функцию ( )xfy = , определенную и непрерывную в некоторой окрестно-

сти точки 0x . Если аргумент 0x  функции получает приращение x∆  (положительное или от-
рицательное), такое, что xx ∆+0  принадлежит той же окрестности точки 0x , то соответст-
вующее приращение функции равно ( ) ( ) ( )xfxxfxf −∆+=∆ 00 . Тогда средняя скорость изме-
нения функции равна: 

( )
x

xf
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cp ,    (1.5) 

а мгновенная скорость ее изменения: 
( ) ( )0
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.    (1.6) 

Механический смысл производной: производная – математическая модель мгновенной 
скорости процесса, описываемого функцией ( )xf .  

В зависимости от содержательной сущности функции можно получить широкий круг 
математических моделей скорости протекания процессов. Рассмотрим некоторые из них. 

1 Пусть материальная точка M  движется неравномерно и ( )tsy =  – функция, устанав-
ливающая зависимость пути от времени t . Тогда мгновенная скорость движения в момент 
времени 0t  есть производная от пути s  по времени t : 
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Дифференциал tvds ∆=  равен пути, который прошла бы рассматриваемая точка за 
промежуток времени t∆ , начиная с момента t , если движение на этом участке равномерно со 
скоростью v . Этот путь отличается от истинного пути s∆  на бесконечно малую более высо-
кого порядка, чем t∆ : ( )todss ∆+=∆  при 0→∆t . 

2 Пусть ( )tvy =  – функция, описывающая процесс изменения скорости неравномерно-
го движения в зависимости от времени t . Тогда мгновенное ускорение материальной точки в 
фиксированный момент времени 0t  есть производная от скорости v  по времени t : 
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3 Пусть ( )TQy =  – функция, описывающая процесс изменения количества теплоты, 
сообщаемой телу при нагревании его до температуры T . Тогда теплоемкость тела есть про-
изводная от количества теплоты Q  по температуре T : 
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4 Пусть необходимо определить линейную плотность неоднородного тонкого стержня 
длиной l , где m  – масса стержня, концы которого имеют координаты 0  и 0x  (предполагает-
ся, что ось Ox  направлена по стержню). Ясно, что масса стержня является функцией x : 
( ) ( )xmxf = . Тогда линейная плотность неоднородного тонкого стержня в точке 0x  есть про-

изводная от массы m  по длине l : 
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5 Пусть ( )ty Φ=  – функция, описывающая процесс изменения магнитного потока в за-
висимости от времени t . Тогда мгновенное значение электродвижущей силы индукции рав-
но скорости изменения магнитного потока, т.е. производной от магнитного потока Φ  по 
времени t : 
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6 Пусть ( )tqy =  – функция, описывающая процесс изменения заряда в колебательном 
контуре в зависимости от времени t . Тогда сила тока в контуре в момент времени 0t  равна 
производной заряда q  по времени t : 
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Дифференциал tIdq ∆=  равен количеству электричества, которое бы протекало через 
поперечное сечение проводника за промежуток времени t∆ , если бы сила тока была посто-
янной и равной силе тока в момент времени t . При этом ( )todqq ∆+=∆  при 0→∆t . 

Свойства производных, связанные с арифметическими операциями 
Ниже приводятся свойства производных, связанные с арифметическими операциями: 
– производная постоянной функции равна нулю: 
( ) 0' =c ; 
– (правило дифференцирования алгебраической суммы функций) Производная алгеб-

раической суммы (разности) двух дифференцируемых функций равна алгебраической сумме 
(разности) производных слагаемых: 

( ) '''
vuvu ±=± ; 

– (правило дифференцирования произведения функций) производная произведения 
двух дифференцируемых функций равна сумме произведений производной первого сомно-
жителя на второй и производной второго сомножителя на первый: 

( ) uvvuvu ′+′=⋅ ' ; 
– если ( )xuu =  дифференцируемая в точке x  функция, то R∈∀c  

( ) ''
uccu ⋅= ; 

– (правило дифференцирования частного функций) производная частного двух диф-
ференцируемых функций равна дроби, у которой знаменатель есть квадрат знаменателя дан-
ной дроби, а числитель представляет собой разность между произведением знаменателя дан-
ной дроби на производную ее числителя и произведением числителя на производную знаме-
нателя: 

2

'''

v

uvvu

v

u −
=







 ; 

В таблице 1 приводятся производные и дифференциалы элементарных функций. 

Таблица 1 – производные и дифференциалы элементарных функций. 

Фу
нкция 

Про-
изводная 

Фу
нкция 

Произ-
водная 

cy =

 
0=′y  y cos=

 
xy sin−=′

 
αxy =

 
∈α

R  

=′ ααxy

 

y tg=

 x
y 2cos

1
=′

 



 

xay =

 
y x lnα=′

 

y ctg=

 x
y 2sin

1
−=′

 
xey =

 

xey =′

 

y arcsin=

 21

1

x
y

−
=′

 
y log=

 x
y

ln
1

=′

 

y arccos=

 1

1
y

−
−=′

 
y ln=

 x
y

1
=′  

y arctg=

 21

1

x
y

+
=′

 
y sin=

 
y cos=′

 

y arcctg=

 21

1

x
y

+
−=′

 
y sh=

 
xy ch'=

 
y th=

 x
y 2ch

1
'=

 
y ch=

 
xy sh'=

 
y cth=

 x
y 2sh

1
'=

 
 

2.1.3 Результаты и выводы: 

В результате проведенного занятия студенты: 

- освоили основные понятия, свойства, теоремы производной функции в точке; 

- освоили основные понятия, свойства, теоремы дифференциала; 

- усвоили алгоритмы непосредственного дифференциального исчисления функций 

одной действительной переменной. 

 

2.2 Практическое занятие № 2 (2 часа). 

Тема: «Неопределенный интеграл, его свойства, методы нахождения. Определенный 

интеграл, его свойства, методы вычисления» 

2.2.1 Задание для работы: 

1. Первообразная функции, неопределенный интеграл. Свойства неопределенного ин-

теграла, метод непосредственного интегрирования. Метод подстановки. 

2. Метод интегрирования «по частям». 

3. Интегрирование рациональных дробей. 

4. Формула Ньютона - Лейбница.  Непосредственное вычисление определенного ин-

теграла. 

5. Вычисление определенного интеграла методом подстановки. Вычисление опреде-

ленного интеграла методом «по частям». 



 

2.2.2 Краткое описание проводимого занятия: 

1. Первообразная функции, неопределенный интеграл. Свойства неопределенно-
го интеграла, метод непосредственного интегрирования. Метод подстановки. 

1. Найдите неопределенные интегралы. 

∫ +− 3)dxx(2x
35

 
Решение: 

.Cx3x
4

3

3

x

Cx3
1

3
1

x

15

x
2dx3dxxdxx23)dxx(2x

3
46

1
3

1
15

3
1

535

++−

=++
+

−
+

=+−=+−
++

∫ ∫ ∫∫
 

Ответ: .Cx3
4

xx3

3

x
3)dxx(2x

36
35

++−=+−∫  

∫ dx
x

xln
6

 
Решение: 
Применим замену переменной. 

.C
7

xln
C

7

t
dtt

dt
x

dx

txln

dx

x

xln 77
6

6

+=+==
=

=
= ∫∫  

Ответ: .C
7

xln
dx

x

xln 7
6

+=∫  

∫
++

−
dx

84xx

1x

2

 
Решение: 
Выделим в подкоренном выражении полный квадрат. 

∫ ∫ ∫

∫ ∫∫

−=
+

−
+

=
+

−
=

−=

=

=+

=
++

−
=

+−+

−
=

++

−

.I3I
4t

dt
3

4t

tdt
dt

4t

3t

2tx

dtdx

t2x

dx
4)2x(

1x
dx

84)2x(

1x
dx

84xx

1x

21
222

222

 

1) .4tz

2
1

z

2

1
dzz

2

1

z

dz

2

1

dz
2

1
tdt

dztdt2

z4t

4t

tdt
I 2

2
1

2
1

2

2
1 +==⋅===

=

=

=+

=
+

= ∫ ∫∫
−  

2) ).4ttln(
4t

dt
I 2

2
2 ++=

+
= ∫  

Таким образом  



 

.C)8x4x2xln(38x4x

C)4)2x(2xln(34)2x(

C)4ttln(34tdx

84xx

1x

22

22

22

2

+++++−++=

=+++++−++=

=+++−+=
++

−
∫

 

Ответ: .C)8x4x2xln(38x4xdx

84xx

1x
22

2
+++++−++=

++

−
∫  

 
2. Найдите неопределенные интегралы. 

∫
+−

dx
x

2х53x
3 2

2

 
Решение: 

( ) .С168х105х36
28

х

Cx6
4

x15

7

x9
C

13
2

x
2

13
1
x

5
13

4
x

3

dxx2dxx5dxx3dx

x

2

x

x5

x

x3
dx

x

)2x5(3x

2
3

3
13

4
3

713
213

113
4

3
2

3
1

3
4

3
2

3
2

3
2

2

3 2

2

++−=

=++−=+
+−

+
+

−
+

=+−=













+−=

+−

+−++

−

∫ ∫ ∫∫∫
 

Ответ: ( ) .С168х105х36
28

х
dx

x

)2x5(3x 2
3

3 2

2
++−=

+−
∫  

b) ∫ +
dx

х1

х
3

2

 
Решение: 
Применим замену переменной. 

.C|х1|ln
3

1
C|t|ln

3

1

t

dt

3

1

dt
3

1
dxx

dtdxx3

tx1

dx
х1

х 3

2

2

3

3

2
++=+==

=

=

=+

=
+ ∫∫  

Ответ: .C|х1|ln
3
1

dx
х1

х 3
3

2
++=

+∫  

∫ ++

−
dx

10x6x

43x
2

 
Решение: 
Выделим в подкоренном выражении полный квадрат. 



 

∫ ∫ ∫

∫ ∫∫

−=
+

−
+

=
+

−
=

−=

=

=+

=
++

−
=

+−+

−
=

++

−

.I13I3
1t

dt
13

1t

tdt
3dt

1t

13t3

3tx

dtdx

t3x

dx
1)3x(

4x3
dx

109)3x(
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dx

106xx

43x

21222

222

 

1) .1tz

2
1

z

2

1
dzz

2

1

z

dz

2

1

dz
2

1
tdt

dztdt2

z1t

1t

tdt
I 22

1

2
1

2

2
1 +==⋅===

=

=

=+

=
+

= ∫ ∫∫
−  

2) ).1ttln(
1t

dt
I 2

2
2 ++=

+
= ∫  

Таким образом  

.C)10x6x3xln(1310x6x3

C)1)3x(3xln(131)3x(3

C)1ttln(131t3dx
106xx

43x

22

22

22

2

+++++−++=

=+++++−++=
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++

−
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Ответ: .C)10x6x3xln(1310x6x3dx
106xx

43x 22

2
+++++−++=

++

−
∫  

d) 
∫

−+
dx

х

хх5x1 33

 
Решение: 

.Схх
11

30
хх

7

2
х2

C
11
x30

7
x2

x2C
16

5
x

5
12

5
x

12
1

x

dxx5dxxdxxdx
x

x5

x

x

x

1
dx

х

)хx5x(1

6 53

6
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2
7

2
1
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6
5

2
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2
1

2
1

3
4

2
1

3

2
1
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=+−+=+
+

−
+

+
+−

=+−+=













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−+
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−

∫ ∫∫∫∫

 

Ответ: .Схх
11

30
хх

7

2
х2dx

х

)хx5x(1 6 53
33

+−+=
−+

∫  

∫ +
dx

x1

xarctg
2

5

 
Решение: 
Применим замену переменной. 

.C
6

xarctg
C

6

t
dtt

dt
x1

dx

txarctg
dx

x1

xarctg 66
5

2
2

5

+=+==
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+

=
=
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Ответ: .C
6

xarctg
dx
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xarctg 6

2

5
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+∫  

 

∫ +−

+
dx

3x4x

23x
2

 
Решение: 
Преобразуем знаменатель, выделив полный квадрат. 

( ) 12x322x22x3x4x 22222 −−=+−+⋅⋅−=+−  

( )

∫ ∫ ∫

∫∫

+=
−

+
−

=
−
+

=

+=

=

=−

=
−−

+
=

+−

+

.I8I3
1t

dt
8

1t

tdt
3dt

1t

8t3
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dtdx

t2x

dx
12x

2x3
dx

3x4x

23x

21222
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1) 
( )

.|3x4x|ln
2

1

12xln
2

1
|1t|ln

2

1
|z|ln

2

1

z
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2

1

dz
2

1
tdt

dztdt2

z1t

1t
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I

2
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2
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=

=

=−

=
−
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2) .
1x
x3

ln
2
1

)2x1
)2x1

ln
2
1

t1
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2
1

t1
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ln
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1
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dt
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dt
I

2222 −
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=
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=
+
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=
−
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⋅
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−
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−
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Таким образом  

.C
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ln4|3x4x|ln

2

3
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23x 2
2

+
−
−

++−=
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+
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Ответ: .C
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ln4|3x4x|ln

2

3
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23x 2
2

+
−
−

++−=
+−

+
∫

 
 
2. Метод интегрирования «по частям». 
Найдите интеграл: 

a) ∫
xdx

3

2
xcos

 
Решение: 
Применим формулу интегрирования по частям. 

∫ ∫−= .vduuvudv  

C.x
3
2

cos
4
9

3
2

sin
2
3

3
2

sin
2
3

3
2

sin
2
3

.
3
2

sin
2
3

3
2

3
2

sin
xdx

3
2

cosvdx;du

xdx;
3
2

cos;

xdx
3
2

xcos

++=−=

=

====

==

=

∫

∫
∫

xxxdxxx

x
x

dvxu

 



 

Ответ: C.x
3

2
cos

4

9
x

3

2
sinx

2

3
xdx

3

2
xcos ++=∫

 

∫ xdx
5
4

xsin
 

Решение: 
Применим формулу интегрирования по частям. 

∫ ∫−= .vduuvudv  

=

−=−===

==

=

∫
∫

.x
5

4
cos

4

5

5
4

x
5

4
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xdx
5

4
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5

4
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5

4
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5

4
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5

4
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5
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5
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5

4
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4

5
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Ответ: C.x
5
4
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16
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x
5
4
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4
5

xdx
5
4
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3. Интегрирование рациональных дробей. 

∫
+

−
dx

4)1)(x-(x

27x

2

 
Решение: 
Разложим подынтегральную дробь на простейшие дроби. 

4x

CBx
1x

1x
A

4x

)4x)(1x(

2x7
2

2

2 +
+

−
+

−

+
=

+−

−   

Приравнивая числители, получим 
 
7x-2=A(x2+4)+(x-1)(Bx+C), приравниваем коэффициенты при одинаковых степенях. 

2CA4

7CB

0BA

1

x

x2

−=−

=+−

=+

. Складывая все уравнения, получим 5А=5; А=1; В=-А=-1; 

С=4А+2=6. 

Следовательно .
4x
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7x

1

)4x)(1x(
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22 +
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−
=
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∫ ∫ ∫∫ +−=
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=
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6
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xdx

1x

dx
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)4x)(1x(

2x7
321222

 

dx
хx

3х34х
3

2

∫ −

−+

 
Решение: 
Разложим знаменатель на множители 
х3-х=х(х-1)(х+1) 
Разложим подынтегральную дробь на простейшие дроби. 



 

1x

хx
C

1x

хx
В

x

1x
A

)1x)(1x(х
3х3х4

222

2

+

−

+
−

+

+

−

=
+−
−+  Приравнивая числители, получим 

 
4х2+3х-3=A(x2-1)+В(x2+х)+C(х2-х), приравниваем коэффициенты при одинаковых 

степенях. 

3A

3CB

4СBA

1

x

x 2

−=−

=−

=++

. 

Отсюда А=3, В=2, С=-1 

Следовательно 
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Решение: 
Разложим подынтегральную дробь на простейшие дроби. 

2

22

2

2

2

2

)1x(

1x
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 Приравнивая числители, 

получим 
x2=A(x2+2х+1)+В(x2-1)+C(х-1), приравниваем коэффициенты при одинаковых степе-

нях. 

0CВA

0CА2

1BA

1

x

x 2

=−−

=+

=+

. Складывая все уравнения, получим 4А=1; А=1/4; В=1-А=3/4; С=А-

В=-1/2. 

Следовательно .
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4. Формула Ньютона - Лейбница.  Непосредственное вычисление определенного 

интеграла. 
1. Вычислите определенные интегралы  

а) dx2x6

1

0

3∫ +  



 

Решение: 
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Вычислите определенные интегралы. 
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d) ∫
π
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Решение: 

Воспользуемся тригонометрической формулой )x4cos1(
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2. Вычислите определенные интегралы.  

а) 

dx15x

2

1
∫ −

 b) 
∫
e

1

2

dx
x

xln

 



 

3. Вычислить определенные интегралы: 
а) по формуле Ньютона-Лейбница; 
б) по формуле Симпсона при n=10 с точностью до двух знаков. 
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5. Вычисление определенного интеграла методом подстановки. Вычисление опре-

деленного интеграла методом «по частям». 

1. Вычислить определенный интеграл   

  Интегрируем по частям:   

 

 
(1) Записываем решение в соответствии с формулой интегрирования по частям. 

(2) Для произведения применяем формулу Ньютона-Лейбница. Для оставше-
гося интеграла используем свойства линейности, разделяя его на два интеграла.  

 (3) Берем два оставшихся интеграла.  
(4) Применяем формулу Ньютона-Лейбница для двух найденных первообразных. 

2.  

На первом этапе я нахожу неопределенный интеграл:  
Интегрируем по частям: 



 

 

 
Первообразная функция найдена. Константу  в данном случае добавлять не имеет смысла. 

На втором этапе я провожу проверку (обычно на черновике). 
Тоже логично. Если я неправильно нашел первообразную функцию, то неправильно 

решу и определенный интеграл. Это лучше выяснить немедленно, дифференцируем ответ: 

 
Получена исходная подынтегральная функция, значит, первообразная функция найдена 

верно. 
Третий этап – применение формулы Ньютона-Лейбница: 

 
 

2.2.3 Результаты и выводы:  

В результате проведенного занятия студенты: 

- освоили основные понятия, свойства, теоремы интегрального исчисления функции 

одной действительной переменной; 

- усвоили алгоритмы непосредственного интегрирования, интегрирования методом 

подстановки, методом «по частям»; 

- выработали навыки нахождения интегралов методом непосредственного интегриро-

вания, интегрирования методом подстановки, методом «по частям»; 

 

2.3 Практическое занятие № 3 (2 часа). 

Тема: «Кратные интегралы, их свойства, вычисление, приложения. Криволинейные 

интегралы, их свойства, вычисление» 

2.3.1 Задание для работы: 

1. Криволинейны интеграл второго рода. 

2. Криволинейный интеграл первого рода. 



 

3. Формула Грина. 

4. Интегрирование полного дифференциала. 

2.3.2 Краткое описание проводимого занятия: 

1. Криволинейны интеграл второго рода. 

Пример 1 

Вычислить , где – дуга параболы от точки с абсциссой до точки с 
абсциссой . 

Решение: Поскольку линия интегрирования задана условиями , , то используем 
принцип перехода к определенному интегралу, указанный выше в пункте 1 (формула(1)): 

 

. 
Пример 2 

Вычислить , где – отрезок прямой между точками А(2, –2, 0) и В(1, 1, 
1). 

Решение: Найдем уравнение прямой, проходящей через точки А и В: 

 
При этом точке А(2, –2, 0) соответствует значение , а точке В(1, 1, 1) – значение

, значит, на линии . 
Таким образом, имеем случай задания линии интегрирования, рассмотренный выше в 

пункте 4 (формула (4)). Тогда 

 

. 
Пример 3. 

Вычислить , если L – контур треугольника с вершинами 
,B(3,1), C(1,5), пробегаемый против часовой стрелки. Рисунок 1 

Решение. 
Треугольник АВС, по которому идет интегрирование, изображен на рисунке 1. Как 

видим, контур L этого треугольника состоит из трех участков: АВ, ВС и СА. Эти отрезки ле-
жат на разных прямых, и, следовательно, задаются разными уравнениями. Поэтому сначала 
необходимо воспользоваться свойством аддитивности криволинейного интеграла и распи-
сать его в виде суммы трех интегралов по соответствующим отрезкам: 

. 



 

Вычислим каждый из этих интегралов отдельно. При этом обязательно нужно учиты-
вать, что движение по контуру – против часовой стрелки: А→В→С→А(кстати, это означает, 
что контур ориентирован положительно). 

Отрезок AB имеет уравнениеy=1,x∈[1,3], следовательно (формула(1)) 

. 
Рассмотрим отрезок ВС. Найдем сначала уравнение прямой, проходящей через точ-

ки и : 

 
. 

Таким образом, уравнение отрезка B C имеет вид , а так как обход контура осуществ-
ляется против часовой стрелки (т.е. движение вдоль этого отрезка происходит от точки B к 
точке C), то переменная  x меняется от 3 до 1. Тогда (снова формула(1)) получим 

 

. 
Отрезок CA определяется уравнением x=1 (т.е. уравнение вида x = ψ(y), используем 

формулу (2)) направление движения вдоль этого отрезка от точки C к точке A, значит, пере-
менная y меняется от 5 до 1. Поэтому соответствующий интеграл равен 

 

. 
Тогда заданный интеграл равен 

. 
Пример 4. 

Вычислить , если L – первая арка циклоида  
Решение. Очевидно, заданный интеграл есть криволинейный интеграл II рода: 
Рисунок 2 

. 

Циклоида  имеет вид, изображённый на рис.2. Первая арка циклоиды 
расположена в первой четверти и соответствует изменению параметра t от 0 до 2π. Посколь-
ку линия L задана параметрическими уравнениями, то криволинейный интеграл II рода сво-
диться к определённому по формуле (3). Тогда получаем 

 



 

 

 

. 
 
2. Криволинейный интеграл первого рода. 

Пример 1. Вычислить криволинейный интеграл , где  

- дуга кривой Между точками, для которых  

Поскольку , И на дуге кривой Функция  

, то по формуле (21.4) находим 

 

Пример 2. Вычислить Где - дуга кривой  

Между точками, для которых  

Применяем формулу (2J.6). В данном случае  

 

Пример .3. Вычислить криволинейный интеграл Где - 

Контур треугольника (рис. 21.2) с вершинами  
В соответствии со свойством 4) криволинейного интеграл первого рода име-

ем  

На отрезке Поэтому  

На отрезке На отрезке 

Принимая во внимание свой-
ство  криволинейного интеграла, используя формулы, получаем 



 

 

Пример 4. Вычислить Где - лепесток лемнискаты 

Расположенный в первом координатном углу. 

Линия Задана уравнением в полярных координатах, поэтому здесь целесообразно 
воспользоваться формулой для полярного задания функции 

Так как То 

 

Заметив еще, что Т. е. Получим 

 

Пример.5. Вычислить Где - отрезок прямой 

Между точками  

Составим сначала уравнения прямой, проходящей через точки И  

Или  
Таким образом, получаем параметрические уравнения прямой: 

 

Точка Пробегает отрезок , когда Изменяется от До 1, т. е.  

Так как То  

 
Находим 

 
 
2.3.3 Результаты и выводы:  

В результате проведенного занятия студенты: 

- выработали навыки исследования на сходимость несобственных интегралов. 

- освоили основные понятия и теоремы теории криволинейных интегралов; 

- усвоили алгоритмы вычисления криволинейного интеграла первого и второго рода; 



 

2.4 Практическое занятие № 4 (2 часа). 

Тема: «Числовые ряды. Функциональные последовательности и ряды в действитель-

ной области» 

2.4.1 Задание для работы: 

1. Числовые ряды. 

2. Функциональные последовательности и ряды. 
2.4.2 Краткое описание проводимого занятия: 

Дан функциональный ряд: 
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исследовать его сходимость в точках 0=x  и 1=x . 
Решение 

В точке 0=x  получаем числовой положительный ряд 
 

LL +⋅
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. 
 
Исследуем полученный ряд на сходимость, применив признак Далам-бера сходимости 

положительного числового ряда: 
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так как 12 > , то числовой положительный ряд расходится. А значит, заданный 

функциональный ряд расходится в точке 0=x . 

В точке 1=x  получаем числовой положительный ряд: 
 

LL +⋅
−

++⋅+⋅+
nn 3

1

12

1

3

1

5

1

3

1

3

1

3

1
32

. 
 
Исследуем полученный ряд на сходимость, применив признак Даламбера сходимости 

положительного числового ряда: 
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так как 
1

3
1
<

, то числовой положительный ряд 
n
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тельно, функциональный ряд 
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1 сходится, причем абсолютно, в точке 
1=x . 

Ответ: Функциональный ряд сходится абсолютно при 1=x  и расходится при 0=x . 
Пример №2 (№345 из [7], студент решает у доски самостоятельно). Дан функциональный 
ряд: 
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Исследовать его сходимость в точках 1=x , 2=x  и 3=x . 
Решение: 

При 1=x  ряд примет вид 
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 - числовой положи-
тельный ряд. Он расходится, так как необходимое условие сходимости числового ряда не 

выполняется, т.е. 
0lim ≠

∞→
n

n
а

. 

При 2=x  ряд примет вид ...1...111 32 +++++ n
 - числовой положительный ряд. Он 

расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. 

0lim ≠
∞→

n
n

а
. 

При 3=x  ряд примет вид 
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. числовой положительный 
ряд. По признаку Даламбера сходимости числового положительного ряда имеем: 
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, т.е. ряд сходится. Значит, исходный функциональный ряд схо-

дится в точке 3=x абсолютно. 

Ответ: Заданный функциональный ряд сходится абсолютно в точке 3=x  и расходит-

ся в точках 1=x  и 2=x . 
Пример №3 (№1 из [10], с комментариями преподавателя). 
Найти область сходимости функционального ряда: 
 

L+++
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Решение 
I способ. 
Найдем общий элемент заданного функционального ряда: 
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Исследуемый функциональный ряд представляет собой сумму убывающей геометри-

ческой прогрессии при 
1

1
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x , т.е. при ( ) ( )∞∪−∞−∈ ;11;x , где q
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Значит, область сходимости исходного функционального ряда: ( ) ( )∞∪−∞− ;11; . 

Проверим сходимость исходного функционального ряда при 1−=x  и 1=x . 

Если 1=x , то получим L1111 +++  - числовой положительный ряд. Он расходит-
ся, так как необходимое условие сходимости числового ряда не выполняется, т.е. 

0lim ≠
∞→

n
n

а
. 

Если 1−=x , то получим L+−+− 1111  - числовой знакочередующийся ряд. Он 
расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. 

0lim ≠
∞→ n

n
а

. 
Итак, область абсолютной сходимости исходного функционального ряда - 

( ) ( )+∞∪−∞− ;11; . 
II способ. 

Определим ( )xUn  и ( )xUn 1+  заданного ряда: 
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. 
По признаку Даламбера абсолютной сходимости функционального ряда можно запи-

сать: 
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Если 
1

1
<

x , т.е. ( ) ( )∞∪−∞−∈ ;11;x , то заданный функциональный ряд сходится 
абсолютно. 

Исследуем на сходимость исходный функциональный ряд при 1−=x  и 1=x . 

Если 1=x , то получим L1111 +++  - числовой положительный ряд. Он расходит-

ся, так как необходимое условие сходимости числового ряда не выполняется, т.е. 
0lim ≠

∞→
n

n
а

 

Если 1−=x , то получим L+−+− 1111  - числовой знакочередующийся ряд. Он 
расходится, так как необходимое условие сходимости числового ряда не выполняется, т.е. 

0lim ≠
∞→

n
n

а
. 



 

Ответ: область абсолютной сходимости исходного функционального ряда - 
( ) ( )+∞∪−∞− ;11; . 

Пример №4 (№339 из [7], с комментариями преподавателя). 
Найти область сходимости функционального ряда: 
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Решение 

Найдем общий элемент заданного функционального ряда 
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, то получается числовой положительный ряд вида 
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, следовательно, 
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Если 
1>x

, то элементы исходного функционального ряда меньше членов суммы 

бесконечно убывающей геометрической прогрессии 
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 при 
1>x

. 

Значит, ряд 
∑
∞

=1
2

1

n
nx  сходится при 

1>x
. 

Следовательно, будет сходиться при 
1>x

и заданный функциональный ряд, т.е. об-

ластью сходимости является объединение интервалов - ( ) ( )∞∪−∞− ;11; . 

Ответ: Область сходимости заданного функционального ряда - ( ) ( )∞∪−∞− ;11; . 
Первичное закрепление материала происходит при решении студентами у доски уп-

ражнений, подобных рассмотренным с преподавателем, к доске вызываются сразу 3-4 сту-
дента. 

Пример №5 (№2 из [10], студент у доски с помощью преподавателя). 
Найти область сходимости функционального ряда: 
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Решение 



 

Определим формулу общего элемента заданного функционального ряда 
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По признаку Даламбера абсолютной сходимости функционального ряда имеем: 
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В соответствии с признаком Даламбера абсолютной сходимости функционального ря-

да, если 
1
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x

, т.е. );( 33x −∈ , то заданный функциональный ряд сходится абсолютно. 

При 
1
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x

, т.е. ( ) ( )∞∪−∞−∈ ;33;x , исследуемый функциональный ряд расходит-
ся. 

При x=3 функциональный ряд становится положительным числовым рядом вида 
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n . Этот ряд расходится, так как является гармоническим рядом 

∑
∞

=1

1

n n . 
При х=-3 функциональный ряд становится знакочередующимся числовым рядом вида: 

( )
...

1
...

3
1

2
1

1
n

n−
++−+−

. 

По признаку Лейбница: а) 
0lim =

∞→ n
n

а
; б) nn aa <+1 , так как nn

1
1

1
<

+ . 

Значит, ряд 

( )
∑
∞

=

−

1

1

n

n

n  сходится условно по признаку Лейбница. 

Составим ряд из абсолютных величин членов ряда 

( )
∑
∞

=

−

1

1

n

n

n . Получим ряд 
∑
∞

=1

1

n n  - это 
гармонический расходящийся ряд. 

Значит, исходный функциональный ряд сходится абсолютно на интервале ( )3;3− , а 

сходится условно на полуотрезке )3;3[− . 

Ответ: [ )3;3−  - область сходимости заданного функционального ряда. 
Пример №6 (№18 из [10], студент самостоятельно у доски). 
Найти область сходимости функционального ряда: 
 

( ) ...1...62 2 +++++ nxnnxx  
 
Решение 
По признаку Даламбера абсолютной сходимости функционального ряда можно запи-

сать: 
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Если 
1<x

, т.е. ( )1;1−∈x , то заданный функциональный ряд сходится абсолютно 

на интервале ( )1;1− . 

Если 
1>x

, т.е. ( ) ( )+∞∪−∞−∈ ;11;x , то ряд расходится. 
Исследуем заданный функциональный ряд на сходимость в точках х=1 и х= - 1. 

При 1=x  получается числовой положительный ряд 

( )∑
∞

=

+
1

1
n

nn

. Он является расхо-
дящимся, так как не выполняется необходимое условие сходимости числового ряда, т.е. 

( ) 01lim ≠+
∞→

nn
n . Значит, заданный функциональный ряд в точке 1=x  расходится. 

При 1−=x  получается числовой знакочередующийся ряд вида 

( ) ( )∑
∞

=

+⋅⋅−
1

11
n

n
nn

. 
Он является расходящимся, так как не удовлетворяет условиям признака Лейбница: а) 

0lim ≠
∞→

n
n

а
; б) nn aа >+1 . 

Ряд составленный из абсолютных величин элементов ряда 
( ) ( )∑

∞

=

+⋅⋅−
1

11
n

n
nn

 имеет 

вид 
( )∑

∞

=

+⋅
1

1
n

nn
 и является расходящимся. 

Значит, исходный функциональный ряд расходится и в точке 1−=x . 

Поэтому, область сходимости заданного функционального ряда интервал - ( )1;1− . 

Ответ: ( )1;1− . 
Пример №7 (№28 из [8], студент самостоятельно у доски). 
Найти область сходимости функционального ряда: 
 

...... ++++
n

x

2

x
x

n2

. 
 

Решение. Определим ( )xU n  и ( )xU n 1+  заданного ряда: 
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. 
 
По признаку Даламбера абсолютной сходимости функционального ряда имеем: 
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Если 
1<x

, т.е. ( )1;1−∈x , то в соответствии с признаком Даламбера абсолютной 
сходимости функционального ряда, исследуемый функциональный ряд сходится абсолютно 

на интервале ( )1;1− . 

Если 
1>x

, т.е. ( ) ( )+∞∪−∞−∈ ;11;x , то функциональный ряд расходится. 

Исследуем заданный ряд в точках 1=x  и 1−=x . 

При 1x =  получим числовой положительный ряд 

∑
∞

=

=++++
1 2

1

1
...

1
...

2

1
1

n
n

n
. Это ряд 

Дирихле с 2
1

=α
. Известно, что если 1≤α , то ряд 

∑
∞

=1n n

1

 расходится. Значит, функцио-

нальный ряд 
∑
∞

=1n

n

n

x

 в точке 1=x  расходится. 

При 1−=x  получим числовой знакочередующийся ряд вида 

( )
...

1
...

2

1
1 +

−
+++−

n

n

. 
Он сходится, так как удовлетворяет условиям признака Лейбница сходимости знакочере-

дующихся числовых рядов, т.е. 
0lim =

∞→ n
n

a
 и nn aa <+1 : nn

1

1

1
<

+ . 

Ряд, составленный из абсолютных величин элементов ряда 

( )
∑
∞

=

−

1

1

n

n

n , имеет вид 

∑
∞

=1

1

n n  и является расходящимся. 

Значит, функциональный ряд 
∑
∞

=1

4

n n

x

 сходится условно в точке x=1. 

Итак, область сходимости исследуемого функционального ряда )1;1[−∈x . Абсолют-

но ряд сходится на интервале ( )1;1− . 

Ответ: )1;1[− . 
Преподаватель: Последний вид заданий, который мы с вами сегодня рассмотрим, - на 

нахождение суммы функционального ряда. 
Пример №8 (№14 из [10], с комментариями преподавателя). 
Найти сумму ряда: 
 

L++++ 6421 xxx . 
 
Решение 
По признаку Даламбера абсолютной сходимости функционального ряда можем запи-

сать: 
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Если 12 <x , т.е. 
1<x

 то функциональный ряд 
∑
∞

=

−

1

22

n

nx
сходится абсолютно на ин-

тервале ( )1;1− . 

Если 12 >x , т.е. ( ) ( )∞∪−∞−∈ ;11;x , то исследуемый функциональный ряд расхо-
дится на указанных промежутках. 

При 1±=x  функциональный ряд становится числовым положительным расходящим-

ся рядом ...111 +++ , так как не выполняется необходимое условие сходимости числового 

ряда, т.е. 
0аn

n
≠

→∞
lim

. 

Значит, область абсолютной сходимости функционального ряда 
∑
∞

=

−

1

22

n

nx
 есть интер-

вал ( )1;1− . 
Найдем сумму заданного функционального ряда на его области сходимости. 

Если ( ) ( )1;00;1 ∪−∈x , то исследуемый ряд представляет собой сумму убывающей 

геометрической прогрессии с 
2

1 и1 xqb == . Сумму ряда будем определять по формуле: 
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При 0=x  сумма ряда 1=S . 

Итак, сумма функционального ряда при 
1<x

равна 
21

1

x− . 

Ответ: При 
1<x

 
21

1

x
S

−
=

. 
Пример №9 (№16 из [10], студент у доски с помощью преподавателя). 
Найти сумму ряда: 
 

( ) ( ) ( ) ( )
....

3

3
1...

27

3

9

3

3

1 1
1

2 −
− −

⋅−+−
−

+
−

−
n

n
n xxx

. 
 
Решение 
По признаку Даламбера абсолютной сходимости функционального ряда можем запи-

сать: 
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В соответствии с признаком Даламбера, если 
1

3

3
<

−x

, т.е. 
33 <−x

 или 
( )6;0∈x , то заданный функциональный ряд сходится абсолютно. 

Если 
1

3

3
>

−x

, т.е. ( ) ( )∞∪∞−∈ ;60;x , исследуемый функциональный ряд расхо-
дится. 

При 0=x  получается числовой положительный ряд 
...

3

1

3

1

3

1
+++

. Он расходится, 

так как не выполняется необходимое условие сходимости числового ряда, т.е. 
0lim ≠

∞→
n

n
а

. 

Следовательно, исследуемый функциональный ряд в точке 0=x  расходится. 

При 6=x  получается числовой знакочередующийся ряд вида 
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Он расходится, так как не удовлетворяет условиям признака Лейбница: а) 
0lim ≠

∞→ n
n

a
; б) 
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. Значит, в точке 6=x  функциональный ряд 
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 расходится. 
Следовательно, областью сходимости заданного функционального ряда является ин-

тервал ( )6;0 . 
Найдем сумму заданного функционального ряда на его области сходимости. Если 

( )6;0∈x , то ряд представляет собой сумму убывающей геометрической прогрессии с 
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. Сумма ряда 
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 на интервале ( )6;0  будет определяться 
по формуле 
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Ответ: При ( )6;0∈x  x
S

1
=

. 
 

2.4.3 Результаты и выводы: 

В результате проведенного занятия студенты: 

- освоили основные свойства числовых рядов; 

- научились находить сумму рядов разными способами. 

 


