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1. КОНСПЕКТ ЛЕКЦИЙ 

1.1  Лекция № 1 (2 часа). 

Тема: «Классическое определение вероятности события. Геометрические вероятно-

сти. Относительная частота наступления события и статистическая вероятность. 

Формулы умножения и сложения вероятностей случайных событий» 

1.1.1 Вопросы лекции: 

1.Случайные события, их классификация. 

2.Вероятность случайных событий, ее интерпретации. 

3. Основные теоремы теории вероятностей. 

1.1.2 Краткое содержание вопросов:  

1. Случайные события, их классификация. 

Практика показывает, что в совокупности массы однородных случайных явлений 
обнаруживаются определенные закономерности. Так, при увеличении числа выстрелов 
частота попадания в цель стабилизируется, приближаясь к некоторому постоянному чис-
лу. При многократном бросании монеты частота выпадения герба (отношение числа вы-
павших гербов к общему числу бросаний) приближается к числу 0,5. 

Чем больше количество рассматриваемых однородных случайных явлений, тем оп-
ределеннее и отчетливее проявляются присущие им закономерности. 

Вот эти специфические закономерности массовых однородных случайных явлений и 
являются предметом изучения теории вероятностей. 

Следует заметить, что вероятностные методы ни в коем случае не противопоставля-
ют себя классическим методам точных наук, но дополняют их, а это позволяет глубже 
анализировать случайные явления. 

В настоящее время нет практически ни одной естественной науки, в которой, так или 
иначе, не применялись бы вероятностные методы, ведь математические законы теории 
вероятностей есть отражение реальных законов, объективно существующих в массовых 
случайных явлениях природы и техники. 

 Основные понятия 
Под испытанием будем понимать опыт, эксперимент, любое действие, приводящее к 

возникновению определенной совокупности условий. Событием называется результат 
всякого испытания. Все события делятся на достоверные, невозможные и случайные. 

Достоверное событие — это событие, которое обязательно наступает в данном ис-
пытании. 

Невозможное — это событие, которое никогда не наступает в данном испытании. 
Случайное событие – это событие, которое в данном испытании может наступить 

или не наступить. 
Случайные событие называются несовместными в данном испытании, если никакие 

два из них в этом испытании не могут наступить одновременно. 
Случайные события образую полную группу, если являются всеми возможными ре-

зультатами данного испытания. 
Случайные события называются противоположными в данном испытании, если они 

несовместны и образуют полную группу.  
Рассмотрим полную группу равновозможных, несовместных, случайных событий. 

Такие события будут называться случаями, шансами или исходами. 
События называются равновозможными, если нет оснований считать, что одно явля-

ется более возможным, чем другое. 



5 
 

Случай рассмотренной группы называется благоприятствующим появлению собы-
тия А, если появление этого случая влечет за собой появление события А. 

Например, в урне 8 шаров с цифрами от 1 до 8. Шары 1,2,3 – красные, остальные – 
белые. Появление шара с 1 (или 2, или 3) есть событие (случай), благоприятствующий по-
явлению красного шара. 

Количественная оценка возможности наступления события А в данном испытании 
называется вероятностью этого события и обозначается Р(А). Существует несколько оп-
ределений этого понятия. Рассмотрим вначале определение, называемое классическим, 
проанализируем его слабые стороны, затем перейдем к другим определениям, позволяю-
щим преодолеть указанные недостатки. 

 
2. Вероятность случайных событий, ее интерпретации 

 
Классическое определение вероятности события. Вероятностью  события А на-

зывается отношение:  ( )
n

m
=AP , 

где т – число благоприятствующих случаев (исходов), а n – число всех возможных 
случаев (исходов), образующих полную группу равновозможных, несовместных, случай-
ных событий. 

 Если какому-либо событию благоприятствует все n случаев, образующих полную 
группу равновозможных, несовместных, случайных событий, то оно является достовер-
ным (р=1). Событие, которому не благоприятствует ни один из n случаев, является невоз-
можным (р=0). 

Следовательно,    ( ) 10 ≤≤ AP . 
Задача. В корзине 8 красных и 12 белых шаров, наудачу извлекают один шар. Ка-

кова вероятность того, что он красный? Какова вероятность того, что он белый? 
Испытание: извлечение шара из корзины. 
Событие А: появление шара красного цвета. 
Событие В: появление шара белого цвета. 

События А и В – противоположные в данном испытании. 

( )
5

2

20

8
==

n

m
=AP  ; ( ) ( )

5

3
1 =AP=BP − . 

Ограниченность классического определения вероятности 
Классическая формула вероятности события применяется для непосредственного 

подсчета вероятностей тогда, когда задача сводится к «схеме случаев». Другими словами, 
классическое определение предполагает, что число элементарных исходов испытания ко-
нечно. На практике же часто встречаются испытания, число возможных исходов которых 
бесконечно, то есть далеко не всякий опыт может быть сведен к «схеме случаев».  Следо-
вательно, существует класс событий, вероятности которых нельзя вычислить по классиче-
ской формуле. Часто так же невозможно представить результат испытания в виде сово-
купности элементарных исходов или указать основания, позволяющие считать элементар-
ные события равновозможными.  

Указанные недостатки могут быть преодолены введением геометрической и стати-
стической вероятностей.  

 Геометрические вероятности 
Геометрической вероятностью называют вероятность попадания наудачу брошенной 

точки в область (отрезок, часть плоскости, часть пространства). 
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Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. 
Вероятность попадания точки на  отрезок l пропорциональна длине этого отрезка и не за-

висит от его расположения относительно отрезка L:  
L длина

l длина
=P . 

Пусть плоская фигура g составлять часть плоской фигуры G. На G наудачу брошена 
точка. Вероятность попадания брошенной точки на g пропорциональна площади этой фи-
гуры и не зависит ни от ее расположения относительно G, ни от формы g: 

площадьG 

 площадьg
=P . 

По аналогии через отношение объемов определяется вероятность попадания наудачу 
брошенной точки в часть пространства. 

Задача.  Найти вероятность того, что точка, брошенная наудачу, попадет в кольцо, 
образованное двумя окружностями с радиусами 5 и 10 см. 

Площадь кольца (фигура g):   ( ) π75510π 22 ==Sg −  

π10010π 2 ==SG ⋅         0,75
π100

π75
==P .  

Статистическая вероятность события 
Введем еще одну количественную оценку возможности появления события в данном 

испытании, корнями уходящую в опыт, эксперимент. 
Относительной частотой наступления события А называется отношение 

( )
n

m
=AW , 

где n – число проведенных опытов (испытаний), а m – число испытаний, в которых 
событие А наступило. 

Заметим, что классическая формула не требует проведения испытаний в действи-

тельности, ( )AP  вычисляется до опыта. Для нахождения относительной частоты испыта-

ния должны быть проведены, либо возможно их проведение,  ( )AW  вычисляют после 
опыта. 

При небольшом числе опытов W носит случайный характер и может изменяться. 
Например, при 10 бросаниях монеты герб может появиться 2 раза, а может 8 раз. 

Но при увеличении числа опытов частота утрачивает случайный характер, случай-
ные причины, влияющие на результат каждого отдельного опыта, взаимно «гасят» друг 
друга и W приближается к некоторой средней, постоянной величине. 

 Если в одинаковых условиях производят серии опытов и в каждой серии число ис-
пытаний довольно велико, то W обнаруживает свойство устойчивости. В таком случае W 
или близкое к ней число принимают за статистическую вероятность события. 

Все свойства вероятности, вытекающие из классического определения, распростра-
няются и на статистическое определение вероятности события.  

Для существования статистической вероятности события требуется: 
1) возможность, хотя бы принципиальная, производить неограниченное число испы-

таний, в каждом из которых событие А наступает или нет; 
2) устойчивость относительных частот в различных сериях из достаточно большого 

числа испытаний. 
Например, по данным шведской статистики приводится относительная частота рож-

дения девочек по месяцам года: 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 
0,491; 0,482; 0,473. 
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 Значение относительной частоты   колеблется около числа 0,482, его можно принять 
за статистическую вероятность рождения девочки. Статистические данные других стран 
дают примерно те же значения W и ту же статистическую вероятность. 

Рассмотрим другой пример: 
 Число бросаний 

монеты 
Число появлений 

герба 
W 

4040 2048 0,5069 
12000 6019 0,5016 
24000 12012 0,5005 

 
Данные таблицы показывают, как с увеличением числа испытаний «уточняется» 

значение относительной частоты. 
Недостатком статистического определения является неоднозначность выбора   зна-

чения относительной частоты при возникновении свойства устойчивости. 
 При практическом применении вероятностных методов исследования необходимо 

понимать, принадлежит ли исследуемое случайное явление к категории массовых, для ко-
торых выполняется свойство устойчивости частоты и понятие вероятность имеет глубо-
кий практический смысл. 

 
3.  Основные теоремы теории вероятностей. 

В большинстве практических задач для определения вероятностей событий приме-
няются косвенные методы, позволяющие по известным вероятностям одних событий оп-
ределять вероятности других. Кроме того, результаты многих испытаний являются слож-
ными, применение классической формулы сразу не представляется возможным, хотя за-
дача и сводится к «схеме случаев». Применение  косвенных методов связано с использо-
ванием основных теорем теории вероятностей: теоремы сложения вероятностей и теоремы 
умножения вероятностей.  

Но вначале необходимо введение символических операций над событиями. 
Суммой двух событий А и В называется новое событие С, состоящее в появлении 

или события А, или события В, или событий А и В одновременно.  
Суммой нескольких событий называется новое событие, состоящее в появлении хотя 

бы одного из исходных событий. 
 
 
 
 
 
 
 
 
 
 
Произведением (совмещением) двух событий А и В называют новое событие С, со-

стоящее в совместном появлении события А и события В одновременно. 
Произведением нескольких событий называют новое событие, состоящее в одновре-

менном появлении всех исходных событий. 
 
 
 
 
 
 

А
 + В 

А

А + 
В +С 

А U 

А
 · В 

А
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Теорема (о сложении вероятностей несовместных событий). 
Пусть события А и В несовместны в данном испытании (явлении, опыте), причем 

вероятности этих событий известны. 
Вероятность появления одного из двух несовместных событий, безразлично какого, 

равна сумме вероятностей этих событий: 
( ) ( ) ( )ВP+AP=В+AP  

Формула из теоремы справедлива для любого числа  попарно несовместных слагае-

мых: ( )∑∑ 






 n

=i
i

n

=i
i AP=AP

11

 

Задача. Производиться стрельба по области D, состоящей из трех непересекающихся 

областей (зон). Известны вероятности попадания в каждую зону ( )
100

5
1 =AP , ( )

100

10
2 =AP , 

( )
100

17
3 =AP . Найти вероятность попадания в область D. 

Событие А – попадание в область D. 

321 A+A+A=A  (где 321 A,A,A  попарно несовместны) 

( ) ( ) ( ) ( )
100

32

100

17

100

10

100

5
321 =++=AP+AP+AP=AP . 

 

Следствие. Если случайные события nA,A,A ...21  образуют полную группу несо-

вместных событий, то справедливо равенство: 

( ) ( ) ( ) 1...21 =AP++AP+AP n  

Случайные события А и В называются совместными, если в данном испытании мо-
гут наступить оба этих события, т.е. произойдет совмещение событий А и В. 

Событие, заключающееся в совмещении событий А и В, будем обозначать (А и В) 
или (АВ). 

Теорема (о сложении вероятностей совместных событий). 
Вероятность появления хотя бы одного из двух совместных событий равна сумме 

вероятностей этих событий без вероятности их совмещения:  
( ) ( ) ( ) ( )BAPBP+AP=B+AP ⋅−  

Событие А называется независимым от события В, если вероятность появления со-
бытия А не зависит от того, наступило событие В в данном испытании или нет. 

Теорема (об умножении вероятностей независимых событий). 
Вероятность совместного появления двух независимых событий равна произведе-

нию вероятностей этих событий:  
( ) ( ) ( )BPAP=BAP ⋅⋅ . 

Приведем доказательство теоремы с использованием «схемы урн». Рассмотрим две 
урны, в каждой из которых n1 и n2 шаров соответственно. В 1-ой урне m1 красных шаров, 
остальные - черные, во 2-ой урне m2 красных шаров, остальные – черные. Из каждой урны 
вынимается по одному шару. Какова вероятность того, что оба вынутых шара красные? 

Событие А : вынимание красного шара из 1-ой урны, событие В: вынимание крас-
ного шара из 2-ой урны. Эти события независимы. 

( ) ( )
2

2

1

1

n

m
=BP;

n

m
=AP  

А · В · С 
А ∩ В ∩ В 
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Всех возможных случаев одновременного вынимания по одному шару из каждой 

урны 21 nn ⋅ . Число случаев, благоприятствующих появлению красных шаров из обеих 

урн, будет . Вероятность совмещения событий: 

( ) ( ) ( )BPAP=
n

m

n

m
=

nn

mm
=BAP ⋅⋅

⋅
⋅

⋅
2

2

1

1

21

21 . Что и требовалось доказать. 

 
Замечание. Равенство из теоремы справедливо для любых n независимых событий: 

 
Замечание. С учетом теоремы об умножении вероятностей теорема о сложении ве-

роятностей совместных событий записывается следующим образом: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )BPAPBP+AP=BAPBP+AP=B+AP ⋅−⋅− ,  

если события А и В – совместны, но независимы. 
Задача. В урне 5 красных, 8 белых и 11 синих шаров. Наудачу извлекают 1 шар. Ка-

кова вероятность того, что появится белый или синий шар? 

( ) ( ) ( ) ( )
24

19

24

11

24

8
211 =+=AP+AP=A+AP=AP 2 . 

Событие А называется зависимым от события В, если вероятность появления собы-
тия А зависит от того, наступило событие В в данном испытании или нет. 

Вероятность события А, найденную при условии, что наступило событие В  (РВ(А) ), 
будем называть условной вероятностью события А при условии В.   

Например, в урне 3 белых и 2 черных шара. Наудачу вынимают один шар, затем еще 
один. Событие В: появление белого шара при первом вынимании; событие А: появление 

белого шара при втором вынимании. Тогда 
2

1

4

2
 Рв(А) == . 

Теорема (об умножении вероятностей зависимых событий). Вероятность совме-
щения двух зависимых событий равна произведению вероятности одного из них на услов-
ную вероятность второго, вычисленную в предположении, что первое событие наступило:  

( ) ( ) ( )APBP=BAP В⋅⋅  
Приведем доказательство теоремы с использованием «схемы урн». 

Всего в урне шаров n, где n1 – белые шары, n2 – черные шары. Пусть среди n1 белых 
шаров n1 * шаров с отметкой *, остальные – чисто белые. Из урны наудачу вынимается 
один шар. Какова вероятность того, что это шар белый*? 

Событие В: появление белого шара; событие А: появление шара со *. Тогда 

( ) ( )
1

11 ;
n

n
=AP

n

n
=BP В

∗

 - вероятность появления  шара со * при условии, что появился 

белый шар. Вероятность появления белого шара со * есть ( )BAP ⋅ . Очевидно, что 

( )
n

n
=BAP

∗
⋅ 1

. Но 
1

111

n

n

n

n
=

n

n ∗
⋅

∗
,  т.е. ( ) ( ) ( )ABPBP=BAP ⋅⋅  

Что и требовалось доказать. 
Замечание. Часто формула из  последней теоремы  служит для определения услов-

ной вероятности: ( ) ( )
( )BP

BAP
=APВ

⋅
   ( ( ) 0≠BP ) 

Замечание. Применим формулу из теоремы об умножении вероятностей зависимых 
событий к выражению: 

21 mm ⋅

( ) ( ) ( ) ( )nn APAPAPAAAP ⋅⋅⋅=⋅ ...... 2121
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( ) ( ) ( )
( ) ( ) ( )APBP=BAP

ВPAP=ABP

В

А

⋅⋅

⋅⋅
 

Левые части равны. Следовательно, правые также будут равны: 

( ) ( ) ( ) ( ) ( )APBP=BPAP=BAP ВА ⋅⋅⋅ . 
Задача. В коробке 6 одинаковых занумерованных кубиков. Наудачу по одному из-

влекают все кубики. Найти вероятность того, что номера извлеченных кубиков появляют-
ся в возрастающем порядке. 

( )
720

1

2430

1
1

2

1

3

1

4

1

5

1

6

1
===AP

⋅
⋅⋅⋅⋅⋅  

Задача. Вероятность изготовления годного изделия данным станком равно 0,9. Ве-
роятность появления изделия первого сорта среди годных изделий равна 0,8. Определить 
вероятность изготовления изделий первого сорта данным станком. 

Событие В: изготовление годного изделия; событие А: появление изделия первого 

сорта. ( ) 0,9=BP ( ) 0,8=APВ (по условию), тогда  

 ( ) 0,720,80,9 ==BиAP ⋅ . 
 

1.2  Лекция № 2 (2 часа). 

Тема: «Зависимые события. Условная вероятность. Формула полной вероятности 

события. Вероятности гипотез. Формула Байеса. Повторение испытаний: формулы 

Бернулли, локальные и интегральные теоремы Лапласа, формула Пуассона, про-

стейший поток событий» 

1.2.1 Вопросы лекции: 

1. Условная вероятность события. Формула полной вероятности, формула Байеса. 

2.Схема повторных испытаний. Формулы Бернулли, Пуассона, Лапласа. 

3. Простейший поток событий, его свойства. 

1.2.2 Краткое содержание вопросов:  

1. Условная вероятность события. Формула полной вероятности, формула 

Байеса. 

Вероятность события А, найденную при условии, что наступило событие В  (РВ(А) ), 
будем называть условной вероятностью события А при условии В.   

Например, в урне 3 белых и 2 черных шара. Наудачу вынимают один шар, затем еще 
один. Событие В: появление белого шара при первом вынимании; событие А: появление 

белого шара при втором вынимании. Тогда 
2

1

4

2
 Рв(А) == . 

Теорема (формула полной вероятности). 

Пусть n2 B,,B,B ...1 - образуют полную группу несовместных событий, т.е.                 

( )∑
n

=i
i =BP

1

1 . Если событие А может осуществляться только при условии совмещении с 

одним из событий n2 B,,B,B ...1 , то 

( ) ( ) ( ) ( ) ( ) ( ) ( )APBP++APBP+APBP=AP
пВnВВ ⋅⋅⋅ ...

21 21 . 
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Задача. По цели произведено 3 последовательных выстрела. Вероятность попадания 
при первом выстреле р1=0,3; вероятность попадания при втором выстреле р2=0,6; вероят-
ность попадания при третьем выстреле р3=0,8.  При одном попадании вероятность пора-
жения цели λ1=0,4; при двух попаданиях – λ2=0,7; при трех попаданиях – λ3=1,0. Опреде-
лить вероятность поражения цели при трех выстрелах? 

Решение.  
Событие А: поражение цели при трех выстрелах. Рассмотрим полную группу несо-

вместных событий: 
В1: было одно попадание при трех выстрелах; 
В2 : было два попадание при трех выстрелах; 
В3 : было три попадание при трех выстрелах; 
В4 : не было ни одного попадания. 
Определим вероятность каждого события: 
( ) ( )( ) ( ) ( ) ( )( ) 0,332111111 321321321 =ppp+ppp+ppp=BP 1 −−−−−−  

( ) ( ) ( ) ( ) 0,468111 32132322 =ppp+ppp+ppp=BP 11 −−−  

( ) 0,144323 =ppp=BP 1  

( ) ( )( )( ) 0,056111 3214 =ppp=BP −−− . 

Условные вероятности поражения цели при осуществлении каждого из этих собы-
тий: 

( ) ( ) ( ) ( ) 010,70,4
4321

=AP;=AP;=AP;=AP ВВВВ . 

Подставим все данные в формулу из теоремы: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )=APBP+APBP+APBP+APBP=AP ВВВВ 4321 4321 ⋅⋅⋅⋅  

0,60440,056010,1440,70,4680,40,332 =+++ ⋅⋅⋅= . 

Замечание. Если событие А не зависит от события В, то ( ) ( )AP=AP В . Следова-

тельно, ( ) ( ) ( )BPAP=BAP ⋅⋅ .  

 Пусть n2 B,,B,B ...1  - полная группа несовместных событий, ( ) ( ) ( )nBP,,BP,BP ...21  - 

соответствующие вероятности. Событие А может наступить только вместе с каким-либо 

из событий  n2 B,,B,B ...1 , которые мы будем называть гипотезами. Тогда справедлива 

формула полной вероятности:   

( ) ( ) ( ) ( ) ( ) ( ) ( )APBP++APBP+APBP=AP
пВnВВ ⋅⋅⋅ ...

21 21 . 

Допустим, что событие А уже наступило. Это изменит вероятности гипотез  

( ) ( ) ( )nBP,,BP,BP ...21 . Требуется определить условные вероятности этих гипотез 

( ) ( )nАА BP,,BP ...1 , в предположении, что событие А уже наступило. 

Найдем 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )AP

APBp
=

AP

BAP
=BPBPAp=APBp=BAP В

ААВ
1

1

11
1111

⋅⋅
⇒⋅⋅⋅  

Заменим ( )AP  формулой полной вероятности события: 

( ) ( ) ( )

( ) ( )∑ ⋅

⋅
n

=i
Вi

В
А

APBP

APBp
=BP

i
1

11
1

 

Аналогично определяется ( ) ( )nАА BP,,BP ...2 . 
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Окончательно получаем формулу Байеса или формулу из теоремы гипотез:  

( )
( ) ( )

( ) ( )∑ ⋅

⋅
n

=i
Вi

Вk

kА

APBP

APBp
=BP

i

k

1
. 

Задача. 30% приборов собирает специалист высокой квалификации и 70% - средней 
квалификации. Надежность работы прибора, собранного специалистом высокой квалифи-
кации – 0,9 и надежность работы прибора, собранного специалистом средней квалифика-
ции – 0,8. Взятый наудачу прибор оказался надежным. Определить вероятность того, что 
он собран специалистом высокой квалификации. 

Событие А: безотказная работа прибора. 
Для проверки прибора возможны гипотезы: 
В1: прибор собран специалистом высокой квалификации; 
В2: прибор собран специалистом средней квалификации. 
По условию задачи: 
( ) ( ) 0,80,9;

21
=AP=AP ВВ . 

Определим вероятности гипотез В1и В2 при условии, что событие А наступило: 

( ) ( ) 0,675
0,80,70,90,3

0,80,7
0,325;

0,80,70,90,3

0,90,3
21 =

+
=BP=

+
=BP АА ⋅⋅

⋅
⋅⋅

⋅
 

 
2. Схема повторных испытаний. Формулы Бернулли, Пуассона, Лапласа. 
 

Рассмотрим методы решения задачи, в которой один и тот же опыт повторяется не-
сколько раз. В результате каждого опыта может появиться или не появиться интересую-
щее нас событие. Причем, нас будет интересовать не результат отдельного опыта, а ре-
зультат серии опытов, а именно   вероятность появления того или иного числа событий в 
серии независимых опытов (испытаний). 

Испытания считаются независимыми, если вероятность появления события ( )AP  в 
каждом испытании не зависит от исходов других испытаний. 

Пусть проводится п независимых испытаний, в каждом из которых событие А может 
наступить с вероятностью р или не наступить с вероятностью  q=1-p. 

 
Формула Бернулли, Пуассона, теоремы Лапласа 

 
Задача. Вычислить вероятность того, что в n испытаниях событие А наступит k раз и 

не наступит (n-k) раз, причем последовательность появления события А не важна. 
Вероятность этого сложного события по теореме об умножении вероятностей неза-

висимых событий определяется как 
knk qp −⋅ . 

 Таких сложных событий может быть столько, сколько можно составить сочетаний 
к
пС . Все эти события несовместны, а вероятности их одинаковы, поэтому искомая веро-

ятность определяется по формуле: 
knkк

пп qpСкР −⋅=)( . 

Полученную формулу называют формулой Бернулли. 
Задача. Вероятность того, что расход электроэнергии в течение суток не превысит 

нормы, равна 0,75. Найти вероятность того, что расход электроэнергии не превысит нор-
мы в течение 4 суток из 6. 

Испытание: проверка расхода энергии в течение суток, повторяется 6 раз. 
А: расход электроэнергии в норме; р=0,75; q=1-p=0,25. 
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В: событие А наступило 4 раза в 6 независимых испытаниях. 

30,0)25,0()75,0(15)4( 244644
66 =⋅⋅=⋅= −qpСР . 

Число k0 называется наивероятнейшим, если вероятность того, что событие наступит 
в испытаниях k0 число раз превышает (или, по крайней мере, не меньше) вероятности ос-
тальных возможных исходов испытания. 

p+npkqnp ≤≤− 0 , 

где n – число испытаний; p – вероятность появления события в одном испытании; q – 
вероятность не появления события в одном испытании. 

Если а) qnp − - дробное число, то k0 – единственное; 

         б)  qn− - целое, то наивероятнейших чисел два k0 и k0+1; 

         в) np - целое, то k0= np . 
Если число независимых испытаний n достаточно велико, то вычисления по форму-

ле Бернулли будут слишком громоздки. В таком случае формулу, хотя и асимптотиче-
скую, дает локальная теорема Лапласа. 

Заметим, что для частного случая формула была найдена в 1730 году Муавром, а в 
1783 году обобщена Лапласом. Поэтому теорему, о которой идет речь, иногда называют 
теоремой Муавра-Лапласа.  

Если производится большое число независимых испытаний, в каждом из которых 

вероятность наступления события А постоянна и равна ( )10, ≠≠ ppp , то вероятность 

( )kPn  считается приближенно по формуле: 

( ) ( )x
npq

kPn ϕ
1

⋅≈ , 

где ( ) 2

2

2π

1 х

e=x
−

ϕ  - функция Гаусса (табулирована, четная); 
npq

npk
=x

−
 . 

Чем больше n, тем точнее будет результат, полученный по формуле из локальной 
теоремы Лапласа. 

Если число проведенных испытаний n очень велико, а вероятность р наступления  

события А в каждом из n независимых испытаний очень мала, то ( )kPn  вычисляется по 

формуле Пуассона: ( )
k!

å
kP

k

n

λλ⋅
≈

−

. 

Формула применяется, если параметр 10λ <pn= ⋅ .  

Во многих задачах требуется определить вероятность ( )21 kkkPn ≤≤   того, что  

событие А наступит не менее 1k   и не более 2k  раз в п независимых испытаниях. Это 
позволяет сделать интегральная теорема Лапласа. 

 Если вероятность наступления события А в каждом из n независимых испытаний 

постоянна и равна  ( )10,, ≠≠ ppp ,  то  ( )21 kkkPn ≤≤  вычисляется по приближенной 

формуле:  

( ) 








 −
−








 −
≈≤≤

npq

npk
Ф

npq

npk
ФkkkPn

12
21 , 
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где ( ) dZe=xФ
x Z

∫
−

⋅
0

2

2

2π

1
 - функция Лапласа (табулирована, нечетная, для 

( ) 0,55 =xФ>x ). 
Задача. Вероятность того, что деталь не прошла проверку ОТК 0,2. Найти вероят-

ность того, что из 400 случайно выбранных деталей непроверенными окажутся от 70 до 
100. 

Испытание: выбор одной детали, повторяется 400 раз. 
А: деталь проверку не прошла; р=0,2; q=1-p=0,8. 
В: событие А наступило от 70 до 100 раз в 400 независимых испытаниях. 

( ) 8882,03944,04938,0
8,02,0400

2,040070

8,02,0400

2,0400100
10070400 ≈+≈











⋅⋅

⋅−
−










⋅⋅

⋅−
≈≤≤ ФФkP  

  
3. Простейший поток событий, его свойства 
 

Особое внимание следует обратить на простейший поток событий. 
Потоком событий называют последовательность событий, которые наступают в 

случайные моменты времени. Примеры потоков: поступление вызовов на АТС, поступление 
вызовов на пункт неотложной медицинской помощи, прибытие кораблей в порт, по-
следовательность отказов элементов некоторого устройства. 

Простейшим называют поток, обладающий свойствами стационарности, отсутствием 
последействия и ординарности. 

Свойство стационарности характеризуется тем, что вероятность появления k собы-
тий за время длительностью t не зависит от начала отсчета промежутка времени, а зависит 
лишь от его длительности. Так вероятности появления пяти событий на промежутках вре-
мени (1; 4), (6; 9), (8; 11) одинаковой длительности t = 3 единицы времени равны между 
собой. 

Свойство отсутствия последействия характеризуется тем, что вероятность появле-
ния k событий на любом промежутке времени не зависит от того, сколько событий появи-
лось до начала рассматриваемого промежутка. 

Свойство ординарности характеризуется тем, что вероятность появления двух и бо-
лее событий пренебрежимо мала, сравнительно с вероятностью появления одного события. 

Интенсивностью потока λ называют среднее число событий, которые появляются в 
единицу времени. Доказано, что если известна постоянная интенсивность потока λ, то веро-
ятность появления k событий простейшего потока за время длительности t определяется 
формулой: 

!

)(
)(

k

et
kP

tk

t

λλ −

= . 

Пример: Среднее число заявок, поступающих на предприятие бытового обслужива-
ния за 1 час, равно трем. Найти вероятность того, что за 2 часа поступит 5 заявок. Предпо-
лагается, что поток заявок - простейший.  

Решение. По условию λ = 3, t =2 ,  k = 5. Воспользуемся формулой 

!

)(
)(

k

et
kP

tk

t

λλ −

= .  

Искомая вероятность того, что за 2 часа поступит 5 заявок, равна 

268,0
120

00248,0)6(
)5(

5

2 ≈
⋅

=P . 

Пример: Среднее число заявок, поступающих на АТС в одну минуту, равно двум. 
Найти вероятности того, что за четыре минуты поступит: 
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а) три вызова; 
б) менее трех вызовов; 
в) не менее трех вызовов. 
Решение, а) По условию λ = 3, t = 2 , k=5. Воспользуемся формулой: 

!

)(
)(

k

et
kP

tk

t

λλ −

=    

Подставив данные условия задачи, получим: 03,0
6

000335,0512

!3

8
)3(

83

4 ≈
⋅

=
⋅

=
−e

P . 

б) Найдем вероятность того, что за четыре минуты поступит менее трех вызовов, т.е. ни 
одного вызова, или один вызов, или два вызова. Поскольку эти события несовместны, 
применим теорему суммы несовместных событий: 

01,0000335,041
!2

8
8)2()1()0()3(

82
88

4444 ≈⋅=
⋅

⋅⋅+=++=<
−

−− e
eePPPkP . 

в) Найдем вероятность того, что за четыре минуты поступит не менее трех вызовов: 
так как события «поступило менее трех вызовов» и «поступило не менее трех вызовов» - 
противоположные, то сумма вероятностей этих событий равна единице: Р4(k <3) + Р4(k≥3) 
= 1. Поэтому 99,001,01)]2()1()0([1)3(1)3( 44444 =−=++−=<−=≥ PPPkPkP . 
 

1.3 Лекция № 3 (2 часа). 

Тема: «Понятие случайной величины примеры. Виды случайных величин. Закон 

распределения вероятностей. Функция распределения случайных величин. Свойст-

ва. Плотность распределения вероятностей. Числовые характеристики: математиче-

ское ожидание, свойства; дисперсия, свойства; среднее квадратичное отклонение и 

его свойства» 

1.3.1 Вопросы лекции: 

1. Случайные величины, их классификация, закон распределения. 

2. Функция распределения, плотность распределения, вероятность попадания в ин-

тервал. 

3. Числовые характеристики ДСВ. 

4. Числовые характеристики НСВ. 

1.3.2 Краткое содержание вопросов:  

1.. Случайные величины, их классификация, закон распределения. 

Рассмотрим событие: появление определения числа очков на грани игральной кости, 
выпавшей при бросании. При этом может появляться любое из чисел 1,2,3, … 6. Наперед 
определить число выпавших очков невозможно, поскольку оно зависит от многих случай-
ных причин, которые полностью не могут быть учтены. В этом смысле число очков есть 
случайная величина, а числа 1,2, … 6 -  возможные значения этой величины. 

 Случайной называют величину, которая в результате испытания принимает одно из 
всех своих возможных значений, наперед не известное и зависящее от случайных причин, 
которые заранее не могли быть учтены. 

Обозначение: X, Y, Z, … - случайные величины; x, y, z, … - значения случайных ве-
личин. 

Случайные величины делятся на дискретные (ДСВ) и непрерывные (НСВ).  
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Значения ДСВ отделены промежутками и могут быть перечислены до проведения 
испытания. Например, число студентов группы, успешно сдавших экзамен по математике. 

Значения НСВ затруднительно перечислить до испытания и отделить друг от друга, 
проще указать интервал, которому эти значения принадлежат. 

Например, скорость ветра в течение суток в данной местности или отклонение раз-
мера детали от стандарта. 

 
Способы задания ДСВ 
  
Переменная величина Х, принимающая в результате испытания одно из конечной 

или бесконечной последовательности значений k2 x,x,x ...1 , называется дискретной, если 

каждому значению kx  соответствует определенная вероятность kp  того, что переменная 

величина Х примет именно это значение.  

Функциональная зависимость вероятности kp  от значения kx  называется законом 

распределения вероятностей ДСВ Х (или кратко «закон распределения случайной величи-
ны»). 

 
Возможные значения случай-

ной величины 1 2 3 k 

Вероятности этих значений 
1 2 3 k 

 
 Закон распределения можно задать графически: 
 
 
 
 
 
 
 
 
 

Закон можно задать аналитически:  ( )kk xf=p . 

То, что величина Х примет одно из значений последовательности ......21 ,x,,x,x k  

есть событие достоверное. 

Иначе: ...... ,x=X,,x=X,x=X k21 - эти события несовместны и образуют полную 

группу.  Следовательно, ∑
к

=i
i =p

1

1 (если последовательность конечная)  или ∑
i= 1

∞

pi= 1

(если последовательность бесконечная). 
Например, пусть ДСВ Х : число очков, выпадающее на верхней грани игральной 

кости при ее однократном бросании. Составить закон распределения Х. 
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Значение случайной величины ix , которому соответствует наибольшая вероятность, 

называется модой случайной величины. 
Задача. Вероятность попадания при каждом выстреле р=0,8. Имеется 3 снаряда, 

стрельба ведется до первого попадания. Составить таблицу распределения числа израсхо-
дованных снарядов. 

ДСВ Х: число израсходованных снарядов. 
( )1x=XP   - вероятность того, что Х примет значение х1, т.е. вероятность того, что 

будет израсходован один снаряд; 
 ( )2x=XP  - вероятность того, что будет израсходовано два снаряда; 

 ( )3x=XP  - вероятность того, что будет израсходовано три снаряд (два раза не по-

пали и третий раз – попали; три раза не попали). 
( ) ( ) 22 0,20,20,80,20,20,20,20,80,20,2 =+=+=x=XP 3 ⋅⋅⋅⋅  

 
1 2 3 
0

,8 
0,16 0,04 

 
Контроль: 0,8+0,16+0,04=1 
х1=1 – мода случайной величины Х. 
Пусть производится n независимых испыта-

ний, в каждом из которых событие А может появ-
ляться, может не появляться. Вероятность наступ-
ления события в каждом испытании постоянна и 
равна p (q=1-p – вероятность не наступления). 

Рассмотрим ДСВ Х: число появлений события 
А в этих испытаниях. 

Найдем закон распределения. Т.к. событие А в n испытаниях может не появляться ни 
разу, 1 раз, 2, … n раз.  Следовательно, значения Х: 0,1,2, …, n. Для нахождения вероятно-
стей этих значений нужно воспользоваться формулой Бернулли. 

Таким образом, формула Бернулли и является аналитическим выражением искомого 
закона распределения. 

Такое распределение, определяемое формулой Бернулли, называется биномиальным, 
т.к. правую часть формулы Бернулли можем считать общим членом разложения бинома 
Ньютона. 

Изобразить графически биномиальный закон распределения вероятностей случайной 

величины Х при n=5,  p=
2

1
, q=

2

1
, где Х – число появлений события А в n независимых ис-

пытаниях. 
 
 

      

( )
32

1

2

1

50

5
0

5
50

5 ==qp
!!

!
=p 







⋅⋅  
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( )
32

5

2

1

2

1

41

5
1

41

5 =
!!

!
=p 







⋅






⋅  

( )
32

10

2

1

2

1

32

5
2

32

5 =
!!

!
=p 







⋅






⋅  

 

( )
32

10

2

1

2

1

23

5
3

23

5 =
!!

!
=p 







⋅






⋅   

( )
32

5

2

1

2

1

14

5
4

4

5 =
!!

!
=p ⋅







⋅          ( )
32

1

2

1

2

1

05

5
5

05

5 =
!!

!
=p 







⋅






⋅  

Если число независимых испытаний велико, а вероятность наступления события в 

каждом испытании очень мала, ( 10<mn ⋅ ), то вероятность того, что событие А появит-
ся k раз в n испытаниях находится по закону Пуассона. 

Такое распределение случайной величины Х называют распределением Пуассона. 
Задача. Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие 

повредится равна 0,0002. Составить закон распределения числа испорченных изделий. 
ДСВ Х: число поврежденных изделий среди отправленных. 
 

000 

,37 ,37 ,19 ,06 
 
n=5000, p=0,0002,  np=1<10 
 

( ) 0,37
1

0

1λ
0

10λ

5000 ≈
⋅⋅ −−

e
=

!

e
=

k!

e
=p

k

  ( ) 0,37
1

1

1
1

11

5000 ≈
⋅ −

e
=

!

e
=p  

 

( ) 0,19
2

1

2

1
2

12

5000 ≈
⋅

⋅ −

e
=

!

e
=p     ( ) 0,06

6

1

3

1
3

13

5000 ≈
⋅

⋅ −

e
=

!

e
=p и т.д. 

Непрерывная случайная величина 
 
Дадим вначале не совсем точное, но более понятное определение НСВ. Непрерыв-

ной называют случайную величину, которая может принимать все (любые) значения из 
некоторого конечного или бесконечного промежутка. 

Рассмотрим НСВ х , заданную на некотором интервале ( )ba, (интервал может 

быть и бесконечным ( )∞∞− ,+ ). Разделим интервал произвольными точками n1 x,,x,x ...0  

на малые интервалы k1+kk xx=x −Δ . 

Допустим, нам известна вероятность того, что х  попала на ( )1+kk x;x . Обозначим 

эту вероятность ( )1+kk x<x<xP . 

Для каждого малого промежутка определим р попадания х  в этот промежуток и 
изобразим геометрически, т.е. построим соответствующий многоугольник.  

Таким образом, получаем ступенчатую ломанную. Проведем плавную кривую, 
описывающую многоугольники. 
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Если существует такая функция f(x)=y , что 
( )

f(x)=
x

x+x<x <xP
x Δ

Δ
lim

0→∆
, то эта 

функция f(x)  называется плотностью распределения вероятностей случайной величины 

х  или законом распределения (или плотностью распределения или плотностью вероятно-
сти). 

Кривая f(x)=y  называется кривой распределения вероятностей или кривой рас-
пределения. 

Механический смысл функции f(x) : функция характеризует плотность распреде-
ления масс вдоль оси ох, т.е. линейную плотность. 

2. Функция распределения, плотность распределения, вероятность попадания 
в интервал 

 
Пусть х –  произвольное действительное число. Рассмотрим событие, состоящее в 

том, что СВ Х примет значение, меньшее х. 

Вероятность этого события ( )x<XР обозначим через ( )xF .  

Функцией распределения называют функцию ( )xF , определяющую вероятность 
того, что случайная величина Х в результате испытания примет значение, меньшее х, т.е. 
( ) ( )x<XP=xF .                     

Геометрически определение означает: ( )xF  есть вероятность того, что СВ Х при-
мет значение, которое изображается на числовой оси точкой, лежащей левее точки х. 

Свойства ( )xF : 

1. ( ) 10 ≤≤ xF  (из определения). 

2. ( )xF  - неубывающая функция, т.е. если ( ) ( )122 xFxFx>x 1 ≥⇒ . 

Доказательство: Пусть 1x>x2 . Рассмотрим событие: 2x<Х , оно состоит из двух 
несовместных событий: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 0

;

112

1

11

≥≤−

≤−

≤⇒≤

2

212

21221

x<ÕxP=xFxF

x<ÕxP=x<ÕPx<ÕP

x<ÕxP+x<ÕP=x<ÕPx<Õxx<Õ

 

Следовательно, ( ) ( ) ( ) ( )1212 0 xFxFxFxF ≥⇒≥−  
Что и требовалось доказать. 

3. Если возможные значения случайной величины принадлежат интервалу ( )ba, , 

то, следовательно, ( ) 0=xF  при ax ≤  и ( ) 1=xF при b>x . 

Доказательство: 1x<Хax ⇒≤1 - невозможное событие. Следовательно,  

1+k
x

k
x
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( ) 0=x<xP 1 . 

Если b>x2 , то событие 2x<Х  - достоверное. Следовательно, ( ) 1=x<xP 2

.Перейдем к особенностям функции распределения дискретной и непрерывной случайных 
величин. 

Для ДСВ график ( )xF  имеет разрывный, ступенчатый вид. График расположен в 
полосе, ограниченной прямыми у=0, у=1. 

Задача. Для ДСВ найти ( )xF  и построить график. 

х 2 6 1
0 

р 0
,5 

0
,4 

0
,1 

   

( )











≤

≤

≤

101

1060,9

620,5

20

>xпри

x<при

x<при

xпри

=xF  

 
 
  
Плотность распределения вероятностей является одной из форм закона распреде-

ления, но не единственной и не универсальной (только для НСВ). 
Свойства плотности: 

1. Если все значения случайной величины х  находятся на ( )ba, , то  

( )∫
b

a

=dxxf 1 (т.к. достоверно, что значения случайной величины попадут в интер-

вал  ( )ba, ). 

2. ( ) ( ) х0, ba,xf ∈∀≥ ,  

3. Размерность f(x)обратна размерности x  
 (что следует из определения). 
Вывод: Плотность распределения непрерывной случайной величины полностью 

задает и определяет непрерывную случайную величину. 

Построим общий вид интегральной кривой, используя  свойства ( )xF : 
 
 
 
 
 
 
Пусть f(x) -плотность распределения некоторой непрерывной случайной величины 

x , которая принимает значения из интервала ( )⇒∞∞− ;+  

( ) ( ) ( ) ( )∫
∞−

∞−
x

dxxf=x<x<P=x<xP=xF   

Таким образом,  

 

)(xfy =

у
=F(x) 

F(β)
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( ) ( )∫
∞−

x

dxxf=xF  - функция распределения НСВ или интегральная функция. Гра-

фик ( )xF  называется интегральной кривой распределения. 

Теорема. Вероятность попадания случайной величины x в заданный интервал 
( )䃑䃐;  равна приращению функции распределения на этом интервале: 

( ) ( ) ( )䃐䃑䃑䃐 FF=<x<P − . 
 
Доказательство: 

( ) ( ) ( ) ( ) ( )䃐䃑䃑䃐
䃐䃑

FF=dxxfdxxf=<x <P −− ∫∫
∞−∞−

. 
Что и требовалось доказать. 

 
 
3. Числовые характеристики ДСВ 

 
Случайная величина полностью определяется законом распределения. 
 Однако во многих вопросах практики нет необходимости характеризовать СВ пол-

ностью, исчерпывающим образом. Достаточно указать отдельные числовые параметры, 
характеризующие основные черты распределения. Такие параметры называются число-
выми характеристиками случайной величины. Числовые характеристики задают случай-
ную величину косвенно, описывают случайную величину суммарно. В теории вероятно-
стей применяется большое количество числовых характеристик, имеющих различное на-
значение. Из них рассмотрим только некоторые, наиболее часто встречающиеся характе-
ристики: математическое ожидание, дисперсию и среднее квадратическое отклонение.  

Имеется ДСВ Х с соответствующим законом распределения: 
 

х  
  

… x

 

  
… p

 
 
Математическим ожиданием ДСВ Х (М[х] или mх) называют сумму произведений 

всех возможных значений этой величины на вероятности этих значений: 

[ ] ∑
n

=k
kknn1 px=px++px=xM

1
1 ...  , при этом ∑

k= 1

n

pk= 1 . 

Если значения случайной величины образуют бесконечную последовательность, то 

∑
∞

⋅
1=k

kkx px=m . Мы будем рассматривать только такие случайные величины, для кото-

рых этот ряд сходится. 
Замечание. Математическое ожидание случайной величины есть неслучайная (по-

стоянная) величина. 
Например, ДСВ задана законом распределения: 
 
      

(Xp =

,1 ,3 ,6 

( )βα <<xP

)(xfy=
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[ ] 3,32,40,92,40,60,3 =+=++=ХM . 
 
Задача. Производится один выстрел по объекту. Вероятность попадания р. ДСВ Х – 

число попаданий. Найти математическое ожидание величины. 
Составим закон распределения:  
 

 
 
 

Контроль:  1-р+р=1. [ ] ( ) p=p+p=ХM ⋅−⋅ 110 . 
Таким образом, математическое ожидание числа появлений события в одном испы-

тании равно вероятности этого события. 
Вероятностный смысл М[Х]: математическое ожидание приближенно равно (чем 

больше число испытаний, тем точнее) среднему арифметическому наблюдаемых значений 
случайной величины. На числовой оси возможные значения случайной величины распо-
ложены слева и справа от М[Х]. Поэтому М[Х] называют центром распределения вероят-
ностей случайной величины (точнее – абсциссой центра). 

Свойства математического ожидания: 

1. Математическое ожидание постоянной равно самой постоянной [ ] c=cM , где с – 
ДСВ, которая имеет одно возможное значение с и принимает его с р=1. Следовательно, 
[ ] c=c=cM 1⋅ . 

2. Постоянный множитель можно вынести за знак математического ожидания: 

[ ] [ ]ХMc=cХM ⋅ . 

3. [ ] [ ] [ ]УMХM=УХM ⋅⋅ , [ ] [ ] [ ]УM+ХM=У+ХM  
где величины Х и У – независимы. 

Случайные величины Х и У независимы, если закон распределения одной величины 
не зависит от того, какие возможные значения приняла другая величина. 

Последнее свойство распространяется на несколько случайных величин. 
Например, независимые случайные величины Х и У заданы законами распределе-

ния: 
 

р ,7 ,2 ,1 
 

,6 ,4 
  

[ ]УХM ⋅  - ? 

[ ] [ ] [ ] ( ) ( ) 5,221,82,91,20,60,60,22,1 ==+++=УMХM=УХM ⋅⋅⋅⋅ . 
Пусть дана случайная величина с соответствующим законом распределения. Обо-

значим ее математическое ожидание xm . Рассмотрим разность xmХ − , такую случай-

ную величину будем называть центрированной случайной величиной или отклонением. 

( )

0

1)(
1111

=mm

=mm=pmm=pmpx=pmx=mХM

xx

xx

n

=k
kxx

n

=k
kx

n

=k
kk

n

=k
kkkx

−=

⋅−−⋅−⋅⋅−− ∑∑∑∑
 

-р 
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Таким образом, математическое ожидание центрированной случайной величины 
равно нулю. Числовой характеристикой рассеивания, разброса значений случайной вели-
чины относительно ее математического ожидания является дисперсия. Покажем целесо-
образность введения дисперсии: 

Х: 
х -

0,01 
0

,01 
  

р 
0

,5 
0

,5 
 
У: 

у -
100 

1
00 

р 0
,5 

0
,5 

 
[ ]
[ ] 00,51000,5100

00,50,010,50,01

=+=YM

=+=XM

⋅⋅−

⋅⋅−
 

На рассмотренном примере понятно, что математическое ожидание не полностью 
характеризует случайную величину.  На практике часто требуется оценить рассеяние воз-
можных значений случайной величины вокруг ее среднего значения. Например, насколько 
кучно лягут снаряды вблизи цели, которая должна быть поражена. 

Дисперсией случайное величины Х называется математическое ожидание квадрата 
соответствующей центрированной случайной величины: 

[ ] ( )[ ] [ ] ( ) k

n

=k
xkx pmX=XDилиmXM=XD ⋅−− ∑

1

22
 

Средним квадратическим отклонением случайной величины Х называется характе-

ристика [ ] [ ]ХD=Хσ=σ x  или [ ] ( )∑ ⋅−
n

=k
kxk pmx=Хσ

1

2
. 

Для вычисления D [X ]  удобно использовать формулу: 

[ ] ( )

[ ] [ ] 222

11

1 1

2

1

2

1

2

1

2

12m2m

2

x
2
xxx

n

=k
k

2
x

n

=k
kkx

n

=k

n

=k
kk

n

=k
kx

n

=k
kxkkkk

n

=k
xk

mХM=m+mХM=pm+px

px=pm+pmxpx=pmX=XD

−⋅⋅−⋅−

−⋅⋅⋅⋅−⋅⋅−

∑∑

∑ ∑∑∑∑
 

Следовательно, [ ] [ ] 22
xmХM=XD − , т.е. дисперсия равна разности математиче-

ского ожидания квадрата случайной величины и квадрата математического ожидания  
этой случайной величины. 

 
Задача. Найти D [X ]  двумя способами: 
 

х 2 3 4 
р 0

,3 
0

,4 
0

,3 
 
Первый способ (по определению):  

[ ] 31,21,20,6 =++=XM  
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[ ] ( ) ( ) ( ) 0,60,30,30,3340,4330,332 222 =+=++=XD ⋅−⋅−⋅−  
Второй способ (по формуле): 
M [X ]= 3  
х

2 
4 9 1

6 
р 0

,3 
0

,4 
0

,3 
 

[ ] 9,64,83,61,22 =++=XM  

[ ] [ ] [ ]( ) 0,699,622 ==xMxM=XD −−  
Свойства дисперсии: 

1. [ ] ( )[ ] [ ] 002 =M=ccM=CD − , [ ] c=cM  

2. [ ] [ ]XDC=CXD 2 ⋅  

[ ] [ ]( )[ ] [ ]( )[ ] [ ]( )( )[ ]
[ ]( )[ ] [ ]XDC=XMXMC

=XMXCM=XMCCXM=CXMCXM=CXD
2 ⋅−⋅

−⋅−−
22

222

 

3. [ ] [ ] [ ]YD+XD=Y+XD  

[ ] ( )[ ] [ ]( ) [ ] [ ] [ ]( ) [ ]
[ ] [ ] [ ] [ ]( ) [ ]( ) [ ] [ ] [ ] [ ]( )( )
[ ] [ ]( )( ) [ ] [ ]YD+XD=YMYM+

+XMXM=YMXYMYMYM+YMX+

+XM=YM+XMY++XM=Y+XMY+XM=Y+XD 2

22

22222

22222

2M2M

2XY

−

−⋅−−−⋅

−−

 

Это свойство распространяется на несколько случайных величин, взаимно незави-
симых. 

4. [ ] [ ] [ ] [ ] [ ]XD=XD+=XD+CD=X+СD 0  

5. [ ] [ ] [ ]YD+XD=YXD −  

[ ] ( )[ ] [ ] [ ] [ ] ( ) [ ] [ ] [ ]YD+XD=YD+XD=YD+XD=Y+XD=YXD 21−−−−  
  
4. Числовые характеристики НСВ. 

Теорема. Пусть f(x) - плотность распределения случайной величины х . Тогда ве-

роятность того, что значение случайной величины х  попадет в некоторый интервал ( )䃑䃐,

, вычисляется следующим образом:  

( ) ( )∫
䃑

䃐

䃑䃐 dxxf=<x <P  

Следовательно, зная плотность распределения случайной величины, мы можем оп-
ределить вероятность того, что значение случайной величины попало в данный интервал. 
Геометрически эта вероятность равняется площади соответствующей криволинейной тра-
пеции. 

Замечание. В случае непрерывной случайной величины 0)( =0x=xР . Действи-

тельно, положим 0x=x . 

Имеем: ( ) ( ) 0Δlim0ΔΔ 0000 =x+x<x<xP=x)f(xx+x<x<xP 0x0 →∆
⇒⋅≈  

Следовательно, 0)( =0x=xР . Таким образом, ( ) ( )䃑䃐䃑䃐 <x<P=xP ≤≤ , т.к.   

( ) ( ) ( )+<x <P+=xP=xP 䃑䃐䃐䃑䃐 ≤≤ ( ) ( ) ( )䃑䃐0䃑䃐0䃑 <x <P=+<x <P+==xP . 
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По определению функции распределения: ( ) ( ) ( ) ( )xf=xFdxxf=xF
x

′⇒∫
∞−

, т.е. 

производная от функции распределения равна плотности распределения вероятностей. 

Это равенство выражает связь между ( )xF  и ( )xf  непрерывной случайной величины. 

Задача. Задана плотность распределения НСВ: ( )







≤

≤

10,

102x

00,

>xпри

x<при,

xпри

=xf  

Найти вероятность того, что в результате испытания x  примет значение, принад-

лежащее интервалу ( )10,5; . ( ) 0,750,251210,5 1
0,5

1

0,5

==|x=xdx=<x<P 2 −∫ . 

того, что в результате испытания x  примет значение из (0;2). 

( ) ( ) ( )
2

1

4

2

4

1

4

1

4

2
0220 ==+FF=<x<P −







=− .  

Задача. Случайная величина задана функцией распределения: 

( )










≤
−

≤

π>xпри

πx<при,
x

xпри

=xF

1,

0
2

cos1

00,

.  

Перейти к другому способу задания. 

( ) ( )⇒xf=xF '

    
( )










≤

π>xпри

πx<при,
x

=xпри

=xf

0,

0
2

sin

00,

. 

Рассмотрим НСВ x , заданную плотностью распределения ( )xf . Числовые харак-
теристики НСВ те же, что и для ДСВ: математическое ожидание, дисперсия, среднее 
квадратическое отклонение. 

Математическим ожиданием величины x с плотностью распределения ( )xf  на-

зывают [ ] ( )∫
∞

∞−

⋅
+

dxxfx=xM  (если x  принимает значения на ( )∞∞− ;+ ) 

Или [ ] ( )∫ ⋅
b

a

dxxfx=xM  (если все возможные значения величины x  принадле-

жат промежутку [ ]ba, ). [ ]xM  является центром распределения вероятностей непрерыв-

ной случайной величины x . 
 
 
 
 
 
 
 

 

xm
xm
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Если кривая распределения симметрична относительно оси ОУ, следовательно, 

( )xf  - четная функция. Значит, [ ] ( ) 0=dxxfx=xM
+

∫
∞

∞−

⋅ . Т.е. в этом случае центр распре-

деления вероятностей совпадает с началом координат. 

Дисперсией НСВ x  называют математическое ожидание квадрата соответствую-
щей центрированной случайной величины. 

[ ] ( ) ( )dxxfmx=xD
+

x ⋅−∫
∞

∞−

2
 (аналогично для [ ]ba, ). 

Средним квадратическим отклонением НСВ x  называют характеристику:  

[ ] [ ] ( ) ( )∫
∞

∞−

⋅−
+

x dxxfmx=xD=xσ 2
. 

[ ] [ ]xσ,xD  НСВ (как и для ДСВ) характеризуют разброс, рассеяние значений слу-

чайной величины относительно [ ]xM . 

Все свойства [ ] [ ]xM,xD , рассмотренные для ДСВ, справедливы и для НСВ. Для 
вычисления дисперсии НСВ легко получается следующая формула: 

[ ] ( ) [ ]( )22 xMdxxfx=xD
+

−∫
∞

∞−

или [ ] ( ) [ ]( )22 xMdxxfx=xD
b

a

−∫ . 

Значение случайной величины, при котором плотность распределения принимает  

наибольшее значение, называется модой НСВ ( )0M .  Для НСВ x , график которой  изо-

бражен на предыдущем  рисунке, мода совпадает с математическим ожиданием. 

Число Me  называется медианой НСВ, если оно удовлетворяет равенству: 

( ) ( )
2

1
=dxxf=dxxf

+

Me

Me

∫∫
∞

∞−

 или  ( ) ( )
2

1
=Me>xP=Me<xP . 

Другими словами,  равновероятно, что случайная величина x   примет значение 

меньше Me или больше Me, хотя сама случайная величина x  может значение Me и не 
принимать. 

 
 
 
 
 
 
 
 
Геомет-

рически: Ме – 

это точка, в которой ордината ( )xf  делит пополам площадь, ограниченную кривой рас-
пределения. 

Задача. Найти [ ] [ ]XM,XD  НСВ, заданной функцией распределения: 
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( )








≤

≤

11,

10

00,
2

>xпри

x<при,x

xпри

=xF

 Найдем   
( ) ( )








≤

≤

′

10,

102x

00,

>xпри

x<при,

xпри

=xF=xf
, 

[ ]
3

2
0

3

2

3

2
22 1

0

3
1

0

2
1

0

==|x=dxx=xdxx=xM −⋅ ∫∫ , 

[ ]
18

1

9

4

2

1

9

4

4
2

3

2
2 1

0

421

0

2 ==|
x

=xdxx=xD −−⋅






−∫ . 

 

1.4 Лекция №4 (2 часа). 

Тема: «Законы распределения ДСВ: биноминальный и Пуассона. Законы распреде-

ления вероятностей НСВ: равномерное распределение, показательное распределе-

ние. Нормальное распределение вероятностей НСВ. Правило трех сигм» 

1.4.1 Вопросы лекции: 

1. Основные законы распределения ДСВ биномиальный, Пуассона. 

2.Основные законы распределения НСВ: равномерный, показательный. 

3. Нормальное распределение и его свойства. 

1.4.2 Краткое содержание вопросов:  

1. Основные законы распределения ДСВ: биномиальный, Пуассона 

Задача.  Найти математическое ожидание суммы числа очков, которые могут вы-
пасть при бросании трех игральных костей. 

Составим закон распределения Х: 

      
 (для У и Z аналогично). 

[ ] ( )
2

7

6

21
654321

6

1
==+++++=XM  

[ ] [ ] [ ] [ ]
2

21
3

2

7
==ZM+YM+XM=Z+Y+XM ⋅ . 

 Пусть производится n независимых испытаний, в каждом из которых вероятность 
появления события А постоянна и равна р. 

Теорема. [ ] pn=XM ⋅ , где Х – число появлений события А в n независимых ис-
пытаниях. 

Например, вероятность попадания в цель при стрельбе из орудия 0,6. Найти матема-
тическое ожидание общего числа попаданий при 10 выстрелах. 

[ ] 60,610 ==pn=XM ⋅⋅ .  
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Например, вероятность попадания при одном выстреле р=0,2. Определить расход 
снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.    

[ ]
25

0,2

5
==n

p

XM
=n ⇒ .    

Пусть проводится n независимых испытаний, в каждом из которых вероятность по-
явления события А постоянно и равна р, q – вероятность не появления события А в каж-
дом испытании. 

Случайная величина Х – число появлений событий А в n независимых испытаниях. 
Теорема. Дисперсия  биномиального распределения с параметрами n и р определя-

ется по формуле:  [ ] npq=XD . 
Например, производится 10 независимых испытаний, в каждом вероятность появ-

ления события А равна 0,7.Найти D [X ] , где Х – число наступлений события А в  10 ис-
пытаниях. [ ] 2,10,30,7100,3 ==npq=XD=q ⋅⋅⇒ . 

Пусть проводится n независимых испытаний, в каждом из которых вероятность по-
явления события А постоянно и равна р, q – вероятность не появления события А в каж-
дом испытании. 

Случайная величина Х – число появлений событий А в n независимых испытаниях. 
Теорема. Дисперсия  биномиального распределения с параметрами n и р определя-

ется по формуле:  [ ] npq=XD . 
Например, производится 10 независимых испытаний, в каждом вероятность появ-

ления события А равна 0,7.Найти D [X ] , где Х – число наступлений события А в  10 ис-
пытаниях.  [ ] 2,10,30,7100,3 ==npq=XD=q ⋅⋅⇒ . 

 Распределение Пуассона  a
k

e
k

a
kP −==

!
)(ξ , a>0, k=0,1,2,… 

2. Законы распределения вероятностей НСВ 
 
Рассмотрим некоторые наиболее часто встречающиеся распределения НСВ. 
  Закон равномерного распределения вероятностей НСВ 

Рассмотрим x с законом равномерного распределения вероятностей. 

( )xf  такой величины задается следующим образом: 

( )







≤

≤

b>xпри

bx<aприc,

axпри

=xf

0,

0,

. 

На ( )ba;  плотность ( )xf  имеет постоянное значение с, вне этого интервала- равна 
0. Такое распределение называется законом равномерной плотности. 

( ) ( )
c

=ab
ab

=cabc=cdx==dxxf
b

a

+ 11
1 −⇒

−
⇒−∫∫

∞

∞−

. 

Интервал ( )ba; , на котором имеет место равномерное распределение, обязательно 
конечен. 

Определим вероятность того, что случайная величина x  примет значение, заклю-

ченное в ( )䃑䃐; : ( ) ( )
ab

=dx
ab

=dxxf=<x <P
−

−

−∫∫
䃐䃑1

䃑䃐
䃑

䃐

䃑

䃐
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Определим интегральную функцию распределения равномерного закона: 

( ) ( )∫
∞−

x

dxxf=xF
. 

Если ax ≤ , то ( ) ( ) 00 =xF=xf ⇒ . 

Если bx<a ≤ , то ( ) ( ) ∫ −
−

−
⇒

−

x

a ab

ax
=dx

ab
=xF

ab
=xf

11
. 

Если  x<b , то ( ) ( ) ( ) ( ) ∫∫∫ −
−

−
⇒⇒

∞−

+∞ b

a

x

b

=
ab

ab
=dx

ab
=dxxf=xF=dxxf=xf 1

1
00 . 

( )










≤
−
−

≤

b>xпри

bx<aпри,
ab

ax

axпри

=xF

1,

0,

. 

Задача. При измерении некоторой величины производится округление до ближай-
шего деления шкалы. Ошибки при округлении есть случайная величина с равномерным 
распределением вероятностей. Задайте эту величину.  

Если 2l – число некоторых единиц в одном делении шкалы, то плотность распреде-
ления этой случайной величины будет иметь вид: 

( ) lx=xf −≤0, , ( ) lx<l,=xf ≤−
2l

1
, ( ) l>x=xf 0,  Здесь 

2l

1
=cl,=bl,=a − Показательное (экспоненциальное) распределение  

НСВ x  называется распределенной по показательному закону, если она может 
принимать только неотрицательные значения, а плотность вероятности определяется ра-

венством: 
( )



 ≥⋅ −

00,

0λ λ

<x

x,e
=xf

x

 

Причем, λ – это параметр распределения,  больший 0. 
Примеры величин, распределенных по показательному закону: длительность вре-

мени безотказной работы элемента; время между появлениями двух последовательных 
событий простейшего потока с заданной интенсивностью λ (время между двумя сбоями 
ЭВМ). 

Случайные величины, распределенные показательно, обладают интересным свой-
ством: если промежуток времени, распределенный по показательному закону, уже длился 
некоторое время, то это никак не влияет на закон распределения оставшейся части проме-
жутка, он остается таким же, как и для всего промежутка. 

Определим интегральную функцию ( )xF : 1. 0<x  ( ) 0=xF . 2. 0≥x  

( ) ( ) ( ) ( ) ( ) xxxx
xx

e=e=|e=dxxf+dxxf=dxxf=xF λλ

0

λ

0

0

11 −−−

∞−∞−

−−−−∫∫∫ .  

( )




≥− − 01

00,
λ x,e

<x
=xF

x

Построим графики инте-
гральной и дифференциаль-
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ной функций распределения. Для простоты построения возьмем λ=1. 0,6
2

1
≈







f  ( ) 0,41 ≈f  

( ) 0,13 ≈f  

( ) λβλαβ
α

λ
β

α

λλβα −−−− −−⋅∫ ee=|e=dxe=<x <Р xx
 

Показательное распределение широко применяется в приложениях теории вероят-
ностей, в частности, в теории надежности, одним из основных понятий этой теории явля-
ется функция надежности. 

Будем называть элементом любое устройство, независимо от его сложности. 
Рассмотрим НСВ Т – длительность времени безотказной работы элемента.  
Функция распределения Т определяет вероятность отказа элемента за время дли-

тельностью t: )()( tFt<ТР = . 
Следовательно, вероятность безотказной работы за то же время: 

)()(1)( tRtFtТР =−=≥  определяет функцию надежности. 
tt еtFеtR λλ −− −== 1)(;)( Часто, но не всегда, случайная величина Т имеет показа-

тельное распределение. 
 
3.  Нормальный закон распределения 
Изучение различных явлений показывает, что многие случайные величины, напри-

мер, ошибки при измерениях, при стрельбе, величина износа деталей во многих механиз-
мах и т.д., имеют следующую плотность распределения вероятностей:  

( )
( )

2

2

σ2
π2σ

1
ax

e=xf
−

−

⋅                                               

В этом случае говорят, что случайная величина подчинена нормальному закону 
распределения (или закону Гаусса). 

Выражение ( )2ax − , присутствующее в формуле плотности, позволяет сделать вы-
вод о том, что кривая нормального распределения симметрична относительно прямой х=а.  

Найдем ( )
π2σ

1

π2σ

1 0 =e=af ⋅ .Кривая нормального распределения или кривая 

Гаусса. 
 
 
 
 
 
 
 
 
 
 
Определим математическое ожидание случайной величины, подчиненной нор-

мальному закону распределения: 

( )
( )

=dt=dxt,+a=xt=
ax

=dx

ax

ex=dxxfx=m
++

x 







⇒

−
−

⋅⋅⋅ ∫∫
∞

∞−

−∞

∞−

σ2σ2
σ2

σ2
π2σ

1 2

2

 

(x) 

π2σ
1
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( )

a=ma=dtet

+
a

=dtet+dtea=dtet+ax

x

+
t

+
t

+
t

+
t

⇒⋅⋅+

⋅







⋅⋅⋅⋅⋅⋅⋅=

∫

∫∫∫
∞

∞−

−

∞

∞−

−
∞

∞−

−
∞

∞−

−

2

222

π

σ2

π
π

σ2
π

1
σ2σ2

π2σ

1

 

Таким образом, значение параметра а в формуле плотности равно математическому 
ожиданию рассмотренной случайной величины. Значит, точка х=а – центр распределения 

вероятностей величины, подчиненной нормальному закону. А т.к. при х=а ( )xf  прини-
мает наибольшее значение, то а является модой этой случайной величины. 

Кривая плотности ( )xf  или кривая Гаусса симметрична относительно х=а, следо-
вательно,  

( ) ( ) ( )∫∫∫
∞

∞−

∞

∞−

⇒⋅
++

a

a

a=Medxxf==dxxf=dxxf
2

1

2

1
. 

Если в формуле плотности а=0, выражение принимает вид:  

                      ( ) 2

2

σ2
π2σ

1
x

e=xf
−

⋅ .                                        

Следовательно, кривая распределения симметрична относительно оси координат 
ОУ и центр распределения вероятностей совпадает с началом координат. 

Форма кривой распределения не зависит от  параметра а, величина а  лишь опреде-
ляет сдвиг кривой распределения вправо ( )0>a  или влево ( )0<a . 

Рассмотрим x , заданную плотностью  нормального распределения: 
     

( ) 2

2

σ2
π2σ

1
x

e=xf
−

⋅ ; 0=a=mx . 

Найдем [ ] ( ) ( ) =dxex=dxxfx=dxxfx=xD
+ x++

∫∫∫
∞

∞−

−∞

∞−

∞

∞−

⋅⋅−⋅
2

2

2222 σ2
π2σ

1
0  

=dt

t

et=dt=dxt,=xt=
x

=
+

σ2σ2

σ2

π2σ

1
σ2σ2σ2

σ2

2

22

22 ⋅⋅⋅







⋅⇒

−∞

∞−
∫  

 

[ ] [ ] [ ] σσσσπ
π

σ
2t

π

σ 2
2

2

=xD=x=xD==dtet= 22
+

t ⇒⇒⋅⋅∫
∞

∞−

−
 

Итак, дисперсия равна параметру σ2 в формуле плотности распределения. 
Выясним, как значение σ2 влияет на форму кривой нормального распределения. 

Наибольшего значения кривая нормального распределения достигает в точке а и равно 

оно ( )
π2σ

1
=af . С возрастанием σ ( )af  уменьшается. вдоль положительного направле-

ния оси ОУ. 
 
 
 
 
 
 
 

(x) 
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Следовательно, кривая будет более пологой, т.е. сжимается к оси ОХ. С убыванием 

σ ( )af  увеличивается и кривая становится более «островершинной», т.е. вытягивается.  
Понятно, что при любых значениях а и σ площадь, ограниченная нормальной кривой и 
осью ОХ, всегда равна 1. 

При а=0 и σ=1 получаем следующее выражение плотности:  

( ) 2
π2

1

2x

e=xf
−

⋅  

 Такую нормальную кривую называют нормированной. 
Определим ( )䃑䃐 <x <P , если x  задана плотностью  нормального распределения:                 

( )
( )

2

2

σ2
π2σ

1
ax

e=xf

−

⋅
−

.   ( )
( )

dx

ax

e=<x<P ∫

−−

⋅
䃑

䃐

2

2

σ2
π2σ

1
䃑䃐  

Преобразуем формулу так, чтобы можно было пользоваться таблицами значений 

функции Лапласа:   
σ

䃑
䃑

σ

䃐
䃐

a
=z=x

a
=z=x

−
⇒

−
⇒

 

Пользуясь функцией Лапласа, получим: 

( ) ( ) 






 −
−






 −
⇒

−

⋅ ∫ σ

䃐

σ

䃑
䃑䃐2

π2

1

0

2

a
Ô

a
Ô=<x <Pdz

z

e=xÔ
x

. 

Например,  x  распределена нормально с параметрами  а=30, σ=10. 

Найдем  ( ) ( ) ( ) ( ) 0,950,48222Ô22
10

3010

10

3050
3010 ≈⋅−−







 −
−






 −
==ÔÔ=ÔÔ=<x<P

. 
Часто требуется вычислить вероятность того, что случайная величина, распреде-

ленная нормально отклонится от математического ожидания а по абсолютной величине 
меньше, чем на заданное положительное число ε. 

 

| |( ) 







⋅























 −
−














 −−
−






 −
−

σ

ε
2

σ

ε

σ

ε

σ

ε

σ

ε

σ

ε

σ

ε
ε Ô=Ô+Ô=ÔÔ=

àà+
Ô

àà+
Ô=<axP

| |( ) 







⋅−
σ

ε
2ε Ô=<axP  

Например, x  распределена нормально с параметрами: а=20, σ=10. 

Найдем  | |( ) ( ) 0,240,1220,32
10

3
2320 ≈⋅≈⋅








⋅− Ô=Ô=<xP . 

Пусть x  распределена нормально, а=0 (для определенности). 
Вычислим следующие вероятности:  

| |( ) ( ) 0,6830,68260,3413212
σ

σ
2σ ≈≈⋅≈⋅








⋅ Ô=Ô=<xP  

| |( ) ( ) 0,9540,4772222
σ

σ2
2σ2 ≈⋅≈⋅








⋅ Ô=Ô=<xP  
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| |( ) ( ) 0,9970,49865232
σ

σ3
2σ3 ≈⋅≈⋅








⋅ Ô=Ô=<xP  

Вывод: почти достоверно, что случайная величина отклонится от математического 
ожидания не больше, чем на 3σ. Это предложение называется правилом трех сигм. 

На практике правило применяется так: если распределение изучаемой случайной 
величины неизвестно, но условие об отклонении выполняется, то можно предположить, 
что указанная величина распределена нормально; в противном случае – она не распреде-
лена нормально. 

Нормально распределенные случайные величины широко распространены на прак-
тике. Это объясняется теоремой, сформулированной и доказанной русским математиком 
Ляпуновым: 

Если случайная величина Х – это сумма очень большого числа взаимно независи-
мых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х 
имеет распределение, близкое к нормальному. 

Закон Гаусса является предельным законом, к которому приближаются другие за-
коны при типичных условиях. 
 

1.5 Лекция №5 (2 часа). 

Тема: «Задачи математической статистики. Статистический материал. Статистиче-

ские параметры распределения. Статистические оценки параметров распределения» 

 1.5.1 Вопросы лекции: 

1. Статистический материал и его первичная обработка. 

2. Эмпирические законы распределения. Полигон частот, гистограмма. 

3. Числовые характеристики выборки. 

 4. Точечные оценки выборочных характеристик. 

1.5.2 Краткое содержание вопросов:  

1. Статистический материал и его первичная обработка 

Предметом математической статистики является изучение случайных величин (или 
случайных событий) по результатам наблюдений. 

Для получения опытных данных необходимо провести обследование соответст-
вующих объектов. 

Совокупность всех мысленно возможных объектов данного вида, над которыми 
проводятся наблюдения с целью получения конкретных значений определённой случай-
ной величины, называется генеральной совокупностью. 

Генеральную совокупность будем называть конечной или бесконечной в зависи-
мости от того, конечна или бесконечна совокупность составляющих её элементов. 

Часть отобранных объектов из генеральной совокупности называется выборочной 
совокупностью или выборкой. 

Число N объектов генеральной совокупности и число n объектов выборочной сово-
купности будем называть объёмами генеральной и выборочной совокупности соответ-
ственно. 

Для того чтобы по выборке можно было достаточно уверенно судить о случайной 
величине, выборка должна быть представительной (репрезентативной). Репрезентатив-
ность выборки означает, что объекты выборки достаточно хорошо представляют гене-
ральную совокупность. Она обеспечивается случайностью отбора. 
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Существуют несколько способов отбора, обеспечивающих репрезентативность вы-
борки. Рассмотрим некоторые из них. 

После того как сделана выборка, все объекты этой совокупности обследуются по 
отношению к определённой случайной величине и получают наблюдаемые данные. 

Для изучения закономерностей варьирования значений случайной величины опыт-
ные данные подвергают обработке. 

Операция, заключающаяся в том, что результаты наблюдений над случайной вели-
чиной, т.е. наблюдаемые значения случайной величины, располагают в порядке неубыва-
ния, называется ранжированием опытных данных. 

 После операции ранжирования опытные данные объединяют в группы так, чтобы в 
каждой отдельной группе значения случайной величины будут одинаковы. 

Значение случайной величины, соответствующее отдельной группе сгруппирован-
ного ряда наблюдаемых данных, называется вариантом (xi) (вариантой), а изменение это-
го значения – варьированием.    

Численность отдельной группы сгруппированного ряда наблюдаемых данных на-
зывается частотой или весом(mi) соответствующей варианты. 

Отношение частоты данного варианта к общей сумме частот всех вариантов назы-

вается частостью или долей этой варианты ( ip ): 
∑
=

=
υ

1i
i

i

i

m

m
p , 

где υ – число вариант. Полагая ∑
=

=
υ

1i
imn , где n – объём выборки, имеем: 

n

m
p i

i = . 

Заметим, что частость ip  – статистическая вероятность появления варианта xi. 
Дискретным вариационным рядом распределения называется ранжированная 

совокупность вариантов xi, с соответствующими им частотами mi  или частостями ip . 
 Если изучаемая случайная величина является непрерывной, то ранжирование и 

группировка наблюдаемых значений зачастую не позволяют выделить характерные черты 
варьирования её значений. Это объясняется тем, что отдельные значения случайной вели-
чины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблю-
даемых данных одинаковые значения случайной величины могут встречаться редко, а 
частоты вариантов мало отличаются друг от друга. 

Интервальным вариационным рядом называется упорядоченная совокупность 
интервалов варьирования значений случайной величины с соответствующими частотами 
или частостями попаданий в каждый из них значений величины. 

Рассмотрим алгоритм построения интервального ряда. 
1. Для построения интервального ряда необходимо определить величину частич-

ных интервалов, на которые разбивается весь интервал варьирования наблюдаемых значе-
ний случайной величины. Считая, что все частичные интервалы имеют одну и ту же дли-
ну, для каждого интервала следует установить его верхнюю и нижнюю границы, а затем в 
соответствии с полученной упорядоченной совокупностью частичных интервалов сгруп-
пировать результаты наблюдений. Длину частичного интервала h следует выбрать так, 
чтобы построенный ряд не был громоздким и в то же время позволил выявить характер-
ные черты изменения значений случайной величины. 

 2. Найдём размах варьирования ряда R: 
R = xнаиб – xнаим 

 Выберем число интервалов υ (обычно от 7 до 11). 
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3. Для более точного определения величины частичного интервала можно восполь-

зоваться формулой Стерджеса: n

R
h

lg322,31+
= . 

 Если h – дробное, то за длину частичного интервала следует брать ближайшее це-
лое число, либо ближайшую простую дробь. 

4. За начало первого интервала следует брать величину: xнач = xнаим – 0,5h. 
5. Конец последнего интервала (xкон) должен удовлетворить условию:  
xкон – h ≤ xнаиб<xкон. 
 6. Промежуточные интервалы получают, прибавляя к концу предыдущего интер-

вала длину частичного интервала h. 
7. Определим, сколько значений признака попало в каждый конкретный интервал. 

При этом в интервал включают значения случайной величины, большие или равные ниж-
ней границе и меньшие верхней границы. Иногда интервальный вариационный ряд для 
простоты исследования условно заменяют дискретным. В этом случае серединное значе-
ние i-го интервала принимают за вариант xi, а соответствующую интервальную частоту mi 
– за частоту этой варианты. 

 
2. Эмпирические законы распределения. Полигон частот, гистограмма 
 
Закон распределения (или просто распределение) случайной величины можно за-

дать различными способами. Например, дискретную случайную величину можно задать с 
помощью или ряда распределения, или интегральной функции, а непрерывную случайную 
величину – с помощью или интегральной, или дифференциальной функции. Рассмотрим 
выборочные аналоги этих двух функций. 

 В теории вероятностей для характеристики распределения случайной величины Х 
служит интегральная функция распределения F(x) = P(X<x). В дальнейшем, если величи-
на Х распределена по некоторому закону F(x), будем говорить, что и генеральная сово-
купность распределена по законуF(x). Введём выборочный аналог функции F(x). 

Пусть имеется выборочная совокупность значений некоторой случайной величины 
Х объёма n и каждому варианту из этой совокупности поставлена в соответствие его час-
тость. Пусть, далее, х – некоторое действительное число, а mx– число выборочных значе-
ний случайной величины Х, меньших х. Тогда число mx/n является частостью наблюдае-
мых в выборке значений величины Х, меньших х, т.е. частостью появления события Х<х. 
При изменении х в общем случае будет изменяться и величина mx/n. Это означает, что от-
носительная частота mx/n является функцией аргумента х. А т.к. эта функция находится по 
выборочным данным, полученным в результате опытов, то её называют выборочной или 
эмпирической. 

Выборочной функцией распределения (или функцией распределения выборки) 

называется функция )(xF *, задающая для каждого значения х относительную частоту 
события Х<х. 

 Итак, по определению, )(xF *= mx/n, где n – объём выборки, mx – число выбороч-
ных значений случайной величины Х, меньших х. В отличие от выборочной функции 

)(xF * интегральную функцию F(x) генеральной совокупности называют теоретической 

функцией распределения. Главное различие функций F(x) и )(xF * состоит в том, что 
теоретическая функция распределения F(x) определяет вероятность событияХ<х, а выбо-
рочная функция – относительную частоту этого события. 

  Свойство статистической устойчивости частоты, обоснованное теоремой Бернул-
ли, оправдывает целесообразность использования функции F(x)* при большихn в качестве 
приближённого значения неизвестной функции F(x). 
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 В заключение отметим, что функция F(x) и её выборочный аналог F(x)* обладают 
одинаковыми свойствами. Действительно, из определения функции F(x)* имеем следую-
щие свойства: 

1. 0 ≤ F*(x) ≤ 1 
2. F*(x) – неубывающая функция. 
3. F*(-∞) = 0, F(∞) = 1. 
Такими же свойствами обладает и функция F(x). 
 
Функцию F*(x) наряду с табличным способом задания можно задать аналитически. 

В этом случае F*(x) определяется так: 
 
                       0            при   х≤х1 , 

F*(x) =   ∑
−

=

1

1

*
i

l
lp при  xi-1<x≤xi , i = 1, 2, 3, …, v,                 (1) 

                       1            при  x>xv. 

Здесь xv совпадает с хнаиб. Частости∑
−

=

1

1

*
i

l
lp  обычно называются накопленными 

частостями. 
Для интегральной функции распределения F(x) справедливо приближённое равен-

ство F(x+∆x) – F(x)≈f(x)∆x, где f(x) – дифференциальная функция распределения или 
функция плотности вероятности. Из этого равенства следует, что f(x)≈(F(x+∆x) – F(x))/∆х. 
Поэтому естественно выборочным аналогом функции f(x) считать функцию  

                          f*(x)= x

xFxxF

∆

−∆+ )(*)(*
,                                                (2) 

где F*(x+∆x) – F*(x) – частость попадания наблюдаемых значений случайной вели-
чины Х в интервал [х, х+∆х]. Таким образом, значение f(x) характеризует плотность часто-
сти на этом интервале. 

Пусть наблюдаемые над непрерывной случайной величиной данные представлены 
в виде интервального вариационного ряда. Полагая, что р*1 – частость попадания наблю-
даемых значений случайной величины в интервал [ai; ai+h], где h – длина частичного ин-
тервала, и учитывая равенство (2), для х∈ [ai; ai+h] запишем f(x)=p*i/h. Тогда выборочную 
функцию плотности f(x) можно задать соотношением   0  при х<а1, f(x) =   p*i/h     при 
ai≤x<ai+1,   i=1, 2, 3, …, v, 0           при х≥av+1, 

 
где av+1 – конец последнего v-го интервала. 
Наблюдаемые данные, представленные в виде вариационного ряда, можно изобра-

зить графически, используя не только функцию F*(x). К наиболее распространённым ви-
дам графического изображения вариационных рядов относятся полигон и гистограмма. 
Графическое изображение рядов с помощью полигона или гистограммы позволяет полу-
чить наглядное представление о закономерности варьирования наблюдаемых значений 
случайной величины. 

Полигон обычно используют для изображения дискретного вариационного ряд. 
Для его построения в прямоугольной системе координат наносят точки с координатами 
(xi; mi) или (xi; p*i), где xi – значение i-го варианта, а mi (p*i) – соответствующие частоты 
(частости). Затем отмеченные точки соединяют отрезками прямой линии. Полученная ло-
маная называется полигоном.  

Если полигон частостей построен по дискретному вариационному ряду дискретной 
случайной величины, то его называют многоугольником распределения частостей, ко-
торый является выборочным аналогом многоугольника распределения вероятностей. За-
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метим, что сумма ординат многоугольника распределения частостей, как и у многоуголь-
ника распределения вероятностей, равна 1, т.к. ∑p*i=1. 

Гистограмма служит только для изображения интервальных вариационных рядов. 
Для её построения в прямоугольной системе координат на осиОх откладывают отрезки, 
изображающие частичные интервалы варьирования, и на этих отрезках, как на основани-
ях, строят прямоугольники с высотами, равными частотам или частостям соответствую-
щих интервалов. В результате такой операции получают ступенчатую фигуру, состоящую 
из прямоугольников, которую называют гистограммой. 

Для графического изображения интервального вариационного ряда можно исполь-
зовать полигон, если этот ряд преобразовать в дискретный. В этом случае интервалы за-
меняют их серединными значениями и ставят им в соответствие интервальные частоты 
(частости). Для полученного дискретного ряда строят полигон. 

 
3.  Числовые характеристики выборки 
 
Построив вариационный ряд и изобразив его графически, можно получить перво-

начальное представление о закономерностях, имеющих место в ряду наблюдений. Однако 
на практике зачастую этого недостаточно. Такая ситуация возникает, когда следует уточ-
нить те или иные сведения о ряде распределения или, когда имеется необходимость срав-
нить два ряда и более. При этом следует сравнивать однотипные вариационные ряды, т.е. 
такие ряды, которые получены при обработке сравнимых статистических данных. 

Сравниваемые распределения могут существенно отличаться друг от друга. Они 
могут иметь различные средние значения случайной величины, вокруг которых группи-
руются в основном остальные значения, или различаться рассеиванием данных наблюде-
ний вокруг указанных значений и т.д. Поэтому для дальнейшего изучения изменения зна-
чений случайной величины используют числовые характеристики вариационных рядов. 
Поскольку эти характеристики вычисляются по статистическим данным (данным, полу-
ченным в результате наблюдений), их обычно называют статистическими характери-
стиками или оценками. 

Пусть собранный и обработанный статистический материал представлен в виде ва-
риационного ряда. Теперь результаты наблюдений над случайной величиной следует под-
вергнуть анализу и выявить характерные особенности поведения случайной величины. 
Для этого удобнее всего выделить некоторые постоянные, которые представляли бы ва-
риационный ряд в целом и отражали присущие изучаемой совокупности закономерности. 

Некоторые из этих постоянных отличаются тем, что вокруг них концентрируются 
остальные результаты наблюдений. Такие величины называются средними величинами. 
К ним относятся среднее арифметическое (среднее выборочное), среднее геометрическое, 
среднее гармоническое и т.д. Однако эти характеристики не отражают «величину измен-
чивости» наблюдаемых данных, например, величину разброса значений признака вокруг 
среднего арифметического. Другими словами, упомянутые средние величины не отража-
ют вариацию. 

Для характеристики изменчивости случайной величины, т.е. вариации, служат по-
казатели вариации. К ним относятся размах варьирования R, среднее квадратическое от-
клонение, дисперсия и т.д. 

 
4. Точечные оценки выборочных характеристик 
 
Точечные оценки параметров статистического распределения 
Выборочная характеристика, используемая в качестве приближённого значения не-

известной генеральной характеристики, называется её точечной статистической оцен-
кой. 
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Среднее арифметическое Õ - это точечная статистическая оценка математического 
ожидания М(Х); D*(X)– оценка дисперсии D(X). 

«Точечная» означает, что оценка представляет собой число или точку на числовой 
оси. «Статистическая» означает, что оценка рассчитывается по результатам наблюдений, 
т.е. по собранной исследователем статистике. Далее слово «статистическая» будет опус-
каться. 

Обозначим через Θ («тэта») некоторую генеральную характеристику (ею может 
быть и МХ, и любая другая числовая характеристика случайной величины Х). Её числовое 
значение неизвестно, однако предложен некоторый алгоритм или формула вычисления 
точечной оценки Θ(n) этой характеристики по результатам Х1, Х2, …, Хn наблюдений вели-
чины Х. Обозначая буквой f этот алгоритм, запишем  Θ*(n)=f(Х1, Х2, …, Хn).    (3) 

Подставив в (3) вместо Х1, Х2, …, Хn конкретные результаты наблюдений (кон-
кретные числа), получим число, которое и принимают за приближённое значение неиз-
вестной генеральной характеристики Θ. Найти погрешность этого приближения нельзя, 
поскольку числовое значение характеристики Θ неизвестно. Чтобы ответить на вопрос, 
хорошо или нет найденное приближение, рассмотрим оценку Θ*(n) с других позиций. 

Пусть в формуле (3) Х1, Х2, …, Хn – не конкретные числа, а лишь обозначения тех 
результатов наблюдений, которые мы хотели бы получить. Но результат каждого отдель-
ного наблюдения случайной величины случаен, т.е. Х1, Х2, …, Хn– это случайные величи-
ны, поэтому и оценка Θ*(n) также величина случайная; следовательно, можно говорить о 
её математическом ожидании (М(Θ*(n))), дисперсии (D(Θ*(n))) и законе распределения. 
Интерпретация оценки Θ*(n) как случайной величины позволяет сформулировать свойства, 
которыми должна была обладать оценка, чтобы её можно было считать хорошим прибли-
жением к неизвестной генеральной характеристике. Это свойства состоятельности, не-
смещённости и эффективности. 

Оценка Θ*(n) генеральной характеристики Θ называется состоятельной, если для 

любого ε>0 выполняется равенство 
    

P
n ∞→
lim ( Θ−Θ )(* n <ε)=1.   (4) 

Поясним смысл равенства (4). Пусть ε – очень малое положительное число. Тогда 
равенство (4) означает, что чем больше число наблюдений n, тем больше уверенность (ве-
роятность) в незначительном по абсолютной величине отклонении оценки Θ*(n) от неиз-
вестной характеристики Θ или короче: чем больше объём исходной информации, тем 
«ближе мы к истине». Если это так, то Θ*(n) – состоятельная оценка.  

 «Хорошая» оценка обязательно должна обладать свойством состоятельности. В 
противном случае оценка не имеет практического смысла: увеличение объёма исходной 
информации не будет «приближать нас к истине». Поэтому свойство состоятельности 
следует проверять в первую очередь. 

Оценка Θ*(n) генеральной характеристики Θ называется несмещённой, если для 
любого фиксированного числа наблюдений n выполняется равенство М (Θ*(n))=Θ, (5) т.е. 
математическое ожидание оценки равно неизвестной характеристике. 

Несмещённая оценка Θ*(n) характеристики Θ называется несмещённой эффектив-
ной, если она среди всех прочих несмещённых оценок той же самой характеристики обла-
дает наименьшей дисперсией. 

Метод нахождения оценки неизвестного параметра, основанный на требовании 
максимизации функции правдоподобия, называется методом максимального правдопо-
добия, а найденная этим методом оценка – оценкой максимального правдоподобия. 

Функции L и lnL, рассматриваемые как функции параметра λ, достигают максиму-
ма при одном и том же значении λ, т.к. lnL  – монотонно возрастающая функция. Поэтому 
вместо отыскания максимума функции L находят (что удобнее) максимум функции lnL. 
Функция lnL называется логарифмической функцией правдоподобия. 
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Для L(X1, X2, … Xn; λ)= !!...! 21

1

n
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e λλ −=

 логарифмическая функция правдоподобия 

имеет вид: 

lnL(X1, X2, … Xn; λ) = ln !!...! 21
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lnλ – nλ – ln(X1!) – ln(X2!) - … - - -

ln(Xn!). 
Найдём точку максимума этой функции, рассматривая её как функцию параметра λ. 

Для этого:     найдём производную функции lnLпо λ: n
X
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∂

∂ 1ln
;      приравняв 

производную нулю, определим критическую точку – корень полученного уравнения – 
уравнения правдоподобия: 
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     найдём вторую производную функции lnL и её значение в точке λкр: 
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Итак, всегда λкр= nX
n

i
i /

1
∑
=

 - это точка максимума функции lnL (или L), поэтому 

она и является оценкой λмп максимального правдоподобия для неизвестного параметра λ, 

т.е. 
XnX

n

i
iìï ==∑

=

/*
1

λ
. 

 

1.6 Лекция № 6 (2 часа). 

Тема: «Интервальные оценки параметров статистического распределения. Необхо-

димость их введения. Доверительные интервалы. Доверительные вероятности. До-

верительные интервалы для оценки математического ожидания нормального рас-

пределения. Доверительные интервалы для оценки среднего квадратического от-

клонения нормального распределения» 

 1.6.1 Вопросы лекции: 

1. Интервальные оценки, их свойства. 

2. Метод доверительных интервалов при заданных условиях. 

3. Метод моментов. 

1.6.2 Краткое содержание вопросов:  
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1. Интервальные оценки параметров статистического распределения. Довери-

тельные вероятности 

Вычисляя на основании результатов наблюдений точечную характеристику Θ* не-
известной числовой характеристики Θ, мы понимаем, что величина Θ* является лишь 
приближённым значением характеристики Θ. Если для большого числа наблюдений точ-
ность приближения бывает достаточной для практических выводов (в силу несмещённо-
сти, состоятельности и эффективности «хороших» оценок), то для выборок небольшого 
объёма вопрос о точности оценок очень важен. В математической статистике он решается 
следующим образом. По сделанной выборке находится точечная оценка Θ* неизвестной 
характеристики Θ, затем задаются вероятностью γ и по определённым правилам находят 
такое число ε>0, чтобы выполнялось соотношение 

                                   Р(Θ*-ε< Θ <Θ*+ε) = γ.                                                   (8) 
Соотношению (8) тождественно соотношению 

                                         Р( Θ−Θ* < ε) = γ,                                                      (9) 

из которого видно, что абсолютная погрешность оценки Θ не превосходит числа ε. Это 
верно с вероятностью, равной γ. Число ε называется точностью оценки Θ* (чем меньше 
ε, тем выше точность оценки), числа Θ1 и Θ2 называются доверительными границами, 
интервал (Θ1, Θ2) – доверительным интервалом или интервальной оценкой характери-
стики Θ, вероятность γ называется доверительной вероятностью или надёжностью ин-
тервальной оценки. 

В соотношении (8) случайными величинами являются доверительные границы Θ1 и 
Θ2: во-первых, эти границы могут изменяться при переходе от одной выборки к другой 
хотя бы потому, что при этом изменяется значение оценки Θ*; во-вторых, при фиксиро-
ванной выборке границы Θ1 и Θ2 изменяются при изменении вероятности γ, поскольку ε 
выбирается в зависимости от γ. Генеральная же характеристики Θ – постоянная величина. 
Поэтому соотношение (8) следует читать так: «вероятность того, что интервал (Θ1, Θ2) на-
кроет характеристику Θ, равна γ»; именно «интервал накроет характеристику», а не «ха-
рактеристика попадёт в интервал».  

Надёжность γ принято выбирать равной 0,95; 0,99; 0,999. Тогда событие, состоящее 
в том, что интервал (Θ1, Θ2) накроет характеристику Θ, будет практически достоверным. 
Также практически достоверным является событие, состоящее в том, что погрешность 
оценки Θ* меньше ε, или, иначе, точность оценки Θ* больше ε. 

В соотношении (8) границы Θ1 и Θ2 симметричны относительно точечной оценки 
Θ*. Обратим внимание на то, что не всегда удаётся построить границы с таким свойством. 

Поскольку довольно часто встречаются нормально распределённые случайные ве-
личины, построим интервальные оценки для параметров нормального распределения – 
математического ожидания а и среднего квадратического отклонения σ. 

 
2. Метод доверительных интервалов при заданных условиях 
 
Обозначим через Х случайную величину, имеющую нормальный закон распределе-

ния с параметрами а и σ, т.е. Х = N(а, σ). Будем предполагать, что наблюдения над этой 
величиной независимы и проводятся в одинаковых условиях, т.е. возможные результаты 
Х1, Х2, …, Хn этих наблюдений обладают следующими свойствами: 

 
Х1, Х2, …, Хn – независимые случайные величины; 
                       закон распределения любой из величин Х1,Х2, …, Хn  совпадает  
                       с законом распределения величины Х, т.е. 
 
           Х1 = N(а, σ), Х2 = N(а, σ), …, Хп = N(а, σ).                                       (10) 
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Интервальная оценка математического ожидания нормального 
распределения при известной дисперсии 

 Итак, Х = N(а, σ), причём математическое ожидание а неизвестно, а дисперсия σ2 

известна. По наблюдениям найдём точечную оценку nXÕ
n

i
i /

1
∑
=

= математического ожи-

дания а. Зададимся вероятностью γ и попробуем найти такое число ε, чтобы выполнялось 
соотношение 

                                      Р( X – ε <а< X +ε) = γ.                                                     (11) 
Интервальная оценка математического ожидания такова: 

                                          ( nuX /σγ−  , nuX /σγ+ ).                                (12) 

Полученный результат имеет следующий смысл: с вероятностью γ можно быть 
уверенным в том, что интервал (12) накроет среднее математическое ожидание. 

 
 
3. Метод моментов 
Параметрическое оценивание закона распределения 

Результаты предварительной обработки наблюдений случайной величины, допол-
ненные сведениями о сущности изучаемого явления, зачастую оказываются достаточными 
для того, чтобы сформулировать гипотезу о модели закона распределения изучаемой слу-
чайной величины, нормальный ли этот закон, биномиальный или какой-либо другой. Ис-
пользуя наблюдения, можно найти оценки параметров предполагаемой модели, т.е. оцен-
ки входящих в модель числовых характеристик. Подставив в модель вместо параметров 
найденные оценки, получим оценку предполагаемой модели закона распределения, кото-
рая называется параметрической. Оценивание закона распределения, не требующее 
предварительного выбора его модели и оценивания входящих в неё параметров, называет-
ся непараметрическим. Примерами непараметрических оценок неизвестного закона рас-
пределения являются вариационный ряд, выборочная функция распределения и выбороч-
ная плотность распределения. 

Пример 3. Дано случайное распределение успеваемости 100 студентов-заочников, 
сдававших четыре экзамена: 

Число сданных эк-
заменов 

Число студентов 
5 0 

Здесь случайной величиной является число сданных экзаменов среди четырёх. 
Обозначим её Х. Установим закон распределения этой величины. 

Построим сначала его непараметрическую оценку. Величина Х – дискретная. Дис-
кретный вариационный ряд, заданный столбцами 2 и 4 табл. 5, даёт непараметрическую 
оценку закона распределения числа сданных экзаменов среди четырёх сдаваемых. 

Теперь сформулируем гипотезу о модели закона распределения случайной величи-
ны Х – числе сданных экзаменов среди четырёх сдаваемых. Процесс сдачи четырёх экза-
менов представим как четыре испытания, относительно которых сделаем следующие до-
пущения: 

Таблица 5. 
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Чи
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0,

001 

 
0,

735 
 
0,

160 
0,

000 

Итого n = 
100 

1,
00 

1,0000
0 

  0,
895 

     - эти испытания независимы, т.е. вероятность сдачи любым студентом любого 
экзамена не зависит от того, будет сдано или нет любое количество других экзаменов; 

     - вероятность сдачи студентом любого отдельно взятого экзамена одна и та же и 
равна р, а вероятность «несдачи» равна (1 – р). 

Конечно, эти допущения могут вызывать некоторые сомнения, но возможно, что 
они не будут противоречить результатам наблюдений. При этих допущениях мы имеем 
дело с испытаниями Бернулли и число сданных экзаменов среди четырёх сдаваемых будет 
иметь биномиальный закон распределения, т.е. вероятность того, что студент сдаст λ эк-
заменов, равна 

Р(Х = х) = С4
хрх(1 – р)4 – х,     х = 0, 1, 2, 3, 4.                        (6) 

Найдём оценку параметра р, входящего в модель (6). В условиях испытаний Бер-
нулли состоятельной, несмещённой и эффективной оценкой вероятности является час-
тость. В рассматриваемом примере р – вероятность того, что студент сдаст экзамен, по-
этому частость р* этого события, учитывая, что имеются сведения об успеваемости 100 
студентов, вычисляем следующим образом: 

р* =
числоэкзаменов,сданных	���	студентамичислоэкзаменов,сдаваемых	���	студентами = 

4100

604353321110

1004

5

1

×
×+×+×+×+×

=
×

∑
=i

ii mx
=0,88. 

Так как Xmx
i

ii =∑
=

100/
5

1
 - это среднее число экзаменов, сданных одним студен-

том, то р* можно было бы определить и так: 

р* = 
среднеечислоэкзаменов,сданныходнимстудентомчислоэкзаменов,сдаваемыходнимстудентом  = 

4

Õ
= 0,88. 

Заметим, что если находить оценку параметра р в модели (6) методом максималь-
ного правдоподобия и при этом учесть, что число xi наблюдалось mi раз, то мы получили 
бы для р* такую же формулу, а именно 

р*мп = )4/(
5

1

nmx
i

ii∑
=

. 
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Подставив в модель (6) вместо параметра р его оценку р*, получим параметриче-
скую оценку неизвестного закона распределения числа сданных экзаменов, построенную в 
предположении, что допустима биномиальная модель 

                Р(Х = х) = С4
х0,88х0,124 – х;      х = 0,  1,  2,  3,  4.                                 (7) 

Теоретические вероятности pi
теор и частоты mi

теор, вычисленные в предположении, 
что имеет место модель (7), содержатся в столбцах 5 и 6 табл. 5. Поскольку различия меж-
ду соответствующими числами столбцов 4 и 5 или между числами столбцов 3 и 6 неболь-
шие, можно сделать предварительное заключение о приемлемости биномиальной модели. 
Графически это заключение подтверждается рисунком, на котором кривая вероятностей 
pi

теор близка к кривой частостей pi*. 
Метод более глубокого обоснования приемлемости той или иной модели называет-

ся критерием согласия. 

1.7 Лекция №7 (2 часа) 

Тема: «Понятие статистической гипотезы. Виды гипотез. Статистический критерий. 

Критическая область. Мощность критерия. Критерии согласия: критерий Пирсона. 

Выравнивание рядов» 

1.7.1 Вопросы лекции: 

1. Статистические гипотезы, ошибки первого и второго рода. 

2. Статистические критерии, их виды, мощность критерия.  

3. Критерий Пирсона. 

4. Выравнивание статистических рядов. 

1.7.2 Краткое содержание вопросов:  

1. Статистические гипотезы, ошибки первого и второго рода 

Под статистической гипотезой понимают всякое высказывание о генеральной со-
вокупности (случайной величине), проверяемое по выборке (по результатам наблюдений). 
Примером статистических гипотез являются следующие высказывания: генеральная сово-
купность, о которой мы располагаем лишь выборочными сведениями, имеет нормальный 
закон распределения или генеральная средняя (математическое ожидание случайной ве-
личины) равна 5. Не располагая сведениями о всей генеральной совокупности, высказан-
ную гипотезу сопоставляют, по определённым правилам, с выборочными сведениями, и 
делают вывод о том, можно принять гипотезу или нет. Процедура сопоставления выска-
занной гипотезы с выборочными данными называется проверкой гипотезы. 

Рассмотрим этапы проверки гипотезы и используемые при этом понятия. 
Этап 1. Располагая выборочными данными Х1,  Х2, …, Хn и руководствуясь кон-

кретными условиями рассматриваемой задачи, формулируют гипотезу Н0, которую назы-
вают основной или нулевой, и гипотезу Н1, конкурирующую с гипотезой Н0. 

Термин «конкурирующая» означает, что являются противоположными следующие 
два события: 

- по выборке будет принято решение о справедливости для генеральной совокупно-
сти гипотезы Н0; 

- по выборке будет принято решение о справедливости для генеральной совокупно-
сти гипотезы Н1. 

Гипотезу Н1 называют также альтернативной. 
Например, если нулевая гипотеза такова: математическое ожидание равно 5, – то 

альтернативная гипотеза может быть следующей: математическое ожидание меньше 5, 
что записывается следующим образом: 
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Н0 : М(Х) = 5;   Н1 :М(Х)< 5. 
Этап 2. Задаются вероятностью α («альфа»), которую называют уровнем значимо-

сти. Поясним её смысл: 
Решение о том, можно ли считать высказывание Н0 справедливым для генеральной 

совокупности, принимается по выборочным данным, т.е. по ограниченному ряду наблю-
дений; следовательно, это решение может быть ошибочным. При этом может иметь место 
ошибка двух родов: 

- отвергают гипотезу Н0, или, иначе, принимают альтернативную гипотезу Н1, то-
гда как на самом деле гипотеза Н0 верна – это ошибка первого рода; 

- принимают гипотезу Н0, тогда как на самом деле высказывание Н0 неверно, т.е 
верной является гипотеза Н1 – это ошибка второго рода. 

Так вот, уровень значимости α – это вероятность ошибки первого рода, т.е.  α = 

0НР (Н1),                                                                                              (13) 

где 
0НР (Н1) – вероятность того, что будет принята гипотеза Н1, если на самом де-

ле в генеральной совокупности верна гипотеза Н0. Вероятность α задаётся заранее, разу-
меется, малым числом, поскольку это вероятность ошибочного заключения, при этом 
обычно используют некоторые стандартные значения: 0,05; 0,01; 0,005; 0,001. Например, 
α = 0,05 означает следующее: если гипотезу Н0 проверять по каждой из 100 выборок оди-
накового объёма, то в среднем в 5 случаях из 100 мы совершим ошибку первого рода. 

Вероятность ошибки второго рода обозначают β, т.е.   β = 
1НР (Н0), (14) 

где 
1НР (Н0) – вероятность того, что будет принята гипотеза Н0, если на самом де-

ле верна гипотеза Н1. Зная α, можно найти вероятность β.  
 Обратим внимание на то, что в результате проверки гипотезы относительно гипоте-

зы Н0 может быть принято и правильное решение. Существует правильное решение двух 
следующих видов: 

- принимают гипотезу Н0, тогда как и в действительности, в генеральной совокуп-

ности, она имеет место; вероятность этого решения 
0НР  (Н0) = 1 – α; 

- не принимают гипотезу 
0НР  (Н0) = 1 – α (т.е. принимают гипотезу Н1), тогда как 

на самом деле гипотеза Н0 неверна (т.е. верна гипотеза Н1); вероятность этого решения 

1НР (Н1) = 1 – β. 

Этап 3. Находят величину φ такую, что: 
- её значения зависят от выборочных данных Х1,  Х2, …, Хn, т.е. для которой спра-

ведливо равенство φ = φ(Х1,  Х2, …, Хn); 
- её значения позволяют судить о «расхождении выборки с гипотезой Н0»; 
- и она, будучи величиной случайной в силу случайности выборки Х1,  Х2, …, Хn, 

подчиняется при выполнении гипотезы Н0 некоторому известному, затабулированному 
закону распределения. 

 
2. Статистические критерии, их виды, мощность критерия. 

 
Величину φ называют критерием. 
Отметим, что в основе метода построения критерия лежит понятие функции прав-

доподобия. 
Этап 4. Далее рассуждают так. Т.к. значения критерия позволяют судить о «расхо-

ждении выборки с гипотезой Н0», то из области допустимых значений критерия φ следует 
выделить подобласть ω таких значений, которые свидетельствовали бы о существенном 
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расхождении выборки с гипотезой Н0, и, следовательно, о невозможности принять гипоте-
зу Н0. Подобласть ω называют критической областью. Допустим, что критическая об-
ласть выделена. Тогда руководствуются следующим правилом: если вычисленное по вы-
борке значение критерия φ попадает в критическую область, то гипотеза Н0 отвергается и 
принимается гипотеза Н1. При этом следует понимать, что такое решение может оказаться 
ошибочным: на самом деле гипотеза Н0 может быть справедливой. Т.обр., ориентируясь 
на критическую область, можно совершить ошибку первого рода, вероятность которой 
задана заранее и равна α. Отсюда вытекает следующее требование к критической области 
ω: 

вероятность того, что критерий φ примет значение из критической области ω, 
должна быть равна заданному числу α, т.е. Р(φ ∈ ω) = α.  (15) 

Однако критическая область равенством (15) определяется неоднозначно. Действи-
тельно, представив себе график функции плотности fφ(x) критерия φ, нетрудно понять, что 
на оси абсцисс существует бесчисленное множество областей-интервалов таких, что пло-
щади построенных на них криволинейных трапеций равны α, т.е. областей, удовлетво-
ряющих требованию (15). Поэтому кроме требования (15) выдвигается следующее требо-
вание: критическая область ω должна быть расположена так, чтобы при заданной вероят-
ности α ошибки первого рода вероятность β ошибки второго рода была минимальной. 

Возможны три вида расположения критической области (в зависимости от вида ну-
левой и альтернативной гипотез, вида и расположения критерия φ): 

правосторонняя критическая область, состоящая из интервала (хкр
пр, α, +∞), где 

точка хкр
пр, α определяется из условия Р(φ >хкр

пр, α) = α   (16) 
и называется правосторонней критической точкой, отвечающей уровню значи-

мости α; 
левосторонняя критическая область, состоящая из интервала (- ∞, хкр

лев, α), где 
точка хкр

лев, α определяется из условия  Р(φ <хкр
лев, α) = α        (17) 

и называется левосторонней критической точкой, отвечающей уровню значимо-
сти α; 

двусторонняя критическая область, состоящая из следующих двух интервалов: 
((- ∞, хкр

лев, α/2) 
По значению критерия φ судят о «расхождении выборочных данных с гипотезой 

Н0». Естественно, что гипотеза Н0 должна быть отвергнута, если расхождения велики; 
именно этим объясняется включение в критическую область больших значений критерия 
φ (больше, чем критическая точка). 

Включение же в ряде случаев в критическую область малых значений критерия φ 
(меньше, чем критическая точка) на первый взгляд противоречит смыслу этой величины. 
Однако не следует забывать, что φ – случайная величина (она зависит от результатов на-
блюдений Х1,  Х2, …, Хn, которые случайны), поэтому маловероятно появление не только 
слишком больших, но и слишком малых её значений и их следует включить в критиче-
скую область. 

Этап 5. В формулу критерия φ = φ(Х1,  Х2, …, Хn) вместо Х1,  Х2, …, Хn подставляют 
конкретные числа, полученные в результате наблюдений, и подсчитывают числовое зна-
чение φчис критерия. 

Если φчис попадает в критическую область ω, то гипотеза Н0 отвергается и прини-
мается гипотеза Н1. Поступая таким образом, следует понимать, что можно допустить 
ошибку с вероятностью α. 

Если φчис не попадает в критическую область, гипотеза Н0 не отвергается. Но это 
вовсе не означает, что Н0 является единственно подходящей гипотезой: просто расхожде-
ние между выборочными данными и гипотезой Н0 невелико, или, иначе, Н0 не противоре-
чит результатами наблюдений; однако таким же свойством наряду с Н0 могут обладать и 
другие гипотезы. 
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3.  Критерий Пирсона 
 
Выше рассматривались гипотезы, относящиеся к отдельным параметрам распреде-

ления случайных величин, причём модели законов распределения этих величин представ-
лялись известными. Однако во многих практических задачах модель закона распределе-
ния заранее не известна и возникает задача выбора модели, согласующейся с результатами 
наблюдений над случайной величиной.      Пусть высказано предположение, что неизвест-
ная функция распределения FX(x) исследуемой случайной величины Х имеет вполне опре-
делённую модель Fтеор(х), т.е. высказана гипотеза 

                                          Н0 :FX(x) = Fтеор(х).                                         (18) 
В качестве теоретической модели Fтеор(х) может быть рассмотрена нормальная, би-

номиальная или какая-либо другая модель. Это определяется сущностью изучаемого яв-
ления, а также результатом предварительной обработки наблюдений над случайной вели-
чиной (формой графика вариационного ряда, соотношениями между выборочными харак-
теристиками и т.д.).     Критерии, с помощью которых проверяется гипотеза (19), называ-
ются критериями согласия. Рассмотрим лишь один из них, использующий χ2-рас-
пределение и получивший название критерия согласия Пирсона. 

Критерий предполагает, что результаты наблюдений сгруппированы в вариацион-
ный ряд.  

Однако, прежде чем рассматривать сам критерий Пирсона, вспомним параметриче-
ское оценивание закона распределения. Последовательность оценивания такая: формули-
руют гипотезу о модели закона распределения случайной величины; по результатам на-
блюдений находят оценки неизвестных параметров этой модели (допустим, что число не-
известных параметров равно l); вместо неизвестных параметров подставляют в модель 
найденные оценки. В результате предполагаемая модель закона оказывается полностью 
определённой и, используя её, рассчитывают вероятности pi

теор= Р(X = xi) того, что слу-
чайная величина Х примет зафиксированные в наблюдениях значения xi, i=1, 2, …, ν – 1; 
эти вероятности называют теоретическими. Обратим внимание на следующее обстоя-
тельство: т.к. сумма вероятностей ряда распределения должна быть равна единице, т.е. 

                                                  
∑

i

òåîð

ip =1,                                                 (19) 

то полагаем вероятность рν
теор = 1 – р1

теор – р2
теор - … - рν-1

теор.  
Обратим внимание на следующее: критерий согласия Пирсона можно использовать 

только в том случае, когда   mi
теор ≥ 5, i=1, 2, …, ν.  (20) 

Поэтому ту группу вариационного ряда, для которой это условие не выполняется, 
объединяют с соседней и соответственно уменьшают число групп; так поступают до тех 
пор, пока для каждой новой группы mi

теор будет не меньше 5. Новое число групп, как и 
прежде, обозначим символом ν. 

Оказывается, что если предполагаемая модель закона распределения действительно 
имеет место, т.е. верна гипотеза (18), и если к тому же выполняются условия (19) и (20), то 

величина 
( )

∑
=

−
=

ν

ϕ
1

2

i
теор

i

теор
ii

m

mm
  (21) 

будет иметь χ2-распределение с числом степеней свободы k = ν – l – 1, т.е. 

( )
∑
=

−
=

ν

ϕ
1

2

i
òåîð

i

òíîð

ii

m

mm
= χ2(k = ν – l – 1), 

где ν – число (новое) групп вариационного ряда; l – число неизвестных параметров 
предполагаемой модели, оцениваемых по результатам наблюдений (если все параметры 
предполагаемого закона известны точно, то l = 0). Величину (21) и называют критерием 
согласия χ2 или критерием согласия Пирсона. 
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Далее поступаем так же, как обычно при проверке гипотез. Задаёмся уровнем зна-
чимости α. Зная распределение критерия φ, находим критическую область, как правило, 
это область правосторонняя, т.е. она имеет вид (хкр

пр, α, +∞); найдём числовое значение φчис 

критерия (21). Если φчис попадает в интервал (хкр
пр, α, +∞), то делаем вывод о неправомер-

ности гипотезы Н0 (18); при этом не следует забывать, что этот вывод может оказаться 
ошибочным (на самом деле в генеральной совокупности гипотеза Н0 (18) имеет место) и 
вероятность того, что вывод ошибочен, равна α. 

Если φчис не попадает в интервал (хкр
пр, α, +∞), то гипотеза Н0 (18) не отвергается. 

В заключение приведём схему определения точки хкр
пр, α: 

                              α → γ = 1 – α 
                          l, ν→k= ν – l – 1                 χ2

γ →  х
кр

пр, α = χ2
γ.                             (22) 

4.Выравнивание статистических рядов. 
 
Дано случайное распределение успеваемости 100 студентов-заочников, сдававших 

четыре экзамена:   
 

Число сданных эк-
заменов 

Число студентов 
5 0 

      
Здесь случайной величиной является число сданных экзаменов среди четырёх. 

Обозначим её Х. Установим закон распределения этой величины. 
Построим сначала его непараметрическую оценку. Величина Х – дискретная. Дис-

кретный вариационный ряд, заданный столбцами 2 и 4 табл. *, даёт непараметрическую 
оценку закона распределения числа сданных экзаменов среди четырёх сдаваемых. 

Теперь сформулируем гипотезу о модели закона распределения случайной величи-
ны Х – числе сданных экзаменов среди четырёх сдаваемых. Процесс сдачи четырёх экза-
менов представим как четыре испытания, относительно которых сделаем следующие до-
пущения: 

Таблица *. 
Чис-

ло сданных 
эк-

заменов 
xi 

Чи
сло 

ст
удентов 

mi 

Ч
астость 

p i *

 

pi
теор= 

= ixÑ 4

· ix88,0 · 
ix−412,0  

mi
теор

=npi
теор 

(
mi – 
mi

теор)2 

(mi 
– 

- 
mi

теор)2: 
:mi

теор 

 
2 3 4 5 6 7 8 
0 
1 
2 
3 
4 

1 
1     

5 
3 
35 
60 

0,
01 

0,
01 

0,
03 

0,
35 

0,
60 

0,000
21 

0,006
08 

0,066
91 

0,327
11 

0,599
69 

0,02
1 

0,60
8    7,32 

6,69
1 

32,7
11 

59,9
69 

 
5,

382 
 
5,

239 
0,

001 

 
0,7

35 
 
0,1

60 
0,0

00 

Итого n = 
100 

1,
00 

1,000
00 

  0,8
95 
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- эти испытания независимы, т.е. вероятность сдачи любым студентом любого эк-
замена не зависит от того, будет сдано или нет любое количество других экзаменов; 

- вероятность сдачи студентом любого отдельно взятого экзамена одна и та же и 
равна р, а вероятность «несдачи» равна (1 – р). 

Конечно, эти допущения могут вызывать некоторые сомнения, но возможно, что 
они не будут противоречить результатам наблюдений. При этих допущениях мы имеем 
дело с испытаниями Бернулли и число сданных экзаменов среди четырёх сдаваемых будет 
иметь биномиальный закон распределения, т.е. вероятность того, что студент сдаст λ эк-
заменов, равна 

Р(Х = х) = С4
хрх(1 – р)4 – х,     х = 0, 1, 2, 3, 4.  Найдём оценку параметра р, входяще-

го в модель (6). В условиях испытаний Бернулли состоятельной, несмещённой и эффек-
тивной оценкой вероятности является частость. В рассматриваемом примере р – вероят-
ность того, что студент сдаст экзамен, поэтому частость р* этого события, учитывая, что 
имеются сведения об успеваемости 100 студентов, вычисляем следующим образом: 

р* =
числоэкзаменов,сданных	���	студентамичислоэкзаменов,сдаваемых	���	студентами = 

4100

604353321110

1004

5

1

×
×+×+×+×+×

=
×

∑
=i

ii mx
=0,88. 

     Так как Xmx
i

ii =∑
=

100/
5

1
 - это среднее число экзаменов, сданных одним сту-

дентом, то р* можно было бы определить и так: 

р* = 
среднеечислоэкзаменов,сданныходнимстудентомчислоэкзаменов,сдаваемыходнимстудентом  = 

4

Õ
= 0,88. 

Заметим, что если находить оценку параметра р в модели (6) методом максималь-
ного правдоподобия и при этом учесть, что число xi наблюдалось mi раз, то мы получили 
бы для р* такую же формулу, а именно 

р*мп = )4/(
5

1

nmx
i

ii∑
=

. 

Подставив в модель (6) вместо параметра р его оценку р*, получим параметриче-
скую оценку неизвестного закона распределения числа сданных экзаменов, построенную в 
предположении, что допустима биномиальная модель         Р(Х = х) = С4

х0,88х0,124 – х;      х 
= 0,  1,  2,  3,  4.        (**)                          

Теоретические вероятности pi
теор и частоты mi

теор, вычисленные в предположении, 
что имеет место модель(**), содержатся в столбцах 5 и 6 табл. *. Поскольку различия ме-
жду соответствующими числами столбцов 4 и 5 или между числами столбцов 3 и 6 не-
большие, можно сделать предварительное заключение о приемлемости биномиальной мо-
дели. Графически это заключение подтверждается рисунком, на котором кривая вероятно-
стей pi

теор близка к кривой частостей pi*. 
Метод более глубокого обоснования приемлемости той или иной модели называет-

ся критерием согласия. 
 

1.8 Лекция № 8, 9 (4 часа). 

Тема: «Понятие функциональной, стохастической и корреляционной зависимости. 

Функция регрессии. Корреляционное отношение. Его свойства, значимость. Линей-

ная функция регрессии. Коэффициент корреляции его» 

1.8.1 Вопросы лекции: 

1. Виды зависимостей между величинами. 

2. Функция регрессии. 
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3. Корреляционное отношение, коэффициент детерминации. Корреляционная зави-

симость. 

1.8.2 Краткое содержание вопросов:  

1. Виды зависимостей между величинами 

     Условимся обозначать через Χ независимую переменную, а через Υ – зависи-
мую переменную. 

Зависимость величины Υ от Χ называется функциональной, если каждому значе-
нию величины Χ соответствует единственное значение величины Υ. С функциональной 
зависимостью мы встречаемся, например, в математике, при изучении физических зако-
нов. Обратим внимание на то, что если Χ – детерминированная величина (т.е. принимаю-
щая вполне определённые значения), то и функционально зависящая от неё величина Υ 
тоже является детерминированной; если же Χ – случайная величина, то и Υ также случай-
ная величина. 

Однако гораздо чаще в окружающем нас мире имеет место не функциональная, а 
стохастическая, или вероятностная, зависимость, когда каждому фиксированному зна-
чению независимой переменной Χ соответствует не одно, а множество значений перемен-
ной Υ, причём сказать заранее, какое именно значение примет величина Υ, нельзя. Более 
частое появление такой зависимости объясняется действием на результирующую пере-
менную не только контролируемого или контролируемых факторов (в данном случае та-
ким контролируемым фактором является переменная Χ), а и многочисленных неконтро-
лируемых случайный факторов. В этой ситуации переменная Υ является случайной вели-
чиной. Переменная же Χ может быть, как детерминированной, так и случайной величи-
ной. Следует заметить, что со стохастической зависимостью мы уже сталкивались в дис-
персионном анализе. 

Допустим, что существует стохастическая зависимость случайной переменной Υ от 
Χ. Зафиксируем некоторое значение х переменной Χ. При Χ = х переменная Υ в силу её 
стохастической зависимости от Χ может принять любое значение из некоторого множест-
ва, причём какое именно – заранее неизвестно. Среднее этого множества называют груп-
повым генеральным средним переменной Υ при Χ = х или математическим ожидани-
ем случайной величины Υ, вычисленным при условии, что Х = х; это условное мате-
матическое ожидание обозначают так: М(Υ/Х = х). Если существует стохастическая за-
висимость Υ от Χ, то прежде всего стараются выяснить, изменяются или нет при измене-
нии х условные математические ожидания М(Υ/Х=х). Если при изменении х условные ма-
тематические ожидания М(Υ/Х=х) изменяются, то говорят, что имеет место корреляци-
онная зависимость величины Υ от Χ; если же условные математические ожидания оста-
ются неизменными, то говорят, что корреляционная зависимость величины Υ от Χ отсут-
ствует. 

Функция φ(х)=М(Υ/Х=х), описывающая изменение условного математического 
ожидания случайной переменной Υ при изменении значений х переменной Χ, называется 
функцией регрессии. 

Выясним, почему именно при наличии стохастической зависимости интересуются 
поведением условного математического ожидания. 

Рассмотрим пример. Пусть Χ – уровень квалификации рабочего, Υ – его выработка 
за смену. Ясно, что зависимость Υ от Χ не функциональная, а стохастическая: на выра-
ботку помимо квалификации влияет множество других факторов. Зафиксируем значение х 
уровня квалификации: ему соответствует некоторое множество значений выработки Υ. 
Тогда М(Υ/Х = х) – средняя выработка рабочего при условии, что его уровень квалифика-
ции равен х, или, иначе говоря, М(Υ/Х = х) – это норматив выработки при уровне квали-
фикации, равном х. Зная зависимость этого норматива от уровня квалификации, можно 
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для любого уровня квалификации рассчитать норматив выработки и, сравнив его с реаль-
ной выработкой, оценить работу рабочего. 

 
2. Функция регрессии 
Обратим внимание на то, что введённые понятия стохастической и корреляционной 

зависимости относились к генеральной совокупности. Поясним эти понятия числовым 
примером. 

Пример. Допустим, что одновременно изучаются две случайные величины Χ и Υ, 
или, иначе говоря, двумерная случайная величина (Χ, Υ), которая задана таблицей 

 
i 
x

i 
y

i 

1 = 2 2 = 5 3 = 8 

y
1 = 0,4 ,15 ,12 ,03 

y
2 = 0,8 ,05 ,30 ,35 

 
Таблицу эту называют таблицей распределения двумерной величины (Χ, Υ); её 

следует понимать так. Случайная величина Χ может принять одно из следующих значе-
ний: 2, 5 и 8. Случайная величина Υ – значения 0,4 и 0,8. Число 0,15 – это вероятность то-
го, что Χ = 2 и одновременно Υ = 0,4, или, иначе говоря, вероятность произведения двух 
событий; события, состоящего в том, что Χ = 2, и события, состоящего в том, что Υ = 0,4, 
т.е. Р((Χ=2)(Υ=0,4)) = 0,15. Аналогично, вероятность Р((Χ=2)(Υ=0,8)) = 0,05 и т.д. Обра-
тим внимание на следующее: поскольку в табл. 9 указаны все возможные значения вели-
чин Χ и Υ, сумма вероятностей, стоящих в таблице, должна быть равна единице: 0,15 + 
0,05 + 0,12 + 0,30 + 0,03 + 0,35 = 1. 

Прежде чем выяснить тип зависимости величины Υ от Χ, найдём: 
 а) Закон распределения величины Χ. Он представлен таблице 
 

х х1 = 2 х2 = 5 х3 = 8 
Р

(Х = х) 
0,15 + 

0,05 = 0,2 
0,12 + 

0,30 = 0,42 
0,35 + 

0,03 = 0,38  = 1 
 
М(Х) = 5,54, D(X) = 4,9284 
Действительно, например, величина Χ примет значение, равное 2, только в том 

случае, когда одновременно с этим величина Υ примет значение 0,4 или 0,8, т.е. 
Р(Χ = 2) = Р((Χ = 2)(Υ = 0,4)) + Р((Χ = 2)(Υ = 0,08)) = 0,15 + 0,05 = 0,2. 
Справа от ряда распределения величины Χ находятся её математическое ожидание 

и дисперсия. 
б) Закон распределения величины Υ. Он имеет вид таблицы 
 

у у1 = 0,4 у2 = 0,8 
Р

(Υ = у) 
0,15 + 0,12 + 

0,03 = 0,30 
0,05 + 0,30 + 

0,35 = 0,7  = 1 
 
М(Υ) = 0,68,   D(Y) = 0,0336 
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в) Условные законы распределения величины Υ, а именно закон распределения ве-
личины Υ сначала при условии, что Χ = 2, затем при условии, что Χ=5, и наконец, при ус-
ловии, что Χ = 8. 

     Итак, пусть Χ = 2. Тогда условная вероятность 

Р(Υ = 0,4/Χ = 2) =
)2(

))2)(4,0(

=

==

XP

XYP
=

2,0

15,0
 = 0,75, 

а условная вероятность 

Р(Υ = 0,8/Χ = 2) =
)2(

))2)(8,0((

=

==

XP

XYP
=

2,0

05,0
 = 0,25. 

Таким образом, закон распределения величины Υ при условии, что Χ = 2, задан 
таблицей 

y y
1 = 0,4 

y
2 = 0,8 

P(Y = 
y/X = 2) 

0
,75 

0
,25  = 1 

 
M(Y/X = 2) = 0,4*0,75 + 0,8*0,25 = 0,5,     D(Y/X = 2) = 0,03 
Справа помещено условное математическое ожидание и значение условной дис-

персии. Покажем, как вычисляется условная дисперсия. Общая формула условной дис-
персии имеет вид 

D(Y/X = x) = M[(Y/X = x) – M(Y/X = x)]2.                         (23) 
D(Y/X = 2) = M [(Y/X = 2) – M(Y/X = 2)]2 = M [(Y/X = 2) – 0,5]2 =                       = 

∑
=

−
2

1

2)5,0(
i

iy ·P(Y = yi/X = 2) = (0,4 – 0,5)2 · 0,75 + (0,8 – 0,5)2 · 0,25 = 0,03. 

Пусть Χ = 5. Тогда Р(Υ = 0,4/Χ = 5) =
)5(

))5)(4,0((

=

==

XP

XYP
= 

42,0

12,0
=

7

2
; Р(Υ=0,8/Χ=5) = 

)5(

))5)(8,0((

=

==

XP

XYP
=
�,���,�� = 

��. 

Таким образом, закон распределения величины Υ при условии, что Χ = 5, имеет 
вид таблицы 

у 
,4 ,8 

Р(Υ = 
у/Χ = 5) /7 /7  = 1 

 

М(Υ/Χ = 5) = 
����≈0,686,      D(Y/X = 5) = 0,03265. 

И наконец, при Χ = 8 ряд распределения задан таблицей. 
 

у 
,4 ,8 

Р(Υ = 
у/Χ = 8) 

338 
3538  = 1 

 

М(Υ/Χ = 8) = 
�� � ≈ 0,768,     D(Υ/Χ = 8) = 0,01163 

Из таблиц видно, что зависимость Υ от Χ стохастическая, поскольку при каждом 
фиксированном значении величины Χ величина Υ может быть равной либо 0,4, либо 0,8, 
причём какому именно из этих чисел она будет равна – сказать заранее нельзя. Ясно про-
слеживается и корреляционная зависимость величины Υ от Χ, поскольку с изменением 
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значений х величины Χ меняются и условные математические ожидания М(Υ/Χ = х). 
Функция регрессии, т.е. зависимость условного математического ожидания М(Υ/Χ = х) от 
х, задаётся в виде таблицы 

х 5 8 
М(

Υ/Χ = х) ,5 
24/35 

≈ 0,686 
73/95 

≈ 0,768 
 
3. Корреляционное отношение, коэффициент детерминации. Корреляционная 

зависимость 
Выясним, можно ли измерить степень корреляционной и стохастической зависимо-

сти величины Υ от Χ.  Ответ проиллюстрируем. Все полученные в примере результаты 
объединены в таблице. 

xi 

1 = 2 
х

2 = 5 
х

3 = 8 
Р(Χ 

= xi) ,2 
0

,42 
0

,38 
М(Υ

/Χ = xi) ,5 
0

,686 
0

,768 
D(Υ/

Χ = xi) ,03 
0

,03265 
0

,01163 
 
MY = 0,68,     DY = 0,0336  
Т.к. Х – случайная величина, принимающая значения 2, 5 и 8 с вероятностью 0,2; 

0,42 и 0,38, то такими же будут вероятности и условных математических ожиданий, и 
дисперсий. Т.обр., условное математическое ожидание М(Υ/Χ), так же как и условная 
дисперсия D(Υ/Χ) – случайные величины. 

     Обратим также внимание на то, что М(Υ), можно вычислить и следующим обра-
зом: 

М(Υ) = M [М(Y/X)] =∑
=

==
3

1

)()/(
i

ii xXPxXYM  =0,5*0,2 + 0,686*0,42 + 0,768*0,38 = 

0,68. 
Разброс значений величины Υ вокруг математического ожидания МΥ измеряется 

дисперсией D(Υ), или σΥ
2: 

                                     σΥ
2 = D(Υ) = М(Υ – МΥ)2.                                 

Этот разброс может быть вызван: 
- зависимостью величины Υ от Χ (эта зависимость может быть обусловлена не 

только непосредственным влиянием Χ на Υ, но и наличием случайных факторов, дейст-
вующих на Υ через переменную Χ); 

- зависимостью величины Υ от случайных факторов, влияющих только на Υ и не 
влияющих на Χ; эти факторы называют остаточными. 

1) Построим показатель разброса значений величины Υ, связанного с её зависимо-
стью от фактора Χ. 

        Условное математическое ожидание М(Υ/Χ = x) является «представителем иг-
реков», которые имеют место при Х = х. Характеристикой разброса условных математи-
ческих ожиданий М(Υ/Χ = x) относительно М(Υ) является дисперсия D[M(Υ/Χ)], или 

                       σφ
2 = D[M(Υ/Χ)] = М[M(Υ/Χ) – МΥ]2                            

– эта величина и будет показателем разброса значений величины Υ, связанного с её 
зависимостью от фактора Χ. Найдём: 

σφ
2 = М[M(Υ/Χ) – МΥ]2 =                                                                                         = (0,5 

– 0,68)2*0,2 + (0,686 – 0,68)2*0,42 + (0,768 – 0,68)2*0,38 = 0,0095.)  
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2) Теперь построим показатель разброса «игреков», связанного с влиянием оста-
точных факторов. 

Зафиксируем какое-либо значение х величины Χ. Тогда причиной вариации вели-
чины Υ при Χ = х будут остаточные факторы, влияющие только на Υ и не влияющие на Χ. 
Измерителем этой вариации является условная дисперсия D(Υ/Χ = х).При различных же 
«иксах» характеристикой разброса «игреков», вызванного влиянием на Υ остаточных фак-
торов, будет генеральное среднее из условных дисперсий, или, иначе, математическое 
ожидание условной дисперсии. Эту величину обозначим σ0

2. Имеем 
                                      σ0

2 = М[D(Υ/Χ)],                                                 
где при Х = х  

σ0
2= М[D(Υ/Χ)] = ∑

=

==
3

1

)()/(
i

ii xXPxXYD =                                                      

 = 0,03*0,2 + 0,03265*0,42 + 0,01163*0,38 = 0,0241.) 
     Для вычисленных дисперсий справедливо тождество 
DΥ = D[M(Y/X)] + M[D(Y/X)] 
или                                                                                                                        
σΥ

2 = σφ
2 + σ0

2. 
Степень стохастической зависимости величины Υ от Χ измеряется гене-ральным 

корреляционным отношением 

ρΥ/Χ = + !"[$(&/()]"+  = + 
( )28

2

2

Yσ

σ ϕ

= + 2

2

01
Yσ

σ
−  = + 

DY

XYDM )]/([
1− .           

Квадрат корреляционного отношения 

                     ρΥ/Χ
2 = 2

2

Yσ

σ ϕ
= 

"[$(&/()]"+ (26), (25) = 
$[$,-./0$1]2$(10$1)2                       

называется генеральным коэффициентом детерминации; он показывает, какую 
долю дисперсии величины Υ составляет дисперсия условных математических ожиданий, 
или, иначе говоря, какая доля дисперсии D(Υ) объясняется корреляционной зависимостью 
Υ от Χ.  

 
Свойства генерального корреляционного отношения как измерителя степени 

корреляционной и стохастической зависимости 
     1. Θ ≤ ρΥ/Χ ≤ 1. 
     Действительно, ρΥ/Χ ≥ 0; с другой стороны σφ

2 ≤ σΥ
2, поэтому ρΥ/Χ ≤ 1. 

     2. Условие ρΥ/Χ = 0 является необходимым и достаточным для отсутствия корре-
ляционной зависимости Υ от Χ, т.е. для того, чтобы М(Υ/Χ) = const при любом значении х 
величины Х. 

Следствие. Чем ближе ρΥ/Χк нулю, тем ближе к нулю D[M(Y/X)], а это означает, 
что уменьшается разброс условных математических ожиданий М(Υ/Χ = х) относительно 
МΥ. Т.обр., чем ближе ρΥ/Χ к нулю, тем меньше «реакция условного математического 
ожидания М(Υ/Χ = х) на изменение х», или, иначе говоря, «тем меньше степень корреля-
ционной зависимости Υ от Χ». 

И, наоборот, чем «меньше степень корреляционной зависимости Υ от Χ», тем бли-
же ρΥ/Χ к нулю. 

3. Условие ρΥ/Χ = 1 является необходимым и достаточным для функциональной за-
висимости величины Υ от Χ. 

Достаточность. Пусть ρΥ/Χ = 1. Это в силу означает, что σ0
2 = 0 или M[D(Y/X)]=0. 

Но т.к. дисперсия другой величины неотрицательна, то из последнего равенства следует, 
что D[M(Y/X = х)] = 0 при любом х, а это означает, что при Х = х величина Υ остаётся по-
стоянной (принимает единственное значение), т.е. зависимость Υ от Χ – функциональная. 
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Необходимость. Пусть любому фиксированному значению х величины Χ соответ-
ствует только одно значение величины Υ. Это означает, что при любом х дисперсия 
D[M(Y/X = х)] = 0, поэтому и σ0

2 = M[D(Y/X)] = М(0) = 0. Но тогда из (28) следует, что 
ρΥ/Χ = 1. 

Следствие. Чем ближе ρΥ/Χ к единице, тем ближе к нулю M[D(Y/X)], а следова-
тельно, и условные дисперсии D(Y/X = х). Это означает, что при каждом допустимом зна-
чении х уменьшается разброс «игреков» относительно М(Y/X = х). Т.обр., чем ближе ρΥ/Χ 
к единице, тем меньше при каждом х отличие «игреков» от постоянного числа, равного 
М(Y/X = х), или, иначе говоря, тем выше степень стохастической зависимости Υ от Χ. И, 
наоборот, чем выше степень стохастической зависимости Υ от Χ, тем ближе ρΥ/Χ к едини-
це. 

В практических задачах наибольший интерес представляют следующие вопросы: 
- существует корреляционная зависимость Υ от Χ или нет, иначе говоря, отлично 

ли генеральное корреляционное отношение ρΥ/Χ от нуля или равно нулю; 
- если корреляционная зависимость существует, то какой вид имеет функция рег-

рессии (линейный, параболический или какой-либо другой). 
Точно ответить на поставленные вопросы можно лишь только в том случае, когда 

известен закон распределения двумерной величины (Χ, Υ).  
 
Линейная функция регрессии. Генеральный коэффициент корреляции 

Допустим, что при изменении х условное математическое ожидание M(Y/X=x) из-
меняется по линейному закону, т. е. функция регрессии φ(х) = М(Y/X=x) линейная: Mлин(Y/X = x) = a + bx 

Найдем для этого случая сначала выражение для параметров а и b линейной функ-
ции регрессии, а затем выражение для корреляционного отношения. При этом договорим-
ся используемые обозначения снабжать индексом «лин», что означает «при условии ли-
нейной функции регрессии». 

 
Выражения для параметров а и b и линейной функции регрессии 
Обратимся к формуле условной дисперсии. В случае линейной функции регрессии фор-
мула принимает вид 
 

Dлин <YX = x= = M><YX = x= − Mлин <YX = x=@� = = M[(Y/X = x) − a − bx]�                                                                           
 

Напомним, в общем случае при изменении х условная дисперсия Dлин(Y/X=x) изме-
няется. Найдем характеристику разброса «игреков», вызванного влиянием на Yостаточ-
ных факторов, она примет вид σB�	лин = M[Dлин(Y/X)] = M(M(Y/X) − a − bX)�                                             
— эта величина при фиксированных значениях параметров а и bявляется постоянной. 

Принимая во внимание свойство минимальности дисперсии, значения параметре а и 
bнаходят из условия F(a, b) = M(M(Y/X) − a − bX)� → min                                                             
Окончательный результат такой: b = r(&σ&/σ(,  (50)     a = m& − r(& IJIKmL,                                                                                             
гдеmX=M(X), my=M(Y), r(& = MKJIKIJ = N[((0N()(&0N&)]IKIJ  

Отметим, что выражение  K(& = 	M[(X − MX)(Y − MY)]                                                                           
называют генеральным корреляционным моментом, а r(& = MKJIKIJ = N[((0N()(&0N&)]IKIJ                                                                               
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генеральным коэффициентом корреляции. 
Подставив найденные значения параметров а и bв линейную функцию регрессии 

Млин (Y/X=x) = a+bx, получим Mлин	(Y/X = x) = mP + r(& IJIK (x − mL)                                                            
Выражение для корреляционного отношения 

Напомним вид генерального корреляционного отношения 

ρ&/( = +!σф�/σ&� = !1 − σB�/σ&�  

Установим, как преобразуются выражения для σB�, σф�  и ру/х, если учесть, что функция рег-
рессии линейна. Согласно формуле (25) σф� = D[M(Y/X)], 
имеем: σф�	лин = D[Mлин(Y/X)] = D Tm& + r(& IJIK (X − mL)U = D Tr(& IJIK (X − mL)U = r(&� IJ2IK2 D(X −mx=rXY2σY2σX2DX=rXY2σY2. 

Итак, Wф�	лин = X[Yлин(Z/[)] = \]1� W1�                                                                        
Теперь, используя соотношение (27) , определим вид выражения σ2

о
лин=М[Dлин(Y/X)] 

при линейной функции регрессии. 
Имеем σB�	лин = σ&� − σф�	лин = σ&� − r(&� σ&� = σ&�(1 − r(&� ), 
тогда σB�	лин = M[Dлин(Y/X)] = (1 − r(&� )σ&�.                                                             

Для генерального корреляционного отношения получим следующее выражение: 

ρ&/(лин = +^Iф2	линIJ2 = +!_KJ2 IJ2IJ2 = |r(&|                                                                  
где rXY—коэффициент корреляции. 
 

Свойства коэффициента корреляция как измерителя степени 
линейности стохастической зависимости 

Итак, генеральный коэффициент корреляции 

\]1 = Y[([ −Y[)(Z −YZ)]W]W1  

при этом если функция регрессии линейна и имеет вид, то | rxy| совпадает с генеральным 
корреляционным отношением ΡY/X. Таким образом, | rxy| - это частный случай ΡY/X, имеющий 
место при линейной функции регрессии, поэтому 
                                                |\]1| ≤ b1/]                                                        
и | rxy| будет обладать свойствами корреляционного отношения, «подправленными» с уче-
том линейности функции регрессии. Сформулируем эти свойства. 1. |\]1| ≤ 1	или − 1 < \]1 < 1. 

В отличие от корреляционного отношения, которое не может быть отрицательным, 
rxyможет иметь как знак «+», так и «—»; как видно из, знак   « + » означает, что с ростом 
значений Xувеличивается условное математическое ожидание M(Y/X=x); отрицательное 
значение rxyговорит о противоположной тенденции. 
2. Если корреляционная зависимость Y от X отсутствует, то rxy = 0. 

Действительно, при отсутствии корреляционной зависимости Y от Xкоэффициент 
ρy/x=0, поэтому в силу и rxy=0. 

Обратное же утверждение верно не всегда: из равенства rxy = 0 не всегда следует, что 
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ρy/x=0, или, иначе говоря, не всегда следует отсутствие корреляционной зависимости. 
Только в том случае, когда функция регрессии линейна и имеет вид, из равенства rxy= 
0следует отсутствие корреляционной зависимости Y от X. Действительно, подставив rxy = 
0 в, получим, что                  M( Y/X=x)=my=const при любом х. 
3. Условие |rxy| = 1 является необходимым и достаточным для существования линейной 
функциональной зависимости между Y и X. 

Коэффициент корреляции симметричен относительно X и Y, т.е. rху = ryx.  Если |rxy| = 
1, то |ryx| = 1, поэтому вместо выражения «линейная функциональная зависимость Yот X» 
мы употребим «линейная функциональная зависимость между Yи X». 

Чем ближе |rxy| к единице, тем ближе стохастическая зависимость между величинами 
X и Y к линейной функциональной, или, иначе говоря, выше степень линейности стохас-
тической зависимости. И, наоборот, чем выше степень линейности стохастической 
зaвисимости между величинами X и Y, тем ближе |rxy| к единице. 
Метод наименьших квадратов. Линейное уравнение регрессии 

Пусть функция регрессии линейная, т. е. M(Y/X)=x = a + bx. Найдем оценки 	а	e иbfпа-
раметров а и b.Критерием нахождения оценок 	а	e иbfявляется следующее требование: сред-
няя  квадратов  отклонений  наблюдаемых  «игреков»  от «игреков», рассчитанных по 
уравнению Y=a+bx, должна быть минимальной. Запишем это требование в виде формулы 																																										gfhij, kfl = (Z − Zf)� ⟶ nop																																													 

Метод нахождения значений оценок а и b (в соответствии с требованием962)) назы-
вается методом наименьших квадратов. 

Для результатов (Xi,Уi) наблюдений величины (X,Y) не сгруппированных в корреля-
ционную таблицу, критерий имеет вид 

																														gfhij, kfl = 1pq(Zr − ij − kf[r)� ⟶ mins
rt� 																															 

Если наблюдения сгруппированы в таблицу, то критерий принимает следующий вид: 																																						gfhij, kfl = �s∑ ∑ (vr − ij − kfwr)�nxr ⟶ nopyxt�zrt�            

Необходимые условия минимума функции F(a, b)образуют систему 

{|
}
|~�g�i = 1pq2hZr − ij − kf[rl(−1) = 0s

rt��g�i = 1pq2hZr − ij − kf[rl(−[r) = 0s
rt�

� 
которая в результате тождественных преобразований принимает вид 

                                                     � ij + kf[ = Zij[ + kf[� = Z[�,                                           
где 

[ =q[rp
s
rt� , Z = qZrp

s
rt� , [� = q[�rp

s
rt� , Z[ = qZr[r/ps

rt�  

 
Система называется нормальной системой уравнений. Решим ее относительно 	а	e иbf. Из 
первого уравнения находим	а	e=Y—kfX. Подставив это выражение во второе из уравнений, 
получим 
 hZ − kf[l[ + kf[� = Z[, 
откуда находим 
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kf = Z[ − Z[[� − ([)� 

или, учитывая (60), 																																																																			kf = \̂]1 �e-�e..                                       
         Тогда 																																																																		ij = Z − \̂]1 �e-�e. [                                      

Подставив выражения дляijи kfв уравнение Y=ij+kfx, получим 																																																								Zf = Z + \̂]1 �e-�e. hw − [l.                                  
Уравнение называется выборочным линейным уравнением регрессии. 
Пусть x=x�,тогда 

Zfr = Z + \̂]1 Wj1Wj] hwr − [l 

— это оценка условного математического ожидания, вычисляемого по формуле Mлин ,&( = x�/ = M(Y) + rj(& IeJIeK (x� −M(X)). 
 
 

2 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ                                                              
ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

 

2.1 Практическое занятие № 1 (2 часа). 

Тема: «Классическое определение вероятности события. Геометрические вероятно-

сти. Относительная частота наступления события и статистическая вероятность. 

Формулы умножения и сложения вероятностей случайных событий» 

2.1.1 Задание для работы: 

1. Элементы комбинаторики 

2. Непосредственное вычисление вероятности случайного события. 

3. Операции над случайными событиями и их свойства. Теоремы о вероятности 

суммы случайных событий. Теоремы о вероятности суммы произведения  

4. Условная вероятность. Формула полной вероятности. Формула Байеса. 

5. Схема повторных испытаний. Формула Бернулли.  Формула Пуассона.  Локаль-

ная формулы Лапласа.  Интегральная формула Лапласа. 

6. Простейший поток событий. Вероятность случайного события с заданной интен-

сивностью. 

2.1.2 Краткое описание проводимого занятия: 

1. Элементы комбинаторики 

 
Комбинаторика изучает способы подсчета числа элементов в конечных множествах. 

Формулы комбинаторики используются при непосредственном вычислении вероятностей. 
Приведем некоторые сведения. 
Соединениями называют различные группы предметов, составленные из каких-либо объ-
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ектов. 
Элементами называются объекты, из которых составлены соединения. Рассмотрим сле-
дующие три вида соединений: перестановки, размещения и сочетания. 
Перестановками из n элементов называют соединения, содержащие все n   элементов и 
отличающиеся между собой лишь порядком элементов. 
Число перестановок из n элементов находится по формуле  !nPn = , 

где п! - произведение натуральных чисел от 1 до n включительно, т.е. n!=1·2·3·...·n.  На-
пример, Р6 = 6!= 1 · 2 ·  3 · 4 ·  5 · 6 = 720. 
Размещениями из n элементов по k в каждом (п ≥ k) называются такие соединения, в каж-
дый из которых входит k элементов, взятых из данных n элементов, и отличающихся друг 
от друга либо самими элементами, либо порядком их расположения. 
Число размещений из n элементов по k находят по формуле 

)1)...(2)(1( +−−−= knnnnAk
n или,  

)!(

!

kn

n
Ak

n −
=  

 

Например,  360
21

654321

)!46(

!6
34564

6 =
⋅

⋅⋅⋅⋅⋅
=

−
=⋅⋅⋅=A  

Сочетаниями из n элементов по k (п>k) называют соединения, в каждый из которых вхо-
дит k элементов, взятых из данных n элементов и отличающихся друг от друга, по крайней 
мере, одним элементом. Число сочетаний из n элементов по k находят по формуле: 

k

k
nk

n P

A
C =  или  

!)!(

!

kkn

n
C k

n −
= . 

Для упрощения вычислений при nk
2

1
> полезно использовать следующее свойство соче-

таний:  kn
n

k
n CC −= . 

Замечания: 

1) по определению 10 =nC ; 

2) для определения числа сочетаний справедливы равенства 
mn

n
m
n CC −= , 11

1
++

+ += m
n

m
n

m
n CCC , nn

nnn CCC 2...10 =+++  

3) В записанных выше формулах комбинаторики предполагалось, что все n элементов раз-
личны. Если же некоторые элементы в соединениях повторяются, то в этом случае соедине-
ния с повторениями вычисляются по другим формулам. 
Пусть среди n элементов рассматриваемого множества есть n1 элементов одного вида, п2 
элементов другого вида и т.д. Число перестановок с повторениями определяется по форму-

ле  
!...!!

!
),...,,(

21
21

k
kn nnn

n
nnnP

⋅⋅⋅
= , 

где nnnn k =+++ ...21 . 

Число размещений по т элементов с повторениями из n элементов равно пт, т.е. 

( ) mm
n nA =повт. с . 

Число сочетаний с повторениями из n элементов по т элементов равно числу сочетаний 
без повторений из (n+m-1) элементов по т, т.е. 

( ) m
m-n

m
n CC 1повт. с +=  

4) При решении задач комбинаторики можно использовать следующие правила: 
правило суммы. Если некоторый объект А может быть выбран из множества объектов т 
способами, а объект В может быть выбран n способами, то выбрать либо А, либо В можно 
(т + п) способами. 



 

правило произведения. 
бами и после каждого тако
тов (А, В) в указанном поря
 

2. Непосредственно
 

Пример 1. В урне 10 
голубых. Из урны извлека
окажется голубым? 

Решение. Событие, со
значим буквой А. Данное и
которых 6 благоприятствую
события получим: 

6,0
10

6
)( ==AP . 

Пример 2. Среди 25 
летов лотереи. Найти веро
вушки. 

Решение. Пусть А - 
ся две девушки. Найдем чи

Число всех равновозм

равно числу сочетаний из 2

которые могут получить би

бой парой из десяти девуше

5 студентов, образованных
трое 

юношей и две девушк

благоприятствующих случ
чтобы три билета получили

В соответствии с фор

!3

15
)(

5
25

2
10

3
15 =
⋅

=
C

CC
AP

 Пример 3. В круг вписан 
ность того, что эта точка по

Решение. Введем обо
событие, состоящее в том,
вписанного квадрата. Изве
через радиус описанной ок

формулой Ra 2= , п

Полагая в формуле 

вероятность 
2

)(
2

2

=
πR

R
AP

 Замечание. Выражен
следующим образом. Из т
NM2 = КМ2 , т.е. 
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 Если объект А можно выбрать из множест
о такого выбора объект В можно выбрать n спос
 порядке может быть выбрана т · n способами.

венное вычисление вероятности случайного 

не 10 одинаковых по размерам и весу шаров, из к
влекается один шар. Какова вероятность того, 

тие, состоящее в том, что «извлеченный шар ок
нное испытание имеет 10 равновозможных элем
тствуют появлению события А. По формуле клас

ди 25 студентов группы, в которой 10 девушек
и вероятность того, что среди обладателей бил

 событие, состоящее в том, что среди облада
ем числа m, n. 
новозможных случаев распределения 5 билето

й из 25 элементов по 5, т.е. 5
15C · Число групп п

ить билеты, равно 3
15C . Каждая такая тройка м

евушек, а число таких пар равно 2
10C . Следоват

анных из групп в 25 студентов, в каждую из к

евушки, равно произведению 2
10

3
15 CC ⋅ . Это прои

 случаев распределения пяти билетов среди с
чили юноши и два билета - девушки. 

формулой 
n

m
AP =)(  находим искомую вероя

232425

151413

!2!3!8!12!25
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исан квадрат (рис.2). В круг наудачу бросается
чка попадет в квадрат? 
м обозначения: R - радиус круга, а - сторона впи
в том, что точка попала в квадрат, S - площад
. Известно, что площадь круга S = πR2 . Сторон

окружности выражается 

, поэтому площадь квадрата S1 = 2R2  

G

g

S

S
AP =)(  Sg= S1, SG = S , находим искому

637,0
2
≈=

π
.                                   Рис. 2. 

ражение стороны квадрата через радиус окружн
. Из треугольника ∆KMN по теореме Пифагора

ожества объектов т спосо-
способами, то пара объек-

ами. 

ного события 

из которых 4 красных и 6 
 того, что извлеченный шар 

ар оказался голубым», обо-
х элементарных исходов, из 
е классической вероятности 

шек, разыгрывается 5 би-
й билетов окажутся две де-

бладателей билетов окажут-

тов среди 25 студентов 

рупп по трое юношей из 15, 

йка может сочетаться с лю-

довательно, число групп по 

 из которых будут входить 

о произведение равно числу 

еди студентов группы так, 

вероятность 

385,0
506
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2223

3513

2212223

54109
≈=

⋅
⋅⋅

=
⋅⋅⋅
⋅⋅⋅⋅

ается точка. Какова вероят-

вписанного квадрата, А - 
ощадь круга, S1 - площадь 

торона вписанного квадрата 

скомую 

ружности можно получить 
фагора будем иметь: KN2 + 
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a2 + a2=(2R)2, 2a2=4R2, a2 =2R2, Ra 2= . 
 

 
3. Операции над случайными событиями и их свойства. Теоремы о вероятно-

сти суммы случайных событий. Теоремы о вероятности суммы произведения  
 

Пример 1. Подбрасываются два игральных кубика. Найти вероятность события А, со-
стоящего в том, что - «сумма выпавших очков не превосходит четырех». 
Решение. Событие А - событие, состоящее в том, что есть сумма трех несовместных собы-
тий В2, В3, В4. Тогда сумма очков   равна   соответственно   2,   3,   4.   Поскольку 

36

1
)( 2 =BP , 

36

2
)( 3 =BP , 

36

3
)( 4 =BP , по теореме сложения вероятностей несовместных 

событий получим 

6

1

36

6

36

3

36

2

36

1
)()()()( 432 ==++=++= BPBPBPAP . 

Замечание. Этот же результат можно было получить, используя непосредственный под-
счет вероятности. Действительно, событию А благоприятствуют 6 элементарных исходов: 
(1,1), (1,2), (2,1), (1,3), (3,1), (2,2). Всего же элементарных исходов, образующих полную 

группу событий, n= 36, поэтому 
6

1

36

6
)( ==AP . 

Пример 2. Три станка работают независимо. Вероятность того, что в течение смены ста-
нок (любой) потребует наладки равна 0,1. Найти вероятность того, что в течение смены хотя 
бы один станок из трех потребует внимания наладчика. 
Решение. Пусть Аk - событие, заключающееся в том, что k- тый по счету станок потребует 
наладки в течение смены (k = 1, 2,3). Тогда событие А1 + А2 + А3 заключается в том, что в 
течение смены наладки потребует хотя бы один из трех станков. Сначала вычислим вероят-

ность противоположного события 321 AAA ++ , заключающегося в том, что все три станка 

всю смену проработают безотказно. Поскольку 321321 AAAAAA ⋅⋅=++ , причем события 

321 ,, AAA  независимы, то )()()()()( 321321321 APAPAPAAAPAAAP ⋅⋅=⋅⋅=++ по тео-

реме умножения вероятностей для независимых событий. По условию Р(Аk)=0,1,тогда   ве-

роятность противоположного   события 9,0)(1)( =−= kk APAP . Итак, 

)(1)( 321321 AAAPAAAP ++−=++ и искомая вероятность события будет 

271,09,09,09,01)( 321 =⋅⋅−=++ AAAP . 

Пример 3. Имеются две урны с шариками трех цветов. В первой находятся 2 голубых, 3 
красных, 5 зеленых, а во второй - 4 голубых, 2 красных и 4 зеленых. Из каждой урны извле-
кают по одному шару и сравнивают их цвета. Найти вероятность того, что цвета вынутых 
шаров одинаковы (событие А). 
Решение. Обозначим событие, состоящее в извлечении из первой урны голубого шара, че-
рез В1, красного - С1, зеленого - D1 . Аналогичные события для второй урны обозначим 
соответственно через В2 , С2 , D2 . Событие А наступает в случае В1В2 , С1С2 или D1D2. Они 
несовместны. Для вычисления искомой вероятности события А применим формулы вероятно-
стей суммы несовместных событий и произведения независимых событий 
Р(А) = P(B1B2+C1C2 + D1D2) = Р(В1В2) + Р(С1С2) + P(D1D2). 
Так как независимы события: В1 и В2 , С1 и С2, D1 и D2, то можно пользоваться формулой 
Р(АВ)= Р(А)Р(В) для каждой пары событий: 
Р(В1В2) = Р(В1)Р{В2), 
Р(С1С2) = Р(С1)Р(С2), 
P(D1D2) = P(D1)P(D2). 
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Окончательно 
Р(А) = Р(В1 )Р(В2 ) + Р(С1 )Р(С2) + P(D1)P(D2 ) = 0,2 · 0,4 + 0,3 · 0,2 + 0,5 · 0,4 = 0,34 
Пример4. Сколько раз нужно подбросить два игральных кубика, чтобы вероятность выпа-

дения хотя бы один раз двух шестерок была бы больше 
2

1
? (Эта задача впервые поставлена 

французским математиком и писателем де Мере (1610-1684 гг.), поэтому задача называет-
ся его именем). 
Решение. Пусть событие Аi  - «выпадение двух шестерок при i-м  подбрасывании». Так как 
с каждой из шести граней первого кубика может выпасть любая из шести граней второго 
кубика, 
то всего равновозможных попарно несовместных событий 6 · 6 = 36. Только одно из них - 
выпадение шестерки и на первом и на втором кубике - благоприятствуют событию Ai. Сле-

довательно, 
36

1
)( =iAP , откуда 

36

35

36

1
11 =−=−= pq . 

Подбрасывание игральных кубиков - независимые испытания, поэтому воспользуемся 

формулой nqAP −=1)( , тогда в данном случае получим: 
2

1

36

35
1 >







−
n

, или 
2

1

36

35
<








n

. 

Решив неравенство, найдем п.  Логарифмируя обе части неравенства, получим 

2

1
ln

36

35
ln <n , откуда 4,24

0284,0

6931,0

35ln36ln

2ln
==

−
>n . 

Итак, чтобы вероятность выпадения двух шестерок была больше 
2

1
, достаточно подбро-

сить кубик не менее 25 раз. 
 

4. Условная вероятность. Формула полной вероятности. Формула Байеса 
 

Пример 1. Слово папаха составлено из букв разрезной азбуки. Карточки с буквами тща-
тельно перемешаны. Четыре карточки извлекаются по очереди и раскладываются в ряд. 
Какова вероятность получить при этом слово папа? 
Решение. Обозначим через А, В, С, D соответственно события, состоящие в том, что: из-
влечена первая, вторая, третья и четвертая буква слова папа из набора в 6 букв: а, а, а, п, п, 
х. Найдем вероятности событий: А, В/А, С/АВ , D/ABC. 

3

1

6

2
)( ==AP ;  

5

3
)/( =ABP ;  

4

1
)/( =ABCP ;  

3

2
)/( =ABCDP . 

В соответствии с формулой вероятности произведения зависимых событий при п=4 будем 
иметь: 

P(ABCD) = Р(А)Р(В/ А)Р(С / AB)P(D/ ABC) =
30

1

3

2

4

1

5

3

3

1
=⋅⋅⋅ . 

Пример 2. В пяти ящиках находятся одинаковые по размерам и весу шары. В двух ящиках 
- по 6 голубых и 4 красных шара (это ящик состава H1). В двух других ящиках (состава H2) 
- по 8 голубых и 2 красных шара. И в пятом ящике (состава H3) - 8 красных и 2 голубых 
шара. Наудачу выбирается ящик, и из него извлекается шар. Какова вероятность того, что 
извлеченный шар оказался красным? 
Решение. Событие, состоящее в том, что «извлечен красный шар»   обозначим   через   А.   

Из условия задачи следует, что 4,0
5

2
)( 1 ==HP , 4,0

5

2
)( 2 ==HP , 2,0

5

1
)( 3 ==HP . 

Вероятность вынуть красный шар, если известно, что взят ящик первого состава Н2, будет 
определяться так: 
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4,0
10

4
)/( 1 ==HAP  

Вероятность извлечь красный шар, если известно, что взят ящик второго состава H2, 
будет 

2,0
10

2
)/( 2 ==HAP . Вероятность извлечь красный шар, если известно, что взят 

ящик третьего состава Н3, будет 8,0
10

8
)/( 3 ==HAP . 

При n = 3 находим искомую вероятность 
4,08,02,02,04,04,04,0)/()()/()()/()()( 332211 =⋅+⋅+⋅=⋅+⋅+⋅= HAPHPHAPHPHAPHPAP

Пример 3. Партия электрических лампочек на 20% изготовлена первым заводом, на 30% - 
вторым, на 50% - третьим. Вероятность выпуска бракованных лампочек соответственно 
равны: q] = 0,01, q2 = 0,005 , q3 = 0,006 . Найти вероятность того, что наудачу взятая из пар-
тии лампочка окажется стандартной. 

Решение. Введем обозначения: А - событие, состоящее в том, что «из партии взята 
стандартная лампочка», H1 - событие, состоящее в том, что «взятая лампочка изготовлена 
первым заводом», Н2 - событие, состоящее в том, что «взятая лампочка изготовлена вторым 
заводом», Н3 - событие, состоящее в том, что взятая лампочка изготовлена «третьим заво-
дом». Найдем условные вероятности 

Р(А/Нi), (i= 1,2,3) по формуле Р(А/Нi) =1-Р( A / Нi), где A  - событие, противополож-
ное событию А (взята нестандартная лампочка): 

99,001,01)/(1)/( 11 =−=−= HAPHAP , 

995,0005,01)/(1)/( 22 =−=−= HAPHAP , 

994,0006,01)/(1)/( 33 =−=−= HAPHAP . 

Из условия задачи следует, что Р(Н1) = 0,2, Р(Н2) = 0,3, Р(Н3) = 0,5. 
Получим по формуле полной вероятности:  

9935,0994,05,0995,03,099,02,0

)/()()/()()/()()( 332211

=⋅+⋅+⋅=

=⋅+⋅+⋅= HAPHPHAPHPHAPHPAP
 

Пример 4. В пяти ящиках находятся одинаковые по весу и размерам шары. В двух 
ящиках - по 6 зеленых и 4 красных шара (по ящик состава H1). В двух других ящиках (со-
става H2) - по 8 зеленых и 2 красных шара. В одном ящике (состава H3 ) - 2 зеленых и 8 
красных шаров. Наудачу выбирается ящик, и из него извлекается шар. Извлеченный шар 
оказался голубым. Какова вероятность того, что зеленый шар извлечен из ящика первого 
состава? 

Решение. Обозначим через А событие, состоящее в том, что и i ящика извлечен голу-
бой шар. Из условия задачи следует, что 

4,0
5

2
)( 1 ==HP ; 4,0

5

2
)( 2 ==HP ; 2,0

5

1
)( 3 ==HP . 

Вероятность вынуть голубой шар, если известно, что взят ящик состава H1,H2,...,H3 
соответственно будут равны: 

6,0
10

6
)/( 1 ==HAP ; 

8,0
10

8
)/( 2 ==HAP ; 

2,0
10

2
)/( 1 ==HAP . 

По формуле полной вероятности находим Р(А) = 0,4 • 0,6 + 0,4 • 0,8 + 0,2 • 0,2 = 0,6 . 
По формуле Бейеса найдем искомую вероятность 
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0,4
6,0

6,04,0

)(

)/()(
)/( 11

1 =
⋅

==
AP

HAPHP
AHP . 

 
5. Схема повторных испытаний. Формула Бернулли.  Формула Пуассона.  Ло-

кальная формулы Лапласа.  Интегральная формула Лапласа 
 

Пример 1. Частица находится на прямой в начале координат. Под действием слу-

чайных толчков частица каждую секунду перемещается вправо (с вероятностью 
3

1
) или 

влево (с вероятностью 
3

2
) на единицу масштаба. Найти вероятность того, что через 4 се-

кунды частица вернется в начало координат. 
Решение. Через 4 секунды частица вернется в начало координат в том случае, если она 

переместится ровно два раза вправо (и, значит, два раза влево). По формуле Бернулли най-
дем вероятность того, что из четырех независимых перемещений частицы ровно два пере-
мещения будут вправо: 

4=n   2=k   
3

1
=p   

3

2
=q .  296,0

81

24

9

4

9

1
6

3

2

3

1
)2(4

22
2
4 ≈=⋅⋅=







⋅






=CP . 

Пример 2. К электросети подключено 36 приборов, каждый мощностью 5 киловатт и 
потребляет в данный момент энергию с вероятностью 0,2. Найти вероятность того, что по-
требляемая в данный момент мощность: 

а) составит ровно 50 киловатт; 
б) превзойдет 50 киловатт. 
Решение. В случае а) надо найти вероятность того, что из 36 приборов работают ровно 

10. Применим локальную теорему Лапласа: 36=n   10=k   2,0=p   8,0=q . 

24=npq  4,1=
−

=
npq

npk
x .  0624,0)4,1(

4,2

1
)(

1
)10(36 =⋅== ϕϕ x

npq
P . 

Значение функции локальной функции Лапласа φ(х) взято из таблицы приложений. 
В случае б) находим вероятность P36(k ≥ 10) того, что работают более десяти приборов. 

Применяем для решения этой части задачи интегральную теорему Лапласа. Находим сна-
чала значения x1, x2: 

4,11 =
−

=
npq

npk
x , 122 =

−
=

npq

npn
x / 

Тогда искомая вероятность будет: 
08808,04192,05,0)()()10( 1236 =−=Φ−Φ=≥ xxkP , 

Значения функции Лапласа ∫=Φ
x t

dtex
0

2

2

2

1
)(

π
 взяты из таблицы приложений. 

Пример 3. В нерестовике содержится 200 рыб - производителей вида А. Вероятность 

отдачи икры в искусственных условиях рыбы вида А равна 
4

3
. Требуется найти вероят-

ность того, что 
икру отдадут 150 рыб. 
Решение. Вероятность того, что ровно 150 рыб из 200 отдадут икру, найдем, исполь-

зуя локальную теорему Лапласа 

)(
1

2

11
)( 2

2

x
npq

e
npq

kP
x

n ϕ
π

⋅=⋅= , где 
npq

npk
x

−
= . 
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Значение функции φ(х) возьмем из таблицы. Находим: 
п = 200, npq = 200 · 0,75 · 0,25 = 150 · 0,25 = 0,375 . 

т = к = пр = 150 12,6=npq . 

р = 0,75       0
12,6

150150
=

−
=x . 

q = 0,25. 

Получим: 07,0
12,6

3989,0
)0(

12,6

1
)150(200 ≈=⋅= ϕP . 

Пример 4. В партии из 400 деталей 80% - стандартных. Найти границы, в которых с 
вероятностью 0,9544 заключена доля стандартных деталей. 

Решение. Воспользуемся формулой, являющейся частным случаем формулы Муав-
ра-Лапласа 











Φ=≤−

pq

n
p

n

m
P

ε
ε 2)( , 

где т/п - доля числа наступивших событий А в п испытаниях, 
п - число испытаний, 
р - вероятность наступления события А в одном испытании,  
ε - величина отклонения доли т/п от вероятности р,  
q = 1 - р - вероятность ненаступления события А в одном испытании. 
Для данной задачи А - событие, состоящее в том, что деталь стандартная, п = 400; р = 

0,8; q=0,2; Р = 0,9544, величину ε нужно найти. 

Итак: 4772,0)50(
2,08,0

400
29544,0 =⋅Φ⇔











⋅
Φ= ε

ε
. 

По таблице- приложений значений функции Лапласа Ф(х) находим, что ε · 50 = 2, 
следовательно, ε = 0,04. Таким образом, |m/n - 0,8| < 0,04 и 0,76 < т/п < 0,84 . 
 

6. Простейший поток событий. Вероятность случайного события с заданной 
интенсивностью 
 
Пример 1. Среднее число заявок, поступающих на предприятие бытового обслуживания 
за 1 час, равно трем. Найти вероятность того, что за 2 часа поступит 5 заявок. Предполага-
ется, что поток заявок - простейший.  
Решение. По условию λ = 3, t =2 ,  k = 5. Воспользуемся формулой 

!

)(
)(

k

et
kP

tk

t

λλ −

= . 

Искомая вероятность того, что за 2 часа поступит 5 заявок, равна 

268,0
120

00248,0)6(
)5(

5

2 ≈
⋅

=P . 

Пример 2. Среднее число заявок, поступающих на АТС в одну минуту, равно двум. Найти 
вероятности того, что за четыре минуты поступит: 
а) три вызова; 
б) менее трех вызовов; 
в) не менее трех вызовов. 

Решение, а) По условию λ = 3, t = 2 , k=5. Воспользуемся формулой: 
!

)(
)(

k

et
kP

tk

t

λλ −

=    

Подставив данные условия задачи, получим: 03,0
6

000335,0512

!3

8
)3(

83

4 ≈
⋅

=
⋅

=
−e

P . 
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б) Найдем вероятность того, что за четыре минуты поступит менее трех вызовов, т.е. ни 
одного вызова, или один вызов, или два вызова. Поскольку эти события несовместны, 
применим теорему суммы несовместных событий: 

01,0000335,041
!2

8
8)2()1()0()3(

82
88

4444 ≈⋅=
⋅

⋅⋅+=++=<
−

−− e
eePPPkP . 

в) Найдем вероятность того, что за четыре минуты поступит не менее трех вызовов: так 
как события «поступило менее трех вызовов» и «поступило не менее трех вызовов» - про-
тивоположные, то сумма вероятностей этих событий равна единице: Р4(k <3) + Р4(k≥3) = 
1. Поэтому 99,001,01)]2()1()0([1)3(1)3( 44444 =−=++−=<−=≥ PPPkPkP . 

 
2.1.3 Результаты и выводы:  

В результате проведенного занятия студенты: 
- освоили основные понятия комбинаторики, теории случайных событий, класси-

фикацию случайных событий; 
- усвоили основные правила, применяемые в теории случайных событий; 
- выработали навыки по вычислению вероятностей случайных событий, их суммы, 

произведения. 
- освоили понятие условная вероятность, формулу полной вероятности, формулы 

Байеса, Бернулли, Лапласа, Пуассона; 
- усвоили основные правила применения формул Байеса, Бернулли, Лапласа, Пуас-

сона, работы с простейшим потоком событий; 
- выработали навыки по вычислению вероятностей случайных событий в схеме по-

вторных испытаний, в простейшем потоке с заданной интенсивностью, работы с таблица-
ми функций Гаусса и Лапласа. 
 

2.2 Практическое занятие № 2 (2 часа). 

Тема: «Понятие случайной величины примеры. Виды случайных величин. Закон 

распределения вероятностей. Функция распределения случайных величин. Свойст-

ва. Плотность распределения вероятностей. Числовые характеристики: математиче-

ское ожидание, свойства; дисперсия, свойства; среднее квадратичное отклонение и 

его свойства»               

2.2.1 Задание для работы: 

1.Случайные величины, их классификация. Закон распределения случайной вели-

чины. Ряд распределения. 

3. Функция распределения.  Плотность распределения. 

4.  Числовые характеристики ДСВ.  Числовые характеристики НСВ. 

5. Свойства числовых характеристик, их интерпретация. 

2.2.2 Краткое описание проводимого занятия: 

1. Случайные величины, их классификация. Закон распределения случайной 

величины. Ряд распределения. 

Пример 1. Сырье на завод привозят от 3-х независимо работающих поставщиков на 
автомашинах. Вероятность прибытия автомашины от первого поставщика равна 0,2; от 



66 
 

второго - 0,3; от третьего - 0,1. Составить закон распределения числа прибывших машин. 
Найти математическое ожидание М(Х) , дисперсию D(X) и среднее квадратическое откло-
нение σ(Х) случайной величины X. Найти функцию распределения и построить ее график. 
Решение. Для нахождения числовых характеристик дискретной случайной величины X - 
числа прибывших автомашин, необходимо составить закон ее распределения, который в 
общем вине записывается в виде таблицы так: 

X х1 х2 … xn 

P p1 p2 … pn 

Где хi, - возможные значения дискретной случайной величины X, Pt = Р(Х = хi) - вероят-

ность того, что случайная величина X примет значение хi, причем ∑
=

=
n

i
ip

1

1. Для данного 

случая имеем:  
хi 0 1 2 3 

pi p1 p2 p3 p4 

 
Надо найти значения вероятностей pi . Равенство X = 0 означает, что на завод не прибудет ни 
одна из трех автомашин. Следовательно: p1= р(Х = 0) = 0,8 ·0,7 ·0,9 = 0,504 (по теореме ум-
ножения вероятностей независимых событий). 
Равенство X = 1 означает, что на завод прибудет только одна из трех автомашин. Пользуясь 
теоремой сложения вероятностей несовместных событий и теоремой умножения незави-
симых событий, найдем значение р2: 
p2 = р(Х = 1) = 0,2 · 0,7 · 0,9 + 0,8 · 0,3 · 0,9 + 0,8 · 0,7 · 0,1 = 0,398. 
Рассуждая аналогично, найдем р3 и р4: 
р3 = 0,2 · 0,3 · 0,9 + 0,8 · 0,3 · 0,1 + 0,2 · 0,7 · 0,1 = 0,092, 
р4 = 0,2 · 0,3 · 0,1 = 0,006. 
Запишем закон распределения: 

хi 0 1 2 3 

pi 0,504 0,398 0,092 0,006 

 
2. Функция распределения.  Плотность распределения 

 
Пример. Случайная величина X задана интегральной функцией (функцией распределе-
ния) F(X). Требуется найти: 
а) дифференциальную функцию (плотность вероятности); 
б) математическое ожидание и дисперсию X; 

в) построить графики интегральной и дифференциальной функций 








>

≤<

≤

=

1     , 1

10  ,

0    ,0

)( 2

x

xx

x

xF . 

Решение. а) между интегральной и дифференциальной функциями непрерывной случайной 
величины выполняется соотношение F'({x) = f(x). В данном случае будем иметь 









>

≤<

≤

=

1     , 0

10  ,2

0    ,0

)(

x

xx

x

xF  

 
3.  Числовые характеристики ДСВ.  Числовые характеристики НСВ 
 

Пример 1 
Запишем закон распределения: 



 

хi 

pi 

Для вычисления математич
ского отклонения σ(Х) восп
М(Х) = 0 · 0,504 +1 · 0,398 + 2 · 
D(X) = 0 · 0,504 +1 · 0,398 + 4 · 0,
σ(Х)= 0,678. 
Найдем функцию распределе
если х ≤ 0, то F(x) = 0,  
если 0 < х ≤ 1, то F(x) = 0,5
если 1 < х ≤ 2, то F(x) = 0,5
если 2 < х ≤3, то F(x) = 0,90
если х > 3 , то F{x) = 0,994 + 0

Таким образом:  














=xF

1

)(

Построим график этой функци

Пример 2. Случайная вели
ния) F(X). Требуется найти
а) математическое ожидани

б) построить графики интег

а) числовые характеристик
лам: 

∫
∞

∞−

= dxxxfXM )()( , )(XD

Тогда имеем 

20)(
1

0

0

⋅+⋅= ∫∫
∞−

xdxxdxxXM

20)(
1

0

2
0

2 ⋅+⋅= ∫∫
∞−

xdxdxxXD

б) строим графики фун
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0 1 2 3 

0,504 0,398 0,092 0,006

матического ожидания М(Х), дисперсии  Р(Х) 
воспользуемся формулами приведенными выш

8 + 2 · 0,092 + 3 · 0,06 = 0,6 ,  
 + 4 · 0,092 + 9 · 0,06 - 0,62 = 0,46, 

ределения F(x) = Р(Х < х):  

0,504,  
= 0,504 + 0,398 = 0,902,  

0,902 + 0,092 = 0,994 ,  
994 + 0,006 = 1.  














<

≤<

≤<

≤<

≤

x

x

x

x

x

3 при         1

32 при 0,994

21 при 902,0

10 при 504,0

0 при        0

 

функции: 

 
я величина X задана интегральной функцией (ф
найти: 
идание и дисперсию X; 

 интегральной и дифференциальной функций F

истики непрерывной случайной величины опр

∫
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и функций 

 

,006 

(Х) и среднего квадратиче-
и выше: 

ией (функцией распределе-
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ы определяются по форму-
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4. Свойства числовых характеристик, их интерпретация 

 
Пример. Заданы математическое ожидание а и среднее квадратическое отклонение  σ  
нормально распределенной служимой величины X: а = 8, σ = 2, α=4, β = 14, δ = 6. Требует-
ся найти:  
а) вероятность того, что X примет значение, принадлежащее интервалу (4;14); 
б)  вероятность того,  что абсолютная  величина отклонения X-a окажется меньше δ. 
Решение. а) вероятность того, что нормально распределенная случайная величина примет 

значение, принадлежащее интервалу (α; β), равна 






 −
Φ−







 −
Φ=<<

σ
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σ
β

βα
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xP )(  

≈Φ+Φ=






 −
Φ−







 −
Φ=<< )2()3(

2

84

2

814
)144( xP (по таблице значений функции Ф(х)≈ 

0,4986+0,4772 = 0,9758;  
б) вероятность того, что абсолютная величина отклонения меньше положительного числа 

δ равна 






Φ=<−
σ
δ

δ 2)( axP . В данном случае имеем 

9972,04986,02)3(2
2

6
2)68( =⋅≈Φ=







Φ=<−xP . 

 

2.2.3 Результаты и выводы: 

В результате проведенного занятия студенты: 
- освоили основные понятия теории случайных величин, классификации, случай-

ных величин, понятие закона, ряда, функции, плотности распределения; 
- усвоили основные правила нахождения функции распределения вероятностей, 

плотности распределения вероятностей; 
- выработали навыки по вычислению вероятности попадания в интервал ДСВ, 

НСВ; числовых характеристик случайных величин; применению свойств числовых харак-
теристик. 

2.3 Практическое занятие № 3 (2 часа). 

Тема: «Законы распределения ДСВ: биноминальный и Пуассона. Законы распреде-

ления вероятностей НСВ: равномерное распределение, показательное распределе-

ние. Нормальное распределение вероятностей НСВ. Правило трех сигм» 

2.3.1 Задание для работы: 

1. Биномиальное распределение, его свойства, числовые характеристики. 

2. Распределение Пуассона, его свойства, числовые характеристики. 

3. Равномерное распределение, его свойства, числовые характеристики. 

4. Показательное распределение, его свойства, числовые характеристики. 

5. Нормальное распределение, его свойства, числовые характеристики. 

  3.3.2 Краткое описание проводимого занятия: 

1. Биномиальное распределение, его свойства, числовые характеристики. 



 

Рассмотрим осущес
независимых испытаний, в

роятность , не зав
ются только два исхода: 

1) событие А – успе

с постоянными веро
  
Введем в рассмотре

события А при п испытани

Величина Х может приним

Вероятность 
находится по формуле Берн

Закон распределени
Бернулли (1), называется 
(q=1-p), входящие в форму
ния. Название «биномиаль

(1) это общий член разложе

 А так как p+q=1, то

Это означает, что 

В равенстве (3) пер

испытаниях событие А не
ность того, что событие А
появится два раза и након
вится ровно п раз. 

Биномиальный зако
ют в виде таблицы: 

    
1  

  

  n    

 Основные числовые

1) математическое ож
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существление схемы Бернулли, т.е. производи
ний, в каждом из которых данное событие А и

 не зависящую от номера испытания. И для каж

успех;  2) событие - неуспех, 

и вероятностями

смотрение дискретную случайную величину Х
ытаниях» и найдем закон распределения этой

ринимать значения 

того, что случайную величину
е Бернулли 

(1)
еления дискретной случайной величины, опр

ается биномиальным законом распределени
формулу (1) называются параметрами биноми
миальное распределение» связано с тем, что пр

азложения бинома Ньютона ,т.е. 

=1, то правая часть равенства (2) равна 1 

 

(4) 
) первый член qn в правой части означает веро

 А не появится ни разу, второй член 
тие А появится один раз, третий член – вероят
наконец, последний член рп – вероятность того

й закон распределения дискретной случайной в

k  
    

  п  

ловые характеристики биномиального распреде

ое ожидание (5) 

зводится серия повторных 
е А имеет одну и ту же ве-

ля каждого испытания име-

 

ину Х – «число появлений 
 этой случайной величины. 

 

чину Х примет значение xk 

(1) 
, определяемый формулой 

еления. Постоянные п и р 
иномиального распределе-
то правая часть в равенстве 

(2) 

(3) 

т вероятность того, что в п 

вероят-
вероятность, что событие А 
ь того, что событие А поя-

йной величины представля-

спределения: 



 

2) дисперсия 

3) среднее квадратиче
4) наивероятнейшее

ном п соответствует макси
При заданных п и р э

если число пр+р не я

пр+р – целое число, то k0 
 Биномиальный закон

теории и практике статист
служивания, в теории наде
когда имеет место последо

Пример 1: Проверко
дефекты 90 штук в средне
числа качественных прибо

  
Решение: Событие А

гад прибор качественный»
пределения: 

Случайная величина 

Х -
(1): 

 
 

Таким образом, закон
взятых 4: 

          

  ,0001  ,0036  ,0486  ,29
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(6) 

ратическое отклонение (7) 
ейшее число появление события k0 – это число

максимальная биномиальная вероятность 
 и р это число определяется неравенствами 

(8) 
р не является целым, то k0 равно целой части

 имеет два значения 
 закон распределения вероятностей применяетс
атистического контроля качества продукции, в
и надежности и т.д. Этот закон может применя
следовательность независимых испытаний. 
веркой качества установлено, что из каждых 10
реднем. Составить биномиальный закон распре
приборов из приобретенных наугад 4. 

тие А – появление которого проверяется это 
ный». По условию задачи основные параметры

чина Х – число качественных приборов из взят

Найдем вероятности зна

 

 закон распределения величины Х - число каче

   

,2916  ,6561  

 число которому при задан-

 

части этого числа, если же 

 
няется в теории стрельбы, в 

ции, в теории массового об-
именяться во всех случаях, 

ых 100 приборов не имеют 
аспределения вероятностей 

 это – «приобретенный нау-
аметры биномиального рас-

 
з взятых 4, значит значения 

ти значений Х по формуле 

 
 качественных приборов из 



 

 Для проверки прав
ма вероятностей 

Ответ: Закон распред

          

  ,0001  ,0036  ,0486  ,29

Пример 2: Применяем
Пятеро больных применял
ших, а так же числовые хар
5 больных применявших да

Решение: Событие А
параметры биномиального

По формуле (8) найд

т.е. . 
Теперь найдем число

применявших данный мето

1) математическое ож

2) дисперсия по форм

3) среднее квадратиче

Ответ: 
 
2. Распределение Пу
 
Приведем примеры, п

ну Пуассона: 
· Автоматическая тел

кова вероятность того, что
число вызовов за Данную м

· Автодорожная инсп
ном участке дороги. Како
ровно M дорожных аварий
Пуассона. 

Аналогичные пример
та, неделя), но и при учете
ток На страницу текста.

Отличительные черт
примере временных интерв
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правильности построения распределения пров

спределения      

   

,2916  ,6561  

еняемый метод лечения приводит к выздоровл
меняли данный метод. Найти наивероятнейш
ые характеристики случайной величины Х – чи

их данный метод. 
тие А - больной применявший лечение выздор
ьного распределения: 

) найдем наивероятнейшее число выздоро

получили не целое число значит

 числовые характеристики Х – число выздоро
й метод лечения: 

ое ожидание по формуле (5) 

 формуле (6) 

ратическое отклонение по формуле (7) 

ие Пуассона, его свойства, числовые характе

еры, приводящие к случайным величинам, рас

ая телефонная станция получает в среднем за м
о, что за данную минуту она получит ровно 

ую минуту распределено по закону Пуассона.
 инспекция регистрирует количество аврий за 

 Какова вероятность того, что в течение данно
аварий? Случайное число аварий За неделю ра

римеры можно привести не только для временн
 учете дефектов дорожного покрытия На килом

. 
 черты эксперимента, приводящего к распред
нтервалов): 

 проверим чему равна сум-

 

оровлению в 95 % случаев. 
нейшее число выздоровев-

число выздоровевших из 

ыздоровел, тогда основные 

 

здоровевших из 5. Найдем 

ачит равно целой части, 

здоровевших из 5 больных 

 

 

 

 

рактеристики 

м, распределенным по зако-

м за минуту А вызовов. Ка-
вно M вызовов? Случайное 
сона. 
ий за неделю на определен-
 данной недели произойдет 

распределено по закону 

еменных интервалов (мину-
илометр пути или опеча-

спределению Пуассона (на 
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1. каждый малый интервал времени может рассматриваться как испытание, резуль-
татом которого служит либо «успех» - поступление телефонного вызова, либо «неудача». 
Интервалы столь малы, что может быть только один «успех» в одном интервале, вероят-
ность которого мала и неизменна. 

2. Число «успехов» в одном большом интервале не зависит от их числа в другом. То 
есть попадание «успехов» в неперекрывающиеся интервалы – события независимые, и 
«успехи» беспорядочно разбросаны по временным промежуткам; 

3. Среднее число «успехов» в большом интервале для разных интервалов постоянно 
на протяжении всего времени. 

Число «успехов» на заданном интервале будет случайной величиной, распределен-
ной по закону Пуассона. Случайное число аварий за неделю может принимать значения 0, 
1, 2, 3, … (верхнего предела нет). Вероятность того, что случайная величина X, распреде-
ленная по закону Пуассона примет значение M, вычисляется по известной формуле Пуас-
сона: 

, M = 0, 1, 2, … 

При условии закон распределения Пуассона явля-
ется предельным случаем биномиального закона. Так как при этом вероятность p события 
A в каждом испытании мала, то закон распределения Пуассона называют часто законом 
редких явлений. 

Наряду с "предельным" случаем биномиального распределения закон Пуассона мо-
жет возникнуть и в ряде других случаев. Так для простейшего потока событий число со-
бытий, попадающих на произвольный отрезок времени, есть случайная величина, имею-
щая пуассоновское распределение. Также по закону Пуассона распределены, например, 
число рождения четверней, число сбоев на автоматической линии, число отказов сложной 
системы в "нормальном режиме", число "требований на обслуживание", поступивших в 
единицу времени в системах массового обслуживания, и др. 

Замечание. Если случайная величина представляет собой сумму двух независимых 
случайных величин, распределённых по закону Пуассона, то она также распределена по 
закону Пуассона. 

Числовые характеристики распределения Пуассона. 
Математическое ожидание равно Дисперсии и равно параметру распределения А: 

М(Х)= А, D(X)= А. 
 

3. Равномерное распределение, его свойства, числовые характеристики 
 

На практике встречаются случайные величины, о которых заранее известно, что они 
могут принять какое-либо значение в строго определенных границах, причем в этих гра-
ницах все значения случайной величины имеют одинаковую вероятность (обладают одной 
и той же плотностью вероятностей).  

Например, при поломке часов остановившаяся минутная стрелка будет с одинаковой 
вероятностью (плотностью вероятности) показывать время, прошедшее от начала данного 
часа до поломки часов. Это время является случайной величиной, принимающей с одина-
ковой плотностью вероятности значения, которые не выходят за границы, определенные 
продолжительностью одного часа. К подобным случайным величинам относится также и 
погрешность округления. Про такие величины говорят, что они распределены равномер-
но, т. е. имеют равномерное распределение.  

Определение: Непрерывная случайная величина Х имеет равномерное распределение 
на отрезке [а, в], если на этом отрезке плотность распределения вероятности случайной 
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величины постоянна, т. е. если дифференциальная функция распределения f(х) имеет сле-
дующий вид:  

 

Иногда это распределение называют законом равномерной плотности. Про вели-
чину, которая имеет равномерное распределение на некотором отрезке, будем говорить, 
что она распределена равномерно на этом отрезке.  

Найдем значение постоянной с. Так как площадь, ограниченная кривой распределения 
и осью Ох, равна 1, то  

 
откуда с=1/(b-a).  
Теперь функцию f(x) можно представить в виде 

   
Построим функцию распределения F(x), для чего найдем выражение F(x) на интервале 

[a, b]:  

 

 
Графики функций f(x) и F(x) имеют вид:  

 
Найдем числовые характеристики.  
Используя формулу для вычисления математического ожидания НСВ, имеем:  

 
Таким образом, математическое ожидание случайной величины, равномерно рас-

пределенной на отрезке [a, b] совпадает с серединой этого отрезка.  
Найдем дисперсию равномерно распределенной случайной величины:  

 
откуда сразу же следует, что среднее квадратиче-

ское отклонение:  

 
Найдем теперь вероятность попадания значения 

случайной величины, имеющей равномерное распре-
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деление, на интервал (α,β), принадлежащий целиком отрезку [a, b]: 

 
Геометрически эта вероятность представляет собой площадь заштрихованного 

прямоугольника. Числа а и b называются параметрами распределения и однозначно опре-
деляют равномерное распределение.  

Пример. Автобусы некоторого маршрута идут строго по расписанию. Интервал 
движения 5 минут. Найти вероятность того, что пассажир, подошедший к остановке. Бу-
дет ожидать очередной автобус менее 3 минут.  

Решение:  
СВ- время ожидания автобуса имеет равномерное распределение. Тогда искомая 

вероятность будет равна:
 

 

Пример. Ребро куба х измерено приближенно. Причем 
   

Рассматривая ребро куба как случайную величину, распределенную равномерно в 
интервале (a, b), найти математическое ожидание и дисперсию объема куба.  

Решение: Объем куба- случайная величина, определяемая выражением У= Х3. То-
гда математическое ожидание равно: 

 

Дисперсия: 

 

4. Показательное распределение, его свойства, числовые характеристики 
Определение: Непрерывная случайная величина X, функция плотности которой 

задается выражением  

 

называется случайной величиной, имеющей показательное, или экспоненциальное, 
распределение.  

Величина срока службы различных устройств и времени безотказной работы от-
дельных элементов этих устройств при выполнении определенных условий обычно под-
чиняется показательному распределению. Другими словами, величина промежутка време-
ни между появлениями двух последовательных редких событий подчиняется зачастую по-
казательному распределению.  

Как видно из формулы , показательное распределение определяется только одним 
параметром µ.  

Найдем функцию распределения показательного закона, используя свойства диф-
ференциальной функции распределения:  

 
Графики дифференциальной и интегральной функций показательного распределе-

ния имеют вид:  
4.2. Числовые характе-

ристики.  
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Используя формулы для вычисления математического ожидания, дисперсии и 
среднего квадратического отклонения нетрудно убедится, что для показательного распре-
деления 

 
 

 .  

Таким образом, для показательного распределения характерно, что среднее квадра-
тическое отклонение численно равно математическому ожиданию.  

Найдем вероятность попадания СВ в интервал (a,b):  
 

4.3. Функция надежности.  
Пусть некоторое устройство начинает работать в момент времени t0 = 0, а по исте-

чении времени длительностью t происходит отказ. Обозначим через Т НСВ - длительность 
времени безотказной работы устройства. Если устройство проработало безотказно время 
меньшее t, то, следовательно, за время длительностью t наступит отказ. Тогда функция 
распределения F(t)=P(T<t)=1- e-µt определяет вероятность отказа устройства за время 
t.  

Найдем вероятность противоположного события - безотказной работы за время t:  
. Функция R(t) называется функцией надежности.  

Выясним смысл числовых характеристик и параметра распределения.  
Математическое ожидание - это среднее время между двумя ближайшими отказами 

устройства, а величина обратная математическому ожиданию (параметр распределения)- 
интенсивность отказов, т.е. количество отказов в единицу времени.  

  Пример. Время безотказной работы устройства распределено по закону  
  

Найти среднее время безотказной работы устройства, вероятность того, что уст-
ройство не откажет за среднее время безотказной работы. Найти вероятность отказа за 
время t= 100 часов.  

Решение:  По условию интенсивность отказов µ =0,02. Тогда среднее время между 
двумя отказами, т.е. математическое ожидание М(Х)=1/0,02=50часов. Вероятность безот-
казной работы за этот промежуток времени вычислим по функции надежности:  

 
По функции F(t) вычислим вероятность отказа за время t =100 часов:  

 
 

5. Нормальное распределение, его свойства, числовые характеристики 
 
5.1. Интегральная и дифференциальная функции распределения. Вероятность 

попадания в заданный интервал.  
Одним из наиболее часто встречающихся распределений является нормальное рас-

пределение. Оно играет большую роль в теории вероятностей и занимает среди других 
распределений особое положение. Нормальный закон распределения является предель-
ным законом, к которому приближаются другие законы распределения при часто встре-
чающихся аналогичных условиях.  

Если предоставляется возможность рассматривать некоторую случайную величину 
как сумму достаточно большого числа других случайных величин, то данная случайная 
величина обычно подчиняется нормальному закону распределения. Суммируемые слу-
чайные величины могут подчиняться каким угодно распределениям, но при этом должно 
выполняться условие их независимости (или слабой зависимости). При соблюдении неко-
торых не очень жестких условий указанная сумма случайных величин подчиняется при-
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ближенно нормальному закону распределения и тем точнее, чем большее количество ве-
личин суммируется.  

Ни одна из суммируемых случайных величин не должна резко отличаться от дру-
гих, т. е. каждая из них должна играть в общей сумме примерно одинаковую роль и не 
иметь исключительно большую по сравнению с другими величинами дисперсию.  

Для примера рассмотрим изготовление некоторой детали на станке-автомате. Раз-
меры изготовленных деталей несколько отличаются от требуемых. Это отклонение разме-
ров от стандарта вызывается различными причинами, которые более или менее независи-
мы друг от друга. К ним могут относиться: неравномерный режим обработки детали; не-
однородность обрабатываемого материала; неточность установки заготовки в станке; из-
нос режущего инструмента и деталей станков; упругие деформаций узлов станка; состоя-
ние микроклимата в цехе; колебание напряжения в электросети и т. д. Каждая из перечис-
ленных и подобных им причин влияет на отклонение размера изготовляемой детали от 
стандарта. Таким образом, общее отклонение размера, фиксируемое измерительным при-
бором, является суммой большего числа отклонений, обусловленных различными причи-
нами. Если ни одна из этих причин не является доминирующей, то суммарное отклонение 
является случайной величиной, имеющей нормальный закон распределения.  

Так как нормальному закону подчиняются только непрерывные случайные величины, 
то это распределение можно задать в виде плотности распределения вероятности.  

Определение: Непрерывная случайная величина Х имеет нормальное распределение 
(распределена по нормальному закону), если плотность распределения вероятности f(x) 

имеет вид   

где а и σ—некоторые постоянные, называемые параметрами нормального распределе-
ния.  

Функция распределения F(x) в рассматриваемом случае принимает вид  

 
Параметр а- есть математическое ожидание НСВХ, имеющей нормальное распре-

деление, σ - среднее квадратическое отклонение, тогда дисперсия равна   

 Выясним геометрический смысл параметров распределения а и σ. Для этого ис-
следуем поведение функции f(x). График функции f(x) называется нормальной кривой.  

Рассмотрим свойства функции f(x):  
1°. Областью определения функции f(x) является вся числовая ось.  
2°. Функция f{x) может принимать только положительные значения, т. е. f(x}>0.  
3°. Предел функции f(x) при неограниченном возрастании |х| равен нулю, т. е. ось ОХ 

является горизонтальной асимптотой графика 
функции.  

      4°. Функция f{x) имеет в точке х = a  

максимум, равный   

5°. График функции f(x) симметричен относи-
тельно прямой х = а. 

6°. Нормальная кривая в точках х = а +σ  име-

ет перегиб,    
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На основании доказанных свойств построим график плотности нормального рас-
пределения f(x).  

Как видно из рисунка, нормальная кривая имеет колоколообразную форму. Эта 
форма является отличительной чертой нормального распределения. Иногда нормальную 
кривую называют кривой Гаусса.  

При изменении параметра а форма нормальной кривой не изменяется. В этом слу-
чае, если математическое ожидание (параметр а) уменьшилось или увеличилось, график 
нормальной кривой сдвигается влево или вправо.  

При изменении параметра  σ изменяется форма нормальной кривой. Если этот па-
раметр увеличивается, то максимальное значение  функции f(x) убывает, и наоборот. Так 
как площадь, ограниченная кривой распределения и осью Ох, должна быть постоянной и 
равной 1, то с увеличением параметра  кривая приближается к оси Ох и растягивается 
вдоль нее, а с уменьшением σ  кривая стягивается к прямой х=а .   

    Использование формул  f(x) и F(x) для практиче-
ских расчетов затруднительно. Но решение задач по этим  
формулам  можно упростить, если от нормального рас-
пределения с произвольными параметрами а и σ перейти  
к нормальному распределению с параметрами а=0, σ = 1.  

Функция плотности нормального распределения 
f(x) с параметрами а=0, σ  =1 называется плотностью 
стандартной нормальной случайной величины и ее гра-
фик имеет вид: 

Функция плотности и интегральная функ-
ция стандартной нормальной СВ будут иметь вид:  

 

Для вычисления вероятности попадания СВ в 
интервал (α, β) воспользуемся функцией    Лапла-

са:  

Перейдем к стандартной нормальной случайной величине   
 

  

Тогда    

Значения функции Ф(u) необходимо взять из таблицы приложений «Таблица зна-
чений функции Ф(х)» .  

Пример. Случайная величина Х распределена по нормальному закону. Математи-
ческое ожидание и среднее квадратическое отклонение этой величины соответственно 
равны 30 и 10. Найти вероятность того, что Х примет значение, принадлежащее интервалу 
(10, 50).  

Решение:  
 По условию:α  =10, β=50, а=30, σ =10, следовательно,  

 
По таблице находим Ф (2) = 0,4772. Отсюда, искомая вероятность:  

Р(10 < Х < 50) =2⋅0,4772=0,9544. 
5.2. Вычисление вероятности заданного отклонения  
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Часто требуется вычислить вероятность того, что отклонение нормально распреде-
ленной случайной величины Х по абсолютной величине меньше заданного положительно-
го числа δ, т. е. требуется найти вероятность осуществления неравенства  |x —а|<δ.  

Заменим это неравенство равносильным ему двойным неравенством  

 
Тогда получим:  

 
Приняв во внимание равенство:  

(функция Лапласа—нечетная), окончательно имеем 

Вероятность заданного отклонения равна   
На рисунке наглядно показано, что если две слу-

чайные величины нормально распределены и а = 0, то ве-
роятность принять значение, принадлежащее интервалу (-
δ,δ),больше у той величины, которая имеет меньшее зна-
чение δ. Этот факт полностью соответствует вероятност-
ному смыслу параметра σ . 

Пример. Случайная величина Х распределена нор-
мально. Математическое ожидание и среднее квадратиче-
ское отклонение Х соответственно равны 20 и 10. Найти вероятность того, что отклонение 
по абсолютной величине будет меньше трех.  

Решение: Воспользуемся формулой    

 По условию,  

тогда    

5. Правило трех сигм  

Преобразуем формулу      
 

  Введем обозначение
 
 

 Тогда получим:   Если t=3, то  

 
т. е. вероятность того, что отклонение по абсолютной величине будет меньше утроен-

ного среднего квадратического отклонения, равна 0,9973.  
Другими словами, вероятность того, что абсолютная величина отклонения превы-

сит утроенное среднее квадратическое отклонение, очень мала, а именно равна  0,0027=1-
0,9973. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, ис-
ходя из принципа невозможности маловероятных событий, можно считать практически 
невозможными. В этом и состоит сущность правила трех сигм:  

Если случайная величина распределена нормально, то абсолютная величина ее от-
клонения от математического ожидания не превосходит утроенного среднего квадратиче-
ского отклонения.  

На практике правило трех сигм применяют так: если распределение изучаемой слу-
чайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, 
то есть основание предполагать, что изучаемая величина распределена нормально; в про-
тивном случае она не распределена нормально. 

 
2.3.3 Результаты и выводы:  
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В результате проведенного занятия студенты: 
- освоили основные законы распределения ДСВ, НСВ; 
- усвоили основные правила нахождения числовых характеристик случайных вели-

чин, распределенных по частным законам; 
- выработали навыки по вычислению вероятности попадания в интервал ДСВ, 

НСВ, распределенных по частным законам; по применению свойств специально распре-
деленных случайных величин. 

 

2.4 Практическое занятие № 4 (2 часа)  

Тема: «Задачи математической статистики. Статистический материал. Статистиче-

ские параметры распределения. Статистические оценки параметров распределения» 

  2.4.1 Задание для работы: 

1.Первичная обработка статистических данных. 

2. Графическое представление статистических рядов. 

3. Эмпирическая функция распределения статистических рядов. 

4.Числовые характеристики статистического ряда, их свойства. 

2.4.2 Краткое описание проводимого занятия: 

1.Первичная обработка статистических данных 

Пример1. Записать в виде вариационного и статистического рядов выборку 5, 3, 7, 
10, 5, 5, 2, 10, 7, 2, 7, 7, 4, 2, 4. Определить размах выборки.  
Решение. В данном случае объем выборки n = 15. Упорядочим элементы выборки по ве-
личине, получим вариационный ряд 2, 2, 3, 4, 4, 5, 5, 5, 7, 7, 7, 7, 10, 10. Найдем размах 
выборки ω=10-2= 8. Различными в заданной выборке являются элементы z1 = 2, z2 =3, z3 = 
4 , z4 = 5 , z5 = 7 , z6 = 10 ; их частоты соответственно равны n1 = 3, n2=1, n3 = 2, n4 = 3 , n5 = 
4, n6 = 2. Статистический ряд исходной выборки можно записать в виде следующей таб-
лицы: 

zi 2 3 4 5 7 10 
ni 3 1 2 3 4 2 

Для контроля правильности записи находим 15=∑ in . При большом объеме вы-

борки ее элементы рекомендуется объединять в группы (разряды), представляя результа-
ты опытов в виде группированного статистического ряда. В этом случае интервал, со-
держащий все элементы выборки, разбивается на k непересекающихся интервалов. Вы-

числения  упрощаются, если эти интервалы имеют одинаковую длину 
k

b
ω

≈ . В дальней-

шем рассматривается именно этот случай. После того как частичные интервалы выбраны, 
определяют частоты - количество ni элементов выборки, попавших в i-й интервал (эле-
мент, совпадающий с верхней границей интервала, относится к следующему интервалу). 
Получающийся статистический ряд в верхней строке содержит середины zi интервалов 
группировки, а в нижней — частоты ni (i = 1,2,...,k). 

Наряду с частотами одновременно подсчитываются также накопленные частоты 

∑
=

i

j
jn

1

, относительные частоты ni /п и накопленные относительные частоты ∑
=

i

j
j nn

1

/ , i = 

1,2,...,k. Полученные результаты сводятся в таблицу, называемую таблицей частот груп-
пированной выборки. 



 

Следует помнить, чт
числения, которая растет с

Пример 2. Предста
имеющиеся данные выборк
0,3 15,4 17,2 19,2 
15,3 16,8 13,2 20,4 
14,3 20,1 16,8 14,7 
19,3 17,8 16,2 15,7 
10,1 21,1 18,3 14,7 
13,9 19,1 18,5 20,2 
19,5 17,2 19,6 17,8 
17,8 13,5 17,8 11,8 

В данном случае ра
пировки будет b = 13,7/7
зультаты группировки свед

Таблица 1 
Н

омер 
интерва-
ла i 

Гр
аницы 
интервала 

редина
интерв

1 10-
12 

2 12-
14 

3 14-
16 

4 16-
18 

5 18-
20 

6 20-
22 

7 22-
24 

 
2. Графическое пре

 
Пример 1. Построи

функции распределения гру
Решение. По результатам г
Соединяя отрезками ломан
состоит полученная гистогр
Так как середина первого и

дая аналогично, находим, 

скую функцию распределен
1.  
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ить, что группировка выборки вносит погрешно
стет с уменьшением числа интервалов. 
редставить выборку 55 наблюдений в виде та
ыборки на семь интервалов группировки. Выбо

23,3 18,1 21,9 
16,5 19,7 20,5 
20,8 19,5 15,3 
22,8 21,9 12,5 
14,5 18,1 18,4 
23,8 16,7 20,4 
21,3 17,5 19,4 
18,6 19,1  

ае размах выборки ω=23,8 -10,1 = 13,7; тогда д
≈2 . В качестве первого интервала возьмем

сведем в таблицу 1 

Се
едина 
нтервала 

zi 

Ч
астота 

 
ni 

На
коп-
ленная 
частота 

∑
i

От-
носи-
тельная 
частота 

ni /п  

ная 

ная 

11 2 2 0,03
64 

13 4 6 0,07
27 

15 8 14 0,14
55 

17 1
2 

26 0,21
82 

19 1
6 

42 0,29
09 

21 1
0 

52 0,18
18 

23 3 55 0,05
45 

ое представление статистических рядов. 

строить гистограмму и полигон частот, а также
ия группированной выборки из примера 29. 

атам группировки (см. таблицу 1.) строим гисто
ломаной середины верхних оснований прямоуг
истограмма, получаем соответствующий полиго
вого интервала группировки z1 = 11, то )(* =xFn

дим, что 1)(* =xFn  при х > 23 . На полуинтерв

еделения строим по данным третьего и последн

решность в дальнейшие вы-

де таблицы частот, разбив 
 Выборка: 

огда длина интервала груп-
зьмем интервал 10 - 12. Ре-

Накоплен-
 

относитель-
 

частота 
i

0 0364 

0 1091 

0 2546 

0,4728 

0 7637 

0,9455 

1,0000 

также график эмпирической 

 гистограмму частот (рис. 1). 
ямоугольников, из которых 

гон частот (рис. 2).  
0=  при х ≤ 11 . Рассуж-

интервале (11,23] эмпириче-

следнего столбцов таблицы 



 

 
 
 
 
                          Рис.1           

)(* xFn имеет скачки в точк

зультате получаем график 

 
 
 
 
 
 
                             
 

3. Эмпирическая ф
 
Пусть (х1,х2,...,хп) -

ния Fx(x) . Распределением
личины, принимающей зна
цию распределения назыв
обозначают )(* xFn . 

Эмпирическую фун

частот соотношением nF *

ки, для которых выполняет

1)(* =xFn  при х>х(n). На п

кусочно-постоянную функц
Аналогично опреде

ной выборки. 
Значение эмпиричес

дующим утверждением. 
Теорема (Гливенко)

енная по выборке объема 
Тогда для любого х ∈ (- ∞,+

( ))()(*lim <−
∞→

εxFxFP Xn
n

Таким образом, при

шом объеме выборки мож
пределения генеральной со
 

4.Числовые характ
 
Пример 1. Найти ф

и дисперсию для негруппи
Решение. Математи

по формуле  ∑
=

=
n

j
jjX xpm
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                                                                     Рис.2
 точках, соответствующих серединам интервал

афик )(* xFn , изображенный на рис. 9. 

Рис.9 

кая функция распределения статистических 

- выборка из генеральной совокупности с ф
ением выборки называется распределение диск
ей значения х1,х2,...,хп  с вероятностями 1/n. Соо
называют эмпирической (выборочной) функц

 функцию распределения определим по зна

∑
<

=
xz

i

i

n
n

x
1

)(* , здесь суммируются частоты 

лняется неравенство zi < х . Тогда получим, что

 На промежутке (х(1); х(n)] )(* xFn  представляет

 функцию. 
пределяем эмпирическую функцию распределе

рической функции распределения для статист

венко). Пусть )(* xFn - эмпирическая функция р

ъема п из генеральной совокупности с функцией
∞,+∞) и любого ε > 0 

) 1= . 

м, при каждом х )(* xFn  сходится по вероятно

 может служить приближенным значением (о
ной совокупности в каждой точке х. 

арактеристики статистического ряда, их свой

йти формулы, определяющие выборочные мате
уппированной выборки объема п. 

ематическое ожидание дискретной случайной ве

j . 

2 
ервалов группировки. В ре-

ских рядов 

ти с функцией распределе-
е дискретной случайной ве-

. Соответствующую функ-
функцией распределения и 

о значениям накопленных 

тоты тех элементов выбор-

м, что 0)(* =xFn  при х≤х(1) и 

вляет собой неубывающую 

ления для группирован-

стики определяется сле-

ция распределения, постро-

нкцией распределения Fx(x). 

ятности к Fx(x) и при боль-

ем (оценкой) функции рас-

х свойства 

е математическое ожидание 

ной величины определяется 
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Так как для выборочного распределения рj = 1/n, то ∑
=

==
n

j
jX x

n
xm

1

* 1
. 

Аналогично будем иметь выборочную дисперсию 









−=









−

=−=−= ∑
∑∑

∑∑
=

==

==

n

j
j

n

j
j

n

j
jn

j
j

n

j
jjX xnx

nn

nxx

xx
n

pxxD
1

22

2

11

2

1

2

1

2* 1
)(

1
)( . 

Выборочной модой *
Xd  унимодального (одновершинного) распределения называет-

ся элемент выборки, встречающийся с наибольшей частотой. 
Выборочной медианой называется число *

Xh  , которое делит вариационный ряд на 
две части, содержащие равное число элементов. 

Если объем выборки п — нечетное число (т.е. п = 2l +1), то )1(* += l
X xh , то есть явля-

ется элементом вариационного ряда со средним номером. Если же п = 2l, то 

)(
2

1 )1()(* ++= ll
X xxh . 

Пример 2. Определить среднее, моду и медиану для выборки 5, 6, 8, 2, 3, 1, 1, 4. 
Решение. Представим данные в виде вариационного ряда: 1, 1, 2, 3, 4, 5, 6, 8. Выбо-

рочное среднее 75,3)86543211(
8

1
=+++++++=x . Все элементы входят в выборку по 

одному разу, кроме 1, следовательно, мода 1
~

=Xd . Так как п = 8, то медиана 

5,3)43(
2

1~

=+=Xh . 

Итак, 75,3=x , 1
~

=Xd , 5,3
~

=Xh . 
Для упрощения вычислений выборочных среднего и дисперсии группированной 

выборки, эту выборку преобразуют так: ( )*1
Xii dz

b
u −= , i= 1,2,...,k , где *

Xd  - выборочная 

мода, а b - длина интервала группировки. Эти соотношения показывают, что в выборку z1 

,z2,...,zn внесена систематическая ошибка *
Xd , а результат подвергнут преобразованию 

масштаба с коэффициентом k = 1/b. Полученный в результате набор чисел  u1 ,u2,...,un 

можно рассматривать    как выборку из генеральной совокупности ( )*1
Xdx

b
U −= . Тогда 

выборочные среднее x  и дисперсия *
XD  исходных данных связаны со средним u  и дис-

персией *
UD  преобразованных данных следующими соотношениями: *

Xdubx += , 
*2*
UX DbD = . 

Пример 3. Вычислить среднее и дисперсию группированной выборки 
 
Границы интервалов 134-138 138-142 142-146 146-150 150-154 154-158 

Частоты 1 3 15 18 14 2 

 
Решение. Длина интервала группировки b = 4, значение середины интервала, 

встречающегося с   наибольшей   частотой 148* =Xd . Преобразование последовательности 
середин интервалов выполняется по формуле: 
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4

148−
= i

i

z
u , где i = 1,2,...,6. 

Таблица 2 
i zi ui ni ni ui  ni ui

2 ni (ui +1)2 

1 136 -3 1 -3 9 4 
2 140 -2 3 -6 12 3 
3 144 -1 15 -15 15 0 
4 148 0 18 0 0 18 
5 152 1 14 14 14 56 
6 156 2 2 4 8 18 

 
- - 5

3 
-

6 
5

8 
99 

Вычисления сведены в таблицу 2. Последний столбец этой таблицы служит для 

контроля вычислений при помощи тождества ∑∑∑∑ ++=+ iiiiiii nununun 2)1( 22 . 

Выполняя вычисления, получим 58 + 2 · (-6) + 23 = 99 . 
Полученный результат показывает, что вычисления выполнены правильно. По 

формулам, данным выше, находим средние значения U 

113,0
53

6
−≈

−
=u , 108,1

53

53/)6(58 2
* ≈

−−
=UD . 

Далее находим средние данной выборки: 

548,1471484)113,0( ≈+⋅−≈x , 728,17103,142* ≈⋅≈XD . 
 

2.4.3 Результаты и выводы:  

В результате проведенного занятия студенты: 
- освоили первичную обработку статистических данных, ее графическое представ-

ление; 
- усвоили основные методы нахождения точечных оценок параметров статистиче-

ского распределения;  
- выработали навыки по оценке параметров генеральной совокупности, примене-

нию метода доверительных интервалов. 
 

2.5 Практическое занятие № 5 (2 часа)  

Тема: «Интервальные оценки параметров статистического распределения. Необхо-

димость их введения. Доверительные интервалы. Доверительные вероятности. До-

верительные интервалы для оценки математического ожидания нормального рас-

пределения. Доверительные интервалы для оценки среднего квадратического от-

клонения нормального распределения» 

2.5.1 Задание для работы: 

1. Точечные оценки параметров статистического распределения. 

2. Оценки параметров генеральной совокупности. Метод моментов. 

3.Метод доверительных интервалов. 

2.5.2 Краткое описание проводимого занятия: 

1. Точечные оценки параметров статистического распределения 
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Пример 1. Пусть х1,х2,...,хn - выборка из генеральной совокупности с конечными 
математическим ожиданием и дисперсией σ2. Используя метод подстановки, найти оценку 
т. Проверить свойства несмещенности и состоятельности полученной оценки. 
Решение. По методу подстановки в качестве оценки т математического ожидания возь-
мем математическое ожидание распределения   выборки -  выборочное   среднее.   Тогда,  
получим 

∑
=

==
n

i
ix

n
xm

1

~ 1
. 

Для проверки несмещенности и состоятельности выборочного среднего как оценки 
т, рассмотрим эту статистику как функцию выборочного вектора (Х1,Х2,...,Хn). По опреде-
лению выборочного вектора имеем: M[Xi]=т и D[Xi]=σ2, i = 1,2,...,п, причем Xi - незави-
симые в совокупности случайные величины. 

В данном случае будем иметь 

mnm
n

XM
n

x
n

MXM
n

i
i

n

i
i =⋅==







= ∑∑

==

1
][

11
][

11

, 

n
n

n
XM

n
x

n
DXD

n

i
i

n

i
i

2
2

2
1

2
1

1
][

11
][

σ
σ =⋅==








= ∑∑

==

. 

Отсюда по определению получаем, что X  - несмещенная оценка т, и так как 

0][ →XD  при n→∞, то в силу теоремы 1 X  является состоятельной оценкой математи-
ческого ожидания т генеральной совокупности.  
 

2. Оценки параметров генеральной совокупности. Метод моментов 
 
Для получения оценок неизвестных параметров θ1,θ2,...,θs распределения генераль-

ной совокупности X используется и метод моментов. Поясним его. 
Пусть fх (х,θ1,θ2,...,θs) - плотность распределения случайной величины X. Определим с по-
мощью этой плотности S каких-либо моментов случайной величины X, например, первые 
S начальных моментов, по формулам 

∫
+∞

∞−

== dxxfxXM sX
mm

sm ),...,,(][),...,( 11 θθθθα , m =1,2,...,S. 

По выборке наблюдений случайной величины найдем значения соответствующих 
выборочных моментов: 

∑
=

=
n

i

m
im x

n 1

* 1
α , m =1,2,...,S. 

Попарно приравнивая теоретические моменты αт случайной величины X их выбо-
рочным значениям *

mα , получаем систему s уравнений с неизвестными θ1,θ2,...,θs: 
*

1 ),...,( msm αθθα = , m =1,2,...,S. 

Решая полученную систему относительно неизвестных θ1,θ2,...,θs , находим оценки 
~~

1,..., sθθ  неизвестных параметров. 

Аналогично находятся оценки неизвестных параметров по выборке наблюдений 
дискретной случайной величины. 
 

Пример 1. Методом моментов найти оценки неизвестных параметров а и b для Г - 
распределения с плотностью 
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







>

≤

= −− 0  ,
)(

0  ,0

)( 1 xex
aГ

b

x

xf bxa
a

X . 

Решение. Для нахождения оценок параметров а и b по методу моментов воспользу-
емся начальным моментом первого порядка (математическим ожиданием) и центральным 
моментом второго порядка (дисперсией): 

b

a
mba ==),(1α , 

2
2

2 ),(
σ

σµ
a

ba == . 

По выборке х1,...,хn из генеральной совокупности, имеющей Г-распределение, нахо-
дим значения соответствующих выборочных моментов: 

∑== ix
n

x
1*

1α , ∑ −== 2**
1 )(

1
xx

n
D iXµ . 

Приравнивая соответствующие равенства, получаем следующую систему уравне-
ний: 

x
b

a
= , *

2 XD
b

a
= . Решая ее, находим 

*

2~

XD

x
a = , 

*

~

XD

x
b = . 

3. Метод доверительных интервалов 
 
Пример 1. Пусть х1,х2,...,хn - выборка из нормально распределенной генеральной 

совокупности. Найти доверительный интервал для математического ожидания т при ус-
ловии, что дисперсия генеральной совокупности известна и равна σ2, а доверительная ве-
роятность равна 1-α. 
Решение. В качестве оценки математического ожидания т возьмем выборочное среднее 

∑= ix
n

x
1

. Для нормально распределенной генеральной совокупности выборочное сред-

нее является эффективной оценкой т. Выборочное среднее X  в данном случае имеет 

нормальное распределение )/,( nmN σ . 

Рассмотрим статистику 
n

mX
U

/σ
−

= , имеющую нормальное распределение N(0,1) 

независимо от значения параметра т. Кроме того, U как функция т непрерывна и строго 
монотонна. Тогда ααα −=<< − 1][ 2/12/ uUuP , где иа/2 и и1-a/2 - квантили нормального рас-

пределения N(0,1).  

Решая неравенство 2/12/
/

αα σ −<
−

< u
n

mX
u  относительно т, получим, что с вероятно-

стью 1-α выполняется условие: 2/2/1 αα
σσ

u
n

Xmu
n

X −<<− − . 

Так как квантили нормального распределения связаны соотношением иа/2=-u1-a/2, 
полученный доверительный интервал для т можно записать следующим образом: 

2/12/1 αα
σσ

−− +<<− u
n

Xmu
n

X  

Пример 2. При проверке 100 деталей из большой партии обнаружено 10 бракован-
ных деталей. 

а) Найти 95 % приближенный доверительный интервал для доли бракованных де-
талей во всей партии. 

б) Какой минимальный объем выборки следует взять для того, чтобы с вероятно-
стью 0,95 можно было утверждать, что доля бракованных деталей по всей партии отлича-
ется от частоты появления бракованных деталей в выборке не более чем на 1 %? 
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Решение: 

 а) Оценка доли бракованных деталей в партии по выборке равна 
~

p  = h = 10/100 = 
0,1. По таблице приложений (П1) находим квантиль и1-a/2 = и 0,975 = 1,96 . Тогда 95% дове-
рительный 
интервал для доли бракованных деталей в партии приближенно имеет вид 0,041 < р < 
0,159. 

б) Представим полученный доверительный интервал в виде неравенства  

n

hh
uph

)1(
2/1

−
<− −α , которое выполняется с вероятностью ≈1 - α = 0,95. Так как 

согласно условию задачи 01,0≤− ph , то для определения n получим неравенство  

01,0
)1(

975,0 ≤
−
n

hh
u . Отсюда следует, что 01,0

)1,01(1,0
96,1 ≤

−
n

 и n≥(0,3·196)2 =3457,44 . 

Итак, минимальный   объем   выборки n = 3458. 
 

2.5.3 Результаты и выводы:  

В результате проведенного занятия студенты: 
- освоили первичную обработку статистических данных, ее графическое представ-

ление; 
- усвоили основные методы нахождения точечных оценок параметров статистиче-

ского распределения;  
- выработали навыки по оценке параметров генеральной совокупности, примене-

нию метода доверительных интервалов. 
 

2.6 Практическое занятие № 6 (2 часа)   

Тема: «Понятие статистической гипотезы. Виды гипотез. Статистический критерий. 

Критическая область. Мощность критерия. Критерии согласия: критерий Пирсона. 

Выравнивание рядов» 

2.6.1 Задание для работы: 

1. Статистические гипотезы и их виды. 

2. Критерии согласия. 

3.  Оценка параметров неизвестного распределения. 

4. Выравнивание рядов. 

2.6.2 Краткое описание проводимого занятия: 

1. Статистические гипотезы и их виды 

Пример 50. По паспортным данным автомобильного двигателя расход топлива на 
100 км пробега составляет 10 л. В результате изменения конструкции двигателя ожидает-
ся, что расход топлива уменьшится. Для проверки проводятся испытания 25 случайно 
отобранных автомобилей с модернизированным двигателем, причем выборочное среднее 

расходов топлива на 100 км пробега по результатам испытаний составило x  = 9,3 л. Пред-
полагается, что выборка расходов топлива получена из нормально распределенной гене-
ральной совокупности со средним т и дисперсией σ 2 = 4 л2 . Используя критерий значи-
мости, проверить гипотезу, утверждающую, что изменение конструкции двигателя не по-
влияло на расход топлива. 
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Решение. Проверяется гипотеза о среднем (m) нормально распределенной генераль-
ной совокупности. Проверку гипотезы проведем по этапам: 

1) проверяемая гипотеза Н0:т = 10, альтернативная гипотеза Н1: т < 10; 
2) выберем уровень значимости α = 0,05;   
3) в качестве статистики критерия используем оценку математического ожидания - 

выборочное среднее X ; 
4) так как выборка получена из нормально распределенной генеральной совокупно-

сти, выборочное среднее также имеет нормальное распределение с дисперсией 
25

42

=
n

σ
. 

При условии, что верна гипотеза Н0, математическое ожидание этого распределения равно 

10.     Нормированная    статистика    критерия 
254

10−
=

X
U  имеет нормальное распределе-

ние N(0,1). 
5) альтернативная гипотеза Н1: т < 10 предполагает уменьшение расхода топлива, 

следовательно, нужно использовать односторонний критерий. Критическая область опре-
деляется неравенством U <иа. По таблице приложений П1 находим u0,05=-u0,95=-1,645; 

6) выборочное значение нормированной статистики критерия равно 

75,1
254

103,9
−=

−
=U . 

7) статистическое решение: так как выборочное значение статистки критерия при-
надлежит критической области, гипотеза Н0 отклоняется: следует считать, что изменение 
конструкции двигателя привело к уменьшению расхода топлива. 

Граница kx  критической области для исходной статистики X критерия может быть полу-

чена из соотношения 75,1
254

10
−=

−kx
, откуда получаем kx = 9,342, т. е. критическая об-

ласть для статистики X определяется неравенством X < 9,342 . 

2. Критерии согласия 

Пример 1. В первых - двух столбцах таблицы 1 приведены данные об отказах ап-
паратуры за 10000 часов работы. Общее число обследованных экземпляров аппаратуры 
n=757, при этом наблюдался отказ:0·427+ 1·235+ 2·72 + 3·21+ 4·1+ 5·1 = 451 

Таблица 1 
Число 

отказов, 
k 

Количество случаев, в ко-
торых наблюдалось k от-

казов, пk 

6,0

!

6,0 −= e
k

p
k

k  
Ожидаемое число слу-
чаев с k отказами, прk 

0 427 0,54881 416 
1 235 0,32929 249 
2 72 0,09879 75 
3 21 0,01976 15 
4 1 0,00296 2 

5 1 0,00036 0 
≥6 0 0,00004 0 

Сумма 757 - - 
Проверить гипотезу о том, что число отказов имеет распределение Пуассона: 

λλ −=== e
k

kXPp
k

k !
][ , k=0, 1, …, при α=0,01. 
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Решение. Оценка параметра λ равна среднему числу отказов: 6,0757/451 ≈=λ . По 
таблице приложений (П3) с λ = 0,6 находим вероятности рk и ожидаемое число случаев с k 
отказами (третий и четвертый столбцы таблицы 2). 

Для k = 4,5 и 6 значения прk < 5, поэтому объединяем эти строки со строкой для k= 
3 . Итак, получаем значения, приведенные в таблице 1. 

Таблица 2 
 

k пk прk 

k

kk

np

npn 2)( −
 

0 427 416 0,291 
1 235 249 0,787 
2 72 75 0,120 

≥3 23 17 2,118 
- - - 316,32 =Bχ  

Так как по выборке оценивался один параметр λ, то l = 1, число степеней свободы 
равно 4-1-1 = 2. По таблице приложений (П5) находим χ2

0,99(2) = 9,21, гипотеза о распре-
делении числа отказов по закону Пуассона принимается. 

Пример 2. Проверить гипотезу о нормальном распределении выборки из примера: 
По паспортным данным автомобильного двигателя расход топлива на 100 км пробега со-
ставляет 10 л. В результате изменения конструкции двигателя ожидается, что расход то-
плива уменьшится. Для проверки проводятся испытания 55 случайно отобранных автомо-
билей с модернизированным двигателем, причем выборочное среднее расходов топлива 

на 100 км пробега по результатам испытаний составило x  = 9,3 л. Предполагается, что 
выборка расходов топлива получена из нормально распределенной генеральной совокуп-
ности со средним т и дисперсией σ 2 = 4 л2 . Принять α = 0,1. 

Решение. Объем выборки п = 55. Для проверки гипотезы о нормальном распределе-
нии нужно найти оценки математического ожидания и дисперсии. Имеем  

84,17
1 55

1

~

≈== ∑
=i

ix
n

xm , 53,8)(
1

1 55

1

22
2~

≈−
−

== ∑
=i

i xx
n

sσ .  Результаты группировки приве-

дены во втором и третьем столбцах таблицы 3. 
Таблица 3 
Номер 
интер-
вала k 

Границы 
интервала 

∆k 

Наблюдае-
мая час-
тота nk 

Вероятность 
попадания в 

интервал ∆k, pk 

Ожидае-
мая час-
тота, npk 

npk nk - npk 

k

kk

np

npn 2)( −
 

 - ∞ -       
1 12 2 0 0228 





020,4

254,1
 5,274 

  
2 12-14 4 0,0731 0,725 0,010 

3 14-16 8 0,1686 9,273 9,273 -1,273 0,175 
4 16-18 12 0,2576 14,168 14,168 -2,168 0,332 
5 18-20 16 0,2484 13,662 13,662 -2,338 0,400 
6 20-22 10 0,1519 





279,4

354,8
 12,633 

  
7 22- + ∞ 3 0,0778 0,366 0,011 

 Сумма 55 1,0001 55 55 - 0,928 
 

В четвертом столбце таблицы  3  приведены вероятности рk, вычисляемые по форму-
ле: 
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7,...,2,1,][ =






 −
Φ−







 −
Φ=∆∈= k

s

xa

s

xb
XPp kk

kk , 

где ак и bк - соответственно нижняя и верхняя границы интервалов, а значения 
функции Ф(х) берутся из таблицы приложений (П1). В пятом столбце приводятся ожидае-
мые частоты прk, а в шестом - значения прk после объединения первых двух и последних 
двух интервалов. 

Так как после объединения осталось r = 5 интервалов, а по выборке определены 
оценки двух параметров, т.е. l = 2 , то число степеней свободы равно 5-2-1 = 2. 

По таблице приложений (П5) находим χ2
0,90(2) = 4,61. Выборочное значение стати-

стики критерия равно χ2
B= 0,928, следовательно, гипотеза о нормальном распределении 

выборки принимается.  

3.  Оценка параметров неизвестного распределения. 

Метод максимального правдоподобия 
Метод максимального правдоподобия является одним из наиболее распространен-

ных методов нахождения оценок неизвестных параметров распределения генеральной со-
вокупности. Пусть Х- непрерывная случайная величина с плотностью распределения fx(x, 
θ), зависящей от неизвестного параметра θ, значение которого требуется оценить по вы-
борке объема п. Плотность распределения выборочного вектора (Х1,Х2,...,Хn) можно запи-

сать в виде ∏
=

=
n

i
iXnXX xfxxf

n

1
1,..., ),(),,...,(

11
θθ . 

Пусть х1,х2,...,хn - выборка наблюдений случайной величины X, по которой нахо-
дится оценка неизвестного параметра. 

Функцией правдоподобия L(θ) выборки объема п называется плотность выбороч-
ного вектора, рассматриваемая при фиксированных значениях переменных х1,...,хп. Функ-
ция правдоподобия является, таким образом, функцией только неизвестного параметра θ, 

т.е. ∏
=

=
n

i
iX xfL

i

1

),()( θθ . 

Аналогично определим функцию правдоподобия выборки дискретной случайной 
величины X. Пусть Х- дискретная случайная величина, причем вероятность Р[Х = х]= р(х, 
θ) есть функция неизвестного параметра θ. Предполагая, что для оценки параметра θ по-
лучена конкретная выборка наблюдений случайной величины X объема п: х1,...,хп. Функ-
ция правдоподобия L(θ) выборки объема п равна вероятности того, что компоненты выбо-
рочного вектора Х1,...,Хn примут фиксированные значения х1,...,хп, т.е. 

∏∏
==

===
n

i
i

n

i
ii xpxXPL

11

),(][)( θθ . 

Метод максимального правдоподобия состоит в том, что в качестве оценки неиз-

вестного параметра θ принимается значение 
~

θ , доставляющее максимум функции прав-
доподобия. Такую оценку называют МП - оценкой. В случае дискретного распределения 
наблюдаемой случайной величины X МП - оценка неизвестного параметра θ есть такое 

значение 
~

θ , при котором вероятность появления данной конкретной выборки максималь-
на. Аналогичную интерпретацию МП - оценки дают и в случае оценки параметра распре-
деления непрерывной случайной величины. 

Для упрощения вычислений, связанных с получением МП -оценок, в некоторых 
случаях удобно использовать логарифмическую функцию правдоподобия, т.е. ln L(θ). 

При выполнении некоторых достаточно общих условий МП - оценки состоятельны, 
асимптотически эффективны и асимптотически нормально распределены. Последнее оз-
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начает, что при увеличении объема выборки п для МП - оценки 
~

nθ  неизвестного парамет-

ра θ выполняется условие ∫
∞−

−

∞→
Φ==














<

− x
t

n

n

n
xdtex

D
P )(

2

1

][
lim 2/

~

~

2

πθ

θθ
. 

Если для параметра θ существует эффективная оценка, то метод максимального 
правдоподобия дает именно эту оценку и другой МП - оценки не существует. 

Пример 1. Найти МП - оценки математического ожидания т и дисперсии σ2 нор-
мально распределенной генеральной совокупности. 

Решение. Пусть х1,х2,...,хп - выборка наблюдений случайной величины X с плотно-
стью распределения 

2

2

2

)(
2

2

1
),,( σ

πσ
σ

mx

x emxf
−

= . 

Найдем функцию правдоподобия L(m, σ2). Имеем  

2

2

2

2

2

)(

2
1

2

)(
2

)2(

1

2

1
),( σσ

σππσ
σ

∑
==

−

=

−

∏
mx

nn

n

i

mx ii

eemL . 

Логарифмическая функция правдоподобия отсюда равна 

2

2
22

2

)(
ln

2
2ln

2
),(ln

σ
σπσ ∑ −
−−−=

mxnn
mL i . 

Используя необходимые условия максимума ),(ln 2σmL , получим систему уравне-
ний для нахождения искомых МП - оценок:  

∑ =−=
∂

∂
0)(

1),(ln
2

2

mx
m

mL
iσ

σ
, ∑ =−+−=

∂
∂

0)(
2

1

2

),(ln
422

2

mx
nmL

iσσσ
σ

. 

Из первого уравнения этой системы находим xx
n

m i == ∑
1~

. 

Подставляя полученное значение во второе уравнение, будем иметь 

*2
~

2 )(
1

Xi Dxx
n

=−= ∑σ . 

Отметим, что выборочное среднее x  является несмещенной и состоятельной оцен-
кой т (см. пример 38), а также эффективной оценкой в случае нормально распределенной 
генеральной совокупности (убедитесь в этом самостоятельно). Выборочная дисперсия *

XD  
является состоятельной и смещенной оценкой σ2. 

Пример 2. Найти МП - оценку параметра X распределения Пуассона. 
Решение. Пусть х1,...,хп - выборка наблюдений случайной величины X, имеющей 

распределение Пуассона с неизвестным параметром X, т.е. 

λλ −== e
x

xXP
k

!
][ , 

где х принимает неотрицательные целочисленные значения, х = 0,1,2. Функция 

правдоподобия L(λ) выборки объема п определяется так: n

ii

e
xxx

e
x

L
n

xn

i i

x
λλ λλ

λ −

=

−
∑

==∏ !!...!!
)(

211

. 

Найдем логарифмическую функцию правдоподобия: 

∑ −+−= nxxxxL in λλλ ln)()!!...!ln()(ln 21 . 

Используя необходимое условие экстремума, получим уравнение для определения 
МП-оценки: 

0
)(ln

=−= ∑ n
x

d

Ld i

λλ
λ

. Отсюда следует, что xx
n i == ∑
1~

λ . 
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Полученная МП - оценка является несмещенной и состоятельной оценкой λ, а так-
же эффективной оценкой этого параметра. 

4. Выравнивание рядов 

Во всяком статистическом распределении неизбежно присутствуют элементы слу-
чайности, связанные с тем, что число наблюдений ограничено, что произведены именно 
те, а не другие опыты, давшие именно те, а не другие результаты. Только при очень боль-
шом числе наблюдений эти элементы случайности сглаживаются, и случайное явление 
обнаруживает в полной мере присущую ему закономерность. На практике мы почти нико-
гда не имеем дела с таким большим числом наблюдений и вынуждены считаться с тем, 
что любому статистическому распределению свойственны в большей или меньшей мере 
черты случайности. Поэтому при обработке статистического материала часто приходится 
решать вопрос о том, как подобрать для данного статистического ряда теоретическую 
кривую распределения, выражающую лишь существенные черты статистического мате-
риала, но не случайности, связанные с недос-
таточным объемом экспериментальных дан-
ных. Такая задача называется                      Рис. 
1 
задачей выравнивания (сглаживания) стати-
стических рядов.                                                                                          

Задача выравнивания заключается в 
том, чтобы подобрать теоретическую плавную 
кривую распределения, с той или иной точки 
зрения наилучшим образом описывающую 
данное статистическое распределение (рис. 1).  

Задача о наилучшем выравнивании статистических рядов, как и вообще задача о 
наилучшем аналитическом представлении эмпирических функций, есть задача в значи-
тельной мере неопределенная, и решение ее  зависит от того, что условиться считать 
«наилучшим». Например, при сглаживании эмпирических зависимостей очень часто ис-
ходят из так называемого принципа или метода наименьших квадратов), считая, что наи-
лучшим приближением к эмпирической зависимости в данном классе функций является 
такое, при котором сумма квадратов отклонений обращается в минимум. При этом вопрос 
о том, в каком именно классе функций следует искать наилучшее приближение, решается 
уже не из математических соображений, а из соображения, связанных с физикой решае-
мой задачи, с учетом характера полученной эмпирической кривой и степени точности 
произведенных наблюдений. Часто принципиальный характер функции, выражающей ис-
следуемую зависимость, известен заранее из теоретических соображении, из опыта же 
требуется получить лишь некоторые численные параметры, входящие в выражение функ-
ции; именно эти параметры подбираются с помощью метода наименьших квадратов.  

Аналогично обстоит дело и с задачей выравнивания статистических рядов. Как 
правило, принципиальный вид теоретической кривой выбирается заранее из соображений, 
связанных с существом задачи, а в некоторых случаях просто с внешним видом статисти-
ческого распределения. Аналитическое выражение выбранной кривой распределения за-
висит от некоторых параметров; задача выравнивания статистического ряда переходит в 
задачу рационального выбора тех значений параметров, при которых соответствие между 
статистическим и теоретическим распределениями оказывается наилучшим.  

Предположим, например, что исследуемая величина  есть ошибка измерения, 
возникающая в результате суммирования воздействий множества независимых элемен-
тарных ошибок; тогда из теоретических соображений можно считать, что величина 
 подчиняется нормальному закону:  
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(1) 
и задача выравнивания переходит в задачу о рациональном выборе параметров 

 и  в выражении (1).  
Бывают случаи, когда заранее известно, что величина  распределяется статисти-

чески приблизительно равномерно на некотором интервале; тогда можно поставить задачу 
о рациональном выборе параметров того закона равномерной плотности  

 
которым можно наилучшим образом заменить (выровнять) заданное статистиче-

ское распределение.  

Следует при этом иметь в виду, что любая аналитическая функция , с помо-
щью которой выравнивается статистическое распределение, должна обладать основными 

свойствами плотности распределения:   (2) 
Предположим, что, исходя из тех или иных соображений, нами выбрана функция 

, удовлетворяющая условиям (2), с помощью корой мы хотим выровнять данное 
статистическое распределение; в выражение этой функции входит несколько параметров 

; требуется подобрать эти параметры так, чтобы функция  наилучшим обра-
зом описывала данный статистический материал. Один из методов, применяемых для ре-
шения этой задачи, - это так называемый метод моментов.  

Согласно методу моментов, параметры  выбираются с таким расчетом, что-
бы несколько важнейших числовых характеристик (моментов) теоретического распреде-
ления были равны соответствующим статистическим характеристикам. Например, если 

теоретическая кривая  зависит только от двух параметров  и , эти параметры вы-

бираются так, чтобы математическое ожидание  и дисперсия  теоретического рас-

пределения совпадали с соответствующими статистическими характеристиками  и 

. Если кривая  зависит от трех параметров, можно подобрать их так, чтобы совпали 
первые три момента и т.д. При выравнивании статистических рядов может оказаться по-
лезной специально разработанная система кривых Пирсона, каждая из которых зависит в 
общем случае от четырех параметров. При выравнивании эти параметры выбираются с 
тем расчетом, чтобы сохранить первые четыре момента статистического распределения 
(математическое ожидание, дисперсию, третий и четвертый моменты). Следует заметить, 
что при выравнивании статистических рядов нерационально пользоваться моментами по-
рядка выше четвертого, так как точность вычисления моментов резко падает с увеличени-
ем их порядка.  

Пример. С целью исследования закона распределения ошибки измерения дально-
сти с помощью радиодальномера произведено 400 измерений дальности. Результаты опы-
тов представлены в виде статистического ряда:  
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0
,140  

Выровнять статистический ряд с помощью закона равномерной плотности.  
Решение. Закон равномерной плотности выражается формулой  

 
и зависит от двух параметров  и . Эти параметры следует выбрать так,  чтобы 

сохранить первые два момента статистического распределения – математиче-

ское ожидание  и дисперсию .  Из примера  5.8 имеем выражения математиче-

ского ожидания и дисперсии для закона равномерной плотности:   
Для того, чтобы упростить вычисления, связанные с определением статистических 

моментов, перенесем начало отсчета в точку  и примем за представителя его раз-
ряда его середину. Ряд распределения имеет вид:  

 

где  - среднее для разряда значение ошибки радиодальномера  при новом на-
чале отсчета. Приближенное значение статистического среднего ошибки  равно: 

Второй статистический момент величины  равен:  

, откуда статистическая дисперсия:  . Пе-
реходя к прежнему началу отсчета, получим новое статистическое среднее:  

 
в ту же статистическую дисперсию:  

.  
Параметры закона равномерной плотности опре-

деляются уравнениями:  

.  Решая эти 

уравнения относительно  и , имеем:  , Рис.2 

откуда  .  
На рис. 2. показаны гистограмма и выравнивающий             

ее закон равномерной    плотности .                                                                         
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2.6.3 Результаты и выводы:  

В результате проведенного занятия студенты: 
- освоили классификацию статистических гипотез; 
- усвоили основные правила применения критерия согласия; 
- выработали навыки по оценке параметров неизвестного распределения, выравни-

ванию рядов. 

2.7 Практическое занятие № 7, 8 (4 часа). 

Тема: «Понятие функциональной, стохастической и корреляционной зависимости. 

Функция регрессии. Корреляционное отношение. Его свойства, значимость. Линей-

ная функция регрессии. Коэффициент корреляции его» 

2.7.1 Задание для работы: 

1. Виды зависимостей между величинами. 

2. Функция регрессии. 

3. Корреляционное отношение. 

4. Линейная парная регрессия. 

5. Коэффициент корреляции, его свойства, значимость. 

2.7.2 Краткое описание проводимого занятия: 

1. Виды зависимостей между величинами 

Между различными явлениями и их признаками необходимо прежде всего выде-
лить два типа связей: функциональную (жестко детерминированную) и статистическую 
(стохастическую детерминированную). 

Связь признака y с признаком x называется функциональной, если каждому воз-
можному значению независимого признака x соответствует одно или несколько строго 
определенных значений зависимого признака y. Определение функциональной связи мо-
жет быть легко обобщено для случая многих признаков x1,x2,…,xn. 

Характерной особенностью функциональных связей является то, что в каждом от-
дельном случае известен полный перечень факторов, определяющих значение зависимого 
(результативного) признака, а также точный механизм их влияния, выраженного опреде-
ленным уравнением. 

Стохастическая связь- это связь между величинами, при которых одна из них, слу-
чайная величина y, реагирует на изменение другой величины x или других величин x1, 
x2,…, xn, (случайных или неслучайных) изменением закона распределения. Это обуслав-
ливается тем, что зависимая переменная (результативный признак), кроме рассматривае-
мых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (слу-
чайных) факторов, а также некоторых неизбежных ошибок измерения переменных. По-
скольку значения зависимой переменной подвержены случайному разбросу, они не могут 
быть предсказаны с достаточной точностью, а только указаны с определенной вероятно-
стью. 

Характерной особенностью стохастических связей является то, что они проявляют-
ся во всей совокупности, а не в каждой ее единице (причем не известен ни полный пере-
чень факторов, определяющих значение результативного признака, ни точный механизм 
их функционирования и взаимодействия с результативным признаком). Всегда имеет ме-
сто влияние случайного. Появляющиеся различные значения зависимой переменной - реа-
лизации случайной величины. 
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2. Функция регрессии 

Условимся обозначать через Χ независимую переменную, а через Υ – зависимую 
переменную. 

Зависимость величины Υ от Χ называется функциональной, если каждому значе-
нию величины Χ соответствует единственное значение величины Υ. С функциональной 
зависимостью мы встречаемся, например, в математике, при изучении физических зако-
нов. Обратим внимание на то, что если Χ – детерминированная величина (т.е. принимаю-
щая вполне определённые значения), то и функционально зависящая от неё величина Υ 
тоже является детерминированной; если же Χ – случайная величина, то и Υ также случай-
ная величина. 

Однако гораздо чаще в окружающем нас мире имеет место не функциональная, а 
стохастическая, или вероятностная, зависимость, когда каждому фиксированному зна-
чению независимой переменной Χ соответствует не одно, а множество значений перемен-
ной Υ, причём сказать заранее, какое именно значение примет величина Υ, нельзя. Более 
частое появление такой зависимости объясняется действием на результирующую пере-
менную не только контролируемого или контролируемых факторов (в данном случае та-
ким контролируемым фактором является переменная Χ), а и многочисленных неконтро-
лируемых случайный факторов. В этой ситуации переменная Υ является случайной вели-
чиной. Переменная же Χ может быть как детерминированной, так и случайной величиной. 
Следует заметить, что со стохастической зависимостью мы уже сталкивались в дисперси-
онном анализе. 

Допустим, что существует стохастическая зависимость случайной переменной Υ от 
Χ. Зафиксируем некоторое значение х переменной Χ. При Χ = х переменная Υ в силу её 
стохастической зависимости от Χ может принять любое значение из некоторого множест-
ва, причём какое именно – заранее неизвестно. Среднее этого множества называют груп-
повым генеральным средним переменной Υ при Χ = х или математическим ожидани-
ем случайной величины Υ, вычисленным при условии, что Х = х; это условное мате-
матическое ожидание обозначают так: М(Υ/Х = х). Если существует стохастическая за-
висимость Υ от Χ, то прежде всего стараются выяснить, изменяются или нет при измене-
нии х условные математические ожидания М(Υ/Х=х). Если при изменении х условные ма-
тематические ожидания М(Υ/Х=х) изменяются, то говорят, что имеет место корреляци-
онная зависимость величины Υ от Χ; если же условные математические ожидания оста-
ются неизменными, то говорят, что корреляционная зависимость величины Υ от Χ отсут-
ствует. 

Функция φ(х)=М(Υ/Х=х), описывающая изменение условного математического 
ожидания случайной переменной Υ при изменении значений х переменной Χ, называется 
функцией регрессии. 

Выясним, почему именно при наличии стохастической зависимости интересуются 
поведением условного математического ожидания. 

Рассмотрим пример. Пусть Χ – уровень квалификации рабочего, Υ – его выработка 
за смену. Ясно, что зависимость Υ от Χ не функциональная, а стохастическая: на выра-
ботку помимо квалификации влияет множество других факторов. Зафиксируем значение х 
уровня квалификации: ему соответствует некоторое множество значений выработки Υ. 
Тогда М(Υ/Х = х) – средняя выработка рабочего при условии, что его уровень квалифика-
ции равен х, или, иначе говоря, М(Υ/Х = х) – это норматив выработки при уровне квали-
фикации, равном х. Зная зависимость этого норматива от уровня квалификации, можно 
для любого уровня квалификации рассчитать норматив выработки и, сравнив его с реаль-
ной выработкой, оценить работу рабочего. 

Обратим внимание на то, что введённые понятия стохастической и корреляционной 
зависимости относились к генеральной совокупности. Поясним эти понятия числовым 
примером. 
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Пример. Допустим, что одновременно изучаются две случайные величины Χ и Υ, 
или, иначе говоря, двумерная случайная величина (Χ, Υ), которая задана табл. 1.  

Таблица 1.  

xi 
yi  

x1 = 
2  

x
2 = 5  

x
3 = 8  

y1 
= 0,4  

0,15  
0

,12  
0

,03  

y2 
= 0,8  

0,05  
0

,30  
0

,35  

Табл. 1 называют таблицей распределения двумерной величины (Χ, Υ);её следу-
ет понимать так. Случайная величина Χ может принять одно из следующих значений: 2, 5 
и 8. Случайная величина Υ – значения 0,4 и 0,8. Число 0,15 – это вероятность того, что Χ = 
2 и одновременно Υ = 0,4, или, иначе говоря, вероятность произведения двух событий; 
события, состоящего в том, что Χ = 2, и события, состоящего в том, что Υ = 0,4, т.е. 
Р((Χ=2)(Υ=0,4)) = 0,15. Аналогично, вероятность Р((Χ=2)(Υ=0,8)) = 0,05 и т.д. Обратим 
внимание на следующее: поскольку в табл. 9 указаны все возможные значения величин Χ 
и Υ, сумма вероятностей, стоящих в таблице, должна быть равна единице: 0,15 + 0,05 + 
0,12 + 0,30 + 0,03 + 0,35 = 1. 

Прежде чем выяснить тип зависимости величины Υ от Χ, найдём: 
а) Закон распределения величины Χ. Он представлен табл. 2.  
Таблица 2. 

 
х  

х1 = 2  х2 = 5  х3 = 8  
  

Р
(Х = х)  

0,15 + 
0,05 = 0,2  

0,12 + 
0,30 = 0,42  

0,35 + 
0,03 = 0,38   = 1  

М(Х) = 5,54, D(X) = 4,9284 
Действительно, например, величина Χ примет значение, равное 2, только в том 

случае, когда одновременно с этим величина Υ примет значение 0,4 или 0,8, т.е. 
Р(Χ = 2) = Р((Χ = 2)(Υ = 0,4)) + Р((Χ = 2)(Υ = 0,08)) = 0,15 + 0,05 = 0,2. 
Справа от ряда распределения величины Χ находятся её математическое ожидание 

и дисперсия. 
б) Закон распределения величины Υ. Он имеет вид табл. 3. 
 Таблица 3. 

 
у  

у1 = 0,4  у2 = 0,8  

Р
(Υ = у)  

0,15 + 0,12 + 
0,03 = 0,30  

0,05 + 0,30 + 
0,35 = 0,7   = 1  

М(Υ) = 0,68, D(Y) = 0,0336 
в) Условные законы распределения величины Υ, а именно закон распределения ве-

личины Υ сначала при условии, что Χ = 2, затем при условии, что Χ=5, и наконец, при ус-
ловии, что Χ = 8. 

Итак, пусть Χ = 2. Тогда условная вероятность Р(Υ = 0,4/Χ = 2) = 0,75, 
а условная вероятность Р(Υ = 0,8/Χ = 2) =  0,25. 
Таким образом, закон распределения величины Υ при условии, что Χ = 2, задан 

табл. 4. 
 Таблица 4 

 y  
y

1 = 0,4  
y

2 = 0,8    
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P(Y = 
y/X = 2)  

0
,75  

0
,25   = 1  

M(Y/X = 2) = 0,4*0,75 + 0,8*0,25 = 0,5, D(Y/X = 2) = 0,03 
Справа помещено условное математическое ожидание и значение условной дис-

персии. Покажем, как вычисляется условная дисперсия. Общая формула условной дис-
персии имеет вид D(Y/X = x) = M[(Y/X = x) – M(Y/X = x)]2. (23) 

Для табл. 4 получаем 
D(Y/X = 2) = M [(Y/X = 2) – M(Y/X = 2)]2 = M [(Y/X = 2) – 0,5]2 = P(Y = yi/X = 2) = 

(0,4 – 0,5)2 · 0,75 + (0,8 – 0,5)2 · 0,25 = 0,03. 

3. Корреляционное отношение 

Задача 1. По данным о месячной заработной плате 10 рабочих трех разных про-

фессий (токарь, слесарь и кузнец) вычислены: общая дисперсия заработной платы 

=1636 и средняя из внутригрупповых дисперсий =1140. Вычислить корреляционное 
отношение. 

Решение. Корреляционное отношение вычисляется по формуле 

.Следовательно, сначала необходимо найти межгрупповую дисперсию 

. Подставляя это значение в вышеприведенную 

формулу, получим: . 
 
4. Линейная парная регрессия 
 
Пример 1. Результаты измерения диаметров (х) и высот (у) 250 сосен записаны в 

таблицу. 
   

x 
 
y

1
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9 
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0 

2
1 

2
2 

2
3 

2
4 

2
5 

2
6 
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7 

1
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 1 6 4 3      

2
0 

1 3 1
5 

2
9 

2 8     

2
5 

 1 8 1
8 

4
9 

2
0 

6    

3
0 

  1 4 5 1
2 

8 5   

3
5 

    1 3 6 4 1  

4
0 

      1 3 3  

4
5 

         1

 
Составить уравнения регрессии и найти коэффициент корреляции. 
Уравнения регрессии имеют вид: 
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)( xxryy
x

y
вx −⋅+=
σ

σ
,  )( yyrxx

x

y
вx −⋅+=
σ

σ
, 

где x  и y  - средние значения величин х и у; 
σх и σу - средние квадратические отклонения величин х и у; 

rв - выборочный коэффициент корреляции, вычисляемой по формуле: 

yx

xy
в n

yxnyxn
r

σσ ⋅⋅

⋅⋅−⋅⋅
= ∑ . 

Для определения всех этих величин пользуемся методом произведений. Дополним 
данную таблицу несколькими строками и столбцами. 

На основании метода произведений запишем, что xx Chux += , 

yy Chvy += , где Сx и Сy - значения величин х и у, имеющих большую частоту;  

u, v - средние значения условных вариант, вычисление по формулам: 

n

uh
u ixi∑= ; 

n

uh
v jyj∑= ; 

x

xi
i h

Cx
u

−
= ; 

y

yj
j h

Cy
v

−
= , 

где hx и hy -разность между соседними значениями X и Y. 

Вычислим x  и y :   7,24255
250

14
=+⋅

−
=x ,  04,22221

250

11
=+⋅=y . 

Пользуясь методом произведений, находим средние квадратические отклонения 
величин х и у: 

uxx h σσ = , vyy h σσ = . 

Вычислим σu и σv по формулам средних квадратических отклонений: 
22










 ⋅
−

⋅
= ∑∑

n

un

n

un ixiixi
uσ ,  1,1

250

14

250

300
2

≈






 −−=uσ   

22










 ⋅
−

⋅
= ∑∑

n

vn

n

vn jyjjyj
vσ ,    5,1

250

11

250

569
2

≈






−=vσ . 

Находим: 5,5115 =⋅=xσ , 5,15,11 =⋅=yσ .  

При переходе к условным вариантам и коэффициент корреляции имеет вид: 

vu

uv
в n

vunvun
r

σσ ⋅⋅

⋅⋅−⋅⋅
= ∑ . 

Для вычисления величины ∑ ⋅⋅ vunuv  применяется метод «четырех полей». Строка 

и столбец, на пересечении которых находится наибольшая частота , делят таблицу на че-
тыре поля. В верхнем углу каждой заполненной клетки, расположенной в одном из четы-
рех полей, записываем соответствующие произведения uv, а затем подсчитываем сумму 

произведений ∑ ⋅⋅ vunuv . Определяем, сколько раз nuv встречаются произведения uv. 

Получаем:  

290)2(1)1(4)1(8201

12393814623352811212921533244661

=−⋅+−⋅+−⋅+⋅+

⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=⋅⋅∑ vunuv

Определим коэффициент корреляции   7,0
5,11,1250

04,0)06,0(250290
=

⋅⋅
⋅−⋅−

=вr . 

Напишем уравнения регрессий 
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)7,242(
5,5

5,1
7,004,32 ⋅−⋅+= xyx  или 32,17191,0 += xyx , 

)04,222(
5,1

5,5
5,07,24 ⋅−⋅+= yxy  или 1,3257,2 += yxy . 

Имея уравнение регрессии, можно вычислить средние значения одной величины 
при любом значении другой. 

5. Коэффициент корреляции, его свойства, значимость 

Пример.  Найти коэффициент корреляции между производительностью труда Y 
(тыс. руб.) и энерговооруженностью труда X (кВт) (в расчете на одного работающего) для 
14 предприятий региона по следующим данным:  

Таблица 1 

i ,8 ,2 ,0 ,5 ,2 ,7 ,0 ,8 ,0 ,4 ,2 ,4 ,0 ,0 

i ,7 ,9 ,2 ,3 ,4 ,8 ,1 ,8 0,6 0,7 1,1 1,8 2,1 2,4 
 Решение. Вычислим необходимые суммы: 

 

Полагая nij = ni = nj = 1, j = i и заменяя  получим 

                                           
что говорит о тесной связи между переменными. 
В примере вычислен коэффициент корреляции r = 0,740. Статистика критерия по 

 
Для уровня значимости α = 0,05 и числа степеней свободы к = 50 - 2 = 48 находим 

критическое значение статистики t0,95;48 = 2,01. Поскольку t > t0,95;48  коэффициент корре-
ляции между суточной выработкой продукции Y и величиной основных производствен-
ных фондов X значимо отличается от нуля. 
 

2.7.3 Результаты и выводы:  

В результате проведенного занятия студенты: 



100 
 

- освоили основные виды зависимостей между величинами; 
- усвоили основные методы нахождения регрессии; 
- выработали навыки по вычислению коэффициентов регрессии и корреляционного 

отношения. 
 


