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1. КОНСПЕКТ ЛЕКЦИЙ 

1. 1 Лекция №  1 (2 ч).  

Тема: «Комплексные числа и действия с ними»                                             

1.1.1 Вопросы лекции: 

1. Комплексные числа и действия с ними. 

2. Комплексная плоскость.   

1.1.2 Краткое содержание вопросов:  

1. Комплексные числа и действия с ними. 

 Комплексным числом, представленным (записанным) в алгебраической форме, на-

зывается выражение вида z x i y= + ⋅ , где ,x y R∈ - действительные числа, Rex z= - 

действительная часть комплексного числа, Imy z=  - мнимая часть (перев. с англ.: real- 

реальный, image- мнимый). Символ i  называется мнимой единицей: 
2 1i = − .   

Отношение равенства комплексных чисел: два комплексных числа 

1 1 1
z x i y= + ⋅ , 2 2 2z x i y= + ⋅  равны тогда и только тогда, когда равны соответственно 

их действительные и мнимые части: 
1 2 1 2

,x x y y= = .                                  

 Суммой двух комплексных чисел 1 2,z z  называется число z , равное 

            
1 2 1 1 2 2 1 2 1 2( ) ( )z z z x i y x i y x x i y y= + = + ⋅ + + ⋅ = + + ⋅ + . 

 Произведением комплексных чисел 1 2,z z  называется число z ,  равное   

2
1 2 1 1 2 2 1 2 1 2 2 1 1 2( ) ( )z z z x y i x y i x x x y i x y i y y i= ⋅ = + ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ + + =   

1 2 1 2 1 2 2 1( ) ( )x x y y x y x y i= ⋅ − + + ⋅ . 

 Для любого комплексного числа z x iy= +  существует комплексно-сопряжённое 

число z x iy= − , причём  
2 2z z x y⋅ = + . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относительно действительной оси.  

 Модуль и аргумент комплексного числа, тригонометрическая форма записи. Дейст-

вия с комплексными числами в тригонометрической форме. Формула Муавра. 

 Будем изображать комплексные числа 0z x iy= + ≠  радиус-векторами точек z  

(Рис. 2). Длина радиус-вектора точки z  называется модулем комплексного числа z  и обо-

значается z : 
2 2z z z x y= ⋅ = + , ( )2z z z⋅ = , z z= . Здесь z - расстояние от 

начала комплексной плоскости до точки z , 2 1z z− -  расстояние между точками 1z  и 2z . 

Угол ϕ , который образует радиус-вектор z  с положительным направлением оси Ox , на-

зывается аргументом комплексного числа z  и обозначается ( )Arg z . Значения ( )Arg z  

находятся неоднозначно, с точностью до слагаемого 2 ,k k Zπ ∈ . Главным значением ар-

гумента arg( )z  комплексного числа z  называется значение Argz из промежутка 

( ];π π− : ( ) arg( ) 2 , , arg( )Arg z z k k Z zπ π π= + ∈ − < ≤ .  

 Пользуясь формулами перехода от декартовых координат к полярным 

координатам cosx z ϕ= ⋅ , siny z ϕ= ⋅ , 
y

tg
x

ϕ=  запишем комплексное число 
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z  в виде ( )cos sinz z iϕ ϕ= ⋅ + ⋅ . Эта форма записи комплексного числа называется 

тригонометрической(или полярной). Формулы для нахождения главного значения аргу-

мента комплексного  числа: 

                           

, 0;

, 0, 0;

arg( ) , 0, 0;

, 0, 0;
2

, 0, 0.
2

y
arctg x

x

y
arctg x y

x

y
z arctg x y

x

x y

x y

π

π

π

π

   >   
   + < ≥ 

 
  = − < <  

 


= >

− = <


  

Для комплексных чисел 

            ( ) ( )1 1 1 1 2 2 2 2cos sin , cos sinz z i z z iϕ ϕ ϕ ϕ= ⋅ + = ⋅ + , 

записанных в тригонометрической форме, справедливы следующие правила 

умножения и деления: 

                 ( )1 2 1 2 1 2 1 2cos( ) sin( )z z z z iϕ ϕ ϕ ϕ⋅ = ⋅ ⋅ + + + , 

                 ( )11
1 2 1 2 2

2 2

cos( ) sin( ) , 0
zz

i z
z z

ϕ ϕ ϕ ϕ= ⋅ − + − ≠ . 

В частности, справедлива формула Муавра возведения комплексных чисел в степень 

               ( )( ) ( )cos sin cos sin ,
n nnz z i z n i n n Nϕ ϕ ϕ ϕ= ⋅ + = ⋅ + ∈ . 

Комплексные числа ( )1 1 1 1cos sinz z iϕ ϕ= ⋅ +  и ( )2 2 2 2cos sinz z iϕ ϕ= ⋅ + ,  

записанные в тригонометрической форме, равны тогда и только тогда, когда 

          ( ) ( )1 2 1 2, 2 ,z z Arg z Arg z m mπ= − = - целое. 

С помощью этого понятия равенства комплексных чисел и формулы  

Муавра возведения в степень получают следующую формулу Муавра извле- 

чения корней n ой−  степени из комплексных чисел:  

  
2 2

cos sin , 0,1,2,..., 1n n
k k

z z i k n
n n

ϕ π ϕ π + +    = ⋅ + ⋅ = −    
    

. 

В общем случае для любого комплексного 0z ≠  существует ровно n  различных значе-

ний 
n z , которые изображаются на комплексной плоскости вершинами правильного n -

угольника, вписанного в окружность радиуса nr z=   с центром в нулевой точке(либо 

значения 
n z изображают радиус-векторами).                                                                                               

 3. Показательная форма записи комплексных чисел. Действия с комплексными 

числами в показательной форме.  

С помощью формулы Эйлера  

                                             cos sin
i

e i
ϕ ϕ ϕ= + ⋅  

любое комплексное число 0z ≠  можно представить в показательной форме: 

                                                  
i

z z e
ϕ= ⋅ .   
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В показательной форме удобно умножать и делить комплексные числа, возводить в сте-

пень и извлекать корни:  

если 1
1 1

i
z z e

ϕ
= ⋅ , 2

2 2

i
z z e

ϕ
= ⋅ , 

i
z z e

ϕ= ⋅ , то  

1 2 1 2
1 2 1 2 1 2

( )i i i
z z z e z e z z e

ϕ ϕ ϕ ϕ+
⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ , 

1
11 1 1 2

22 2
2

( )
i

z ez z i
e

iz zz e

ϕ
ϕ ϕ

ϕ
⋅ −= ⋅ = ⋅
⋅

,  

( )nn in
z z e

ϕ= ⋅  , ( ) nn in
z z e

ϕ−− −= ⋅ , 
i

z z e
ϕ−= ⋅ .  

Отметим, что из формулы Эйлера следует: cos sin
i

e i
ϕ ϕ ϕ− = − ⋅ ,  

    cos
2

i ie eϕ ϕ

ϕ
−+

= ,   sin
2

i ie e

i

ϕ ϕ

ϕ
−−

=
⋅

. 

 

2. Комплексная плоскость.   

 

Множество всех комплексных чисел замкнуто относительно операций  

сложения и умножения и образует поле, обозначаемое через C . Элементы  z x iy= +  

поля C  отождествляются с точками ( ; )M x y  плоскости xOy . В этом случае плоскость 

xOy  называют комплексной плоскостью. Комплексные числа можно изображать также 

радиус-векторами точек. Сложение и вычитание комплексных чисел можно геометриче-

ски интерпретировать как сложение и вычитание векторов на комплексной плоскости. 

Для любого комплексного числа z x iy= +  существует комплексно-сопряжённое 

число z x iy= − , причём  
2 2z z x y⋅ = + . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относительно действительной оси 

 

1. 2 Лекция №  2   (2 ч). Тема: «Линии и области на комплексной плоскости»                              

1.2.1 Вопросы лекции: 

1. Линии на комплексной плоскости.  

2. Области на комплексной плоскости. 

1.2.2 Краткое содержание вопросов:  

1. Линии на комплексной плоскости. ………………………………………………. 

Рассмотрим множество D C⊆ , состоящее из комплексных чисел. Будем считать, что 

значением z  может быть любое комплексное число из множества D . В этом случае z  

называют комплексным переменным, а множество D -областью изменения z . В алгебраи-

ческой форме z  имеет вид z x i y= + ⋅ . 

 Пусть ( ), ( )t tϕ ψ - действительные непрерывные функции действительного пере-

менного t , tα β≤ ≤ . Система уравнений   

                                                  
( ),

( )

x t

y t

ϕ
ψ
=


=
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определяет  на плоскости  xOy  непрерывную линию (параметрическим заданием). Непре-

рывную линию на комплексной плоскости можно задать комплексно-параметрическим 

уравнением 

                             ( ) ( ) ( ),z z t z t i t tϕ ψ α β= ⇔ = + ⋅ ≤ ≤ . 

Если ( ), ( )t tϕ ψ  непрерывны, имеют непрерывные производные и   

                                ( ) ( )2 2
( ) ( ) 0,t t tϕ ψ α β′ ′+ ≠ ≤ ≤ , 

то линию называют гладкой. Замкнутую линию, не имеющую точек самопересечения, на-

зывают контуром (замкнутым контуром).  

 Линию на комплексной плоскости можно задать не только комплексно- параметри-

ческим, но и комплексным уравнением. 

                      Простейшие линии на комплексной плоскости 

1. а) Комплексное уравнение окружности с центром в точке 
0z z=  радиуса r : 

 0z z r− = (Рис. 11); 

    б) комплексно-параметрическое уравнение окружности с центром в точке 
0z z=  ра-

диуса r : 
0 (cos sin ), 0 2z z r t i t t π= + ⋅ + ⋅ ≤ ≤ (Рис.11); 

 в) комплексное уравнение дуги окружности с центром в точке 
0z z=  радиуса r  (Рис. 12):

( )
0

0

,

;

z z r

arg z zα β

 − =

≤ − ≤

 

    г) комплексно-параметрическое уравнение дуги окружности с центром в 

точке 
0z z=  радиуса r : 

0 (cos sin ),z z r t i t tα β= + ⋅ + ⋅ ≤ ≤ (рис. 12). 

д) комплексно-параметрическое уравнение окружности в показательной форме с цен-

тром в точке 
0z z=  радиуса r : 0 ,0 2iz z r e tϕ π⋅= + ⋅ ≤ ≤ ; 

е) комплексно-параметрическое уравнение дуги окружности в показательной форме с 

центром в точке 
0z z=  радиуса r : 0 ,iz z r e tϕ α β⋅= + ⋅ ≤ ≤ .                           
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2. Комплексно-параметрическое уравнение прямой, проходящей через две заданные точки 

1z  и 
2z : 

1 2 1( ) ,z z z z t t= + − ⋅ − ∞ < < +∞ (рис.13). 

     

3. Луч, выходящий из точки 0z =  под углом α  к оси Ox : arg( )z α= (рис. 14). 

4. Луч, выходящий из точки 
0z z=  под углом α  к оси Ox : 

0arg( )z z α− = (рис.15).                        

2. Области на комплексной плоскости.……………………………………………. 

Простейшие области комплексной плоскости 

1. Открытый круг с центром в точке 
0z z=  радиуса r  (окрестность)(Рис. 18): 

0z z r− < .  

2. Замкнутый круг с центром в точке 
0z z=  радиуса r  (Рис. 19): 0z z r− ≤ . 

        

3. Внешность круга открытая с центром в точке 
0z z=  радиуса r : 0z z r− > (Рис. 20). 

4. Внешность круга замкнутая с центром в точке 
0z z=  радиуса r : 0z z r− ≥ (Рис. 21). 
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5. Открытое круговое кольцо с центром в точке 
0z z= , ограниченное концентрическими 

окружностями радиусов r  и R , 0 r R< <  (Рис. 22): 0r z z R< − < . Кольцо может 

включать часть границы или всю границу. Например, неравенство 0r z z R≤ − ≤  задаёт 

замкнутое кольцо.  

   

6. Замкнутый угол с вершиной в точке 
0z z=  (Рис. 23):  

                                    ( )0arg z zα β≤ − ≤ , α β< .  

 Стороны угла, либо некоторые участки сторон, могут не включаться в область. Например, 

( )0arg z zα β< − <  задаёт открытый угол. 

7. Открытый круговой сектор с центром в точке 
0z z= , ограниченный дугой  окружно-

сти радиуса r  и  лучами 
0arg( )z z α− = , 

0arg( )z z β− = , α β<  (Рис. 24): 

( )0 0, argz z r z zα β− < < − < .  Круговой сектор может быть замкнутым. 
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8. Сектор кругового кольца с центром в точке 
0z z= , ограниченный дугами концентриче-

ских окружностей радиусов r  и R  и лучами 
0arg( )z z α− = , 

0arg( )z z β− = , α β<  

(Рис. 25): 0 ,r z z R< − < ( )0arg z zα β< − < (открытый).  

Круговой сектор может быть замкнутым. 

     

9. Проколотая окрестность с центром в точке 
0z z=  радиуса r  (Рис. 26): 

00 z z r< − < .  

10. Комплексная плоскость с разрезом вдоль отрицательной части действительной оси 

(Рис. 27):                                        ( )arg zπ π− < < .  

       

11. Правая полуплоскость комплексной плоскости (замкнутая) (Рис. 28):  

                                                        Re 0z ≥ . 

12. Верхняя полуплоскость комплексной плоскости (замкнутая) (Рис. 29): 

                                                         Im 0z ≥ .  

Полуплоскости могут быть открытыми. 
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13. Первая четверть комплексной плоскости  (Рис. 30): Re 0,Im 0z z≥ ≥  (за-мкнутая).  

14. Прямоугольник на комплексной плоскости  (Рис. 31): Rea z b≤ ≤ , 

Imc z d≤ ≤ , , , , , ,a b c d a b c d R< < ∈  (замкнутый). Прямоугольники  могут быть от-

крытыми. 

   

Линии и области, заданные комплексными уравнениями и неравенствами, проще 

всего строить используя наглядную геометрическую интерпретацию модуля и аргумента 

комплексного числа.  

 

1. 3 Лекция № 3 (2 ч). Тема: «Определение ФКП. Однозначные и однолистные 

функции.  Предел и непрерывность. Отображения с помощью непрерывных функций. 

Степенные ряды. Элементарные ФКП»                      

                         
1.3.1 Вопросы лекции: 

1. Определение ФКП. Однозначные и однолистные функции.  

2. Предел и непрерывность. 

3. Отображения с помощью непрерывных функций. Степенные ряды. Элементар-

ные ФКП.  

1.3.2 Краткое содержание вопросов:  
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1. Определение ФКП. Однозначные и однолистные функции.  

 

 Пусть D  и G  - комплексные числовые множества (вообще говоря, множества на 

расширенной комплексной плоскостиC ). Функцией ( )w f z=  комплексного переменного 

z  называется бинарное отношение f  между множествами D  и G , причём каждое число 

z  множества D  будет являться первым элементом какой-либо упорядоченной пары под-

множества f  декартового произведения D G× ( f D G⊆ × ). Множество D  называется 

областью определения функции, G -областью значений функции, а ( )E f D G= ⊆ -

множеством значений функции. Если каждому значению z D∈  соответствует лишь одно 

значение w G∈ , то функция называется однозначной, если же некоторым z  соответству-

ет более чем одно значение w , то функция называется многозначной. Только однозначная 

комплексная функция является функцией в общепринятом понимании (отображение). 

Итак, однозначной функцией ( )w f z=  комплексного переменного z  называется отобра-

жение f  комплексного числового множества D  в комплексное числовое множество G .  

 Обозначим z x i y= + ⋅  и представим функцию  в алгебраической форме

w u i v= + ⋅ , где ,x y -действительные числа.  Тогда в алгебраической форме 

                           ( ) ( ) ( )( ) , ,w f z f x i y u x y i v x y= ≡ + ⋅ ≡ + ⋅ .  

Действительная и мнимая части функции комплексного переменного ( )Re ( ) ,f z u x y= , 

( )Im ( ) ,f z v x y=  являются действительными функциями двух действительных пере-

менных x  и y . 

 Итак, функция ( )w f z=  определяет две действительные функции действительных 

переменных ( ),u u x y=  и ( ),v v x y= . Обратно, задание функций ( ),u u x y=  и 

( ),v v x y=  определяет комплексную функцию комплексного переменного 

( ) ( )( ) , ,w f z u x y i v x y= ≡ + ⋅  в алгебраической форме.  

 Для наглядной геометрической иллюстрации функции ( )w f z=  значения аргу-

мента z  изображают на комплексной плоскости xOy , которую обозначают ( )z , а  значе-

ния функции w  изображают на комплексной плоскости uO v′ , которую обозначают ( )w . 

Таким образом, комплексная функция отображает множество точек D  комплексной 

плоскости ( )z , на множество точек E  комплексной плоскости ( )w (рис. 44 ).   
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 Иногда для геометрического представления функций комплексного переменного в 

системе координат Oxyρ  изображают поверхность модуля или рельеф функции: 

( )f zρ =  . Если ( ) ( )( ) , ,w f z u x y i v x y= ≡ + ⋅ , то поверхность  

модуля задаётся уравнением ( ) ( )2 2, ,u x y v x yρ = + . На рисунке 45 

представлена поверхность модуля  функции  
2w z= : 

22 2 2z z x yρ = = = + . Это пара-

болоид вращения относительно вертикальной оси. 

                     

 В теории функций комплексного переменного биективное отображение ( )w f z=  

области D  на область E  принято называть однолистной функцией. Для однолистной 

функции ( )w f z=  справедливо следующее утверждение:  

( ){ }1 2 1 2 1 2, ( ) ( )z z D z z f z f z∀ ∈ ≠ ⇒ ≠ . 
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 В приложениях важное значение имеет свойство отображений с помощью одно-

значных непрерывных  функций: если однозначная непрерывная в области D  функция 

( )w f z=  отображает эту область на множество E , то множество E так же является об-

ластью. Если, сверх того, функция непрерывна в замыкании области D , то f  отображает 

D∂  на E∂ , т.е. границей образа области D  будет образ границы этой же области: 

                                   ( ) ( ) ( )E f D f D f D∂ = ∂ ⇔ ∂ = ∂ . 

2. Предел и непрерывность. 

 

Определение. Функция ),(),()( yxivyxuzfw +==  имеет предел в точке z0, рав-

ный числу А = a + ib, если 0)(lim
00

=−
→−

Azf
zz

:      .)(lim
0

Azf
zz

=
→

 

Свойства пределов функций комплексного переменного. 

 Для пределов функций комплексного переменного f(z) и g(z) справедливы следую-

щие свойства: 

 1) [ ] )(lim)(lim)()(lim
000

zgzfzgzf
zzzzzz →→→

±=±  

 2) [ ] )(lim)(lim)()(lim
000

zgzfzgzf
zzzzzz →→→

⋅=⋅  

 3) .0)(lim;
)(lim

)(lim

)(

)(
lim

0

0

0

0

≠=
→

→

→

→
zg

zg

zf

zg

zf

zz

zz

zz

zz
 

 Определение. Функция  называется непрерывной в 

точке z0, если выполняется равенство 

)()(lim 0
0

zfzf
zz

=
→

 

3. Отображения с помощью непрерывных функций. Степенные ряды. Элементар-

ные ФКП. 

 Под элементарными функциями комплексного переменного z x i y= + ⋅  понимают 

обычно функции:  

( )f z a z b= ⋅ + - линейная функция ( ),a b Z∈ ; 

( ) nf z z= - степенная функция, n -целое; 

( )
a z b

f z
c z d

⋅ +
=
⋅ +

-дробно-линейная функция ( ), , ,a b c d Z∈ ; 

1 2

0 1 2
( ) ...n n n

n
f z a z a z a z a− −= ⋅ + ⋅ + ⋅ + + - целая рациональная функция;   

1 2

0 1 2

1 2

0 1 2

...
( )

...

n n n

n

m m m

m

a z a z a z a
f z

b z b z b z b

− −

− −

⋅ + ⋅ + ⋅ + +
=

⋅ + ⋅ + ⋅ + +
-общая рациональная функция;  

),(),()( yxivyxuzfw +==
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1 1
( )

2
f z z

z

 = ⋅ + 
 

-функция Жуковского;  

( ) zf z e= -показательная функция;  

( )f z Lnz= -логарифмическая функция;  

( ) sinf z z= , ( ) cosf z z= , 
sin

( )
cos

z
f z tgz

z
= ≡ , 

cos
( )

sin

z
f z ctgz

z
= ≡ - тригонометриче-

ские функции;  

( ) sinf z Arc z= , ( ) Arccosf z z= , ( )f z Arctgz= , ( )f z Arcctgz= -обратные триго-

нометрические функции;  

гиперболические функции: 
2

z z
e e

shz
−−

= -синус гиперболический,  

2

z z
e e

chz
−+

= -косинус гиперболический, 
shz

thz
chz

= -тангенс гиперболический,  

chz
cthz

shz
= −котангенс гиперболический,  

обратные гиперболические функции.  

Представление основных элементарных функций в алгебраической форме (формулы 

вычисления значений функций) и простейшие свойства функций.  

1. Показательная функция ze .  

 1.1. Показательная функция определена на всей комплексной плоскости и её пред-

ставление в алгебраической форме определяется формулой  

               (cos sin ) cos sinz x i y x x xe e e y i y e y e i y+ ⋅= = ⋅ + ⋅ = ⋅ + ⋅ ⋅ ,  

т.е. ( ) ( )Re cos , Im sinz x z xe e y e e y= ⋅ = ⋅ .  

 При 0y =  для действительных z x=  имеем 
z xe e= ; при 0x =  для чисто мнимых 

z i y= ⋅  получим формулу Эйлера:  cos sini ye y i y⋅ = + ⋅ .  

 1.2. ( ), 2 , 0, 1, 2, 3,...z x ze e Arg e y k kπ= = + = ± ± ± . 

 1.3. Функция 
ze является аналитической на всей комплексной плоскости, при этом 

( )z ze e
′ = .  
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 1.4. 

1

1 2 1 2 1 2

2
1 2, ,

z
z z z z z z

z

e
z z e e e e

e

+ − 
∀ ⋅ = = 

 
.  

 1.5. Функция 
ze является периодической: число 2 iπ - основной период, любое чис-

ло 2 kiπ , где k Z∈ , будет периодом  

( )( )2 2 2 2 sin2z ki z i z i z zz e e e e e cos i eπ π π π π+ +∀ = = ⋅ = ⋅ + ⋅ = .  

 1.6. Показательная функция 
ze  связана с тригонометрическими функциями тожде-

ством Эйлера:  cos sini ze z i z⋅ = + ⋅ .  

 1.7. ( )0zz e∀ ≠ .  

 1.8. Отображение, осуществляемое функцией 
zw e= , является конформным на 

всей комплексной плоскости. 

Пример 24. Вычислить значение 
ze  при  а) 

2
z i
π

= ⋅ , б) 3
4

z i
π

= − ⋅ .  

Решение. Значения функции 
ze  вычисляем по формуле пункта 1.1: 

 (cos sin ) cos sinz x i y x x xe e e y i y e y e i y+ ⋅= = ⋅ + ⋅ = ⋅ + ⋅ ⋅ .  

а) 
2

z i
π

= ⋅ ⇒ 0,
2

x y
π

= = ⇒ 
02 (cos sin )

2 2

i
ze e e i i

π π π⋅
= = ⋅ + ⋅ = ;  

б) 3
4

z i
π

= − ⋅ ⇒ 3,
4

x y
π

= = − ⇒
3

34 cos sin
4 4

i
ze e e i

π π π− ⋅     = = ⋅ − + ⋅ − =    
    

 

( )3 32 2 2
1

2 2 2
e i e i
 

= ⋅ − ⋅ = ⋅ ⋅ − 
 

.  

2. Логарифмы комплексных чисел. Логарифмическая функция Ln z .  

 Логарифмическая функция определяется как функция, обратная показательной.  

 Определение. Комплексное числа w  называется логарифмом комплексного числа 

z , если 
we z=  и обозначается w Lnz= .  

Теорема. Для любого комплексного числа 0z ≠  существует логарифм w Lnz= . Лога-

рифм нуля в комплексной области не существует (так же как и в действительной об-

ласти). 

Доказательство. Пусть дано , 0z C z∈ ≠ . Покажем существование числа w  такого, что 

we z= , т.е. w Lnz= . Число w Lnz=  представим в алгебраической форме w u i v= + ⋅ , 
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где u  и v  пока не известны, а число z - в показательной форме: 
i Argzz z e ⋅= ⋅ . Тогда ра-

венство  
we z=  примет вид 

u i v i Argze z e+ ⋅ ⋅= ⋅ . Поэтому  

u i v i Argz u i v i Argze z e e e z e+ ⋅ ⋅ ⋅ ⋅= ⋅ ⇔ ⋅ = ⋅ ⇔   

, ln ,u i v i Argze z e e u z v Argz⋅ ⋅⇔ = = ⇔ = = .  

Поэтому формула вычисления логарифма комплексного числа (представления логарифма 

в алгебраической форме) имеет вид  

                                    lnLnz u i v z i Argz= + ⋅ = + ⋅ .  

Так как  2 , 0, 1, 2, 3,...Argz argz k kπ= + = ± ± ± , где arg z - главное значение аргумента 

комплексного числа z , то  

                           ln 2 , 0, 1, 2, 3,...Lnz z i argz ki kπ= + ⋅ + = ± ± ±  .  

В этих формулах ln z - натуральный логарифм действительного числа 0z ≠ . 

Теорема доказана. 

 Если z x i y= + ⋅ , то 
2 2z x y= +  и логарифм комплексного числа z  вычисля-

ется по формуле  

                
2 2ln 2 , 0, 1, 2, 3,...Lnz x y i argz ki kπ= + + ⋅ + = ± ± ± . 

 Эта формула показывает, что логарифмическая функция комплексного аргумента 

w Lnz=  имеет бесконечно много значений (бесконечнозначная). При 0k =  выделяют 

ветвь этой функции, называемую главным значением логарифма:  

                                                lnlnz z i argz= + ⋅ .  

Пример 25. Вычислить значение Lnz  при  а) z i= , б) 1z = − , в)  1z i= + .   

Решение. Значения функции Lnz  вычисляем по формуле  

ln 2 , 0, 1, 2, 3,...Lnz z i argz ki kπ= + ⋅ + = ± ± ±  

а). ln arg 2 ln1 2 2 , 0, 1, 2, 3,...
2 2

Lni i i i ki i ki i ki k
π π

π π π= + ⋅ + = + ⋅ + = ⋅ + = ± ± ±   

Главное значение логарифма числа z i=  получим из этой формулы при 0k = :  

ln arg ln1
2 2

lni i i i i i
π π

= + ⋅ = + ⋅ = ⋅ .  

б). В комплексной области существуют логарифмы отрицательных чисел. Например, 

( ) ( ) ( )1 ln 1 arg 1 2 ln1 2 1 2 , 0, 1, 2,...Ln i ki i ki i k kπ π π π− = − + ⋅ − + = + ⋅ + = ⋅ + ⋅ = ± ± ;  
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при 0k =  получим главное значение логарифма числа :  

 . 

в). ,  

.  

3.  Тригонометрические функции.  

 3.1. Тригонометрические ФКП   и  определены на всей комплексной 

плоскости и выражаются через показательную ФКП с помощью тождеств Эйлера:  

,  .     

Функции  и  определяются через  и : , . Для 

действительных  эти функции совпадают с тригонометрическими функциями веще-

ственного аргумента.  

 3.2. Положив z x i y= + ⋅  в формулах п. 3.1, получим представление sin z  и cos z  

в алгебраической форме: 

( )cos cos cos ch sin shz x i y x y i x y= + ⋅ = ⋅ − ⋅ ⋅ ,  

( )sin sin sin ch cos shz x i y x y i x y= + ⋅ = ⋅ + ⋅ ⋅ .  

 3.3. Связь между тригонометрическими и гиперболическими функциями:    

 sin shiz i z= ⋅ ,cos hiz c z= ,  

sh siniz i z= ⋅ , ch cosiz z= .   

 3.4. Функции sin z  и cos z  аналитические на всей плоскости, а tan z  и cot z  - в 

области определения, причём  

,   ,    ,   .   

 3.5. Отображения, осуществляемые функциями  и , являются конформ-

ными на всей комплексной плоскости. 

 3.6. Функции  и  являются периодическими: число - основной пери-

од, любое число , где , будет периодом.  

1z = −

( ) ( )1 ln 1 arg 1ln i i π− = − + ⋅ − = ⋅

( ) ( )1 ln 1 arg 1 2 ln 2 2 , 0, 1, 2, 3,...
4

Ln i i i i ki i ki k
π

π π+ = + + ⋅ + + = + ⋅ + = ± ± ±

( )1 ln 2
4

ln i i
π

+ = + ⋅

sin z cos z

cos
2

iz ize e
z

−+
= sin

2

iz ize e
z

i

−−
=

⋅

tgz ctgz sin z cos z
sin

cos

z
tgz

z
≡

cos

sin

z
ctgz

z
≡

z x=

( )sin cosz z′ = ( )cos sinz z′ = − ( ) 2

1

cos
tgz

z
′ = ( ) 2

1

sin
ctgz

z
′ = −

sin z cos z

sin z cos z 2π

2 kπ k Z∈



19 

 

 3.7. В комплексной области для функций  и  нарушаются известные 

свойства  , т.е. модули этих функций могут принимать значения, 

большие единицы. Например, из формул п. 3.3 следует, что  

. Поэтому, , т.е. . Это свойство 

 и   можно увидеть, изобразив в системе координат  поверхность моду-

ля или рельеф функции:  с MathCAD. Так как  

, то поверхность модуля зада-

ётся уравнением  (Рис. 46).  

 

Пример 26. Вычислить значение  при а) , б) .  

Решение.  а). Значение  вычисляем по формуле  ( при ):  

, где .  

б). Значение  вычисляем по формуле  

  при  : 

sin z cos z

sin 1, cos 1z z≤ ≤

cos 1i ch=
1 1

1

cos 1 1.543
2 2

e
e e ei ch

− ++
= = = ≈ cos 1i >

sin z cos z Oxyρ

sin zρ =

( )sin sin sin cosz x i y x chy i x shy= + ⋅ = ⋅ + ⋅ ⋅ sin zρ =

( ) ( )2 2
sin cosx chy x shyρ = ⋅ + ⋅

cos z z i=
2

z i
π

= +

cosi cosiz chz= 1z =

cos 1i ch=
1 1

1

1 1.543
2 2

e
e e ech

− ++
= = ≈

cos
2

i
π + 
 

( )cos cos cos sinz x i y x chy i x shy= + ⋅ = ⋅ − ⋅ ⋅ 0, 1
2

x y
π

= =
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.  

4.  Гиперболические функции.  

,  

.  

 

1. 4. Лекция №  4 (2 ч). Тема: «Производная ФКП. Условия Коши- Римана, анали-

тические функции. Геометрический смысл модуля и аргумента производной. Элементы 

теории конформных отображений»                                              

1.4.1 Вопросы лекции: 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

2. Геометрический смысл модуля и аргумента производной. Элементы теории кон-

формных отображений. 

1.4.2 Краткое содержание вопросов:  

1. Производная ФКП. Условия Коши- Римана, аналитические функции. 

 Пусть однозначная функция комплексного переменного ( )w f z=  определена в 

окрестности конечной точки z  комплексной плоскости. Если точка z z+ ∆  принадлежит 

этой окрестности, то ( ) ( )w f z z f z∆ = + ∆ −  будет приращением функции ( )w f z=  

при переходе от точки z  к точке z z+ ∆ . Если существует конечный предел  

                                   
0 0

( ) ( )
lim lim
z z

w f z z f z

z z∆ → ∆ →

∆ + ∆ −
=

∆ ∆
,  

то этот предел называется производной функции ( )w f z=  в точке z  и обозначается  

                      
0 0

( ) ( )
( ) ( ) lim lim

z z

w f z z f z
w z f z

z z∆ → ∆ →

∆ + ∆ −′ ′= = =
∆ ∆

,  

а сама функция ( )w f z=  называется дифференцируемой в точке z . Представим функ-

цию ( )w f z=  в алгебраической форме ( ) ( , ) ( , )f z u x y i v x y= + ⋅ , где ( , ) , ( , )u x y v x y - 

действительные функции двух действительных аргументов ,x y .  

 Необходимые и достаточные условия дифференцируемости функции в конечной 

точке области комплексной плоскости (во внутренней точке области): для того, чтобы 

функция ( ) ( , ) ( , )f z u x y i v x y= + ⋅ , определённая в области D  комплексной плоскости, 

была в точке z x i y= + ⋅  этой области дифференцируемой как функция комплексного 

аргумента, необходимо и достаточно, чтобы функции  ( , )u x y  и ( , )v x y  были дифферен-

( )
1 1

1

cos cos 0 1 cos0 1 sin0 1 1 1.543
2 2

e
e e ei i ch i sh ch

− ++
= + ⋅ = ⋅ − ⋅ ⋅ = = = ≈

( )c c c cos s sinhz h x i y hx y i hx y= + ⋅ = ⋅ + ⋅ ⋅

( ) cos sinshz sh x i y shx y i chx y= + ⋅ = ⋅ + ⋅ ⋅
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цируемы в точке ( , )x y  как функции двух действительных переменных и выполнялись 

условия Коши-Римана (Эйлера-Даламбера)  

                                                    

,

.

u v

x y

u v

y x

∂ ∂ =∂ ∂

∂ ∂ = −
∂ ∂

                                                (КРЭД)                                     

При выполнении всех этих условий производная ( )f z′  может быть вычислена по одной 

из следующих формул: 

                       ( )
u v u u v u v v

f z i i i i
x x x y y y y x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ = + = − = − = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

. 

Достаточные условия дифференцируемости функции в конечной точке области 

комплексной плоскости: для дифференцируемости комплексной функции 

( ) ( , ) ( , )f z u x y i v x y= + ⋅  достаточно, чтобы частные производные  , , ,
u u v v

x y x y

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

существовали, были непрерывными и удовлетворяли условию (КРЭД). 

 Функция называется дифференцируемой в области, если она дифференцируема в 

каждой точке этой области.  

 Функция ( )w f z=  однозначная и дифференцируемая в области называется ана-

литической(иначе, голоморфной, регулярной, правильной) в этой области. Функция назы-

вается аналитической  в конечной точке z  , если она является аналитической в некоторой 

окрестности этой точки. Точки плоскости z , в которых функция не является аналитиче-

ской, называются особыми точками этой функции. 

2. Геометрический смысл модуля и аргумента производной. Элементы теории кон-

формных отображений. ……………………………………………………. 

Пусть функция ( )zf=ω  дифференцируема в точке 0z  и ( ) 00 ≠′ zf . Проведем через 

точку 0z  любую гладкую кривую L. Ее образом также будет какая-то гладкая кривая ( )Lf

, проходящая через точку ( )00 zf=ω . 

Пусть α означает угол наклона касательной в точке 0z  к кривой L, а β – угол наклона 

касательной к ( )Lf  в точке 0ω . 

 Угол поворота касательной к кривой L при данном отображении будет равен 

( )0arg f zβ α ′− = . 

С учетом того, что результат получился не зависящим от выбора кривой L, можно сде-

лать вывод, что все кривые, проходящие через точку 0z , при данном отображении f по-

ворачиваются на один и тот же угол, равный аргументу производной в данной точке. 
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Если теперь рассмотреть две кривые 1L  и 2L , проходящие через точку 0z , и угол между 

ними обозначить через γ, то поскольку обе кривые (точнее, касательные к ним) поворачи-

ваются на одинаковый угол, то угол между образами - ( )1Lf  и ( )2Lf  - тоже будет равен γ. 

Определение. Отображение, сохраняющее углы между кривыми, проходящими через 

данную точку, называется конформным в этой точке. 

Таким образом, отображение посредством аналитической в области функции f  во всех 

точках 0z , где ( ) 00 ≠′ zf , является конформным. 

Итак, ( )0zf ′  - это локальный коэффициент растяжения окрестности точки 0z  относи-

тельно 0z  при отображении f . 

 

 1. 5 Лекция №  5 (2 ч). Тема: «Гармонические функции и их связь с аналитиче-

скими функциями, сопряжённые гармонические функции. Восстановление аналитической 

функции по её действительной или мнимой части»                                         

1.5.1 Вопросы лекции: 

1. Гармонические функции, сопряжённые гармонические функции. 

2. Восстановление аналитической функции по её действительной или мнимой час-

ти.  

1.5.2 Краткое содержание вопросов:  

 
1. Гармонические функции, сопряжённые гармонические функции. ………. 

 

 Пусть однозначная функция ( ) ( , ) ( , )f z u x y i v x y= + ⋅  определена в области D  

Напомним, что для того, чтобы ( , )u x y ( ( , )v x y была действительной(мнимой) частью 

аналитической функции ( )f z  необходимо, а в случае односвязной области D  и доста-

точно, чтобы  функция  ( , )u x y ( ( , )v x y ) имела непрерывные частные производные до 

второго порядка включительно и удовлетворяла дифференциальному уравнению с част-

ными производными  

                                         

2 2

2 2

( , ) ( , )
0

u x y u x y

x y

∂ ∂
+ =

∂ ∂
. 

являются гармоническими функциями. Это дифференциальное уравнение называют урав-

нением Лапласа. Действительную функцию ( , )u x y , имеющую непрерывные частные 

производные до второго порядка включительно и удовлетворяющую равнению Лапласа 

называют гармонической функцией в области D . Уравнение Лапласа записывают в сим-

волической форме  

                                                     0u∆ = .  

 Итак, действительная и мнимая части аналитической функции являются гармони-

ческими функциями. Не всякая пара гармонических функций образует аналитическую 
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функцию. Функция ( ) ( , ) ( , )f z u x y i v x y= + ⋅  будет аналитической, если гармонические 

функции ( , )u x y  и ( , )v x y  связаны условиями Коши - Римана.  

 Пару гармонических функций  ( , )u x y  и ( , )v x y , связанных условиями Коши- Ри-

мана, называют сопряжёнными гармоническими функциями. Таким образом, действитель-

ная и мнимая части функции, аналитической в некоторой области, являются в этой облас-

ти сопряжёнными гармоническими функциями. 

 Зная одну из гармонических функций, например действительную (мнимую) часть 

неизвестной аналитической функции, можно восстановить другую, например мнимую ( 

действительную) часть этой аналитической функции. Таким образом аналитическую 

функцию можно восстановить по известной действительной или мнимой части. Как гар-

моническая, так и аналитическая функции восстанавливаются с точностью до постоянного 

слагаемого. При этом функция восстанавливается однозначно, если задано одно  из значе-

ний этой функции. 

2. Восстановление аналитической функции по её действительной или мнимой час-

ти. ……………………………………………………….……………………. 

 

 Рассмотрим методы восстановления аналитической функции в односвязной облас-

ти. 

Пример 23. Проверить, является ли функция 
2 2( , ) 2u x y x y x= − +  действительной ча-

стью некоторой аналитической функции ( )f z , и если является, то найти эту аналитиче-

скую функцию, если (0) 0f = .  

Решение.  Функцию ( )f z  будем искать в виде ( ) ( , ) ( , )f z u x y i v x y= + ⋅ , где  ( , )u x y  

дана в условиях задачи, а ( , )v x y  неизвестна. Функция ( , )u x y определена на всей ком-

плексной плоскости (в односвязной области). Вычисляем  

            

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y

∂ ∂ ∂ ∂ ∂
= + = − = = = −

∂ ∂ ∂ ∂ ∂ ∂
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
.  

Поэтому она гармоническая и является действительной частью некоторой аналитической 

функции ( )f z  на всей плоскости. Найдём гармоническую функцию ( , )v x y , сопряжён-
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ную с функцией ( , )u x y . Тогда будет восстановлена и функция ( )f z . Существует не-

сколько способов восстановления ( )f z . 

 Первый способ восстановления ( )f z (с помощью неопределённого интеграла от 

функции действительного аргумента).  Из условий Коши- Римана следует, что 

2 ,

2 2.

u v v u
y

x y x y

u v v u u
x

y x y x x

∂ ∂ ∂ ∂ = = − = ∂ ∂ ∂ ∂ 
⇔ 

∂ ∂ ∂ ∂ ∂ = − = = = +
 ∂ ∂ ∂ ∂ ∂ 

 

Следовательно, функция ( , )v x y  является решением системы дифференциальных уравне-

ний первого порядка с частными производными  

                                         2 , 2 2.
v v

y x
x y

∂ ∂
= = +

∂ ∂
                                              (S)                                      

Интегрировать эту систему уравнений можно с помощью неопределённого  интеграла или 

криволинейного.  

  Интегрируя первое уравнение системы (S) по x  (считая y  постоянным), восста-

навливаем функцию ( , )v x y  с точностью до произвольной гладкой (пока неизвестной) 

функции ( )yϕ :  

( , ) 2 ( ), ( , ) 2 ( ),

2 2. 2 2,

v x y y dx y v x y y dx y

v v
x x

y y

ϕ ϕ = ⋅ + = ⋅ +
 

⇔ ∂ ∂
= + = + 

∂ ∂ 

∫ ∫
 

т.е.  

( , ) 2 ( ),

2 2.

v x y yx y

v
x

y

ϕ= +

∂ = +∂

                                                                                                        

Найденную в первом уравнении этой системы уравнений функцию ( , )v x y  продифферен-

цируем по y  и подставим во второе уравнение системы (исключим из системы уравнений 

v

y

∂
∂

):   
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2 ( ),
( , ) 2 ( ), ( , ) 2 ( ),

2 ( ) 2 2, ( ) 2.
2 2.

v
x y

v x y yx y v x y yx yy

v x y x y
x

y

ϕ
ϕ ϕ

ϕ ϕ

∂ ′= + = + = +∂  
⇔ ⇔  ′ ′∂ + = + =  = +

∂

 

Решим второе уравнение этой системы ( ) 2yϕ′ =  (простейшее обыкновенное дифферен-

циальное уравнение) и найдём функцию ( )yϕ : ( ) 2y y Cϕ = + , где C - произвольная 

вещественная постоянная. Эту функцию подставим в первое уравнение системы и найдём 

сопряжённую гармоническую функцию  

 ( , ) 2 2v x y xy y C= + + .  

 Аналитическая функция ( )f z  восстановлена нами в виде   

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y C= + ⋅ = − + + ⋅ + + ,  

т.е. 

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y i C= + ⋅ = − + + ⋅ + + ⋅ .  

Подставляя в эту формулу начальное значение (0) 0f = , 0 0, 0z x y= ⇒ = = , находим 

C : 0 0.i C C= ⋅ ⇒ =  Итак, по действительной части ( , )u x y  найдена функция аналити-

ческая на всей комплексной плоскости 

                           ( )2 2( ) 2 2 2f z x y x i yx y= − + + ⋅ + .  

 Заметим, что ( )f z  можно задать аналитическим выражением, зависящим от z . 

Полагая ,
2 2

z z z z
x y

i

+ −
= = , получим  

2 2

( ) 2 2 1
2 2 2 2 2

z z z z z z z z z z
f z i

i i

+ − + − +     = − + + ⋅ ⋅ + =     
     

 

( ) ( ) ( )2 2 22 2 2

4 2

z z z z z z z z z z
z z z z

+ ⋅ + + − ⋅ + −
= + + + + − , 

( ) ( )2 22 2
2( ) 2 2

2 2 2 2

z zz z
f z z z z= + + + − = + , т.е. 

2( ) 2f z z z= + .  

 Замечание. Для того, чтобы выразить ( )f z  аналитическим выражением от z , дос-

таточно в формуле ( ) ( , ) ( , )f z u x y i v x y= + ⋅  выполнить формальную замену x z= , 

0y = . 
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 Второй  способ восстановления ( )f z (с помощью криволинейного интеграла). Из 

системы уравнений (S) следует, что полный дифференциал функции ( , )v x y  равен  

( )2 2 2 .
v v

dv dx dy y dx x dy
x y

∂ ∂
= ⋅ + ⋅ = ⋅ + + ⋅
∂ ∂

 

  Напомним, что выражение ( , ) ( , )P x y dx Q x y dy⋅ + ⋅  в односвязной области явля-

ется полным дифференциалом (при гладких ( , )P x y  и ( , )Q x y ) тогда и только тогда, ко-

гда выполняется условие  
P Q

y x

∂ ∂
=

∂ ∂
. В данном примере для функций ( , ) 2P x y y=  и 

( , ) 2 2Q x y x= +  эти условия выполняются: 2
P

y

∂
=

∂
, 2

Q

x

∂
=

∂
.  

 В односвязной области функция ( , )v x y  восстанавливается по своему полному 

дифференциалу с помощью криволинейного интеграла 2- го типа не зависящего от формы 

линии интегрирования 

( ) ( ) ( )
0

0 0
, , 2 2 2

M

M

v x y v x y d dη ξ ξ η= + ⋅ + + ⋅∫ , где  ( )0 0 0,M x y - фиксированная, а  

( ),M x y - переменная точки комплексной плоскости, ,ξ η - переменные интегрирования. 

Линия 
0M M  кусочно-гладкая. Выбрав начальной точку ( )0 0 0, (0,0)M x y O= , а линию 

интегрирования составленной из отрезков координатных линий OM ON NM= ∪ , где 

( ,0)N N x= , вычислим криволинейный интеграл сведением его к определённым: 

( ) ( ) ( ) ( ), 0,0 2 2 2 2 2 2

N M

O N

v x y v d d d dη ξ ξ η η ξ ξ η= + ⋅ + + ⋅ + ⋅ + + ⋅∫ ∫ .  

В этой формуле первый интеграл равен нулю 

( )2 2 2 0, 0; 0

N

O

d d dη ξ ξ η η η⋅ + + ⋅ = = = =∫ ,  

а второй равен  

( ) ( )
0

2 2 2 , 0;0 2 2

yM

N

d d x d y x dη ξ ξ η ξ ξ η η⋅ + + ⋅ = = = ≤ ≤ = + ⋅ =∫ ∫  

( )
0

2 2 2 2
y

x xy yη η= + = + . 

Поэтому, ( ) ( ), 0,0 2 2v x y v xy y= + + . Учитывая начальное условие (0) 0f = , а также 

что (0,0) 0u =  и (0) (0,0) (0,0)f u i v= + ⋅ , заключаем: (0,0) 0v = . Следовательно, 
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( ), 2 2v x y xy y= + . Получили такой же результат, как и в первом методе: 

( )2 2 2( ) 2 2 2 2f z x y x i yx y z z= − + + ⋅ + ≡ + . 

 Третий способ восстановления ( )f z -с помощью первообразной (неопределённого 

интеграла от функции комплексного аргумента). Аналитическая функция

( ) ( , ) ( , )f z u x y i v x y= + ⋅  является дифференцируемой, причём её производную удобно 

находить по одной из следующих формул 

                           ( )
u u v v

f z i i
x y y x

∂ ∂ ∂ ∂′ = − ⋅ = + ⋅
∂ ∂ ∂ ∂

.  

 Так как по условию дана функция 
2 2( , ) 2u x y x y x= − + , то для нахождения про-

изводной ( )f z′  следует взять формулу    

                                 ( ) 2 2 2
u u

f z i x i y
x y

∂ ∂′ = − ⋅ = + + ⋅
∂ ∂

. 

Преобразованием ,
2 2

z z z z
x y

i

+ −
= =  приводим производную к виду  

           ( ) 2 2 2 2 2 2 2 2
2 2

u u z z z z
f z i x i y i z

x y i

∂ ∂ + −′ = − ⋅ = + + ⋅ = + + ⋅ = +
∂ ∂

. 

Функцию ( )f z  находим по её производной с помощью неопределённого интеграла и 

первообразной:  

                  ( ) 2( ) ( ) 2 2 2f z f z dz C z dz C z z C′= ⋅ + = + ⋅ + = + +∫ ∫ . 

Начальное значение (0) 0f =  позволяет найти 0C = . Следовательно,   

                                              
2( ) 2f z z z− + . 

 Ещё один способ восстановления ( )f z  по действительной части ( , )u x y  или мни-

мой части ( , )v x y  основан на применении формул 

0 0

0( ) 2 ;
2 2

z z z z
f z u C

i

+ − 
= ⋅ − 

 
,  0 0

0( ) 2 ;
2 2

z z z z
f z i v C

i

+ − 
= ⋅ ⋅ + 

 
, 

0 0( )C f z= .  

 

1. 6 Лекция №  6  (2 ч). Тема: «Интеграл комплекснозначной функции веществен-

ного аргумента по отрезку. Интегралы от ФКП по кривой. Теорема Коши для односвязной 

области и её обобщения. Первообразная функция. Интегральная формула Коши»                                   

1.6.1 Вопросы лекции: 

 1. Интеграл комплекснозначной функции вещественного аргумента по отрезку. Ин-

тегралы от ФКП по кривой.  



28 

 

 2. Теорема Коши для односвязной области и её обобщения. Первообразная функ-

ция.  

 3. Интегральная формула Коши.………. 

1.6.2 Краткое содержание вопросов:  
1. Интеграл комплекснозначной функции вещественного аргумента по отрезку. Ин-

тегралы от ФКП по кривой. …………………………………………………. 

 В этой теме рассматриваются следующие простейшие методы вычисления инте-

грала  функции комплексного аргумента:  

1) выражение значения интеграла ФКП в алгебраической форме через два действительных 

криволинейных интеграла 2-го типа;  

2) сведение вычисления интеграла ФКП по гладкой дуге  к вычислению интеграла от 

комплекснозначной функции вещественного аргумента  на отрезке  ;  

3) применение аналога формулы Ньютона-Лейбница для аналитической функции, которая 

позволяет вычислить интеграл ФКП, если известна её первообразная.  

 Более глубокое рассмотрение вопросов интегрирования, связанных с интегральной  

теоремой Коши и интегральной формулой Коши, рядами и теорией вычетов осуществля-

ется в следующих темах.  

§1. Интеграл от комплекснозначной функции вещественного аргумента.  

 Рассмотрим комплексную функцию вещественного аргумента  на отрезке : 

, где функции  непрерывны на этом отрезке.  

 Интеграл функции  на отрезке  вычисляется по формуле  

                                      . 

 §2. Интеграл от функции комплексного переменного по кривой.  

 Рассмотрим  теперь функцию  комплексного пере-

менного  и вычисление интеграла от ФКП  по гладкой дуге .   

 Первый способ вычисления интеграла ФКП по гладкой дуге.  Интеграл от ФКП 

 по гладкой дуге вычисляется по формуле  

    ,  

которая выражает значение интеграла ФКП через два действительных криволинейных ин-

теграла 2-го типа.   

L

t [ ];α β

t [ ];a b

( ) ( ) ( )w f t u t i v t= ≡ + ⋅ ( ), ( )u t v t

( )w f t= [ ];a b

( ) ( ) ( )

b b b

a a a

f t dt u t dt i v t dt⋅ = ⋅ + ⋅ ⋅∫ ∫ ∫

( ) ( , ) ( , )w f z u x y i v x y= ≡ + ⋅

z x i y= + ⋅ L

( )w f z=

( ) ( ) ( )
L L L L

f z dz u i v dx i dy u dx v dy i v dx u dy⋅ = + ⋅ ⋅ + ⋅ = ⋅ − ⋅ + ⋅ ⋅ + ⋅∫ ∫ ∫ ∫
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 Второй способ вычисления интеграла ФКП по гладкой дуге . Предполагая дугу 

 гладкой, записывают её уравнение в комплексно-параметрической форме:  , 

, т.е. . Тогда  

,        

где , . Таким образом, эта  формула 

позволяет свести вычисление интеграла ФКП по гладкой дуге  к вычислению интеграла 

от комплекснозначной функции вещественного аргумента   на отрезке   (см. §1).  

 2. Теорема Коши для односвязной области и её обобщения. Первообразная функ-

ция. 

 Третий способ вычисления интеграла ФКП по гладкой дуге . Область , обла-

дающая свойством: внутренность любой замкнутой непрерывной линии, лежащей в этой 

области, также включается в данную область, называется односвязной областью ком-

плексной плоскости . Области, не обладающие этим свойством, называются многосвяз-

ными. Ограниченная область комплексной плоскости является  -связной, если её грани-

ца состоит из  попарно непересекающихся замкнутых непрерывных линий.      

                                      

 Этот способ вычисления интегралов основан на следующей теореме, вытекающей 

из интегральной теоремы Коши: если функция  непрерывно дифференцируема в од-

носвязной области  (а значит аналитическая в области ), то в этой области существу-

ет первообразная  для функции . Тогда интеграл  не зависит от 

формы дуги интегрирования , а зависит от начальной  и конечной  точек дуги . 

L

L ( )z z t=

[ ];t α β∈ ( ) ( )z t i tϕ ψ= + ⋅

( )( ) ( ) ( ) Re( ) Im( )
L

f z dz f z t z t dt t dt i t dt

β β β

α α α

′⋅ = ⋅ ⋅ = ⋅ + ⋅ ⋅∫ ∫ ∫ ∫

( )Re( ) Re ( ) ( )t f z t z t′= ⋅ ( )Im( ) Im ( ) ( )t f z t z t′= ⋅

L

t [ ];α β

L D

C

n

n

( )f z

D D

( )F z ( )f z ( )
L

f z dz⋅∫

L 1
z

2
z L
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Для аналитической функции справедлив аналог формулы Ньютона-Лейбница, которая по-

зволяет вычислить интеграл ФКП, если известна её первообразная :  

                             .      

       

  

 

3. Интегральная формула Коши………………………. 

Если функция f(z) – аналитическая в односвязной замкнутой области с кусочно – 

гладкой границей L, 

 

 

       D 

 

                ρ 
            z0 

 

 

 

то справедлива формула Коши: 

 

∫ −π
=

L

dz
zz

zf

i
zf

0

0

)(

2

1
)(  

 

где z0 – любая точка внутри контура L, интегрирование по контуру производится в поло-

жительном направлении (против часовой стрелки). Интеграл в правой части называется 

интегралом Коши. 
 

1. 7 Лекция №  7   (2 ч). Тема: «Нули и особые точки аналитической функции. Ря-

ды Тейлора и Лорана»                                            

1.7.1 Вопросы лекции: 

1. Нули и особые точки аналитической функции.  

2. Ряды Тейлора.Ряды Лорана. …………. 

1.7.2 Краткое содержание вопросов:  
 

1. Нули и особые точки аналитической функции. ……………………. 

Пусть функция аналитическая в открытом круге Rzz <−< 00  за исключением 

центральной точки z0. Как правило, в этой точке функция бывает не определена. Тогда 

точка z0 называется изолированной особой точкой функции f. 

 

Рассмотрим следующие частные случаи: 

 1)  Функция f(x) имеет вид: ∑
∞

=

−==
0

01 )()()(
k

k

k zzczfzf . Т.к. степенной ряд схо-

дится во всех точках внутри круга, то его сумма f1(x) определена и непрерывно диффе-

( )F z

2

2

1

1

2 1( ) ( ) ( ) ( ) ( )

z
z

z

L z

f z dz f z dz F z F z F z⋅ = ⋅ = = −∫ ∫
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ренцируема во всех точках круга, а, следовательно, и в центре круга z0. В этом случае го-

ворят, что особенность функции f в точке z0 устранима. Для устранения особой точки 

достаточно доопределить функцию в центре круга (f(z0) = c0) и функция будет аналитиче-

ской не только в окрестности центра круга, но и в самом центре.  В этом случае 

∫ =
L

dzzf 0)(  для любого контура L, содержащего точку z0 и принадлежащего к кругу 

Rzz <− 0 . 

 

 2) Функция f(x) имеет вид: ∑∑
∞

−==

− −=
−

+=
mk

k

k

m

k
k

k zzc
zz

c
zfzf )(

)(
)()( 0

1 0

1 . 

В этом случае точка z0 называется полюсом функции f(z) порядка (кратности) m. 
При m = 1 точку z0 называют еще простым полюсом. Порядок полюса может быть опре-

делен по формуле: 

0)()(lim 0
0

≠=−
→

czfzz m

zz
,  z0 – полюс порядка т. 

 3) Функция f(z) имеет вид )()(
)(

)()( 21

1 00

0 zfzf
zz

c
zzczf

m

k
k

k

k

k

k +=
−

+−= ∑∑
=

−
∞

=

, где в 

ряду ∑
∞

=

−

−
=

1 0

2
)(

)(
k

k

k

zz

c
zf  не равно нулю бесконечное количество коэффициентов с-k. В 

этом случае  говорят, что функция f(z) имеет в точке z0 существенно особую точку. 
 

 

2. Ряды Тейлора. Ряды Лорана …………………………….…………………. 

 

(Пьер Альфонс Лоран (1813 – 1854) – французский математик) 

 

 Функция f(z), аналитическая в круге Rzz <− 0 , разлагается в сходящийся к ней 

степенной ряд по степеням (z – z0). Коэффициенты ряда вычисляются по формулам: 

 

,...2,1,0;
)(

)(

2

1

!

)(
1

0

0

)(

=
−π

== ∫ +
k

zz

dzzf

ik

zf
c

L

k

k

k  

 

Степенной ряд с коэффициентами такого вида называется рядом Тейлора. 
 

 Рассмотрим теперь функцию f(z), аналитическую в кольце Rzzr <−< 0 . Эта 

функция может быть представлена в виде сходящегося ряда: 

 

∑ ∑∑
∞

−∞=

∞

=

−
∞

= −
+−=−=

n n
n

n

n

n

n

n

n
zz

c
zzczzczf

1 00

00
)(

)()()( ,  

где ,...2,1,0;
)(

)(

2

1
1

0

±±=
−π

= ∫
γ

+
n

zt

dttf

i
c

nn  

 

 Ряд такого вида называется рядом Лорана. При этом функция f(z) может быть 

представлена в виде суммы: 

∑∑
∞

=

−
∞

= −
=−=+=

1 0

2

0

0121 ;
)(

)(;)()();()()(
n

n

n

n

n

n
zz

c
zfzzczfzfzfzf  
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 Ряд, определяющий функцию f1(x), называется правильной частью ряда Лорана, а 

ряд, определяющий функцию f2(x), называется главной частью ряда Лорана.  

 

Полученная интегральная формула для коэффициентов ряда на практике не очень 

удобна. Чаще всего для разложения в ряд Лорана используют известные разложения в ряд 

Тейлора. 

 

1. 8 Лекция №  8   (2 ч). Тема: «Вычеты и их приложения»                      

                        1.8.1 Вопросы лекции: 
 1. Вычеты. 

 

2. Применение теоремы Коши о вычетах к вычислению интегралов. 

3. Вычисление интегралов от вещественных функций.……………. 

1.8.2 Краткое содержание вопросов:  
 

1. Вычеты. 
 

Определение. Пусть z0 – изолированная особая точка функция f(z), т.е. пусть 

функция f(z) – аналитическая в некотором круге Rzz <− 0  из которого исключена точка 

z0. Тогда интеграл  

)()(
2

1

0

zfВычdzzf
i zz

L
=

=
π ∫ =

0

Re ( )
z

sf z  

называется вычетом функции f(z) в точке z0, где L – контур в круге Rzz <− 0 , ориенти-

рованный против часовой стрелки и содержащей в себе точку z0. Вычет также обозначают 

иногда 
0

Re ( )
z

sf z . 

 Если ;0;)()( 00 Rzzzzczf
k

k

k <−<−= ∑
∞

−∞=

 есть ряд Лорана функции f в точке 

z0, то 1)(
0

−
=

= czfВыч
zz

. 

 Таким образом, если известно разложение функции в ряд Лорана, то вычет легко 

может быть найден в случае любой особой точки. 

 

 В частных случаях вычет может быть найден и без разложения в ряд Лорана. 

 

 Например, если функция 0)(,
)(

)(
)( 0 ≠ϕ

ψ
ϕ

= z
z

z
zf , а )(zψ  имеет простой нуль при z 

= z0 )0)(,0)(( 00 ≠ψ′=ψ zz , то z = z0 является простым полюсом функции f(z). Тогда 

можно показать, что вычет находится по формуле 

  

)(

)(

0

0

1
0 z

z
cВыч

zz ψ′
ϕ

== −
=

.  

 

 Если z = z0 – полюс  порядка m ≥ 1, то вычет может быть найден по формуле: 

 

1

0

1

1

)]()[(
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)!1(

1
)(
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=
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−
==
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2. Применение теоремы Коши о вычетах к вычислению интегралов. 

Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением ко-

нечного числа точек z1, z2, …, zN. Тогда верно равенство: 

 

0)()(
1

=+
∞=

=
=

∑ zfВычzfВыч
z

N

k
zz k

 

 

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен 

)(2)(
1

zfВычidzzf
N

j
zz

L
j

∑∫
=

=
π=  

 

3. Вычисление интегралов от вещественных функций.  
 

Теорема. Если функция  аналитическая в замкнутой верхней полуплоскости, за 

исключением конечного числа особых точек, не лежащих на оси ОХ, и  
1( ) ( ),f z o z z−= →∞ , то верна формула  

. 

 

  

f

( ) ( )∑∫
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2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

2.1 Практическое занятие № 1, 2, 3 (6 часов). 

Тема: «Комплексные числа и действия с ними. Комплексная плоскость.»                 

2.1.1 Задание для работы: 

1. Поле комплексных чисел, действия с комплексными числами в алгебраической форме. 

 

2. Геометрическая интерпретация комплексных чисел.  

 

2.1.2 Краткое описание проводимого занятия: 

1. Поле комплексных чисел, действия с комплексными числами в алгебраической 
форме. 

1. Вычислить 1 2 1 2,z z z z+ −
, если 1 21 2 , 3 5z i z i= − = +

. 

Решение. 1 2 1 2 3 5 1 3 ( 2 5) 4 3z z i i i i+ = − + + = + + − + = + ,  

1 2 1 2 (3 5 ) 1 3 ( 2 5) 2 7z z i i i i− = − − + = − + − − = − − .  

2. Вычислить 
1 2z z⋅ , взяв 

1 2,z z  из примера 1. 

Решение. ( ) ( ) 2

1 2 1 2 3 5 3 5 6 10 13z z i i i i i i⋅ = − ⋅ + = + − − = − .  

3. Вычислить (представить в алгебраической форме) 1

2

z

z
, взяв 

1 2,z z  из примера 1.                 

Решение. Умножением числителя и знаменателя дроби на комплексно-сопряжённое к 

знаменателю эту дробь представляют в алгебраической форме.   

( ) ( )
( ) ( )

21 2 3 51 2 3 5 6 10 7 11 7 111
2 23 5 3 5 3 5 34 34 343 52

z i ii i i i i
i

z i i i

− ⋅ −− − − + − −
= = = = = − −

+ + ⋅ − +
. 

2.  Геометрическая интерпретация комплексных чисел.  

 Для любого комплексного числа z x iy= +  существует комплексно-сопряжённое 

число z x iy= − , причём  
2 2z z x y⋅ = + . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относи- 
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тельно действительной оси (Рис 1, Рис 1
*
).  

Пример 3. Найти комплексное число, сопряжённое к 4 2z i= +  и изобразить числа  ,z z  

на комплексной плоскости.  

Решение. 4 2z i= −  ( Рис 1). 

Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об основных операциях в поле С и комплексной плоскости; 

- приобрели умения в выполнении операций в С; 

- выработали навыки выполнения операций в С. 

 

Тема: «Модуль и аргумент комплексного числа, тригонометрическая форма записи. Дей-

ствия с комплексными  числами в тригонометрической форме. Формула Муавра»                      

Задание для работы: 
1. Модуль и аргумент комплексного числа, тригонометрическая форма записи. 

 

2. Действия с комплексными  числами в тригонометрической форме. Формула Муавра 

 

1. Модуль и аргумент комплексного числа, тригонометрическая форма записи. 
 
1. Найти модуль и аргумент комплексного числа, записать число в тригонометрической 

форме. Изобразить число на комплексной плоскости: 
11. 1z i= + ;   

22. 2z i= − ;    

33. 1 3z i= − + ⋅ . 

Решение. 
2 2

1 1 1 1 11. Re 1, Im 1, 1 1 2x z y z z= = = = = + = .  

( )1
1 1 1 1 1

1

1
, cos sin 2 cos sin

1 4 4 4

y
arctg arctg z z i i

x

π π π
ϕ ϕ ϕ  = = = = ⋅ + = ⋅ + 

 
, 

(Рис.3). 
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2. Действия с комплексными  числами в тригонометрической форме. Формула Му-
авра 

1. Вычислить   1
1 2

2

,
z

z z
z

⋅  в тригонометрической форме:   1 21 , 3z i z i= + = − .  

Решение. Запишем комплексные числа в тригонометрической форме. 

2 2 1
1 1 1 1 1 1

1

1
1. Re 1, Im 1, 1 1 2,

1 4

y
x z y z z arctg arctg

x

π
ϕ= = = = = + = = = = , 

( )1 1 1 1cos sin 2 cos sin
4 4

z z i i
π π

ϕ ϕ  = ⋅ + = ⋅ + 
 

. 

2 2

2 2 2 2 22. Re 3, Im 1, ( 3) ( 1) 1 3 2x z y z z= = = = − = + − = + = , 

2
2

2

1 3

3 63

y
arctg arctg arctg

x

π
ϕ

−
= = = − = − , 

( )2 2 2 2
cos sin 2 cos sin

6 6
z z i i

π π
ϕ ϕ

    = ⋅ + = ⋅ − + −    
    

. 

Находим произведение и частное чисел:  

( )1 2 1 2 1 2 1 2cos( ) sin( )z z z z iϕ ϕ ϕ ϕ⋅ = ⋅ ⋅ + + + =  

2 2 cos( ) sin( ) 2 2 cos sin
4 6 4 6 12 12

i i
π π π π π π   = ⋅ − + − = ⋅ +   

   
. 

Значения cos , in
12 12

s
π π

 вычисляем с MathCAD: 

2 6
cos 0.966

12 4 4

π → + ≈ 
 

, 
6 2

sin 0.259
12 4 4

π  → − ≈ 
 

. 

Поэтому  
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1 2

6 2 6 2
2 2 cos sin 2 2

12 12 4 4
z z i i

π π  + − ⋅ = ⋅ + = ⋅ + ⋅ =  
   

 

12 2 12 2
2,732 0,732

2 2
i i

+ −
= + ⋅ ≈ + ⋅ .  

( )11
1 2 1 2

2 2

2
cos( ) sin( ) cos( ) sin( )

2 4 6 4 6

zz
i i

z z

π π π π
ϕ ϕ ϕ ϕ  = ⋅ − + − = ⋅ + + + = 

 
  

2 5 5
cos sin

2 12 12
i

π π = ⋅ + 
 

.  Вновь вычисляем с MathCAD   

2 6
2

4 42 5
cos 0.183

2 12 2

π

 
⋅ − 

   ⋅ → − ≈ 
 

,  

2 6
2

4 42 5
sin 0.683

2 12 2

π

 
⋅ + 

   ⋅ → ≈ 
 

 и окончательно находим  

1

2

2 5 5
cos sin 0,183 0,683

2 12 12

z
i i

z

π π = ⋅ + ≈ + ⋅ 
 

.  

2.  Найти все значения корня i .  

Решение. Число z i=  представим в тригонометрической форме:  

( )22Re 0, Im 1 0 1 1,
2

x z y z z
π

ϕ= = = = ⇒ = + = = ,  

( )cos sin 1 cos sin
2 2

z z i i
π π

ϕ ϕ
    = ⋅ + = ⋅ +    

    
.  

По формуле Муавра извлечения корней находим 

2 2
cos sin , 0,1,2,..., 1n n

k k
z z i k n

n n

ϕ π ϕ π + +    = ⋅ + ⋅ = −    
    

  

  

2 2
2 21 cos sin , 0,1

2 2

k k
i i k

π π
π π

    + +    
= ⋅ + ⋅ =    

    
    

.  

Здесь 1 1= -арифметический корень, поэтому i  имеет два значения:  
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при 0k =   ( )
0

2 22 2cos sin cos sin
2 2 4 4 2 2k

i i i i

π π
π π

=

    
        = + ⋅ = + ⋅ = + ⋅        

       
    

;  

при 1k =   ( )
1

2 2
5 52 2cos sin cos sin

2 2 4 4k
i i i

π π
π π π π

=

    + +        = + ⋅ = + ⋅ =        
       

    

 

2 2

2 2
i= − − ⋅ .  Найденные значения корня i  комплексно-сопряжённые и, так как 

1z i= = , изображаются на комплексной плоскости концами диаметра единичной ок-

ружности с центром в нулевой точке (Рис. 6):  

  

  

Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия о тригонометрической форме записи комплексных чисел и действиях в 

тригонометрической форме; 

- приобрели умения и навыки основных операций с комплексными числами в тригономет-

рической форме.  

 

Тема: «Показательная форма записи комплексных чисел. Действия с комплексными чис-

лами в показательной форме. Приложения алгебры комплексных чисел в теории электри-

ческих цепей переменного тока: комплексный метод расчёта электрических цепей при ус-

тановившихся режимах синусоидальных токов»                                                               

Задание для работы: 

1. Показательная форма записи комплексных чисел. Действия с комплексными числами в 

показательной форме.  

2. Приложения алгебры комплексных чисел в теории электрических цепей переменного 

тока: комплексный метод расчёта электрических цепей при установившихся режимах си-

нусоидальных токов. 
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1. Показательная форма записи комплексных чисел. Действия с комплексными чис-
лами в показательной форме.  

1. Записать число в показательной форме: 1 2 31. 1 , 2. 2 , 3. 1 3.z i z i z i= + = − = − + ⋅   

 Решение. 1 1 1 11. Re 1, Im 1x z y z= = = = , 1
1 1

1

1
2,

1 4

y
z arctg arctg

x

π
ϕ= = = = ,  

( )1 1 1 1cos sin 2 cos sin
4 4

z z i i
π π

ϕ ϕ  = ⋅ + = ⋅ + 
 

. По формуле Эйлера запишем число 

в показательной форме в виде 1 4
1 1 2

ii
z z e e

πϕ ⋅
= ⋅ = ⋅ .   

 2. Вычислить 1
1 2

2

,
z

z z
z

⋅  в показательной форме: 1 21 , 3z i z i= + = − .  

2. Решение. Запишем комплексные числа в показательной форме. 

1 1 1 1 1 1

1
1. Re 1, Im 1, 2,

1 4
x z y z z arctg

π
ϕ= = = = = = = ,  

( ) 1
1 1 1 1 1 1

4cos sin 2 cos sin , 2
4 4

i
i

z z i i z z e e

π
π π ϕϕ ϕ  = ⋅ + = ⋅ + = ⋅ = ⋅ 

 
. 

2 2

2 2 2 2 22. Re 3, Im 1, ( 3) ( 1) 1 3 2x z y z z= = = = − = + − = + = ,  

2
2

2

1 3

3 63

y
arctg arctg arctg

x

π
ϕ

−
= = = − = − , 

( )2 2 2 2
cos sin 2 cos sin

6 6
z z i i

π π
ϕ ϕ

    = ⋅ + = ⋅ − + −    
    

, 2
2 2

62
i

i
z z e e

π
ϕ −

= ⋅ = ⋅ . 

Находим произведение и частное чисел:  

 1 2
1 2 1 2

( )
( ) 4 6 122 2 2 2

i i
i

z z z z e e e

π π π
ϕ ϕ −+⋅ = ⋅ ⋅ = ⋅ = ⋅ , 

1
11 1 1 2

22 2
2

5
( )

4 6 122 2( )

2 2

i ii
z ez z i

e e e
iz zz e

π π π
ϕ

ϕ ϕ
ϕ

+
⋅ −= ⋅ = ⋅ = ⋅ = ⋅
⋅

.  

2. Приложения алгебры комплексных чисел в теории электрических цепей перемен-
ного тока: комплексный метод расчёта электрических цепей при установившихся 
режимах синусоидальных токов. 
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 В теоретических основах электротехники рассматриваются методы расчета линей-

ных электрических цепей переменного тока в стационарных режимах, в которых ЭДС, то-

ки и напряжения являются гармоническими функциями времени. Определение токов и 

напряжений в таких цепях связано с нахождением частных решений линейных неодно-

родных обыкновенных дифференциальных уравнений с постоянными коэффициентами, 

составленных на основе законов Кирхгофа.  

 Для вычисления с помощью законов Кирхгофа тока в узлах цепи, напряжения на 

участке цепи необходимо суммировать токи или напряжения и ЭДС, представленные си-

нусоидальными (гармоническими) функциями. Как мы уже видели на предыдущей стра-

нице, эта операция (сложения колебаний) требует трудоёмких и громоздких вычислений, 

т.к. такие функции помимо заданной угловой частоты ω  определяются ещё двумя вели-

чинами - амплитудой и начальной фазой. Комплексные числа 0z ≠  так же задаются дву-

мя величинами: модулем и аргументом. Это сопоставление позволило создать метод, уп-

ростивший вычисления. 

 Метод заключается в сопоставлении действительным гармоническим воздействиям 

(гармоническим колебаниям) комплексных воздействий, т.е. в символическом изображе-

нии этих колебаний комплексными числами (комплексными экспонентами) и называется 

комплексным методом или символическим методом, а также методом комплексных ам-

плитуд. Метод был предложен американским инженером Ч. П. Штейнмецем в 1893 г., а в 

России введён академиком В. Ф. Миткевичем.  

 Краткое описание метода комплексных амплитуд. Пусть гармоническое воздейст-

вие, например в виде синусоидально меняющегося тока,  ( )I I t=  задаётся формулой  

                                             ( )0 sinI I tω ϕ= ⋅ ⋅ + ,  

в которой 
0I  - амплитуда колебаний, ω  - угловая частота  (скорость изменения аргумен-

та-угла tω θ⋅ = , 
2

2 f
T

π
ω π= = ⋅ , T - период гармонических колебаний, t  - время, 

1
f

T
=  - частота колебаний), а ϕ - начальная фаза колебаний;  tω ϕ⋅ +  - фаза колебаний. 

Из формул Эйлера  

                              cos sinize z i z= + ⋅ , sin
2

iz ize e
z

i

−−
=

⋅
  

следует, что  

             ( )
( ) ( )

( )( )0 0 0sin Im
2

i t i t
i te e

I I t I I e
i

ω ϕ ω ϕ
ω ϕω ϕ

⋅ + − ⋅ +
⋅ ⋅ +−

= ⋅ ⋅ + = ⋅ = ⋅
⋅

,  
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            ( )
( ) ( )

( )( )0 0 0cos Re
2

i t i t
i te e

I I t I I e
ω ϕ ω ϕ

ω ϕω ϕ
⋅ + − ⋅ +

⋅ ⋅ ++
= ⋅ ⋅ + = ⋅ = ⋅  

т.к.      
( ) ( ) ( )0 0 0

cos sin
i t

I e I t i I t
ω ϕ ω ϕ ω ϕ⋅ +⋅ = ⋅ ⋅ + + ⋅ ⋅ ⋅ + .  

 Комплекснозначная функция 

                                  
( )

0 0 0

i t i i t i tI e I e e I e
ω ϕ ϕ ω ω⋅ + ⋅ ⋅ ⋅ ⋅ ⋅⋅ = ⋅ ⋅ = ⋅&  

 вещественного аргумента t  является символическим изображением вещественной 

функции ( )0 sinI I tω ϕ= ⋅ ⋅ +  (действительного синусоидального тока) и при заданной 

угловой частоте ω , так же как и ( )I I t= , определяется двумя величинами - амплитудой 

0I  и начальной фазой ϕ . Комплексной амплитудой тока ( )I I t=  называется комплекс-

ное число   

                                                    
0 0

iI I e ϕ⋅= ⋅& .  

 Вещественную синусоидальную функцию ( )0 sinI I tω ϕ= ⋅ ⋅ +  называют ориги-

налом,  а комплекснозначную функцию  
( )

0 0

i t i tI e I e
ω ϕ ω⋅ ⋅ + ⋅ ⋅⋅ = ⋅& - её изображением и пишут  

( ) ( )
0 0 0

sin
i t i tI I t I e I e
ω ϕ ωω ϕ ⋅ ⋅ + ⋅ ⋅= ⋅ ⋅ + ⇒ ⋅ = ⋅& .  

 Итак, любому действительному гармоническому воздействию  

                   ( ) ( )cosx t A tω ϕ= ⋅ ⋅ +  (или ( ) ( )sinx t A tω ϕ= ⋅ ⋅ + )  

на комплексной плоскости соответствует комплексное воздействие 

 ( ) ( ) ( ) ( )
cos sin

i t i i t i tx t A t i t A e A e e A e
ω ϕ ϕ ω ωω ϕ ω ϕ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ + + ⋅ ⋅ + = ⋅ = ⋅ ⋅ = ⋅&& ,        (A) 

т.е.                  ( ) i tx t A e ω⋅ ⋅= ⋅&& ,   ( ) Re Imi t i tx t A e i A eω ω⋅ ⋅ ⋅ ⋅= ⋅ + ⋅ ⋅& && ,                             (B) 

                 ( ) ( )cos ReA t x tω ϕ⋅ ⋅ + = & ,   ( ) ( )sin ImA t x tω ϕ⋅ ⋅ + = & ,                        (C) 

где комплексное число  cos siniA A e A iϕ ϕ ϕ⋅= ⋅ = ⋅ + ⋅&  называется комплексной ампли-

тудой воздействия:  ( ) ( ) i tx t x t A e ω⋅ ⋅⇒ = ⋅&& .                                              (D) 

Оригинал: гармоническое воздействие ( )x t  Изображение: комплексное 

 воздействие ( )x t&  

( ) ( )cosx t A tω ϕ= +  или ( ) ( )sinx t A tω ϕ= +                 ( ) i tx t A e ω⋅ ⋅= ⋅&&  

 

Поэтому анализ электрических цепей производят не при гармонических, а при комплекс-

ных воздействиях, соответствие между которыми устанавливается формулами (A)-(D). 
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Пример 15. К ветви AB  цепи с последовательно соединёнными участками R , L , C  при-

ложено напряжение ( )0 sinU U tω ϕ= ⋅ ⋅ + . Требуется: 1) составить уравнение Кирхгофа 

для цепи, 2) с помощью комплексных изображений тока в цепи и напряжения перейти к 

алгебраическому уравнению, 3) решив алгебраическое уравнение найти комплексную ам-

плитуду и комплексное изображение тока, 4) найти оригинал- мгновенное значение сину-

соидального гармонического колебания тока в цепи.  

Решение. 1). По  второму закону Кирхгофа (закон Кирхгофа для контуров) сумма напря-

жений во всех ветвях любого замкнутого контура электрической цепи равна сумме ЭДС 

источников энергии, действующих в этом контуре. Если к некоторой ветви AB  цепи с 

последовательно соединёнными активным сопротивлением R , катушкой с индуктивно-

стью L , конденсатором ёмкостью C  приложено напряжение ( )0 sinU U tω ϕ= ⋅ ⋅ + , то 

падение напряжения вдоль всей ветви будет равно сумме напряжений на этих элементах: 

R L CU U U U= + + .  

                 

 По закону Ома на участке цепи с активным сопротивлением 
RU R I= ⋅ . Напряже-

ние на концах катушки индуктивности 
L

dI
U L

dt
= ⋅ .  Для участка цепи с конденсатором 

известно, что 
C

q
U

C
= , где q - заряд конденсатора, поэтому 

C

dq
dU

C
= . Так как 

dq
I dq I dt

dt
= ⇒ = ⋅ , то 

1
C

dU I dt
C

= ⋅ ⋅ . Интегрируя это равенство почленно по отрез-

ку [ ]0 ; t , получим формулу для 
CU : 

 

0 0

1
( )

t t

CdU I d
C

ξ ξ= ⋅ ⋅∫ ∫ , т. е. 

0

1
( ) ( ) (0)

t

C CU t I d U
C

ξ ξ= ⋅ ⋅ +∫ ,  
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0

1
( ) (0)

t

CU I d q
C

ξ ξ
 

= ⋅ ⋅ + 
 
∫ . 

 Подставляя найденные выражения для 
RU , 

LU ,
CU  в формулу 

 
R L CU U U U= + + , получим следующее уравнение Кирхгофа для цепи с последователь-

ным соединением R , L , C  

                         

0

1
( ) (0)

t
dI

U R I L I d q
dt C

ξ ξ
 

= ⋅ + ⋅ + ⋅ ⋅ + 
 
∫ .  

 В этом уравнении неизвестной функцией является мгновенное значение тока ( )I t . 

Так как неизвестная функция ( )I t входит как под знак производной, так и под знак инте-

грала, то уравнение называется интегро-дифференциальным. Решим его методом ком-

плексных амплитуд (символическим методом). 

 В соответствие с методом комплексных амплитуд ( )U t , ( )I t , 
dI

dt
, 

0

( ) (0)

t

I d qξ ξ⋅ +∫   заменим их комплексными изображениями: 

Оригинал: гармоническое воздействие  Комплексное изображение  

     ( )0 sinU U tω ϕ= ⋅ ⋅ +                 
0( ) i tU t U e ω⋅ ⋅= ⋅& &  

     ( )0 sinI I tω ϕ= ⋅ ⋅ +                 
0( ) i tI t I e ω⋅ ⋅= ⋅& &     

    
dI

dt
                

0

( ) i tdI t
i I e

dt

ωω ⋅ ⋅= ⋅ ⋅ ⋅
&

&  

    

0

( ) (0)

t

I d qξ ξ⋅ +∫                 0 i tI
e

i

ω

ω
⋅ ⋅⋅

⋅

&
 

 

 Здесь 
0 0

iU U e ϕ⋅= ⋅& , 
0 0

iI I e ϕ⋅= ⋅&  -комплексные амплитуды напряжения и тока. В резуль-

тате вместо интегро-дифференциального уравнения Кирхгофа получим алгебраическое 

уравнение относительно 
0( ) i tI t I e ω⋅ ⋅= ⋅& &  

               0
0 0 0

1i t i t i t i tI
U e R I e L i I e e

C i

ω ω ω ωω
ω

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅
⋅

&
& & & .  

 Сократив обе части уравнения на 
i te ω⋅ ⋅

, получим простейшее линейное алгебраиче-

ское уравнение относительно комплексной амплитуды тока 
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0 0

iI I e ϕ⋅= ⋅&  

                                0 0

1
I R L i U

i C
ω

ω
 ⋅ + ⋅ ⋅ + = ⋅ ⋅ 

& & , 

из которого находим 
0I& : 0

0 1

U
I

R L i
i C

ω
ω

=
+ ⋅ ⋅ +

⋅ ⋅

&
& .  

 По комплексной амплитуде тока восстанавливаем оригинал- мгновенное значение 

синусоидального гармонического колебания тока в цепи ( )I t : 

0
0( ) Im ( ) Im Im

1
i t i tU

I t I t I e e

R L i
i C

ω ω

ω
ω

⋅ ⋅ ⋅ ⋅

 
 

= = ⋅ = ⋅ 
 + ⋅ ⋅ +

⋅ ⋅ 

&
& & .   

2.1.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия о показательной форме записи комплексных чисел и действиях в показа-

тельной форме, о прикладных математических моделях на основе комплексных чисел; 

- приобрели умения и навыки основных операций с комплексными числами в показатель-

ной форме, моделирования с помощью комплексных чисел.  

 

 

 

2.2 Практическое занятие № 4 (2 часа). 

Тема: «Линии и области на комплексной плоскости»                  

2.2.1 Задание для работы: 

1. Линии на комплексной плоскости.  

 

2. Области на комплексной плоскости. 

 

2.2.2 Краткое описание проводимого занятия: 

1. Линии на комплексной плоскости.  
1.Определить  и изобразить линии на комплексной плоскости, заданные комплексными 

уравнениями:  

                  1. 3z = ;             2.  2z i− = ;             3. 1 2z i+ − = ;            4. 1z i z+ = − . 

 Решение. 1. z - это расстояние от точки z  до начала координат. Уравнение задаёт мно-

жество точек, удалённых от начала координат на одно и тоже расстояние, равное 3. По-

этому первая линия является окружностью с центром в начале координат и радиусом 3.  
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                        2. z i− - это расстояние от точки z  до точки 
0z i= . Уравнение задаёт 

множество точек z , удалённых от точки 
0z i=  на одно и тоже расстояние, равное 2. По-

этому вторая линия является окружностью с центром в точке 
0z i=  и радиусом 2. (См. 

рис. 32). 

          

                          3. 0 01 ( 1 ) 1z i z i z z z i+ − ≡ − − + = − ⇒ = − + . Поэтому, 1z i+ −  

равно расстоянию от точки z  до точки 
0 1z i= − + . Обращаем внимание читателей на 

то, что смысл расстояния между точками z  и 
0z  имеет 0z z− , а не 0z z+ : 0z z+ - 

это расстояния между точками z  и 0( )z− !  Уравнение задаёт множество точек z , уда-

лённых от точки 
0 1z i= − +   на одно и тоже расстояние, равное 2. Поэтому третья линия 

является окружностью с центром в точке 
0 1z i= − +  и радиусом 2. (См. рис. 33).  

2. Области на комплексной плоскости. 
 
1. Определить и изобразить области комплексной плоскости, заданные неравенствами  

                                                   1. 3z < ; 2. 2z i− < ;  3. 1 2z i+ − ≥ ;  4. 1z i z+ ≤ − . 

Решение. 1.Неравенство задаёт открытый круг с центром в начале координат, радиусом 3. 

                2. Открытый круг с центром в точке 
0z i=  и радиусом 2. (Рис. 35). 
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                            3. Неравенство задаёт внешность круга (замкнутую) с центром в точке

0 1z i= − +  и радиусом 2. (Рис. 36).  

4. Неравенство задаёт нижнюю полуплоскость (замкну-

тую), границей которой является биссектриса 2-го и 4-

го координатных углов (Рис. 37). Для «пробной точки» 

1z = −  нижней полуплоскости справедливо данное не-

равенство: 

 1 1z z i z= − ⇒ + ≤ − ⇔  

1 1 1 2 2i⇔ − + ≤ − − ⇔ ≤ .                         

 

2.4.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об основных видах линий и областей на комплексной плоскости, спосо-

бах их задания, свойствах; 

- приобрели умения и навыки задания, изображения, классификации простейших линий и 

областей на комплексной плоскости.  

 

 

 

2.3 Практическое занятие № 5, 6 (4 часа). 

Тема: «Определение ФКП. Однозначные и однолистные функции.  Предел и непрерыв-

ность. Отображения с помощью непрерывных функций. Степенные ряды. Элементарные 

ФКП.»   

         2.3.1 Задание для работы:  

 
1. Определение ФКП. Однозначные и однолистные функции.  

 

2. Предел и непрерывность.  
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3. Отображения с помощью непрерывных функций.  

2.3.2 Краткое описание проводимого занятия: 

1. Определение ФКП. Однозначные и однолистные функции.   

1. Функцию 
2w z=  представить в алгебраической форме ( ) ( , ) ( , )f z u x y i v x y= + ⋅ .  

Решение. Т.к. ( )2 2 2
2w x i y x ixy y= + ⋅ = + − , то ( ) 2 2,u x y x y= − , ( ), 2v x y xy= .  

Поэтому 
2 2 2 2w z x y xy i= ≡ − + ⋅ . 

2. Предел и непрерывность.  

1. Исследовать на непрерывность функции: 1). 
2 2

z x yω = = + , 2). z x iyω = = − . 

1) Функция 
2 2

0z x y iω = = + +  непрерывна на всей комплексной плоскости, так как 

на ней непрерывны 
2 2 , 0.u x y ν= + =   

2) Функция z x iyω = = −  непрерывна на С. 

 

 3. Отображения с помощью непрерывных функций.  

1. Найти образ области при указанном отображении с помощью функции ( )w f z= .  

1. Im Re ,
z

z z w
z i

≥ =
+

 22. 0 arg ,
2

z w z
π

≤ ≤ =  
1

3. 2 1,z w
z

− ≤ = .  

1. Найти образы прямых 1,1 == yx  при отображении  
2zω = . 

Решение. Для функции ( ) xyiyxiyxz 22222 +−=+==ω  имеем 

( ) ( ) xyyxvyxyxu 2,,, 22 =−= . Образом прямой 1=x  является парабола 




=

−=

,2

1 2

yv

yu
то есть 

4
1

2v
u −= . Прямая 1=y  отображается на параболу 1

4

2

−=
v

u .  

 
Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об ФКП, однозначных, многозначных и однолистных функциях; понятия 

предела и непрерывности ФКП, основные свойства; понятие и основные  свойства ото-

бражений с помощью непрерывных ФКП; 

- приобрели умения в алгебраическом представлении ФКП, в простейших вычислениях 

пределов и исследовании на непрерывность ФКП, в выполнении простейших  отображе-

ний с помощью непрерывных ФКП; 

- выработали навыки алгебраического представлении ФКП, простейших вычислений пре-

делов и исследования на непрерывность ФКП, выполнения простейших  отображений с 

помощью непрерывных ФКП. 

 

Тема: «Элементарные ФКП»                      

Задание для работы: 
1. Элементарные ФКП. 

 

2. Вычисление значений ФКП.  
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1. Элементарные ФКП. 
 
 Представление основных элементарных функций в алгебраической форме 

(формулы вычисления значений функций) и простейшие свойства функций.  

 1. Показательная функция 
ze . Показательная функция определена на всей ком-

плексной плоскости и её представление в алгебраической форме определяется формулой  

               (cos sin ) cos sinz x i y x x xe e e y i y e y e i y+ ⋅= = ⋅ + ⋅ = ⋅ + ⋅ ⋅ ,  

т.е. ( ) ( )Re cos , Im sin
z x z x

e e y e e y= ⋅ = ⋅ .  

 2. Формула вычисления логарифма комплексного числа (представления логарифма 

в алгебраической форме) имеет вид  

                                    lnLnz u i v z i Argz= + ⋅ = + ⋅ .  

Так как  2 , 0, 1, 2, 3,...Argz argz k kπ= + = ± ± ± , где arg z - главное значение аргумента 

комплексного числа z , то  

                           ln 2 , 0, 1, 2, 3,...Lnz z i argz ki kπ= + ⋅ + = ± ± ±  .  

В этих формулах ln z - натуральный логарифм действительного числа 0z ≠ . 

 Если z x i y= + ⋅ , то 
2 2

z x y= +  и логарифм комплексного числа z  вычисля-

ется по формуле  

                
2 2

ln 2 , 0, 1, 2, 3,...Lnz x y i argz ki kπ= + + ⋅ + = ± ± ± . 

 3. Тригонометрические функции , , , 

 и гиперболические функции.  

 Положив z x i y= + ⋅  в  этих формулах, получим представление sin z  и cos z  в 

алгебраической форме: 

( )cos cos cos ch sin shz x i y x y i x y= + ⋅ = ⋅ − ⋅ ⋅ , 

( )sin sin sin ch cos shz x i y x y i x y= + ⋅ = ⋅ + ⋅ ⋅ .  

 Связь между тригонометрическими и гиперболическими функциями:    

 sin shiz i z= ⋅ ,cos hiz c z= ,  sh siniz i z= ⋅ , ch cosiz z= .   

2. Вычисление значений ФКП. 

1. Вычислить значение 
ze  при  а) 

2
z i
π

= ⋅ , б) 3
4

z i
π

= − ⋅ .  

cos
2

iz ize e
z

−+
= sin

2

iz ize e
z

i

−−
=

⋅

sin

cos

z
tgz

z
≡

cos

sin

z
ctgz

z
≡
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Решение. Значения функции 
ze  вычисляем по формуле 

 (cos sin ) cos sinz x i y x x xe e e y i y e y e i y+ ⋅= = ⋅ + ⋅ = ⋅ + ⋅ ⋅ .  

а) 
2

z i
π

= ⋅ ⇒ 0,
2

x y
π

= = ⇒ 
02 (cos sin )

2 2

i
ze e e i i

π π π⋅
= = ⋅ + ⋅ = ;  

б) 3
4

z i
π

= − ⋅ ⇒ 3,
4

x y
π

= = − ⇒
3

34 cos sin
4 4

i
ze e e i

π π π− ⋅     = = ⋅ − + ⋅ − =    
    

 

( )3 32 2 2
1

2 2 2
e i e i
 

= ⋅ − ⋅ = ⋅ ⋅ − 
 

.  

2. Вычислить значение Lnz  при  а) z i= , б) 1z = − , в)  1z i= + .   

Решение. Значения функции Lnz  вычисляем по формуле  

ln 2 , 0, 1, 2, 3,...Lnz z i argz ki kπ= + ⋅ + = ± ± ±  

а). ln arg 2 ln1 2 2 , 0, 1, 2, 3,...
2 2

Lni i i i ki i ki i ki k
π π

π π π= + ⋅ + = + ⋅ + = ⋅ + = ± ± ±   

Главное значение логарифма числа z i=  получим из этой формулы при 0k = :  

ln arg ln1
2 2

lni i i i i i
π π

= + ⋅ = + ⋅ = ⋅ .  

б). В комплексной области существуют логарифмы отрицательных чисел. Например, 

( ) ( ) ( )1 ln 1 arg 1 2 ln1 2 1 2 , 0, 1, 2,...Ln i ki i ki i k kπ π π π− = − + ⋅ − + = + ⋅ + = ⋅ + ⋅ = ± ± ;  

при 0k =  получим главное значение логарифма числа :  

 . 

в). ,  

.  

3. Вычислить значение  при а) , б) .  

Решение.  а). Значение  вычисляем по формуле  ( при ):  

, где .  

1z = −

( ) ( )1 ln 1 arg 1ln i i π− = − + ⋅ − = ⋅

( ) ( )1 ln 1 arg 1 2 ln 2 2 , 0, 1, 2, 3,...
4

Ln i i i i ki i ki k
π

π π+ = + + ⋅ + + = + ⋅ + = ± ± ±

( )1 ln 2
4

ln i i
π

+ = + ⋅

cos z z i=
2

z i
π

= +

cosi cosiz chz= 1z =

cos 1i ch=
1 1

1

1 1.543
2 2

e
e e ech

− ++
= = ≈
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б). Значение  вычисляем по формуле  

  при  : 

.  

2.3.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об элементарных ФКП и основных свойствах; 

- приобрели умения использования свойств ФКП и вычислении значений; 

- выработали навыки использования свойств ФКП и вычислении значений. 

 

 

 

2.4 Практическое занятие № 7, 8 (4 часа). 

Тема: «Производная ФКП. Условия Коши- Римана, аналитические функции. Гео-

метрический смысл модуля и аргумента производной. Элементы теории конформных ото-

бражений.»                      

2.4.1 Задание для работы: 
 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

 

2. Геометрический смысл модуля и аргумента производной. 

 

2.4.2 Краткое описание проводимого занятия: 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

1. Выяснить, в каких точках комплексной плоскости дифференцируемы функции и вы-

числить производные в этих точках. В каких точках плоскости функции аналитические? 

                    1. ( ) cos sinx xf z e y i e y= ⋅ + ⋅ ⋅ ;       2. 
2

( )f z z= ;      3. ( )f z z= .  

Решение. 1. Функция определена на всей комплексной плоскости. В представлении в ал-

гебраической форме ( ) ( , ) ( , )f z u x y i v x y= + ⋅  данной функции действительные функ-

ции ( , )u x y  и ( , )v x y  равны  

                       ( , ) cosxu x y e y= ⋅ ,          ( , ) sinxv x y e y= ⋅ . 

Частные производные существуют и непрерывны на всей плоскости xOy : 

cos
2

i
π + 
 

( )cos cos cos sinz x i y x chy i x shy= + ⋅ = ⋅ − ⋅ ⋅ 0, 1
2

x y
π

= =

( )
1 1

1

cos cos 0 1 cos0 1 sin0 1 1 1.543
2 2

e
e e ei i ch i sh ch

− ++
= + ⋅ = ⋅ − ⋅ ⋅ = = = ≈
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          cosxu
e y

x

∂
= ⋅

∂
,  sinxu

e y
y

∂
= − ⋅

∂
,  sinxv

e y
x

∂
= ⋅

∂
,  cosxv

e y
y

∂
= ⋅

∂
  

и выполняются условия (КРЭД). По достаточному признаку дифференцируемости данная 

функция дифференцируемая, а значит и аналитическая, на всей комплексной плоскости. 

Производная может быть найдена по формуле  

 ( ) cos sinx xu v
f z i e y i e y

x x

∂ ∂
′ = + = ⋅ + ⋅ ⋅

∂ ∂
. 

Замечание. Видно, что  ( )( ) ( ) , 0 1f z f z f′ = = для всех точек комплексной плоскости. 

В действительной области подобным свойством обладает только одна функция: 

( ) xf x e= . Поэтому функцию  

                                  ( ) cos sinx xf z e y i e y= ⋅ + ⋅ ⋅  

называют комплексной показательной функцией(экспонентой) и обозначают  
ze  или 

exp z : 

                                       cos sinz x xe e y i e y= ⋅ + ⋅ ⋅ . 

                  2. ( ) ( )2 2 2 2 2
( ) ( ) , , , , 0f z z f z x y u x y x y v x y= ⇒ = + = + = . Вычисляем 

производные  
( , )

2
u x y

x
x

∂
=

∂
,  

( , )
2

u x y
y

y

∂
=

∂
,   

( , )
0

v x y

x

∂
=

∂
,   

( , )
0

v x y

y

∂
=

∂
. Условия  

(КРЭД)    

                                            

2 0,

2 0

u v
x

x y

u v
y

y x

∂ ∂ = ⇔ =∂ ∂

∂ ∂ = − ⇔ =
∂ ∂

                                                 

выполняются лишь в точке 0z = . Функция дифференцируема только в одной точке 

0z = , но не является аналитической ни в одной точке плоскости, производная в точке 

0z =  ( при 0z = 0, 0x y⇒ = = ) вычисляется по формуле 

                           
(0;0) (0;0)

(0) 2 0 0 0
u v

f i i
x x

∂ ∂′ = + = ⋅ + ⋅ =
∂ ∂

. 

                3. Функция не дифференцируема и не является аналитической ни в одной точке 

плоскости. Действительно, ( )f z z x i y= ≡ − ⋅ , ( ),u x y x= , ( ),v x y y= − . Вычисляем 

производные ( , ) 1xu x y = , ( , ) 0
y

u x y = , ( , ) 0xv x y = , ( , ) 1
y

v x y = − . Условия (КРЭД) не 

выполняются ни водной точке комплексной плоскости: 
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1 1,

0 0.

u v

x y

u v

y x

∂ ∂ = ⇔ ≠ −∂ ∂

∂ ∂ = − ⇔ =
∂ ∂

            

Следовательно, функция не дифференцируема ни в одной точке плоскости, не является 

аналитической. 

2. Геометрический смысл модуля и аргумента производной. 

1. Пример. Найдем коэффициент растяжения и угол поворота при отображении ( ) 2zzf =  

в точке iz += 10 . 

Решение. Так как ( ) zzf 2=′ , то ( ) ( )iif +=+′ 121 . Но 2222 =+ i , а ( )
4

12arg
π

=+ i , т.е. 

угол поворота равен 
4

π
, а коэффициент растяжения равен 22 . 

Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия дифференцируемой ФКП, условия дифференцируемости; геометриче-

ский смысл модуля и аргумента производной; 

- приобрели умения и навыки проверки ФКП на дифференцируемость и вычисления произ-

водных. 
 

Тема: «Элементы теории конформных отображений»                      

Задание для работы: 
1. Понятие конформного отображения и его свойства.  

2. Отображения с помощью аналитических функций. 

 

1. Понятие конформного отображения и его свойства. 

 Пусть ( ) ( )w z f z=  аналитическая функция и в некоторой точке 
0z  производная 

этой функции не равна 0. Тогда некоторая окрестность точки 
0z  отображается взаимно 

однозначно и непрерывно на некоторую область плоскости w , содержащую точку 

0 0( )w f z= . При этом отображении угол между двумя кривыми, проходящими через 

точку 
0z , по величине и направлению совпадает с углом между образами этих кривых в 

плоскости w . Линейный масштаб отображения  в точке 
0z одинаков для всех кривых про-

ходящих через точку 
0z . Отображение сохраняющее углы по величине и направлению 

называется конформным.  

 

2. Отображения с помощью аналитических функций. 

Отображение посредством аналитической в области функции f  во всех точках 0z , 

где ( ) 00 ≠′ zf , является конформным. 

Пример. 
3 2( ) ( ) 3 3 5w z f z z z z= = − + + . Найти угол поворота и коэффициент растяже-

ния в точке z i= . В какой точке нарушается конформность отображения?  



53 

 

Решение. 
2 2 2( ) ( ) 3 6 3 3( 2 1) 3( 1)w z f z z z z z z′ ′= = − + = − + = − .  

( ) 6 .f i i′ = −  arg ( )
2

f i
π′ = − , ( ) 6f i′ = . Конформность отображения нарушается в точ-

ке  1z = , в которой ( ) 0f z′ = . 

2.4.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие конформного отображения и его свойства; 

- приобрели умения и навыки осуществления простейших конформных отображений с по-

мощью аналитических функций. 
 

 

 

2.5 Практическое занятие № 9, 10 (4 часа). 

Тема: «Гармонические функции и их связь с аналитическими функциями, сопряжённые 

гармонические функции. Восстановление аналитической функции по её действительной 

или мнимой части»                      

         2.5.1 Задание для работы: 
1. Гармонические функции, сопряжённые гармонические функции.  

2. Восстановление аналитической функции по её действительной или мнимой части.  

 

2.5.2 Краткое описание проводимого занятия: 

1. Гармонические функции, сопряжённые гармонические функции. 

1. Проверить, является ли функция 
2 2( , ) 2u x y x y x= − +  гармонической.  

Решение. Функция ( , )u x y определена на всей комплексной плоскости (в односвязной об-

ласти). Вычисляем  

       

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y

∂ ∂ ∂ ∂ ∂
= + = − = = = −

∂ ∂ ∂ ∂ ∂ ∂
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
.  

Поэтому она гармоническая 

2. Восстановление аналитической функции по её действительной или мнимой части.  

1. Проверить, является ли функция 
2 2( , ) 2u x y x y x= − +  действительной частью неко-

торой аналитической функции ( )f z , и если является, то найти эту аналитическую функ-

цию, если (0) 0f = .  
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Решение.  Функцию ( )f z  будем искать в виде ( ) ( , ) ( , )f z u x y i v x y= + ⋅ , где  ( , )u x y  

дана в условиях задачи, а ( , )v x y  неизвестна. Функция ( , )u x y определена на всей ком-

плексной плоскости (в односвязной области). Вычисляем  

       

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y

∂ ∂ ∂ ∂ ∂
= + = − = = = −

∂ ∂ ∂ ∂ ∂ ∂
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
.  

Поэтому она гармоническая и является действительной частью некоторой аналитической 

функции ( )f z  на всей плоскости. Найдём гармоническую функцию ( , )v x y , сопряжён-

ную с функцией ( , )u x y . Тогда будет восстановлена и функция ( )f z . Существует не-

сколько способов восстановления ( )f z . 

 Первый способ восстановления ( )f z (с помощью неопределённого интеграла от 

функции действительного аргумента).  Из условий Коши- Римана следует, что 

2 ,

2 2.

u v v u
y

x y x y

u v v u u
x

y x y x x

∂ ∂ ∂ ∂ = = − = ∂ ∂ ∂ ∂ 
⇔ 

∂ ∂ ∂ ∂ ∂ = − = = = +
 ∂ ∂ ∂ ∂ ∂ 

 

Следовательно, функция ( , )v x y  является решением системы дифференциальных уравне-

ний первого порядка с частными производными  

                                         2 , 2 2.
v v

y x
x y

∂ ∂
= = +

∂ ∂
                                              (S)                                      

Интегрировать эту систему уравнений можно с помощью неопределённого  интеграла или 

криволинейного.  

  Интегрируя первое уравнение системы (S) по x  (считая y  постоянным), восста-

навливаем функцию ( , )v x y  с точностью до произвольной гладкой (пока неизвестной) 

функции ( )yϕ :  

( , ) 2 ( ), ( , ) 2 ( ),

2 2. 2 2,

v x y y dx y v x y y dx y

v v
x x

y y

ϕ ϕ = ⋅ + = ⋅ +
 

⇔ ∂ ∂
= + = + 

∂ ∂ 

∫ ∫
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т.е.  

( , ) 2 ( ),

2 2.

v x y yx y

v
x

y

ϕ= +

∂ = +∂

                                                                                                        

Найденную в первом уравнении этой системы уравнений функцию ( , )v x y  продифферен-

цируем по y  и подставим во второе уравнение системы (исключим из системы уравнений 

v

y

∂
∂

):   

2 ( ),
( , ) 2 ( ), ( , ) 2 ( ),

2 ( ) 2 2, ( ) 2.
2 2.

v
x y

v x y yx y v x y yx yy

v x y x y
x

y

ϕ
ϕ ϕ

ϕ ϕ

∂ ′= + = + = +∂  
⇔ ⇔  ′ ′∂ + = + =  = +

∂

 

Решим второе уравнение этой системы ( ) 2yϕ′ =  (простейшее обыкновенное дифферен-

циальное уравнение) и найдём функцию ( )yϕ : ( ) 2y y Cϕ = + , где C - произвольная 

вещественная постоянная. Эту функцию подставим в первое уравнение системы и найдём 

сопряжённую гармоническую функцию  ( , ) 2 2v x y xy y C= + + .  

 Аналитическая функция ( )f z  восстановлена нами в виде   

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y C= + ⋅ = − + + ⋅ + + , т.е. 

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y i C= + ⋅ = − + + ⋅ + + ⋅ .  

Подставляя в эту формулу начальное значение (0) 0f = , 0 0, 0z x y= ⇒ = = , находим 

C : 0 0.i C C= ⋅ ⇒ =  Итак, по действительной части ( , )u x y  найдена функция аналити-

ческая на всей комплексной плоскости 

                           ( )2 2( ) 2 2 2f z x y x i yx y= − + + ⋅ + .  

 Заметим, что ( )f z  можно задать аналитическим выражением, зависящим от z . 

Полагая ,
2 2

z z z z
x y

i

+ −
= = , получим  

2 2

( ) 2 2 1
2 2 2 2 2

z z z z z z z z z z
f z i

i i

+ − + − +     = − + + ⋅ ⋅ + =     
     

 

( ) ( ) ( )2 2 22 2 2

4 2

z z z z z z z z z z
z z z z

+ ⋅ + + − ⋅ + −
= + + + + − , 
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( ) ( )2 22 2
2( ) 2 2

2 2 2 2

z zz z
f z z z z= + + + − = + , т.е. 

2( ) 2f z z z= + .  

 Замечание. Для того, чтобы выразить ( )f z  аналитическим выражением от z , дос-

таточно в формуле ( ) ( , ) ( , )f z u x y i v x y= + ⋅  выполнить формальную замену x z= , 

0y = . 

Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия гармонической и сопряжённых гармонических функций; методы восста-

новления аналитической функции по её действительной или мнимой части; 

- приобрели умения и навыки выявления гармонических и сопряжённых гармонических 

функций, восстановления аналитической функции по её действительной или мнимой час-

ти. 
 

Тема: «Свойства гармонических функций. Математические модели с гармониче-

скими и аналитическими функциями.»                      

Задание для работы: 
1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

2. Восстановление аналитической функции по её действительной или мнимой части.  

 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

1. Выяснить, в каких точках комплексной плоскости дифференцируемы функции и вы-

числить производные в этих точках. В каких точках плоскости функции аналитические? 

1 вариант ( ) cos sinx xf z e y i e y= ⋅ + ⋅ ⋅ ;  2 вариант 
2

( )f z z= ;   3 вариант. ( )f z z= .  

Решение. 1. Функция определена на всей комплексной плоскости. В представлении в ал-

гебраической форме ( ) ( , ) ( , )f z u x y i v x y= + ⋅  данной функции действительные функ-

ции ( , )u x y  и ( , )v x y  равны  

                       ( , ) cosxu x y e y= ⋅ ,          ( , ) sinxv x y e y= ⋅ . 

Частные производные существуют и непрерывны на всей плоскости xOy : 

          cosxu
e y

x

∂
= ⋅

∂
,  sinxu

e y
y

∂
= − ⋅

∂
,  sinxv

e y
x

∂
= ⋅

∂
,  cosxv

e y
y

∂
= ⋅

∂
  

и выполняются условия (КРЭД). По достаточному признаку дифференцируемости данная 

функция дифференцируемая, а значит и аналитическая, на всей комплексной плоскости. 

Производная может быть найдена по формуле  

 ( ) cos sinx xu v
f z i e y i e y

x x

∂ ∂
′ = + = ⋅ + ⋅ ⋅

∂ ∂
. 
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Замечание. Видно, что  ( )( ) ( ) , 0 1f z f z f′ = = для всех точек комплексной плоскости. 

В действительной области подобным свойством обладает только одна функция: 

( ) xf x e= . Поэтому функцию  

                                  ( ) cos sinx xf z e y i e y= ⋅ + ⋅ ⋅  

называют комплексной показательной функцией(экспонентой) и обозначают  
ze  или 

exp z : 

                                       cos sinz x xe e y i e y= ⋅ + ⋅ ⋅ . 

                  2. ( ) ( )2 2 2 2 2
( ) ( ) , , , , 0f z z f z x y u x y x y v x y= ⇒ = + = + = . Вычисляем 

производные  
( , )

2
u x y

x
x

∂
=

∂
,  

( , )
2

u x y
y

y

∂
=

∂
,   

( , )
0

v x y

x

∂
=

∂
,   

( , )
0

v x y

y

∂
=

∂
. Условия  

(КРЭД)    

                                            

2 0,

2 0

u v
x

x y

u v
y

y x

∂ ∂ = ⇔ =∂ ∂

∂ ∂ = − ⇔ =
∂ ∂

                                                 

выполняются лишь в точке 0z = . Функция дифференцируема только в одной точке 

0z = , но не является аналитической ни в одной точке плоскости, производная в точке 

0z =  ( при 0z = 0, 0x y⇒ = = ) вычисляется по формуле 

                           
(0;0) (0;0)

(0) 2 0 0 0
u v

f i i
x x

∂ ∂′ = + = ⋅ + ⋅ =
∂ ∂

. 

                3. Функция не дифференцируема и не является аналитической ни в одной точке 

плоскости. Действительно, ( )f z z x i y= ≡ − ⋅ , ( ),u x y x= , ( ),v x y y= − . Вычисляем 

производные ( , ) 1xu x y = , ( , ) 0
y

u x y = , ( , ) 0xv x y = , ( , ) 1
y

v x y = − . Условия (КРЭД) не 

выполняются ни водной точке комплексной плоскости: 

 

1 1,

0 0.

u v

x y

u v

y x

∂ ∂ = ⇔ ≠ −∂ ∂

∂ ∂ = − ⇔ =
∂ ∂

            

Следовательно, функция не дифференцируема ни в одной точке плоскости, не является 

аналитической. 

2. Восстановление аналитической функции по её действительной или мнимой части.  
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Проверить, является ли функция ( , )u x y  действительной частью некоторой аналитиче-

ской функции ( )f z , и если является, то найти эту аналитическую функцию, если 

(0) 0f = .  

1. 2 2( , ) 2u x y x y x= − + , (0) 0f = .  ( )2 22. ( , ) , 0 0u x y x y x f= − + = .  

( )2 23. ( , ) 2 , 0 0u x y x y y f= − − = .   

 1. Проверить, является ли функция 
2 2( , ) 2u x y x y x= − +  действительной частью 

некоторой аналитической функции ( )f z , и если является, то найти эту аналитическую 

функцию, если (0) 0f = .  

Решение.  Функцию ( )f z  будем искать в виде ( ) ( , ) ( , )f z u x y i v x y= + ⋅ , где  ( , )u x y  

дана в условиях задачи, а ( , )v x y  неизвестна. Функция ( , )u x y определена на всей ком-

плексной плоскости (в односвязной области). Вычисляем  

       

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y

∂ ∂ ∂ ∂ ∂
= + = − = = = −

∂ ∂ ∂ ∂ ∂ ∂
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
.  

Поэтому она гармоническая и является действительной частью некоторой аналитической 

функции ( )f z  на всей плоскости. Найдём гармоническую функцию ( , )v x y , сопряжён-

ную с функцией ( , )u x y . Тогда будет восстановлена и функция ( )f z . Существует не-

сколько способов восстановления ( )f z . 

 Первый способ восстановления ( )f z (с помощью неопределённого интеграла от 

функции действительного аргумента).  Из условий Коши- Римана следует, что 

2 ,

2 2.

u v v u
y

x y x y

u v v u u
x

y x y x x

∂ ∂ ∂ ∂ = = − = ∂ ∂ ∂ ∂ 
⇔ 

∂ ∂ ∂ ∂ ∂ = − = = = +
 ∂ ∂ ∂ ∂ ∂ 

 

Следовательно, функция ( , )v x y  является решением системы дифференциальных уравне-

ний первого порядка с частными производными  
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                                         2 , 2 2.
v v

y x
x y

∂ ∂
= = +

∂ ∂
                                              (S)                                      

Интегрировать эту систему уравнений можно с помощью неопределённого  интеграла или 

криволинейного.  

  Интегрируя первое уравнение системы (S) по x  (считая y  постоянным), восста-

навливаем функцию ( , )v x y  с точностью до произвольной гладкой (пока неизвестной) 

функции ( )yϕ :  

( , ) 2 ( ), ( , ) 2 ( ),

2 2. 2 2,

v x y y dx y v x y y dx y

v v
x x

y y

ϕ ϕ = ⋅ + = ⋅ +
 

⇔ ∂ ∂
= + = + 

∂ ∂ 

∫ ∫
 

т.е.  

( , ) 2 ( ),

2 2.

v x y yx y

v
x

y

ϕ= +

∂ = +∂

                                                                                                        

Найденную в первом уравнении этой системы уравнений функцию ( , )v x y  продифферен-

цируем по y  и подставим во второе уравнение системы (исключим из системы уравнений 

v

y

∂
∂

):   

2 ( ),
( , ) 2 ( ), ( , ) 2 ( ),

2 ( ) 2 2, ( ) 2.
2 2.

v
x y

v x y yx y v x y yx yy

v x y x y
x

y

ϕ
ϕ ϕ

ϕ ϕ

∂ ′= + = + = +∂  
⇔ ⇔  ′ ′∂ + = + =  = +

∂

 

Решим второе уравнение этой системы ( ) 2yϕ′ =  (простейшее обыкновенное дифферен-

циальное уравнение) и найдём функцию ( )yϕ : ( ) 2y y Cϕ = + , где C - произвольная 

вещественная постоянная. Эту функцию подставим в первое уравнение системы и найдём 

сопряжённую гармоническую функцию  ( , ) 2 2v x y xy y C= + + .  

 Аналитическая функция ( )f z  восстановлена нами в виде   

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y C= + ⋅ = − + + ⋅ + + , т.е. 

       ( )2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y i C= + ⋅ = − + + ⋅ + + ⋅ .  
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Подставляя в эту формулу начальное значение (0) 0f = , 0 0, 0z x y= ⇒ = = , находим 

C : 0 0.i C C= ⋅ ⇒ =  Итак, по действительной части ( , )u x y  найдена функция аналити-

ческая на всей комплексной плоскости 

                           ( )2 2( ) 2 2 2f z x y x i yx y= − + + ⋅ + .  

2.5.3 Результаты и выводы: В результате проведенного занятия студенты: 

- покажут знания, умения, навыки освоения темы  
-Свойства гармонических функций.  

-Математические модели с гармоническими и аналитическими функциями. 
 

 

 

2.6 Практическое занятие №  11, 12 (4 часа). 

Тема: «Интеграл комплекснозначной функции вещественного аргумента по отрезку. 

Интегралы от ФКП по кривой. Теорема Коши для односвязной области и её обобщения. 

Первообразная функция. Интегральная формула Коши»                      

         2.6.1 Задание для работы: 
1. Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

2. Интегралы от ФКП по кривой.  

2.6.2 Краткое описание проводимого занятия: 

1. Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

 Рассмотрим комплексную функцию вещественного аргумента  на отрезке : 

, где функции  непрерывны на этом отрезке. Интеграл 

функции  на отрезке  вычисляется по формуле  

                                      . 

Пример. Вычислить интеграл . 

Решение. Представим функцию  в алгебраической форме с помощью формулы 

Эйлера: . Тогда  

 

t [ ];a b

( ) ( ) ( )w f t u t i v t= ≡ + ⋅ ( ), ( )u t v t

( )w f t= [ ];a b

( ) ( ) ( )

b b b

a a a

f t dt u t dt i v t dt⋅ = ⋅ + ⋅ ⋅∫ ∫ ∫

2

0

i te dt

π

⋅ ⋅∫

( ) i tf t e ⋅=

cos sini te t i t⋅ = + ⋅

2 2 2

2 2
0 0

0 0 0

cos sin sin cosi te dt t dt i t dt t i t

π π π

π π
⋅ ⋅ = ⋅ + ⋅ ⋅ = − ⋅ =∫ ∫ ∫
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.   

2. Интегралы от ФКП по кривой.  

 Рассмотрим  теперь функцию  комплексного пере-

менного  и вычисление интеграла от ФКП  по гладкой дуге .  Первый спо-

соб вычисления интеграла ФКП по гладкой дуге.  Интеграл от ФКП  по гладкой 

дуге вычисляется по формуле  

    ,  

которая выражает значение интеграла ФКП через два действительных криволинейных ин-

теграла 2-го типа.   

Пример 28. Вычислить интеграл  по линии , соеди-няющей точки 

 и , 1) по отрезку прямой, 2) по дуге параболы , 3) по ломаной  

 (Рис. 47 ). Убедиться в том, что интеграл не зависит от формы линии интегрирова-

ния и указать достаточное условие независимости.   

Решение. Представим функцию  в алгебраической форме:  

 

                

,  

sin sin0 cos cos0 1
2 2

i i
π π = − − ⋅ − = + 

 

( ) ( , ) ( , )w f z u x y i v x y= ≡ + ⋅

z x i y= + ⋅ L

( )w f z=

( ) ( ) ( )
L L L L

f z dz u i v dx i dy u dx v dy i v dx u dy⋅ = + ⋅ ⋅ + ⋅ = ⋅ − ⋅ + ⋅ ⋅ + ⋅∫ ∫ ∫ ∫

( )26 2
L

z z i dz⋅ − − ⋅∫ L

1 0z = 2 1z i= + 2y x=

OAB

2( ) 6 2f z z z i= ⋅ − −

( ) ( ) ( ) ( )
222 2 2( ) 6 2 6 2 6 2 2f z z z i x iy x iy i x y ixy x iy i= ⋅ − − = ⋅ + − + − = ⋅ − + − + − =

( )2 2 2 26 6 12 2 2 6 6 2 12 2 1x y ixy x iy i x y x i xy y= − + − − − = − − + ⋅ − −
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                     ,   . 

 Поэтому  

 

                                                       

.                                                              

1) Вдоль отрезка  прямой (Рис. 47 )  

   

 .                                                   

2) Вдоль дуги  параболы (Рис. 47 )  

    

   

       

                                                                                                                                                                          

3) Вдоль ломаной   (Рис. 47 )   

     

                                                

                                               

                                     

2 2( , ) 6 6 2u x y x y x= − − ( , ) 12 2 1v x y xy y= − −

( )26 2 ( ) ( )
L L L L

z z i dz u i v dx i dy u dx v dy i v dx u dy⋅ − − ⋅ = + ⋅ ⋅ + ⋅ = ⋅ − ⋅ + ⋅ ⋅ + ⋅ =∫ ∫ ∫ ∫

( ) ( )2 26 6 2 12 2 1
L

x y x dx xy y dy= − − ⋅ − − − ⋅ +∫

( ) ( )2 212 2 1 6 6 2
L

i xy y dx x y x dy+ ⋅ − − ⋅ + − − ⋅∫

OB , , 0 1y x dy dx x= = ≤ ≤

( ) ( ) ( )
1 1

2 2 2

0 0

6 2 1 12 12 4 1
L

z z i dz x dx i x x dx⋅ − − ⋅ = − ⋅ + ⋅ − − ⋅ =∫ ∫ ∫

( ) ( ) ( ) ( )
1 1

3 3 2

0 0
4 4 2 1 4 4 2 1 3x x i x x x i i= − + ⋅ − − = − + ⋅ − − = − +

OB
2, 2 , 0 1y x dy xdx x= = ≤ ≤

( ) ( ) ( )2 2 26 2 6 6 2 12 2 1
L L

z z i dz x y x dx xy y dy⋅ − − ⋅ = − − ⋅ − − − ⋅ +∫ ∫

( ) ( )2 212 2 1 6 6 2
L

i xy y dx x y x dy+ ⋅ − − ⋅ + − − ⋅ =∫

( ) ( )
1 1

2 3 4 3 2 5

0 0

6 4 30 24 6 12 1x x x dx i x x x dx= + − ⋅ + ⋅ − − − ⋅ =∫ ∫

( ) ( ) ( ) ( )
1 1

3 4 5 4 3 6

0 0
2 6 6 2 2 2 1 6 6 2 2 1 3x x x i x x x x i i= + − + ⋅ − − − = + − + ⋅ − − − = − +

OAB

( ) ( ) ( )2 2 26 2 6 2 6 2
L OA AB

z z i dz z z i dz z z i dz⋅ − − ⋅ = ⋅ − − ⋅ + ⋅ − − ⋅ =∫ ∫ ∫

( ) ( )2 26 6 2 12 2 1
OA

x y x dx xy y dy= − − ⋅ − − − ⋅ +∫

( ) ( )2 212 2 1 6 6 2
OA

i xy y dx x y x dy+ ⋅ − − ⋅ + − − ⋅ +∫

( ) ( )2 26 6 2 12 2 1
AB

x y x dx xy y dy+ − − ⋅ − − − ⋅ +∫
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.                      

Вдоль отрезка  действительной оси (Рис. 47)   ; вдоль  

отрезка  вертикальной прямой  ,  поэтому    

            

      

.     

 Отметим, что интеграл   по трём различным  линиям , 

соединяющим точки  и , имеет одно и то же значение , т.е. не за-

висит от формы дуги интегрирования. Этим свойством обладает не всякая интегрируе-

мая функция. Известно следующее условие независимости интеграла от формы линии 

интегрирования- следствие из интегральной теоремы Коши: если функция аналитиче-

ская в односвязной области и  , - линии, лежащие в этой области и имеющие общие 

концы, то интегралы по этим линиям равны. В этом примере функция

 является аналитической на всей комплексной плоскости и интеграл 

этой функции не зависит от формы дуги интегрирования.   

Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие интеграла ФКП, способы вычисления интегралов;  

 

Тема: «Теорема Коши для односвязной области и её обобщения. Первообразная функция. 

Интегральная формула Коши» 
Задание для работы: 

1. Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

2. Интегральная формула Коши. 

1. Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

 Этот способ вычисления интегралов основан на следующей теореме, вытекающей 

из интегральной теоремы Коши: если функция  непрерывно дифференцируема в од-

носвязной области  (а значит аналитическая в области ), то в этой области существу-

ет первообразная  для функции . Тогда интеграл  не зависит от 

формы дуги интегрирования , а зависит от начальной  и конечной  точек дуги . 

( ) ( )2 212 2 1 6 6 2
AB

i xy y dx x y x dy+ ⋅ − − ⋅ + − − ⋅∫

OA 0, 0, 0 1y dy x= = ≤ ≤

AB 1, 0, 0 1x dx y= = ≤ ≤

( ) ( ) ( )
1 1 1

2 2

0 0 0

6 2 6 2 12 2 1
L

z z i dz x x dx i dx y y dy⋅ − − ⋅ = − ⋅ − ⋅ − − − ⋅ +∫ ∫ ∫ ∫

( ) ( ) ( ) ( )
1

1 1 112 3 2 2 3

00 0 0
0

4 6 2 5 4 2i y dy x x i x y y i y y+ ⋅ − ⋅ = − − ⋅ − − + ⋅ − =∫

( ) ( ) ( )2 1 5 1 4 2 1 4 2 3i i i i i= − − − − + ⋅ − = − − + ⋅ = − +

( )26 2
L

z z i dz⋅ − − ⋅∫ L

1 0z = 2 1z i= + 3 i− +

1L 2L

2( ) 6 2f z z z i= ⋅ − −

( )f z

D D

( )F z ( )f z ( )
L

f z dz⋅∫

L 1z 2z L
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Для аналитической функции справедлив аналог формулы Ньютона-Лейбница, которая по-

зволяет вычислить интеграл ФКП, если известна её первообразная :  

                             .            

Пример. Убедиться в том, что интеграл  по линии , соединяющей 

точки  и  не зависит от формы линии интегрирования и вычислить его 

третьим способом.   

Решение. В этом примере функция  является аналитической на всей 

комплексной плоскости и интеграл этой функции не зависит от формы дуги интегрирова-

ния. Её первообразная равна . Тогда по формуле Ньютона-

Лейбница   

 .   

2. Интегральная формула Коши.  

Теорема. Если функция аналитическая в замкнутой односвязной области , огра-

ниченной контуром , а - любая внутренняя точка этой области, то  

                                             . 

Пример. Вычислить  1)
2

1

z

z i

e
dz

z i

π

− = −∫ ;  2) 
2

1

z

z i

e
dz

z i

π

+ = −∫  

  

Решение.  1).
2

2

1

2 2

z
i

z i

e
dz i e

z i

π
π

π π
− =

= ⋅ = −
−∫ ;   2).

2

1

0

z

z i

e
dz

z i

π

+ =

=
−∫   

2.6.3 Результаты и выводы: В результате проведенного занятия студенты: 

- интегральную теорему Коши и формулу Коши, их применение к вычислению интегралов; 

- приобрели умения и навыки вычисления интегралов, применения  интегральной теоремы 

Коши и формулы Коши. 
 

 

 

 

 

( )F z

2

2

1

1

2 1( ) ( ) ( ) ( ) ( )

z
z

z

L z

f z dz f z dz F z F z F z⋅ = ⋅ = = −∫ ∫

( )26 2
L

z z i dz⋅ − − ⋅∫ L

1 0z = 2 1z i= +

2( ) 6 2f z z z i= ⋅ − −

3 2( ) 2F z z z i z= − − ⋅

( ) ( ) ( ) ( ) ( )2

1

1 3 22 3 2

0
6 2 2 2 1 1 1 3

z i

z
L

z z i dz z z i z i i i i i
= +

=
⋅ − − ⋅ = − − ⋅ = + − + − ⋅ + = − +∫

f D

γ z

( ) ( )
∫ −

=
γ

ξ
ξ
ξ

π
d

z

f

i
zf

2

1
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2.7 Практическое занятие № 13, 14 (4 часа). 

Тема: «Нули и особые точки аналитической функции. Ряды Тейлора и Лорана»                      

         2.7.1 Задание для работы: 
1. Нули и особые точки аналитической функции.  

2. Ряды Тейлора. Ряды Лорана.  

2.7.2 Краткое описание проводимого занятия: 

1.  Нули и особые точки аналитической функции.  

Задание 1. Для функции ( )zf  найти изолированные особые точки, провести их классифи-

кацию, вычислить вычеты относительно найденных точек.  

a) ( )
zz

e
zf

z 21

3
+

−
= ; 

б) ( )
2

6cos1

z

z
zf

−
= ; 

в) ( ) ( )
( )iz

izzf
−

−=
2

1
sin3 . 

Решение. 

а). Особой точкой функции является точка 00 =z . Чтобы определить вид особой 

точки разложим функцию в ряд Лорана по степеням z : 

( )

444 3444 2143421
ь

...
!

...
!4!3

1

!1

1

2

5

2
...

!
...

!4!3

1

!2

1

!1

121
...

!
...

!4!3

1

!2

1

!1

11

211
...

!
...

!2!1
1

21

част правильнаячасть главная

3

2

3

23

3

23

33

2

3

++++++=

=+++++++=+−+++++++=

=+−







+++++=+

−
=

−

−−

n

zz

zz

zn

zz

zzzzn

zz

zzz

zzzn

zzz

zz

e
zf

n

nn

nz

 

Главная часть ряда Лорана содержит конечное число слагаемых, значит 00 =z  - полюс. 

Порядок высшей отрицательной степени ( )2=n  определяет порядок полюса. Следова-

тельно, 00 =z  - полюс кратности 2. Вычет найдем, используя формулу ( ) 1

0

Re −
=

=Czfs
zz

, 

тогда ( )
2

5
Re

0

=
=

zfs
z

. 

б). Особой точкой функции является точка 00 =z . Чтобы определить вид особой точки 

используем признак поведения функции в особой точке. 
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18
3sin2

lim
6cos1

lim
2

2

020
==

−
→→ z

z

z

z

zz
, значит 00 =z  устранимая точка и, следовательно 

( ) 0Re
0

=
=

zfs
z

. 

в). Особой точкой функции является точка iz =0 . Чтобы определить вид особой точки 

используем разложение функции в ряд Лорана по степеням iz − : 

( ) ( )
( )

( )
( ) ( )( ) ( )( )

( )
( ) ( )( )

( )
( )

( )
( ) ( )

....
2!12

1
1...

2!5

1

!32

1

2
...

2!12

1
1

...
2!5

1

2!3

1

2

1

2

1
sin

часть главная

2212253

2

12

53

33

444444444 3444444444 21

+
−+

−+−
−

+−
−

=



+

−+
−+





−

−
+

−
−

−
−=

−
−=

−++ nn

n

n

n

izniz

iz

izn

iziziz
iz

iz
izzf

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит iz =0  - суще-

ственно особая точка. Тогда ( ) 0Re 1 == −
=

Czfs
iz

, т.к. коэффициент при 
iz −

1
 равен нулю. 

2. Ряды Тейлора. Ряды Лорана. 

Задание. Найти все лорановские разложения данной функции ( )zf  по степеням 0zz − . 

Указать главную и правильную части ряда. 

а) 
2

12
)(

2 −+
+

=
zz

z
zf , 00 =z ; 

б) 
)2)(1(

12
)(

+−
+

=
zz

z
zf , 10 =z . 

Решение. а) Функция 
2

12
)(

2 −+
+

=
zz

z
zf  имеет две особые точки 11 =z  и 22 −=z . Отметим 

их на плоскости Z, проведем 2 окружности с центром в точке 00 =z , проходящие соответ-

ственно через точки 11 =z  и 22 −=z .  Следовательно, имеется три области, в каждой из 

которых функция )(zf  является аналитической: 

1) 1<z ; 

2) кольцо 21 << z ; 

3) область 2>z , являющаяся внешностью кру-

га 2≤z . 

 

Найдем ряды Лорана для функции )(zf  в каж-

дой из этих областей, используя формулу  

......1
1

1
)1( 321 ++++++=

−
=− − ntttt

t
t  

справедливую при 1<t .  Представим функцию )(zf  в виде суммы элементарных дробей: 

2

1

1

1

2

12
2 +

+
−

=
−+
+

zzzz

z
. 
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1) Рассмотрим круг 1<z . Запишем элементарные дроби 
1

1

−z
 и 

2

1

+z
 в виде 

t−1

1
, 

где 1<t  при 1<z . Представим функцию )(zf  следующим образом: 

2
1

1

2

1

1

1
)(

zz
zf

+
+

−
−= . Теперь к таким дробям применима формула (1). 

Так как в рассматриваемой области 1<z , то в силу формулы (1) 

......1
1

1 32 ++++++=
−

nzzzz
z

. Так как 1<z  и тем более 1
2
<

z
 (если 1<z , то тем бо-

лее 2<z ), значит, в силу формулы (1) ...
2

)1(...
842

1

2
1

1 32

+−++−+−=
+

n

n
n zzzz

z
. 

Следовательно, 

...
2

)1(...
16842

1
......1

2
1

1

2

1

1

1
1

32
32 +−++−+−+−−−−−−−=
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Полученное разложение содержит только правильную часть ряда Лорана. 

2) Рассмотрим кольцо 21 << z . В этой области запишем рассматриваемую функ-

цию в виде 

2
1

1

2

1

1
1

11
)(

z

z

z
zf

+
+

−
= . В знаменателях дробей мы записали выражения вида 

t−1 , где 1<t . 

Так как 1>z , то 1
1
<

z
 и в силу формулы (1) ...

1
...

111
1

1
1

1
32

++++++=
−

nzzzz

z

. Так 

как 2<z , то, как и в предыдущем случае, ...
2
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1

2
1

1 32
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Следовательно, 
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Полученное разложение содержит и правильную, и главную часть ряда Лорана. 
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3) Рассмотрим область 2>z . В этой области 1
1
<

z
, поэтому в силу формулы (1) 

...
1

...
111

1
1

1

1
32

++++++=
−

nzzzz

z

.  В рассматриваемой области 1
2
>

z
, значит 1

2
<

z
 и 

поэтому  ...
2

)1(...
842

1
2

1

1
32

+−++−+−=
+

n

n
n

zzzz

z

. 

Функцию )(zf  представим в виде 

z

z

z

z
zf

2
1

11

1
1

11
)(

+
+

−
= . В силу полученных разложе-

ний имеет место равенство 






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
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2
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3232 n
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∑ ∑
∞
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∞
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Полученное разложение содержит только главную часть ряда Лорана. 

б) Функция )(zf  имеет 2 особые точки 11 =z  и 22 −=z , отметим их на плоскости Z. 

Точка 11 =z  совпадает с точкой 10 =z . Проводим окружность с центром в точке 10 =z , 

проходящую через точку 22 =z .  

Следовательно существуют две области, в каждой из которых функция )(zf  являет-

ся аналитической: 

1) кольцо 311 <−< z  

2) кольцо 31 >−z  

Найдем ряды Лорана для функции )(zf  в каждой 

из этих областей, используя формулу (1). Представим 

функция )(zf  в виде суммы элементарных дробей: 

2

1

1

1

2

12
2 +

+
−

=
−+
+

zzzz

z
 

1) Требуется получить разложение функции )(zf  

по степеням z–1 в области 311 <−< z . Первая дробь уже представляет собой степень 

1−z . Для того, чтобы вторую дробь представить в искомом виде, сделаем замену tz =−1

, тогда 1+= tz  и 
3

1

2

1

+
=

+ tz
. Дробь 

3

1

+t
 разложим по степеням t  как в предыдущем 

примере. При 30 << t  воспользуемся представлением: 
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Сделаем обратную замену. Получим, что при 310 <−< z  функция )(zf  представи-

ма в виде 

∑
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Полученное разложение содержит правильную и главную часть ряда Лорана. 
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2) Аналогично, сделав замену tz =−1 , получаем представление дроби 
3

1

+t
 в облас-

ти 3>t   
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Сделав обратную замену, получаем, что при 31 >−z  функция )(zf  представима в 

виде: 
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В первом случае главная часть ряда Лорана содержит только одно слагаемое, во вто-

ром случае ряд Лорана состоит только из одной главной части. 

 

2.7.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия нулей и особых точек аналитической функции, ряда Тейлора и ряда Ло-

рана; 

- приобрели умения и навыки отыскания нулей и особых точек аналитической функции, 

разложения аналитических функций в ряд Тейлора и ряд Лорана. 
 

 

 

2.8 Практическое занятие № 15, 16 (4 часа). 

Тема: «Вычеты и их приложения»                      

2.8.1 Задание для работы: 
1. Вычет относительно кратного полюса. 

 

2. Вычисление вычета с помощью формулы Коши.  

 

2.8.2 Краткое описание проводимого занятия: 

1. Вычет относительно кратного полюса. 
 
Задание. Определить вид особых точек функции  и найти в них вычеты: 

а) 

( )3
sin

( )
1

z
f z

z z
=

+
; б) 

2 2

cos
( )

z z
f z

z π
=

−
. 

Решение. а). Функция 

( )3
sin

( )
1

z
f z

z z
=

+
 имеет внутри контура интегрирования две осо-

бые точки 0=z  и 1−=z . Определим вид особых точек и найдем в них вычеты.    

( )
1

1

sin
lim

30
=

+→ zz

z

z
, следовательно ( ) 0Re

0

=
=

zfs
z

.     
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( )
∞=

+−→ 31 1
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lim
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z

z
, следовательно 1−=z  - полюс. 

Так как 
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, то 1−=z  - полюс  порядка 3=n . 
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б). Функция 
2 2

cos
( )

z z
f z

z π
=

−
 имеет внутри контура интегрирования две особые точки 

π=z  и π−=z .  Так как π=z  и π−=z  - полюсы первого порядка, то для вычисления 

вычетов применим формулу ( ) ( )
( )0

0

0

Re
z

z
zfs

zz ψ
ϕ
′

=
=

, где ( ) zzz cos=ϕ , ( ) 22 πψ −= zz ,  

( ) zz 2=′ψ . 
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2
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== ππ zz z
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2
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Re −==

−=−= ππ zz z
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2. Вычисление вычета с помощью формулы Коши.  
 

Если функция аналитическая в замкнутой односвязной области , ограниченной 

контуром , а 
0z - любая внутренняя точка этой области, то по формуле Коши  

0

0

1 ( )
( )

2
L

f
f z d

i z

ζ
ζ

π ζ
=

−∫ . 

          

Функция    

0

( )f z

z z−
  имеет единственную изолированную особую точку 

0z  внутри  . По 

определению вычета   

0
0 0

1 ( ) ( )

2 z z
L

f z f z
dz Выч

i z z z zπ =
=

− −∫ .  

Сравнивая два последних интегральных равенства заключаем: 

 

0

0 0

0

( )
( ), ( ) 0

z z

f z
Выч f z f z

z z=
= ≠

−
. 

Пример. Вычислить 
2

z

z i

e
Выч

z i

π

= −
.    

f D

γ

γ



71 

 

Решение.     
2

2 cos sin
2 2

z
i

z i

e
Выч e i i

z i

π
π π π

=
= = + =

−
   

 

2.8.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили вычисление вычетов относительно полюса и вычисление вычетов с помощью 

формулы Коши; 

- приобрели умения и навыки вычисление вычетов относительно полюса и с помощью 

формулы Коши. 
 


