
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ
ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Б1.Б.16 ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ

Направление подготовки 09.03.01 Информатика и вычислительная техника

Профиль образовательной программы “Автоматизированные системы обработки

информации и управления”

Форма обучения заочная

2

СОДЕРЖАНИЕ

1. Конспект лекций .. 3

1.1 Лекция № 1 Эволюция методологий программирования ... 3

1.2 Лекция № 2 Понятие объекта ... 5

1.3 Лекция № 3 Представление объектов и классов .. 7

2. Методические материалы по выполнению лабораторных работ 11

2.1 Лабораторная работа № ЛР-1 Понятие объекта ... 11

2.2 Лабораторная работа № ЛР-2 Разработка Visual Basic-приложений. Создание

программного интерфейса пользователя ... 12

2.3 Лабораторная работа № ЛР-3 Визуальная модель DelphiОшибка! Закладка не
определена.
2.4 Лабораторная работа № ЛР-4 Природа классов .. 13

2.5 Лабораторная работа № ЛР-5 Представление объектов и классов 13

2.6 Лабораторная работа № ЛР-6 Наследование как средство организации иерархий

классов .. 14

3

1. КОНСПЕКТ ЛЕКЦИЙ

1.1 Лекция № 1 (2 часа)

Тема: «Эволюция методологий программирования»

1.1.1 Вопросы лекции:

1. Первое поколение языков программирования, развитие алгоритмических

абстракций, модуль как единица построения программных систем, третье поколение

языков.

2. Зарождение объектной модели, четвертое поколение языков.

3. Объектные и объектно-ориентированные языки программирования.

4. Парадигмы программирования

1.1.2 Краткое содержание вопросов:

1 Первое поколение языков программирования, развитие алгоритмических

абстракций, модуль как единица построения программных систем, третье поколение

языков.

В эволюции методологий разработки ПО можно выделить несколько периодов. На

заре программирования каждая программа разрабатывалась вручную одним

разработчиком, который и был полным ее хозяином. Возникшие по мере усложнения

программ трудности в их программировании и отладке стимулировали развитие систем

автоматизации программирования. Эти системы включали средства компиляции, а также

ограниченный набор средств отладки и документирования. На этом этапе все средства

были ориентированы на работу с текстами программ.

Второй период начался с момента, когда в связи с увеличением размеров программ

стало резко возрастать число людей, разрабатывающих программу. Это потребовало

организации коллективной работы на основе применения структурных методов и

структурных методологий. Упорядочивая структуру и дисциплинируя разработку, они

помогали стандартизации и систематизации разработки ПО и его сопровождения. Все это

позволяло представить процесс создания программ как инженерную дисциплину, которая

опиралась на формализованное понятие "жизненный цикл ПО". При этом в жизненном

цикле центр тяжести начал перемещаться с процессов программирования и отладки

программ на процесс проектирования общей структуры ПО и структуры его компонент,

наряду с чем продолжалось активное развитие средств автоматизации программирования

и отладки. Этот период может считаться временем, когда были сформулированы

основные принципы методологии SE, понимаемые в смысле технологии разработки ПО

или техники ПО , и начата реализация этих принципов.

4

Третий период в эволюции методологии характеризуется автоматизацией

структурных методологий, т. е. созданием инструментальной поддержки трудоемких

работ по проектированию ПО в целях максимального высвобождения времени

разработчиков. Именно с этим периодом связывается появление первой генерации CASE-

средств. Последние принесли новую жизнь структурным методологиям созданием

автоматизированных графических средств для выпуска различных схем, диаграмм,

экранных и бумажных изображений, наличием словарей данных и хранилищ, появлением

средств анализа и контроля структуры и текстов, генераторов документов, генераторов

программных кодов и др.

Следующий период связан с объединением средств автоматизации структурных

методологий со средствами автоматизации программирования и отладки программ. По

существу, речь идет о начале создания интегрированных систем поддержки полного

жизненного цикла разработки ПО, который реализуется во второй генерации CASE-

средств. В течение этого периода в рамках второй генерации CASE-средств активно

развиваются и используются методы повторной разработки ПО. Имеющиеся достижения

и результаты, по мнению специалистов, свидетельствуют о достаточно полной реализации

принципов методологий SE. В то же время проблемы, возникающие при создании

современных программных систем, требуют перехода к более развитой методологии

создания ПО.

С учетом сказанного последний период можно охарактеризовать как переход от

методологии SE к методологии IE. На практике такой переход происходит достаточно

плавно и постепенно путем ориентации методологии SE на централизованно-

информационный подход к разработке ПО.

2. Зарождение объектной модели, четвертое поколение языков.

Методы структурного проектирования помогают упростить процесс разработки

сложных систем за счет использования алгоритмов как готовых строительных блоков.

Аналогично, методы объектно-ориентированного проектирования созданы, чтобы помочь

разработчикам применять мощные выразительные средства объектного и объектно-

ориентированного программирования, использующего в качестве блоков классы и

объекты.

Объектно-ориентированный анализ и проектирование отражают эволюционное, а

не революционное развитие проектирования; новая методология не порывает с прежними

методами, а строится с учетом предшествующего опыта. К сожалению, большинство

программистов в настоящее время формально и неформально натренированы на

применение только методов структурного проектирования. Разумеется, многие хорошие

5

проектировщики создали и продолжают совершенствовать большое количество

программных систем на основе этой методологии. Однако алгоритмическая декомпозиция

помогает только до определенного предела, и обращение к объектно-ориентированной

декомпозиции необходимо. Более того, при попытках использовать такие языки, как C++

или Ada, в качестве традиционных, алгоритмически ориентированных, мы не только

теряем их внутренний потенциал - скорее всего результат будет даже хуже, чем при

использовании обычных языков С и Pascal. Дать электродрель плотнику, который не

слышал об электричестве, значит использовать ее в качестве молотка. Он согнет

несколько гвоздей и разобьет себе пальцы, потому что электродрель мало пригодна для

замены молотка.

3. Объектные и объектно-ориентированные языки программирования.

• Smalltalk

• C++

• Common Lisp Object System (CLOS)

• Ada

• Eiffel

• Java

• Object Pascal

4. Парадигмы программирования.

Парадигма программирования — это совокупность подходов, методов, стратегий,

идей и понятий, определяющая стиль написания программ.

Парадигма программирования в современной индустрии программирования очень

часто определяется набором инструментов программиста (язык программирования и

операционная система).

Парадигма программирования представляет (и определяет) то, как программист

видит выполнение программы. Например, в объектно-ориентированном

программировании программист рассматривает программу как набор взаимодействующих

объектов, тогда как в функциональном программировании программа представляется в

виде цепочки вычисления функций.

1.2 Лекция № 2 (2 часа)

Тема: «Понятие объекта»

1.2.1 Вопросы лекции:

1. Состояние объекта.

2. Поведение объекта.

6

3. Идентичность объектов.

1.2.2 Краткое содержание вопросов:

1. Состояние объекта.

Состояние объекта характеризуется перечнем (обычно статическим) всех свойств

данного объекта и текущими (обычно динамическими) значениями каждого из этих

свойств.

К числу свойств объекта относятся присущие ему или приобретаемые им характе-

ристики, черты, качества или способности, делающие данный объект самим собой.

Например, для лифта характерным является то, что он сконструирован для поездок вверх

и вниз, а не горизонтально.

Все свойства имеют некоторые значения. Эти значения могут быть простыми

количественными характеристиками, а могут ссылаться на другой объект. Состояние

лифта может описываться числом 3, означающим номер этажа, на котором лифт в данный

момент находится.

Простые количественные характеристики (например, число 3) являются

«постоянными, неизменными и непреходящими», тогда как объекты «существуют во

времени, изменяются, имеют внутреннее состояние, преходящи и могут создаваться,

уничтожаться и разделяться».

Тот факт, что всякий объект имеет состояние, означает, что всякий объект занимает

определенное пространство (физически или в памяти компьютера).

Все объекты в системе инкапсулируют некоторое состояние, и все состояние

системы инкапсулировано в объекты.

2. Поведение объекта.

Поведение — это то, как объект действует реагирует; поведение выражается в

терминах состояния объекта и передачи сообщений.

Иными словами, поведение объекта — это его наблюдаемая и проверяемая извне

деятельность.

Операцией называется определенное воздействие одного объекта на другой с

целью вызвать соответствующую реакцию. В чисто объектно-ориентированном языке,

таком как Smalltalk, принято говорить о передаче сообщений между объектами. В языках

типа C++ мы говорим, что один объект вызывает функцию-член другого. В основном

понятие сообщение совпадает с понятием операции над объектами, хотя механизм

передачи различен. В объектно-ориентированных языках операции, выполняемые над

данным объектом, называются методами и входят в определение класса объекта. В C++

они называются функциями-членами.

7

Состояние объекта представляет суммарный результат его поведения.

Наиболее интересны те объекты, состояние которых не статично: их состояние

изменяется и запрашивается операциями.

3. Идентичность объекта.

«Идентичность — это такое свойство объекта, которое отличает его от всех других

объектов».

Они отмечают, что «в большинстве языков программирования и управления базами

данных для различения временных объектов их именуют, тем самым путая адресуемость

и идентичность. Большинство баз данных различают постоянные объекты по ключевому

атрибуту, тем самым, смешивая идентичность и значение данных». Источником

множества ошибок в объектно-ориентированном программировании является неумение

отличать имя объекта от самого объекта.

1.3 Лекция № 3 (2 часа)

Тема: «Представление объектов и классов»

1.3.1 Вопросы лекции:

1 Реализация поведения объектов на примере добавления функций-членов в

структуры.

2 Структура как вырожденный класс.

3 Структура объявления класса.

4 Доступ к членам класса.

5 Поля данных класса как механизм реализации состояния объекта.

6 Функции члена класса как механизм реализации поведения объекта.

7 Спецификаторы доступа для обеспечения инкапсуляции.

8 Средства управления жизнью объекта.

1.3.2 Краткое содержание вопросов:

1 Реализация поведения объектов на примере добавления функций-членов в

структуры.

Пользователям, по-видимому, понадобится широкий набор операций над

объектами типа Screen: возможность перемещать курсор, проверять и устанавливать

области экрана и рассчитывать его реальные размеры во время выполнения, а также

копировать один объект в другой. Все эти операции можно реализовать с помощью

функций-членов.

8

Функции-члены класса объявляются в его теле. Это объявление выглядит точно так

же, как объявление функции в области видимости пространства имен. (Напомним, что

глобальная область видимости – это тоже область видимости пространства имен.

2 Структура как вырожденный класс.

Конструкция struct языка С не была принята в языке программирования Java

потому, что класс выполняет все то же самое, что может делать структура, и даже более

того. Структура группирует несколько полей данных в один общий объект, тогда как

класс связывает с полученным объектом операции, а также позволяет скрывать поля

данных от пользователей объекта. Иными словами, класс может инкапсулировать

encapsulate) свои данные в объекте, доступ к которому осуществляется только через его

методы.

3 Структура объявления класса.

Классы и объекты в С++ являются основными концепциями

объектноориентированного программирования — ООП. Объектно-ориентированное

программирование — расширение структурного программирования, в котором

основными концепциями являются понятия классов и объектов. Основное отличие языка

программирования С++ от С состоит в том, что в С нет классов, а следовательно язык С не

поддерживает ООП, в отличие от С++.

Чтобы понять, для чего же в действительности нужны классы, проведём аналогию

с каким-нибудь объектом из повседневной жизни, например, с велосипедом. Велосипед —

это объект, который был построен согласно чертежам. Так вот, эти самые чертежи играют

роль классов в ООП. Таким образом классы — это некоторые описания, схемы, чертежи

по которым создаются объекты. Теперь ясно, что для создания объекта в ООП

необходимо сначала составить чертежи, то есть классы. Классы имеют свои функции,

которые называются методами класса. Передвижение велосипеда осуществляется за счёт

вращения педалей, если рассматривать велосипед с точки зрения ООП, то механизм

вращения педалей — это метод класса. Каждый велосипед имеет свой цвет, вес,

различные составляющие — всё это свойства. Причём у каждого созданного объекта

свойства могут различаться. Имея один класс, можно создать неограниченно количество

объектов (велосипедов), каждый из которых будет обладать одинаковым набором

методов, при этом можно не задумываться о внутренней реализации механизма вращения

педалей, колёс, срабатывания системы торможения, так как всё это уже будет определено

в классе. Разобравшись с назначением класса, дадим ему грамотное определение.

4 Доступ к членам класса.

9

Поддержка свойства инкапсуляции в классе дает два главных преимущества.

Вопервых, класс связывает данные с кодом. И во-вторых, класс предоставляет средства

для управления доступом к его членам. Именно эта, вторая преимущественная

особенность и будет рассмотрена в данной статье.

В языке C#, по существу, имеются два типа членов класса: открытые и закрытые,

хотя в действительности дело обстоит немного сложнее. Доступ к открытому члену

свободно осуществляется из кода, определенного за пределами класса. А закрытый член

класса доступен только методам, определенным в самом классе. С помощью закрытых

членов и организуется управление доступом.

Ограничение доступа к членам класса является основополагающим этапом

объектно-ориентированного программирования, поскольку позволяет исключить неверное

использование объекта. Разрешая доступ к закрытым данным только с помощью строго

определенного ряда методов, можно предупредить присваивание неверных значений этим

данным, выполняя, например, проверку диапазона представления чисел. Для закрытого

члена класса нельзя задать значение непосредственно в коде за пределами класса. Но в то

же время можно полностью управлять тем, как и когда данные используются в объекте.

Следовательно, правильно реализованный класс образует некий "черный ящик", которым

можно пользоваться, но внутренний механизм его действия закрыт для вмешательства

извне.

5 Поля данных класса как механизм реализации состояния объекта.

Как уже говорилось выше, в современных объектно-ориентированных языках

программирования каждый объект является значением, относящимся к определённому

классу. Класс представляет собой объявленный программистом составной тип данных,

имеющий в составе:

Поля данных

Параметры объекта (конечно, не все, а только необходимые в программе),

задающие его состояние. Поля данных объекта называют свойствами объекта. Физически

свойства представляют собой значения (переменные, константы), объявленные как

принадлежащие классу.

Методы

Процедуры и функции, связанные с классом. Они определяют действия, которые

можно выполнять над объектом такого типа, и которые сам объект может выполнять.

6 Функции члена класса как механизм реализации поведения объекта.

10

Функция-член класса может содержать спецификатор virtual. Такая функция

называется виртуальной. Спецификатор virtual может быть использован только в

объявлениях нестатических функций-членов класса.

Если некоторый класс содержит виртуальную функцию, а производный от него

класс содержит функцию с тем же именем и типами формальных параметров, то

обращение к этой функции для объекта производного класса вызывает функцию,

определённую именно в производном классе. Функция, определённая в производном

классе, вызывается даже при доступе через указатель или ссылку на базовый класс. В

таком случае говорят, что функция производного класса подменяет функцию базового

класса. Если типы функций различны, то функции считаются разными, и механизм

виртуальности не включается. Ошибкой является различие между функциями только в

типе возвращаемого значения.

7 Спецификаторы доступа для обеспечения инкапсуляции.

Начиная с этой лекции мы будем подробно рассматривать принципы объектно-

ориентированного программирования только на примере языка C#. Язык C# является

полноценным объектно-ориентированным языком программирования со строгим

контролем типов. Мы будем рассматривать объектно-ориентированное программирование

только для языка C#, поскольку этот язык поддерживает все основные конструкции

объектно-ориентированного подхода за исключением множественного наследования.

В C# объектно-ориентированное программирование поддерживается с помощью

классов. Класс - это пользовательский тип данных, который включает в себя как данные,

так и программный код в виде функций. Данные хранимые в классе называются полями, а

функции класса называются методами. Также класс может содержать свойства и

индексаторы, которые в определенном смысле объединяют поля и методы. После того,

как класс описан, можно создавать переменные с типом этого класса.

8 Средства управления жизнью объекта.

Методология управления, менеджмента – это логическая схема управленческой

деятельности, предполагающая взаимосвязанное понимание целей, ориентиров, а также

средств и способов их достижения. Это еще и умение видеть, распознавать, понимать,

оценивать и учитывать зависимости, которые и раскрывают содержание проблем, и

подсказывают пути их решения.

Специалисты выделяют следующие компоненты, характеризующие содержание

методологии управления: подходы, парадигмы, проблемы, приоритеты, ориентиры,

критерии, альтернативы, процедуры выбора, средства и методы управления, а также

ограничения.

11

Подход – наиболее принципиальный компонент методологии, определяющий

выбор и использование остальных ее компонентов. Среди подходов в управлении особо

выделяется системный подход. Весьма популярны в управлении программно-целевой и

проектный подходы. Для современного менеджмента характерен маркетинговый подход,

ориентированный на потребителя, кроме того, для него свойственны кибернетический,

информационный, гуманистический подход – при этом заметен акцент на

преимущественном использовании отдельных наук, типов ресурсов и соответствующей

методологии в целом. Многие исследователи выделяют интеграционный и сетевой

подходы. Принимая на вооружение тот или иной подход, можно говорить о науке

управления и об управлении как искусстве; выбранный подход в таком случае обычно

конкретизируется через те или иные принципы управления.

Парадигма (от греч. paradeigma пример, образец) – исходная концептуальная схема,

система понятий, отражающая осмысление существенных черт действительности, модель

постановки проблем и их решения, выбора соответствующих методов, господствующая в

научном сообществе в течение определенного исторического периода и знаменующая

собой определенный этап в развитии теории (управленческий рационализм Ф.Тейлора,

функциональная дифференциация А. Файоля и М. Вебера и др.) В современной парадигме

управления, несмотря на разнообразие конкретных формулировок, предпочтение отдается

человеческой личности, с учетом процессов глобализации и с акцентом на управление

знаниями, на сетевые, партнерские принципы взаимодействия.

2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

2.1 Лабораторная работа № 1 (2 часа).

Тема: «Понятие объекта»

2.1.1. Вопросы к занятию:
1. Состояние объекта.

2. Поведение объекта.

3. Идентичность объектов.

2.1.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. TRadiogroup в Delphi – это:

 1) группа зависимых переключателей;

 2) независимый переключатель;

 3) группа независимых переключателей;

12

 4) кнопка зависимого переключателя;

 5) нет верного ответа.

2. Свойство Columns типа Integer задает в Delphi:

 1) число столбцов;

 2) номер выделенного элемента;

 3) число выделенных компонентов на форме;

 4) размеры выделенного компонента;

 5) раскрыт ли список.

3. Методы объекта определяют его в Delphi:

 1) поведение;

 2) свойства;

 3) родителя;

 4) атрибуты;

 5) потомка.

2.2 Лабораторная работа № 2 (2 часа).

Тема: «Разработка Visual Basic-приложений. Создание программного интерфейса

пользователя»

2.2.1. Вопросы к занятию:
1. Visual приложение.

2. Создание программного интерфейса пользователя.

2.2.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. Проект в Visual Basic – это:

 1) один или несколько программных модулей

 2) одна или несколько экранных форм

 3) совокупность частей, составляющих Windows-приложение

 4) интерфейс программы + программный код

2. Visual Basic хранит каждый проект в файле с расширением:

 1) *.vbp

 2) *.frm

 3) *.bas

 4) *.frx

3. Программный код проекта Visual Basic:

 1) существует сам по себе

 2) привязан к отдельным объектам и не оторван от формы

 3) привязан к отдельным объектам и не связан с формой

 4) привязан только к форме

2.3 Лабораторная работа № 3 (2 часа).

Тема: «Визуальная модель Delphi»

2.3.1. Вопросы к занятию:
1. Процедурное программирование

2. Объектно-ориентированное программирование

3. Компонентная модель, наследственность

2.3.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. Библиотека компонент Delphi. Визуальные и невизуальные компоненты.

13

2. Иерархия классов Delphi. Краткая характеристика основных классов Delphi и их

назначение.

3. Стандартные события (события мыши, клавиатуры, системные события)

визуальных компонент в Delphi.

4. Организация текстового диалога. Обзор стандартных окон и стандартных

компонент в Delphi.

5. Работа с многострочным текстом. Компонент TMemo, классы Tstrings,

TStringList в Delphi.

6. Обзор стандартных компонент управления (выключатели, переключатели,

списки, контейнеры). Их взаимодействие.

2.4 Лабораторная работа № 4 (2 часа).

Тема: «Природа классов»

2.4.1. Вопросы к занятию:
1 Интерфейс и реализация

2 Отношение между классами

3 Ассоциация

4 Наследование. Множественное наследование

2.4.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. Базовый класс для всех компонентов в Delphi:

 1) TObject;

 2) TControl;

 3) TComponent;

 4) TPersistent;

 5) TWinControl.

2. В каком окне представлен список классов и объектов в VBА?

 1) окне макета формы;

 2) окне программного кода;

 3) проводнике объектов;

 4) окне свойств.

3. Методы объекта определяют его в Delphi:

 1) поведение;

 2) свойства;

 3) родителя;

 4) атрибуты;

 5) потомка.

2.5 Лабораторная работа № 5 (2 часа).

Тема: «Представление объектов и классов»

2.5.1. Вопросы к занятию:
1 Доступ к членам класса.

2 Поля данных класса как механизм реализации состояния объекта.

3 Функции члена класса как механизм реализации поведения объекта.

4 Спецификаторы доступа для обеспечения инкапсуляции.

2.5.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. Жизненный цикл объекта.

2. Конструкторы и деструкторы.

14

3. Порядок вызова конструкторов и деструкторов при наследовании.

2.6 Лабораторная работа № 6 (2 часа).

Тема: «Наследование как средство организации иерархий классов»

2.6.1. Вопросы к занятию:
1 Одиночное наследование.

2 Множественное наследование.

3 Пространства имен.

2.6.2. Краткое описание проводимого занятия:
Задания для проведения текущего контроля успеваемости

1. Понятие класса в Delphi. Отличие класса Delphi от записей Pascal.

2. Свойства и методы базового класса Delphi TObject.

3. Создание и уничтожение экземпляра класса в Delphi.

4. Понятие свойства класса. Синтаксис свойств и их достоинства в Delphi.

