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1. КОНСПЕКТ ЛЕКЦИЙ 

 

1.1 Лекция 1 (Л-1)  (2 ч.) 

Тема: Случайные события, классификация и вероятности  

 

1.1.1  Вопросы лекции: 

 

1.Случайные события, их классификация. 

2.Вероятность случайных событий, ее интерпретации. 

3. Основные теоремы теории вероятностей. 

 

1.1.2. Краткое содержание вопросов: 

 

1.Случайные события, их классификация. 

 

 Определение. Два события  называются  равными,  если одно из них наступает 

тогда и только тогда, когда наступает другое. 

Пример. Будут произведены 3 выстрела в мишень. А – число попаданий в мишень 

равно 0, В – число попаданий в мишень меньше, чем 0,5. Очевидно, что .ВА  

 Определение. Два события называются равновозможными,  если вероятности их 

наступления равны (в смысле статистического определения вероятности). 

На практике равновозможность событий обычно усматривается из симметрии ситуа-

ции. 

Пример. Пусть испытание – бросание монеты. Тогда события А  – выпадение “орла” 

и В  – выпадение “решки” являются равновозможными. 

 Определение. Событие называется достоверным,  если оно наступает в каждом 

из испытаний. 

Достоверное событие будем обозначать через .Е  Такое событие определено одно-

значно для каждого вида испытания. 

Пример.  Пусть испытание – бросание игральной кости. Тогда Е 6,5,4,3,2,1

...,)0()10( mm  где m – число выпавших очков. 

 Т.к. NN E , то ,11limlim)(
N

E

N N

N
EP  т.е. 

.1)(EP  

 Определение. Событие называется невозможным,  если оно не наступает ни в 

одном из испытаний. 

Невозможное событие будем обозначать символом . Это событие определено од-

нозначно для каждого вида испытания. 

Пример. Пусть измеряется рост наудачу взятого человека. Тогда  = (значение рос-

та – отрицательное число) = (рост – более 100 км) =…. 
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Т.к. ,0N  то ,00limlim)(
NN N

N
P  т.е. 

.0)(P  

Определение. Два события называются несовместными (несовместимыми), если 

они не могут наступить одновременно. 

Пример. Испытание – извлечение карты из колоды. Если событие А –  извлечена 

карта красной масти, событие В – извлечена карта черной масти, то А и В – несовместны.  

Пример. Пусть по мишени производится 3 выстрела и m – число попаданий в ми-

шень. Тогда события,  например, )3(m  и )1(m  – несовместны. 

Определение. События    kAAА ,...,, 21  называются единственно возможными  для 

некоторого испытания, если в результате испытания хотя бы оно из них обязательно 

наступает. 

Пример. Пусть испытание – бросание игральной кости. ,3,2,1A  ,6,5,4,3B  

.5,4,3C  Тогда события А и В – единственно возможны (т.к. не существует такого ис-

хода бросания игральной кости, при котором ни А, ни В  не наступило). Напротив, А и С  

не являются единственно возможными (т.к. при выпадении “6” ни А, ни С  не наступают). 

Определение. Говорят, что события  
kAAА ,...,, 21  образуют полную систему 

(группу),  если эти события попарно несовместимы и единственно возможны. 

Пример. Пусть испытание – бросание игральной кости. Тогда события 

6,...,2,1 621 AAА  образуют полную систему. 

Пример. Пусть по мишени производится 3 выстрела и m – число попаданий в ми-

шень. Тогда события,  например, )3(),21(),0( mmm  образуют полную систему. 

 Заметим, что при заданном типе испытания полная система событий определена, 

вообще говоря, неоднозначно. 

Определение. Если два события образуют полную систему, то они называются 

парой взаимно противоположных событий. 

Если одно из событий такой пары обозначено, скажем, через А , другое будет обо-

значено .А  

Пример. Пусть испытание – бросание монеты. Тогда события А – выпадение “орла” 

и В  – выпадение “решки” являются взаимно противоположными ( АВ ). 

Пример. Пусть по мишени производится 3 выстрела, и m – число попаданий в ми-

шень. Тогда события,  например, )10()2( mилиmm  и 

)32()2( mилиmm  – взаимно противоположны. 

Операции над событиями 

Определение. Суммой событий А и В называется такое событие ВАС , ко-

торое считается наступившим тогда и только тогда, когда наступило или событие А, 

или событие В, или оба эти события вместе. 

Пример. Пусть испытание – извлечение карты из колоды, а следующие события   

состоят  в извлечении: А –  карты красной масти, В – картинки, D – числовой карты. Если 

в результате конкретного испытания из колоды достали, например, “семерку” крестей то 

событие А+В  не наступило,  а события  DА  и DB  наступили. 

Пример. Пусть по мишени производится 3 выстрела,  m – число попаданий в ми-

шень  А  ),2(m  )0(mB , BAC . Тогда 1mC . 

Замечание 1. Условие единственной возможности событий 
kAAА ,...,, 21

равносиль-

но тому, что ....21 EААА k  В частности, если события 
kAAА ,...,, 21  образуют 

полную систему, то EААА k...21 ,  и при 2k  имеем 

.EAA  
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Определение. Произведением событий А и В называется такое событие АВС , 

которое считается наступившим тогда и только тогда, когда события А и В наступили 

одновременно. 

Пример. Пусть испытание состоит в бросании играль-

ной кости.  

,3,2,1А  4,3B . Тогда 3AB   и 

4,3,2,1BA . 

Замечание 2. Произвольные события А и В являются 

несовместимыми тогда и только тогда, когда АВ .  

 

2.Вероятность случайных событий, ее интерпретации. 

Определение. Пусть некоторое испытание имеет n 

исходов, причем эти исходы 

а) попарно несовместимы; 

б) единственно возможны; 

в) равновозможны 

и наступлению события  А благоприятствует m  ис-

ходов из .n Тогда вероятность )(АР наступления события 

А (в одном испытании) определяется по формуле 

.)(
n

m
АР  

Пример. В коробке имеется 10 хороших деталей и 5 

бракованных. Наудачу из коробки извлекается одна деталь. Найти вероятность наступле-

ния события А – извлеченная деталь – хорошая. 

  Решение. Общее число исходов 15n  равно полному числу деталей в коробке. 

Извлечению хорошей детали благоприятствует 10m исходов из общего числа (число 

хороших деталей). Тогда 

.
3

2

15

10
)(АР  

Пример. Одновременно бросаются три монеты. Найти вероятность того, что на двух 

из них выпадет «орел».  

Решение. Для удобства будем предполагать, что монеты некоторым образом зану-

мерованы. Единичным исходом здесь является совокупный результат по трем  монетам 

(другими словами, для того, чтобы задать единичный исход, надо сказать, что выпало на 

первой монете, на второй и на третьей). Перечислим возможные исходы (см. Таблицу 1, в 

которой выпадение «орла» на соответствующей монете обозначено буквой «О», «решки» 

– «Р»). Видно, что общее число n  исходов равно 8. Число m  благоприятствующих исхо-

дов равно 3 – это исходы с номерами 2, 3, 5 Таблицы 1. Тогда  

8

3
)(

n

m
АР . 

Пример. В коробке 6 белых шаров и 8 красных. Наудачу одновременно извлекаются 

3 шара. Найти вероятность, того, что среди них будут: 

а) два белых шара; 

б) не менее одного белого. 

Решение. а) Для удобства будем предполагать, что имеющиеся шары некоторым об-

разом перенумерованы. Пусть, например, белые шары имеют номера 1, 2, … ,6 красные – 

7, 8 , … ,14. Тогда единичным исходом является произвольная тройка номеров: 123 , 

124 , …, 14,13,12 .    

Таблица 1. 

Номер 

исхода 

      Номер                                                     

монеты      

1 2 3 

1 О О О 

2 О Р О 

     3 О О Р 

     4 О Р Р 

     5 Р О О 

     6 Р Р О 

     7 Р О Р 

     8 Р Р Р 
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Тогда общее число n исходов равно числу способов, которыми можно выбрать 3 но-

мера из имеющихся 14-ти номеров. Напомним, что такое число равно соответствующему 

числу сочетаний: 
3
14Cn . 

 (В общем случае,  
)!(!

!

sks

k
C s

k   равно числу способов, которыми можно вы-

брать s объектов из  k  имеющихся объектов.) Таким образом,  

3
14Cn = .36414132

1110...21321

1413121110...21

!11!3

!14
 

Найдем теперь число m  исходов, благоприятствующих появлению двух белых ша-

ров среди трех извлеченных. Число способов, которыми можно выбрать 2  шара из имею-

щихся 6-ти белых шаров, равно 
2
6С . Но число благоприятствующих исходов с фиксиро-

ванной парой белых шаров равно числу способов, которыми можно выбрать оставшийся 

красный шар в тройку, т.е. равно 
1
8С . Поэтому 

.120835
!7!1

!8

!4!2

!61
8

2
6 CCm  

Окончательно имеем 

,
91

30

364

120
)(

n

m
АР  

 

где А – событие состоящее в том, что среди трех отобранных шаров ровно 2 белых 

шара. 

б) Полное число n  исходов найдено в п. а). Число троек, в которых не менее 2-х бе-

лых шаров, равно сумме троек с двумя белыми шарами и троек с тремя белыми шарами: 

.176561203
8

1
8

2
6 CCCm  

Окончательно имеем 

,
91

44

364

176
)(

n

m
ВР  

где В – событие состоящее в том, что среди трех отобранных шаров не менее 2-х белых 

шаров. 

Теорема. Вероятность события, противоположного событию равна 
Доказательство. Пусть полная система равновозможных элементарных исходов со-

держит событий, из которых ( ), благоприятны событию . Тогда 

исходов неблагоприятны событию , т.е. благоприятствуют событию . Таким обра-

зом, 

. 

Классическое определение вероятности предполагает, что 

-  число элементарных исходов конечно; 

-  эти исходы равновозможны. 

Однако на практике встречаются испытания с бесконечным числом возможных ис-

ходов. Кроме того, нет общих методов, позволяющих результат испытания, даже с конеч-

ным числом исходов, представить в виде суммы равновозможных элементарных исходов. 

Поэтому применение классического определения вероятности весьма ограниче-

но. Пример: кубик со смещенным центром тяжести. 

Классическое определение вероятности имеет ограниченную применимость. Так, 

оно неприемлемо, если результаты испытания не равновозможны. 
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Во многих случаях более удобным оказывается статистическое определение веро-

ятности, которое связано с понятием относительной частоты появления события в 

опытах. Относительная частота появления события – это отношение числа появле-

ний события в серии из опытов к числу испытаний: . 

Опыт показывает, что при проведении сравнительно малого числа испытаний отно-

сительная частота принимает значения, которые могут сильно отличаться друг от 

друга. При однотипных массовых испытаниях во многих случаях наблюдается устойчи-

вость относительной частоты события, т.е. с увеличением числа испытаний относительная 

частота колеблется около некоторого постоянного числа , причем эти отклонения 

тем меньше, чем больше произведено испытаний. 

Вероятностью события в статистическом смысле называется число, относительно 

которого стабилизируется (устанавливается) относительная частота при неограниченном 

увеличении числа опытов. 

Поэтому, на практике за вероятность события принимается относительная часто-

та при достаточно большом числе испытаний. 

Свойства вероятности, вытекающие из классического определения вероятности, со-

храняются и при статистическом определении вероятности. 

Если вероятность некоторого события близка к нулю, то, в соответствии со сказан-

ным следует, что при единичном испытании в подавляющем большинстве случаев такое 

событие не наступит. Возникает вопрос: насколько малой должна быть вероятность, что-

бы можно было пренебречь вероятностью наступления некоторого события в единичном 

испытании (например, землетрясение в Минске)? Достаточно малую вероятность, при ко-

торой наступление события можно считать практически невозможным, называ-

ют уровнем значимости. На практике уровень значимости обычно принимают равным 

0,05 (пятипроцентный уровень) или 0,01 (однопроцентный уровень). 

Чтобы преодолеть недостаток классического определения вероятности, связанный с 

его неприменимостью к испытаниям с бесконечным числом исходов, вводят понятие гео-

метрической вероятности – вероятности попадания точки в некоторую область  

( отрезок, часть плоскости и т.д.). 

В подобных случаях пространство элементарных исходов может быть представлено 

областью , а под событием можно понимать исходы, входящие в некоторую об-

ласть , принадлежащую области . 

Пусть на область наугад бросается «точка». Какова вероятность того, что эта точ-

ка попадет в область , являющуюся частью области ? 

1. Пусть отрезок длины , составляет часть отрезка длина которого . На 

отрезок наудачу поставлена точка. Предполагается, что 

-поставленная точка может оказаться в любой точке отрезка ; 

- вероятность попадания точки на отрезок пропорциональна длине этого отрезка и не 

зависит от его расположения относительно отрезка . 

Тогда вероятность попадания точки на отрезок определяется равенством . 

2. Пусть плоская фигура с площадью составляет часть плоской фигуры , 

площадь которой . На фигуру наудачу брошена точка. Предполагается, что: 
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- брошенная точка может оказаться в любой точке фигуры ; 

- вероятность попадания брошенной точки на фигуру пропорциональна площади этой 

фигуры и не зависит ни от ее расположения относительно фигуры , ни от формы . 

В этих предположениях вероятность попадания точки на фигуру определяется ра-

венством . 

3. Аналогично вводится понятие геометрической вероятности при бросании точки в 

пространственную область объема , содержащую область объема 

Множество попарно несовместных событий называют полной группой событий, 

если при любом исходе случайного эксперимента непременно наступает одно из событий, 

входящих в это множество. Другими словами, для полной группы событий 

выполнены следующие условия: 

- появление одного из событий данного множества в результате испытания является дос-

товерным событием, т.е. событие ; 

-события и ( ) попарно несовместны и – событие невозможное при 

любых , т.е. . 

Простейшим примером полной группы событий является пара противоположных 

событий и . 

Основные понятия комбинаторики. 
При решении ряда теоретических и практических задач требуется из конечного 

множества элементов по заданным правилам составлять различные комбинации и произ-

водить подсчет числа всех возможных таких комбинаций. Такие задачи принято назы-

вать комбинаторными. 

При решении задач комбинаторики используют правила суммы и произведения. 

Правило суммы – если элемент а может быть выбран способами, а элемент b –

 m способами, то один из этих элементов можно выбрать n+m способами. 

Правило произведения – если элемент а может быть выбран способами и после 

каждого такого выбора элемент b можно выбрать m способами, то пару (ab) из этих эле-

ментов в указанном порядке можно выбрать nm способами. 

Упорядоченные наборы, состоящие из k различных элементов, выбранные из n дан-

ных элементов, называются размещениями из n элементов по k. Размещения могут отли-

чаться как элементами, так и порядком. 

Теорема. Число всех размещений из n элементов по k вычисляется по формуле: 

 
 Действительно, первый элемент размещения может быть выбран n способами. Для 

каждого из этих вариантов есть n-1 способов расположения одного из оставшихся элемен-

тов на втором месте. Следовательно, по правилу произведения, имеется n*(n-1) различных 

способов выбора элементов на первых двух местах. Продолжая это рассуждение по ин-

дукции, получаем доказательство. 

 Пример: Различными размещениями множества из трех элементов {1,2,3} по два 

будут наборы (1,2), (2,1), (1,3), (3,1), (2,3), (3,2) 

В частном случае k=n размещения называются перестановками . 

Так как каждая перестановка содержит все n элементов множества, то различные пе-

рестановки отличаются друг от друга только порядком элементов и 
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Пример: Различными перестановками множества элементов {1,2,3} будут (1,2,3), 

(1,3,2), (2,3,1), (2,1,3), (3,2,1), (3,1,2) 

 Неупорядоченные наборы из k элементов, взятых из данных n элементов, называют-

ся сочетаниями из n элементов по k. 

Теорема. Число сочетаний из n элементов по k вычисляется по формуле 

 
 

 

 

 

3. Основные теоремы теории вероятностей. 

 

Теорема сложения вероятностей. 

).()()()( АВРВРАРВАР  

Важным частным случаем этой теоремы является 

Теорема сложения вероятностей для несовместных событий. Вероятность сум-

мы двух несовместных событий равна сумме их вероятностей, т.е. 

).()()( ВРАРВАР  

Доказательство. Так как события А и В  несовместны, то их произведение равно не-

возможному событию, т.е. АВ = . Поскольку вероятность невозможного события равна 

нулю, то из теоремы сложения вероятностей следует требуемое утверждение. 

Отметим, что аналогичное утверждение справедливо для любого числа попарно не-

совместных событий: вероятность суммы попарно несовместных событий равна сумме 

их вероятностей.  

Следствие. Пусть события kААА ,...,, 21 образуют полную систему, тогда сумма 

их вероятностей равна 1  т.е. 

.1)(...)()( 21 kАРАРАР  

Доказательство. Из определения полной системы следует, что события 

kААА ,...,, 21 , в частности, являются единственно возможными, поэтому 

EААА k...21 . Тогда 

).()...( 21 ЕРАААР k  

Вероятность достоверного события равна 1. События kААА ,...,, 21 ,  в частности, яв-

ляются попарно несовместными. Тогда из теоремы сложения вероятностей для несовме-

стных событий следует требуемое утверждение. 

Данное  следствие при 2k  представляет важное свойство противоположных со-

бытий: сумма вероятностей взаимно противоположных событий равна 1, т.е. 

.1)()( АРАР  

Определение. Условной вероятностью )(АР В  называется вероятность наступ-

ления события А в предположении наступления события В. 

Определение. Два события называются независимыми, если вероятность наступ-

ления одного из них не зависит от того, считается ли другое событие наступившим или 

нет. 

Данное определение равносильно следующему: 
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события А и В  независимы  
).()(

),()(

ВРВР

АРАР

АА

ВВ
 

Пример. Пусть испытание состоит в извлечении карты из колоды. Событие А – из-

влечена «картинка»,  событие В – извлечена «7».  Выяснить, являются ли события А и В  

независимыми.  

Решение. Так как среди «картинок» нет «семерок», то 0
16

0
)(ВР А . Так как сре-

ди «не картинок» –  4 «семерки», то 
5

1

20

4

1636

4
)(ВР

А
. Таким образом,  

)()( ВРВР
АА , поэтому события А и В зависимы. Аналогично, в общем случае 

произвольные (неравные) несовместные события – зависимы. 

Теорема (необходимое и достаточное условие независимости событий). События 

А и В независимы тогда и только тогда, когда  

).()( АРАР В  

Пример. Пусть испытание состоит в бросании игральной кости, ,5,4,3А  

.6,4,3,2В  Выяснить, являются ли события А и В  независимыми.  

Решение. Очевидно, что .
2

1

6

3
)(АР  В предположении обязательного наступле-

ния события В,  полное число возможных исходов равно 4, из которых 2 исхода благопри-

ятствуют наступлению события А, поэтому .
2

1

4

2
)(АР В  Так как ),()( АРАР В  то 

события А и В – независимы. 

Теорема умножения вероятностей. 

 

),()()( ВРАРАВР А  
),()()()( СРВРАРАВCР АВА  

),()()()()( DPСРВРАРАВCDР ABCАВА  

 

Теорема умножения вероятностей для независимых событий. Вероятность про-

изведения двух независимых событий равна произведению их вероятностей, т.е. 

)()()( ВРАРАВР . 

Аналогичное утверждение справедливо для любого числа независимых событий. 

 

Пример. Два стрелка одновременно выстреливают в мишень. Вероятность попада-

ния для первого стрелка равна 0,6, для второго – 0,8. Найти вероятность того, что в мише-

ни будет: 

а) одна пробоина; 

б) хотя бы одна пробоина. 

Решение. а) Прежде всего, укажем, когда может наступать интересующее нас собы-

тие, перебирая все возможные варианты. 

В мишени будет одна пробоина 

тогда и только тогда, когда 

первый стрелок попал  и второй стрелок промахнулся 

или 

первый стрелок промахнулся и второй стрелок попал. 
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Пусть событие А – в мишени будет одна пробоина, событие 
1В  – первый стрелок 

попал, событие 
2В  – второй стрелок попал. Тогда 1В – первый стрелок промахнулся,  

2В – второй стрелок промахнулся. “Тогда и только тогда, когда” соответствует от-

ношению равенства событий.  Соединительный союз “или” соответствует операции 

сложения  событий. Соединительный союз “и” соответствует умножению  событий.   
Тогда  фраза русского языка, в которой мы перечислили все возможности для наступления 

события А, равносильна следующему символическому равенству 

.2121 ВВВВА  

Откуда следует равенство вероятностей 

).()( 2121 ВВВВРАР  

Так как события 21ВВ  и 21ВВ  несовместны, то, применяя теорему сложения веро-

ятностей для несовместных событий, приходим к равенству 

).()()( 2121 ВВРВВРАР  

События 1В , 2В  и 1В , 2В  попарно независимы, поэтому, применяя теорему умно-

жения вероятностей для независимых событий, получаем 

).()()()()( 2121 ВРВРВРВРАР  

По условию, 6,0)( 1ВР  и .8,0)( 2BP Тогда, по свойству взаимно противополож-

ных событий (см. следствие из теоремы сложения вероятностей для несовместных собы-

тий, 2k ), 4,06,01)(1)( 11 BPВР  и .2,08,01)(1)( 22 BPВР  Оконча-

тельно имеем 

.44,08,04,02,06,0)(АР  

б) Пусть m  – число попаданий в мишень, тогда искомой является вероятность 

)1(mР  (заметим, что слова «хотя бы один», «не менее чем один», «по-крайней мере 

один» являются синонимами). Событие )1(m равносильно тому, что число попаданий в 

мишень будет равно 1 или 2, т.е. 

).2()1()1( mmm  

Тогда, учитывая несовместность событий )1(m  и )2(m , получаем 

).2()1()1( mРmРmР  

44,0)()1( APmР  (см. п. а) данного примера). Событие )2(m  (два попада-

ния в мишень) наступает тогда и только тогда, когда первый стрелок попадет в мишень и 

второй стрелок попадет, т.е.  

21)2( BBm . 

Поэтому  

48,08,06,0)()()2( 21 BРBРmР  

(см. теорему умножения вероятностей для независимых событий). Окончательно 

имеем 

.92,048,044,0)2()1()1( mРmРmР  

Отметим, что эта задача допускает и другое решение. Так как события )1(m и

)0(m  взаимно противоположны, то  

)0(1)1( mPmP . 

Но .08,02,04,0)()()0( 21 BPBPmP  Следовательно  

.92,008,01)0(1)1( mPmР  

Пример. В коробке лежат 4 белых шара и 6 красных. Наудачу, один за другим из 

коробки извлекается 2 шара. Найти вероятность того, что среди них будет: 

а) один красный шар; 



12 

 

б) менее 2-х красных шаров. 

Решение. а) Пусть событие А – среди двух извлеченных шаров – ровно один крас-

ный. Это событие наступает тогда и только тогда, когда первый из извлеченных шаров – 

красный, а второй – белый или первый шар – белый, а второй – красный. Напомним, что 

соединительный союз “или” соответствует сложению  событий, союзы “и”, “а” соответст-

вуют умножению  событий. Тогда описание всех возможностей наступления события А 

равносильно следующему формальному равенству  

2121 КББКА , 

где 1К  ( 2К ) – первый (второй) шар – красный, 1Б  ( 2Б ) – первый (второй) шар – 

белый. События 21БК  и 21КБ  – несовместны, поэтому, используя  теорему сложения ве-

роятностей для несовместных событий, получаем 

)()()( 2121 КБРБКРАР . 

Применяя теперь теорему умножения вероятностей, приходим к равенству  

)()()()()( 2121 11
КРБРБРКРАР БК . 

Для вычисления вероятностей из правой части последнего равенства используем 

классическое определение вероятности. Тогда 

.
15

8

9

6

10

4

9

4

10

6
)(АР  

б) Пусть m  – число красных шаров среди двух извлеченных. Тогда искомой является 

вероятность ).2(mР  Очевидно, что )1()0()2( mmm ,  и )()1( APmP  

(см. п. а) данного примера). Вместе с тем, событие )0(m  – среди извлеченных шаров 

нет красных – равносильно тому, что  первый шар окажется белым и второй – также бе-

лым, т.е. 21)0( ББm , поэтому 

.
15

2

9

3

10

4
)()()()0( 2121 1

БРБРББРmP Б  

Окончательно имеем 

.
3

2

15

10

15

8

15

2
)1()0()2( mPmPmР  

Заметим, что вероятность )2(mР может быть также найдена по-другому. События 

)2(m и )2(m  взаимно противоположны, поэтому 

).2(1)2( mРmР  

Но   .
3

1

9

5

10

6
)()()()2( 2121 1

КРКРККPmР К  

Тогда   .
3

2

3

1
1)2(mР  

 

1.2 Лекция 2 (Л-2) (2 ч.) 

Тема:  Следствия основных теорем теории вероятностей, схема повторных испытаний 

 

1.2.1  Вопросы лекции: 

 

1. Условная вероятность события. Формула полной вероятности, формула Байеса. 

2.Схема повторных испытаний. Формулы Бернулли, Пуассона, Лапласа. 

3. Простейший поток событий, его свойства. 

 

1.2.2. Краткое содержание вопросов: 

 

1. Условная вероятность события. Формула полной вероятности, формула Байеса 
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Определение. Условной вероятностью )(АР В  называется вероятность наступ-

ления события А в предположении наступления события В. 

Определение. Два события называются независимыми, если вероятность наступ-

ления одного из них не зависит от того, считается ли другое событие наступившим или 

нет. 

Если при наступлении события вероятность события не меняется, то собы-

тия и называются независимыми. 

События называются попарно независимыми, если независимы лю-

бые два из них. 

События называются независимыми в совокупности (или просто 

независимыми), если независимы каждые два из них и независимы каждое событие и все 

возможные произведения остальных. 

Пусть событие может произойти только с одним из несовместных собы-

тий , образующих полную группу. Например, в магазин поступает одна 

и та же продукция от трех предприятий и в разном количестве. Вероятность выпуска не-

качественной продукции на этих предприятиях различна. Случайным образом отбирается 

одно из изделий. Требуется определить вероятность того, что это изделие некачественное 

(событие ). Здесь события – это выбор изделия из продукции соответст-

вующего предприятия. 

В этом случае вероятность события можно рассматривать как сумму произведений 

событий . 

По теореме сложения вероятностей несовместных событий получа-

ем . Используя теорему умножения вероятностей, находим 

. 

Полученная формула называется формулой полной вероятности 

Пусть событие происходит одновременно с одним из несовместных собы-

тий , вероятности которых ( ) известны до опыта (вероят-

ности априори). Производится опыт, в результате которого зарегистрировано появление 

события , причем известно, что это событие имело определенные условные вероятно-

сти ( ). Требуется найти вероятности событий если известно, что со-

бытие произошло (вероятности апостериори). 

Задача состоит в том, что, имея новую информацию (событие A произошло), нужно 

переоценить вероятности событий . 

На основании теоремы о вероятности произведения двух событий 

, 

откуда 
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или . 

Полученная формула носит название формулы Байеса. 

 

2.Схема повторных испытаний. Формулы Бернулли, Пуассона, Лапласа. 

Серия повторных независимых испытаний, в каждом из которых данное событие 

имеет одну и ту же вероятность , не зависящую от номера испытания, называ-

ется схемой Бернулли. Таким образом, в схеме Бернулли для каждого испытания имеют-

ся только два исхода: событие (успех), вероятность которого и событие 

(неудача), вероятность которого . 

Для того чтобы найти вероятность появления события ровно m раз в серии k опытов, 

достаточно произвести перемножение сомножителей в производящей функции. Коэффи-

циент при члене и даст искомую вероятность. 

Мы предполагали, что вероятность наступления события в каждом из опытов посто-

янна. На практике часто приходится встречаться с более сложным случаем, когда опыты 

производятся в неодинаковых условиях, и вероятность события от опыта к опыту меняет-

ся. Например, производится серия выстрелов при изменяющейся дальности. 

Случай непостоянной вероятности появления события в опытах 

 Способ вычисления вероятности заданного числа появлений событий в таких усло-

виях дает общая теорема о повторении опытов. 

Пусть проводится независимых опытов, в каждом из которых может появиться 

или не появиться некоторое событие , причем вероятность появления этого события в 

-м опыте равна , а вероятность его не появления соответственно . 

Требуется найти вероятность того, что в результате опытов событие появится 

ровно раз. 

Решение данной задачи проводится с помощью так называемой производящей 

функции, имеющей вид:  . 

 Пример. Производится 4 независимых выстрела по одной и той же цели с различ-

ных расстояний. Вероятности попадания при этих выстрелах равны соответственно 

 . 

 Найти вероятность трех попаданий. 

Решение: Составим производящую функцию 

  

 Отсюда вероятность трех попаданий равна 0,040. Легко найти и вероятности ни од-

ного, одного, двух и четырех попаданий, выписывая коэффициенты при и . 

 Число наступлений события называется наивероятнейшим, если оно имеет наи-

большую вероятность по сравнению с вероятностями наступления любое другое коли-

чество раз. 

Теорема. Наивероятнейшее число наступлений события в независимых испы-

таниях заключено между числами  и  . 
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Рассмотрим задачу – частный случай задач  предыдущей темы. Наблюдение над ре-

шением позволит нам получить формулу, существенно упрощающую вычисления в ана-

логичных случаях. 

Пример. Предполагается произвести 4 выстрела по мишени. Вероятность попадания 

при каждом выстреле считается известной и равной 0,7. Найти вероятность того, что   

число попаданий в мишень будет: 

а) равно 2; 

б) не менее 2-х; 

в) менее 4-х. 

.  Число выстрелов по мишени обозначим через n  (здесь 4n ), 7,0p –  вероят-

ность попадания в мишень при каждом выстреле, 3,07,011 pq – вероятность 

промаха при каждом выстреле, m  – число попаданий. Требуется найти )2(mP , эту же 

вероятность обозначим через 
4,2P . Перебирая все случаи, в которых число попаданий в 

мишень будет равно 2, получаем  

qqppqpqpqppqpqqppqpqppqqP 4,2
 

2646,03,07,066 2222qp . 

Теорема. Пусть произведено n повторных независимых испытаний, в каждом из 

которых некоторое событие А наступает с вероятностью p. Тогда вероятность 
nmР ,

 

того, что в этих n испытаниях событие А наступит m  раз, вычисляется по формуле 

,,

mnmm

nnm qpCP  

где  m

nC – число сочетаний из n по m , pq 1 . 

 Полученная формула носит название формулы Бернулли. 

Завершим рассмотрение нашего примера. 

б) Так как ),4()3()2()2( mmmm  то, применяя теорему сложения ве-

роятностей для несовместных событий, получаем 

.)4()3()2()2( 4,44,34,2 PPPmPmPmPmP  

Первое слагаемое последней суммы найдено в п. а) данного примера. Аналогично 

для остальных:  

,4116,03,07,043,07,0
!1!3

!4 33133

44,3 qpCP  

 

.2401,017,013,07,0
!0!4

!4 404044

44,4 qpCP  

Окончательно имеем 

.9163,02401,04116,02646,0)2(mP  

в) По аналогии с предыдущим пунктом задания,  

,)4( 4,34,24,14,0 PPPPmP  

т.е. решение требует, вообще говоря, четырех применений формулы Бернулли. Од-

нако возможно и более короткое решение. Действительно,  события )4(m  и )4(m – 

взаимно противоположны, следовательно 

).4(1)4( mPmP  

Вероятность 
4,4)4( PmP  найдена в п. б) примера.  Таким образом, получаем 

.7599,02401,011)4( 4,4PmP  

 

Если число испытаний велико, формулу Бернулли применять неудобно. В этом слу-

чае можно применять приближенные формулы, точность которых увеличивается с возрас-

танием . 
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Теорема Пуассона. 

Теорема. Пусть произведено n повторных независимых испытаний, в каждом из 

которых некоторое событие А наступает с вероятностью p , причем 

а) число испытаний достаточно велико ( )100n ; 

б) .10np  

 Тогда вероятность 
nmР ,

 того, что в этих n испытаниях событие А наступит m  

раз, вычисляется по следующей приближенной формуле 

.
!

, e
m

P
m

nm
 

Эта формула и называется формулой Пуассона (редких событий). 

Пример. По каналу связи передано 1000 сигналов. Вероятность ошибки при переда-

че каждого из сигналов равна 0,005. Найти вероятность того, что неверно передано: 

а) 7 сигналов; 

б) не менее 4-х сигналов. 

Решение. а) Воспользуемся формулой Пуассона, т.к. условия ее применимости в 

данном случае выполнены: число испытаний достаточно велико  )1001000(n  и 

.105005,01000np Искомое значение 
1000,7P  найдем по таблице функции Пуас-

сона при 7m  и 5  (см. учебник Н.Ш. Кремера, с.556): .1045,01000,7P  

б) Требуется найти )4(mP , где m – число неверно принятых сигналов. Так как 

),1000(...)5()4()4( mmmm  то ....)4( 1000,10001000,51000,4 PPPmP  

Искать каждое из слагаемых этой суммы и затем выполнять суммирование – такое 

решение не представляется рациональным из-за большого числа слагаемых и потому, что 

таблица  функции Пуассона не дает искомых значений с требуемой в данном случае точ-

ностью. Воспользуемся переходом к противоположному событию: 

).(1)4(1)4( 1000,31000,21000,11000,0 PPPPmPmP  

Находя вероятности из правой части последнего равенства по таблице функции Пу-

ассона, окончательно получаем  

.735,0)1404,00842,00337,00067,0(1)4(mP  

Формула Пуассона находит применение в теории массового обслуживания. Она мо-

жет рассматриваться как математическая модель простейшего потока событий с интен-

сивностью . Параметр представляет при этом среднее число успехов. 

Теоремы Лапласа 

Лапласом была получена важная приближенная формула для вероятности 

появления события точно раз, при условии, что достаточно велико. В отличие от 

формулы Пуассона здесь нет ограничения на малость величины в отдельном испыта-

нии, т.е. область применимости формулы Лапласа шире. 

Теорема. Пусть произведено n повторных независимых испытаний, в каждом из 

которых некоторое событие А наступает с вероятностью p , причем число испытаний 

достаточно велико ( )100n .Тогда вероятность 
nmР ,

 того, что в этих n испытаниях 

событие А наступит m  раз, вычисляется по следующей приближенной формуле 

,
)(

,
npq

xf
Р nm

 

где 22

2

1
)( xexf  – функция Гаусса, ,

npq

npm
x  .1 pq  
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Пример. Имеется  партия деталей, состоящая из 1000 штук. В среднем среди дета-

лей такого вида стандартные детали составляют 90 . Найти вероятность того, что число 

стандартных деталей в данной партии окажется равным 890. 

Решение. Число испытаний в данном случае достаточно велико )101000(n , по-

этому локальная теорема Муавра-Лапласа применима. Из условия следует, что вероят-

ность быть стандартной для произвольной детали данной партии равна  

9,0
100

90
p , 1,09,011 pq ,  890m . Тогда  

.05,1
1,09,01000

9,01000890

npq

npm
x  

По локальной теореме Муавра-Лапласа,  

.
1,09,01000

)05,1(
1000,890

f
Р  

Учитывая, что  функция Гаусса четная,  используя таблицу этой функции,  находим 

.2299,0)05,1()05,1( ff  Окончательно, получаем  

.0242,0
1,09,01000

2299,0
1000,890Р  

Интегральная теорема Муавра-Лапласа содержит приближенную формулу для веро-

ятности того, что событие появится не менее раз и не более раз. 

Теорема. Пусть произведено n повторных независимых испытаний, в каждом из 

которых некоторое событие А наступает с вероятностью p , причем число испытаний 

достаточно велико ( )100n .Тогда вероятность того, что число m наступлений собы-

тия А в этих n испытаниях будет заключено в границах от 1m  до 2m , вычисляется по 

следующей приближенной формуле 

,
2

1
)( 12

21
npq

npm

npq

npm
mmmP  

где dxex x

0

22

2

2
)( – функция Лапласа, pq 1 . 

Пример. Каждая из 1000 деталей партии стандартна с вероятностью 0,9. Найти ве-

роятность того, что число стандартных деталей этой партии будет не меньше 880. 

Решение. Число n повторных независимых испытаний в данном случае равно числу 

деталей в партии (каждая из деталей партии будет проверяться на предмет качества, а в 

этой проверке и состоит испытание). ,1001000n  поэтому интегральная теорема Му-

авра-Лапласа применима; неравенство )880(m , где m – число стандартных деталей в 

партии, здесь равносильно ),1000880( m  поэтому ,8801m  ;10002m  ,9,0p  

;1,09,011 pq  ;9009,01000np  .901,09,01000npq  Тогда  

90

900880

90

9001000

2

1
)1000880( mP  

.11,25,10
2

1
 

По свойствам функции Лапласа (см. ниже), 1)5,10( , ).11,2()11,2(  По таб-

лице функции Лапласа (см. учебник Н.Ш. Кремера, с. 555) находим .9651,0)11,2(  То-

гда окончательно имеем 
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.9826,0)9651,01(
2

1
))11,2(1(

2

1
)1000880( mP  

 

Свойства функции Лапласа 

1. Функция Лапласа не-

четна: ).()( xx  

2. Функция Лапласа – мо-

нотонно возрастающая; 

3. ,1)(lim x
n

 

,1)(lim x
n

 т.е. прямые 1y  и 

1y являются горизонтальными 

асимптотами (правой и левой соот-

ветственно) графика )(xy ;                

на практике полагаем 1)(x  при 

.4x  

График функции Лапласа схематично изображен на рис. 2. 

 Пример. Имеется партия деталей, состоящая из 1000 штук. В среднем среди дета-

лей такого вида стандартные детали составляют 90 . Найти вероятность того, что число 

стандартных деталей в данной партии окажется равным 890. 

Решение. Число испытаний в данном случае достаточно велико )101000(n , по-

этому локальная теорема Муавра-Лапласа применима. Из условия следует, что вероят-

ность быть стандартной для произвольной детали данной партии равна  

9,0
100

90
p , 1,09,011 pq ,  890m . Тогда  

.05,1
1,09,01000

9,01000890

npq

npm
x  

По локальной теореме Муавра-Лапласа,  

.
1,09,01000

)05,1(
1000,890

f
Р  

 

Учитывая, что функция Гаусса четная, используя таблицу этой функции, находим 

.2299,0)05,1()05,1( ff  Окончательно, получаем  

.0242,0
1,09,01000

2299,0
1000,890Р  

3. Простейший поток событий, его свойства. 

Потоком событий называют последовательность событий, которые наступают в 

случайные моменты времени. Интенсивностью потока называют среднее число собы-

тий в единицу времени. Простейшим (пуассоновским) называют поток событий, который 

обладает свойствами стационарности, отсутствия последействий и ординарности. 

Свойство стационарности характеризуется тем, что вероятность появле-

ния событий на любом промежутке времени зависит только от числа и от длитель-

ности промежутка времени и не зависит от начала его отсчёта. 

Свойство отсутствия последействия характеризуется тем, что вероятность появле-

ния событий на любом промежутке времени не зависит от того, появлялись или не по-

 y 

x 

-1 

Рис. 2 

)(xy
 

1 
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являлись события в моменты времени, предшествующие началу рассматриваемого про-

межутка, т.е. предыстория потока не сказывается на вероятности появления событий. 

Свойство ординарности характеризуется тем, что появление двух и более событий 

за малый промежуток времени маловероятно по сравнению с вероятностью появления 

только одного события. 

Если интенсивность простейшего потока известна, то вероятность появления 

событий за время определяется формулой 

 
Пример простейшего потока событий. Среднее число заказов такси, поступающих 

на диспетчерский пункт в одну минуту, равно трем. Найти вероятность того, что за 2 ми-

нуты поступит 4 вызова. 

Подставляя в вышеприведенную формулу , получим 

 
 

 

 

 

 

1.3 Лекция 3-4 (Л-3-4) (4 ч.) 

Тема: Случайные величины, их классификация, законы распределения, числовые харак-

теристики. 

 

1.3.1  Вопросы лекции: 

 

1. Случайные величины, их классификация, закон распределения. 

2. Функция распределения, плотность распределения, вероятность попадания в ин-

тервал. 

3. Числовые характеристики ДСВ.  Числовые характеристики НСВ. 

 

1.3.2. Краткое содержание вопросов: 

 

1. Случайные величины, их классификация, закон распределения. 

Определение. Случайной величиной называется переменная, которая в резуль-

тате испытания принимает то или иное числовое значение. 

Пример. Число попаданий в мишень при n  выстрелах – случайная величина. 

Пример. Рост наудачу взятого человека – случайная величина. 

Определение. Случайная величина называется дискретной, если число ее воз-

можных значений конечно или счетно., в противном случае – она является недескретной. 

(Напомним, что множество называется счетным, если его элементы можно перенумеро-

вать натуральными числами.) 

В этом смысле, число попаданий в мишень – пример дискретной случайной величины. 

Рост человека –  непрерывная случайная величина (такие случайные величины будут рас-

смотрены ниже). 

Для обозначения случайных величин будем использовать заглавные буквы латин-

ского алфавита (возможно с индексами), например, ,...,,, ZYX ,...,, 321 ZYX и т.п. 

Соответствие между всеми возможными значениями дискретной случайной величины 

и их вероятностями, т.е. совокупность пар чисел ( ) называется законом распре-

деления данной случайной величины. 
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Закон распределения можно задавать таблично, аналитически (в виде формулы) и гра-

фически.  

Определение. Законом распределения дискретной случайной величины называет-

ся такая таблица, в которой перечислены все возможные значения этой случайной вели-

чины (без повторений) с соответствующими им вероятностями. 

В общем виде закон распределения для случайной величины, например, X : 

 

X : 
ix  1x  2x  … 

kx  

ip  2p  2p  … 
kp  

 

где  ,ii xXPp  ....,,2,1 ki  

Из определения закона распределения следует, что события ),( 1xX  ),( 2xX

…, )( kxX  образуют полную систему, поэтому (см. следствие из теоремы сложения ве-

роятностей для несовместных событий в §1.6): 

,1)(...)()( 21 kxXPxXPxXP  

т.е. 

.1...21 kppp  

Данное равенство называется основным свойством закона распределения 

Пример. Два стрелка одновременно выстреливают в мишень. Вероятность попада-

ния для первого равна 0,6, для второго – 0,8. Составить закон распределения случайной 

величины Z – общего числа попаданий в мишень. 

Решение. Возможные значения данной случайной величины: 0, 1, 2. Через 1B  и 2B  

обозначим события, состоящие в попадании в мишень первого и второго стрелков (соот-

ветственно). Тогда аналогично упомянутому примеру получаем 

,08,02,04,0)8,01()6,01()()()0( 21 BPBPZP  

,44,08,04,02,06,0)()()()()1( 2121 BPBPBPBPZP  

.48,08,06,0)()()2( 21 BPBPZP  

Окончательно, закон распределения случайной величины Z имеет вид: 

 

Z : 
iz  0  1  2  

ip  08,0  0,44 0,48 1 

 

Упражнение. В коробке 3 белых шара и 2 красных. Составить закон распределения 

случайной величины X – числа белых шаров среди 2-х извлеченных шаров. 

Ответ. 

:X  
ix  0 1 2  

ip  0,1 0,6 0,3 1 

 

Пример. В коробке – 3 белых шара и 2 красных. Шары извлекаются последова-

тельно до появления белого шара. Составить закон распределения случайной величины Х 

– числа извлеченных шаров.  

Решение. Возможные значения данной случайной величины: 1, 2, 3. Событие 

)1(X  (из коробки будет извлечен один единственный шар) наступает тогда и только 

тогда, когда первый из шаров оказывается белым, т.к. появление именно белого шара яв-

ляется сигналом к прекращению последующих извлечений (см. условие). Поэтому 
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,
5

3
)()1( 1БРХР  

 где событие 1Б  – первый из извлеченных шаров – белый. Событие )2(X  (из коробки 

будет извлечено ровно 2 шара) наступает тогда и только тогда, когда первый из извлечен-

ных шаров оказывается красным, а второй – белым. Поэтому 

,
10

3

4

3

5

2
)()()()2( 2121 1

БРКРБКРХР К
 

где   событие 1К  – первый из извлеченных шаров – красный, 2Б  – второй шар – белый. 

Наконец событие )3(X  (из коробки будет извлечено 3 шара) наступает тогда и только 

тогда, когда первый шар – красный, второй – красный и третий – белый. Поэтому 

.
10

1

3

3

4

1

5

2
)()()()()3( 321321 211

БРКРКРБККРХР ККК  

Окончательно искомый закон распределения имеет вид: 

Х: 
ix  1 2 3  

ip  0,6 0,3 0,1 1 

 

Определение. Случайная величина Х имеет биномиальный закон распределения с 

параметрами n  и p , если ее закон распределения имеет вид: 

 

Х: 
ix  0 1 2 … n  

, 
ip    nP ,2

 … nnP ,
 

где вероятности 
nmP ,

 вычисляются по формуле Бернулли: 

,,

mnmm

nnm qpCP  

n  – положительное целое число, ,...,,2,1,0 nm   .10 p  

В пределе при n  и constnp  биномиальное распределение переходит в 

так называемое распределение Пуассона. 

Определение. Говорят, что случайная величина Х имеет распределение Пуассона 

с параметром , если ее закон распределения имеет вид: 

 

Х: 
ix  0 1 2 … 

, 
ip  0P  1P  2P  … 

где  

e
m

P
m

m
!

, 

,,2,1,0 m  – положительное число. 

Убедимся в том, что для распределения Пуассона выполняется основное свойство 

закона распределения: 1
0

m
m

P . Действительно, имеем  

1...
!3!2

1...
!3!2!1!0

323210

0

eeeeeeePm
m

 

(см. курс математического анализа, разложение функции 
xey в ряд Маклорена). 

nP ,0 nP ,1
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Арифметические операции над случайными величинами 

Определение. Случайные величины Х и Y называются равными, если их законы 

распределения точно совпадают, и для произвольного числа справедливо равенство: 

).()( YX  

Пример. Пусть законы распределения случайных величин Х и Y имеют вид: 

 

 

 

 

 

Эти случайные величины равны, если дополнительно справедливы равенства 

)0()0( YX  и )1()1( YX , т.е. случайная величина Х принимает значение 0 

тогда и только тогда, когда случайная величина Y принимает значение 0, и аналогично со 

значением 1.  

Произвольная случайная величина допускает умножение на число. Действительно, пусть 

закон распределения случайной величины Х имеет вид: 

 

X : 
ix  1x  2x  … 

kx  

ip  2p  2p  … 
kp  

и  – некоторое число. 

Определение. Случайной величиной XY  называется такая случайная вели-

чина, закон распределения которой имеет вид: 

 

Y : 
iy  1x  2x  … 

kx  

ip  2p  2p  … 
kp  

 

Пример. Пусть закон распределения случайной величины Х  имеет вид: 

 

Х: 
ix  0 1 2 

ip  0,16 0,48 0,36 

 

и 5 , XY . Тогда закон распределения Y : 

 

:Y   
iy  0 5 10 

ip  0,16 0,48 0,36 

 

Можно придумать, например, следующую интерпретацию данному примеру. Заме-

тим, что Х – биномиально распределена с параметрами ,2n  6,0p . Пусть Х – число 

попаданий в мишень при 2-х выстрелах, при каждом из которых попадание случается с 

вероятностью 0,6, и дополнительно известно, что за каждое попадание стрелку выплачи-

вается вознаграждение в размере 5 ден. ед. Тогда Y – заработок стрелка. 

Определение. Случайные величины Х и Y называются независимыми, если для лю-

бых i и j события )( ixX и )( jyY – независимы. 

Пример. Пусть из коробки, в которой – 6 белых и 8 красных шаров, извлекается 1 

шар.  Рассмотрим случайные величины Х – число белых шаров, Y – число красных шаров 

из извлеченных. События, например, )1(X и )1(Y – несовместны, а поэтому – зави-

симы.  Следовательно, и случайные величины Х и Y зависимы. 

Y: 
iy  0 1 

. 
ip  0,5 0,5 

X: 
ix  0 1 

ip  0,5 0,5 
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Определение. Суммой (разностью, произведением) случайных величин Х и Y на-

зывается такая случайная величина YXZ ( YXZ , YXZ ), которая при-

нимает значение kz  в некотором испытании, если значения ix и 
jy  случайных величин Х 

и Y в этом испытании таковы, что 
jik yxz (

jijik yxyxz kz , ). 

Пример. Пусть заданы законы распределения независимых случайных величин Х и 

Y: 

Х: 
ix  0 1 Y: 

jy  0 1 

ip  0,4 0,6 jp  0,2 0,8 

 

Составить закон распределения случайной величины  YXU . 

Решение. Удобно использовать вспомогательную таблицу вида:  

 

jy       ix  0 1 

0 0 1 

1 –1 0 

 

в каждой из центральных клеток которой записаны соответствующие произведения слу-

чайных величин X и Y. Такая таблица показывает, какие значения принимает случайная 

величина U и когда она принимает эти значения. Так 0U  тогда и только тогда, когда 

0X  и 0Y или 1X  и 1Y . Поэтому  

))1)(1()0)(0(()0( YXYXPUP . 

Применяя теорему сложения вероятностей для несовместных событий, теорему умноже-

ния вероятностей – для независимых событий (по условию, случайные величины X  и Y
– независимы), получаем 

.56,08,06,02,04,0)1()1()0()0()0( YPXPYPXPUP  

Для наступления каждого из двух оставшихся значений случайной величины U (-1 и 1) 

имеется по одной возможности. Например, 1U  тогда и только тогда, когда 1X  и 

0Y . Тогда получаем: 

.12,02,06,0)0()1())0)(1(()1( YPXPYXPUP  

Аналогично,  

.32,08,04,0)1()0())1)(0(()1( YPXPYXPUP  

Окончательно, закон распределения случайной величины U имеет вид: 

 

 

 

 

 

2. Функция распределения, плотность распределения, вероятность попадания в ин-

тервал. 

Функция распределения дискретной случайной величины 

Определение. Функцией распределения случайной величины Х называется такая 

функция ),(xF  значение которой в точке x численно равно вероятности того, что в про-

извольном испытании значение случайной величины Х окажется меньше чем х, т.е. 

).()( xXPxF  

Данное определение задает функцию распределения не только для дискретных, но и для 

непрерывных случайных величин. 

 Пример. Пусть закон распределения случайной величины Х имеет вид 

U : 
iu  –1 0 1 

ip  0,32 0,56 0,12 
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X: 
ix  1 2 

ip  0,3 0,7 

Найти функцию распределения этой случайной величины. 

Решение. Найдем сначала F(x) для некоторых значений переменной х.  Например, 

,0)()0()0( PXPF  

так как данная случайная величина не имеет значений меньших нуля, а потому событие 

(Х<0) для нее является невозможным. Аналогично, при любом значении переменной х, 

которое менее или равно 1, будем иметь .0)(xF  Далее имеем: 

.3,0)1()5,1()5,1( XPXPF  

Аналогично, при любом значении переменной х таком, что 21 x ,  будем иметь 

.3,0)(xF  

.17,03,0)2()1()5,2()5,2( XPXPXPF  

(Или, другими словами, так как все значения данной случайной величины менее 2,5, то 

событие (Х < 2,5) является достоверным, а потому его вероятность равна 1.) Аналогично, 

при любом значении переменной х,  которое более или равно 2,  будем иметь .1)(xF  

Окончательно имеем: 

.2при1

;21при3,0

;1при0

)(

x

x

x

xF  

График найденной функции распределе-

ния изображен на рис. 3. 

Свойства функции распределения 

1. Функция распределения является неубы-

вающей функцией. 

2. Область значений: .1)(0 xF  

3. Асимптотические свойства: 

,0)(lim xF
x

 1)(lim xF
x

 (другими 

словами, прямые у =0 и у =1 являются 

асимптотами (левой и правой соответст-

венно) графика y =F (x ) ). 

4. Вероятность того, что в произвольном 

испытании значение случайной величины 

Х будет принадлежать полуинтервалу 

,,  где  и  – произвольные числа, 

вычисляется по формуле  

)()()( FFXP . 

 

Доказательство. Значение функции распределения равна вероятности соответст-

вующего события, но область значений вероятности есть отрезок 1,0  – тем самым дока-

зано свойство 2.  

 Используя определение функции распределения, получаем  

)()(lim)(lim XPxXPxF
xx

. Но произвольное значение случайной величины 

принадлежит числовой прямой, поэтому событие )(X является невозможным. Веро-

ятность невозможного события равна нулю (см. § 1.3), поэтому .0)(lim xF
x

 

F (x ) 

x 

1 

0,3 

2 

0,7 

0,3 

1 

Рис. 3 
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Аналогично, учитывая, что событие )(Х является достоверным, а вероятность 

такого события равна 1, получаем .1)(lim xF
x

 

Нетрудно видеть, что  

),()()( XXХ  

 причем события правой части этого равенства несовместны. Принимая во внимание оп-

ределение функции распределения и теорему сложении вероятностей для несовместных 

событий, получаем  

),()()()()()( XPFXPXPXPF  

что равносильно свойству 4. 

Доказательство свойства 1 мы оставляем читателю в качестве упражнения (указа-

ние: используйте рассуждении от противного и свойство 4). 

Неформально говоря, случайная величина непрерывна, если ее значения полностью 

заполняют некоторый интервал. Более точно, справедливо  

Определение. Случайная величина называется непрерывной, если ее функция рас-

пределения непрерывна на всей числовой прямой и дифференцируема при всех х за исклю-

чением, быть может, отдельных значений. 

Определение. Плотностью распределения непрерывной случайной величины Х 

называется такая функция ),(х  что вероятность того, что в произвольном испы-

тании значение случайной величины Х окажется принадлежащим некоторому отрезку 

, , вычисляется по формуле 

.)()( dxxXP  

Принимая во внимание геометрический смысл определенного интеграла, получаем 

Геометрический смысл плотности распределения. Вероятность того, что в 

произвольном испытании значение случайной величины Х окажется принадлежащим не-

которому отрезку , , численно равна площади ),(S  под кривой плотности рас-

пределения на данном отрезке (см. рис. 4). 

 

Пример. Пусть плотность 

распределения случайной величины 

Х имеет вид: 

случаях.остальныхв0

;1,1при21
)(

x
х  

Найти вероятности: 

а) ;)4,02( XP б) ;)3(XP  

в) ).2(XP  

Решение. а) По определе-

нию плотности распределения,  
4,0

2

.)()4,02( dxxXP  

Вместе с тем, данная плотность распределения задана аналитически по-разному на про-

межутках 1,2  и 4,0;1  отрезка интегрирования. Соответственно, используя свой-

ства определенного интеграла, получаем 

.3,0))1(4,0(
2

1

2

1
210)()4,02(

4,0

1

4,0

1

4,0

2

1

2

xdxdxdxxXP  

По геометрическому смыслу плотности распределения, полученная вероятность 

численно равна площади под кривой плотности распределения (см. рис. 5) на отрезке 

y 

x 
),(S  

  

Рис. 4 

)(xy
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4,0;2 , т.е. равна площади фигуры, составленной из отрезка длины 1 и прямоугольни-

ка со сторонами 21  и 0,6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

б) Неравенство )3(X  равносильно тому, что )3( X . Учитывая, что на 

промежутке )3;( данная плотность распределения равна 0, получаем 

.00)3()3(

3

dxXPXP  

в) Аналогично предыдущим пунктам задачи, имеем 

.1))1(1(
2

1

2

1
0210)()2(

1

11

1

12

1

2

xdxdxdxdxxXP  

Рассмотрение геометрического смысла результатов последних двух пунктов данного при-

мера мы оставляем читателю в качестве упражнения. ▶ 

 

Свойства плотности распределения 

1. Плотность распределения неотрицательна, т.е. 0)(x  при всех х. 

2. Интеграл от плотности распределения на всей числовой прямой равен 1, т.е. 

1)( dxx . 

(Данное свойство называется условием нормировки плотности распределения.) 

 

Доказательство. Предположим противное: пусть найдется такой отрезок , , что 

плотность распределения )(х  отрицательна на этом отрезке. Тогда (см. свойства опреде-

ленного интеграла) имеем 

.0)( dxx  

Но, по определению плотности распределения, интеграл, стоящий в левой части послед-

него неравенства равен )( XP . Так как вероятность события не может быть отри-

цательной, приходим к противоречию, что доказывает справедливость свойства 1.  

По определению плотности распределения,  

).()( XPdxx  

Но событие )( X является достоверным, поэтому его вероятность равна 1. Тем 

самым доказано свойство 2. 

-1 

21
 

у 

х 

-2 1 -0,4 

Рис. 5 
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Парадокс нулевой вероятности 

Теорема. Для непрерывной случайной величины вероятность принять произволь-

ное числовое значение равно нулю. 

Доказательство. Пусть  – произвольное число. События )(X и )( X  

– равны, поэтому, по определению плотности распределения, получаем 

0)()( dxxXP  

(см. свойства определенного интеграла).  

Из парадокса нулевой вероятности вытекает, что для любой непрерывной случай-

ной величины вероятности попадания в произвольный отрезок числовой оси или в соот-

ветствующий полуинтервал (интервал) равны между собой, т.е. справедливо 

Следствие. Пусть Х непрерывная случайная величина и ,  – произвольные числа. 

Тогда верно следующее равенство 

).()()()( XPXPXPXP  

Доказательство. Очевидно, что  

),()()( XХХ  

причем события )( X  и )(X – несовместны. Используя последнее равенство и 

теорему сложения вероятностей для несовместных событий, получаем 

).()( ))()(()( XPХPXХPХP  

Но, согласно парадоксу нулевой вероятности, 0)(XP .Тем самым доказано первое 

из трех равенств Следствия.  

Доказательство оставшихся двух равенств мы оставляем читателю в качестве уп-

ражнения. 

Функция распределения непрерывной случайной величины 

Пусть Х – непрерывная случайная величина и )(х  ее плотность распределе-

ния. Используя определения функции распределения (см. § 3.4) и плотности распределе-

ния, получаем 
x

dxxxF )()( . 

 

Обратно, если задана функция распределения непрерывной случайной величины, 

то (см. теорему об интеграле с переменным верхним пределом) плотность распределения 

этой случайной величины будет определяться равенством 

).()( xFx  

Таким образом, имеется два равноправных способа задания непрерывной случайной вели-

чины: с помощью или плотности распределения, или функции распределения. 

Пример. Пусть плотность распределения непрерывной случайной величины Х 

имеет вид: 

случаях. остальных в0

,2;0при
2

1

)(
x

x  

Найти функцию распределения. 

Решение. Пусть 0x . Тогда  
x x

dxdxxxF .00)()(  

Если 2;0x , то  
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0

xxdxdxdxxxF
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Если 2x , то 

.1)02(
2

1
0

2

1
00

2

1
0)()(

2

02

0 2

0

xdxdxdxdxxxF

xx

 

Таким образом, окончательно, искомая функция распределения имеет вид 

2при1

,2;0при
2

1

,0при0

)(

x

xx

x

xF  

 

 

(см. рис. 6). 

 

 

 

 

3. Числовые характеристики ДСВ. Числовые характеристики НСВ. 

Во многих практических случаях информация о случайной величине, которую да-

ют закон распределения, функция распределения или плотность вероятностей, является 

избыточной. Часто проще и удобнее пользоваться числами, которые описывают случай-

ную величину суммарно. К числу наиболее важных из таких числовых характеристик слу-

чайных величин относятся математическое ожидание, дисперсия и среднее квадратиче-

ское отклонение. 

Математическое ожидание характеризует среднее ожидаемое значение случайной 

величины, т.е. приближенно равно ее среднему значению (вероятностный смысл матема-

тического ожидания). Иногда знания этой характеристики достаточно для решения зада-

чи. Например, при оценке покупательной способности населения вполне может хватить 

знания среднего дохода, при анализе выгодности двух видов деятельности можно ограни-

читься сравнением их средних прибыльностей. Знание того, что выпускники данного уни-

верситета зарабатывают в среднем больше выпускников другого, может послужить осно-

ванием для принятия решения о поступлении в данный ВУЗ и т.п. 

 

Пусть закон распределения дискретной случайной величины Х имеет вид 

 

X : 
ix  1x  2x  … 

kx  

ip  2p  2p  … 
kp  

 

Определение. Математическим ожиданием дискретной случайной величины Х 

называется число М(Х), вычисляемое по формуле  

....)( 2211

1

kkii

k

i

pxpxpxpxXM  

Математическое ожидание случайной величины есть число около которого груп-

пируются значения этой случайной величины.  

Механическим аналогом математического ожидания дискретной случайной вели-

чины является центр масс  (центр тяжести) системы точечных масс: если в точках число-

вой оси с абсциссами kxxx ...,,, 21 расположены точечные массы kppp ...,,, 21 , то абсцисса 

их центра масс находится точно по формуле  для )(XM , приведенной выше. 

Рис. 6 

у 

х 

1 

2 

)(xFy  
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Пример. Пусть случайная величина Х биномиально распределена с параметрами 

3n  и 8,0p  (см. пример из § 3.1): 

Х: 
ix  0 1 2 3 

ip  0,008 0,096 0,384 0,512 

Тогда 

.4,2512,03384,02096,01008,00)(XM  

Свойства математического ожидания 

1. Математическое ожидание постоянной случайной величины равно самой постоянной, 

т.е.  

М(С)=С, 

где С – некоторое число.  

(Постоянной случайной величиной С называется такая случайная величина, которая при-

нимает единственное значение равное С с вероятностью 1.) 

2. Постоянный множитель можно выносить за знак математического ожидания, т.е. 

),()( XMXM  

где – произвольное число. 

 

3. Математическое ожидание суммы (разности) случайных величин равно сумме 

(разности) математических ожиданий этих случайных величин, т.е. 

).()()( YMXMYXM  

4. Математическое ожидание произведения независимых случайных величин равно произ-

ведению их математических ожиданий, т.е. 

).()()( YMXMXYM  

5. Пусть nXXX ...,,, 21  – такие случайные величины, математические ожидания кото-

рых равны между собой, т.е.  ,)( aXM i  где ,...,,2,1 ni и а – некоторое число. Тогда 

среднее арифметическое этих случайных величин равно их общему математическому 

ожиданию, т.е.  

.
...21 a

n

XXX
M n  

Заметим, что свойства 2 – 5 математического ожидания остаются справедливыми 

также для непрерывных случайных величин. 

Пусть закон распределения случайной величины Х тот же, что и выше (см. начало 

параграфа). 

Определение. Дисперсией дискретной случайной величины Х называется число 

),(XD определяемое равенством 

...))(())(())(()( 2

2

21

2

1

2

1

pXMxpXMxpXMxXD ii

k

i

.))(( 2

kk pXMx  

Число )(XD  является мерой разброса значений случайной величины Х около ее 

математического ожидания. 

Пример. Пусть случайная величина Х биномиально распределена с параметрами 

3n  и 8,0p . Найдем дисперсию этой случайной величины.  

В предыдущем примере найдено, что М(Х) = 2,4. Тогда  

.48,0512,0)4,23(384,0)4,22(096,0)4,21(008,0)4,20()( 2222XD  

Свойства дисперсии 

1. Дисперсия постоянной случайной величины равна нулю, т.е. 

.0)(CD  

2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в 

квадрат, т.е. 
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),()( 2 XDXD  

где  – произвольное число. 

3. Справедливо равенство: 

).()()( 22 XMXMXD  

4.  Дисперсия суммы (разности) двух независимых случайных величин равна сумме дисперсий 

этих случайных величин, т.е. 

),()()( YDXDYXD  

где случайные величины Х и Y – независимы.  

5. Пусть случайные величины nXXX ,...,, 21 – независимы и ,)( 2

iXD где .,...,2,1 ni

Тогда  

.
... 2

21

nn

XXX
D n  

Замечание. )(XD  называется средним квадратическим отклонением случайной 

величины Х  и обычно обозначается через . 

Отметим также, что свойство 3 дисперсии более удобно для ее вычисления по сравнению 

с исходным определением дисперсии. 

Пример. Пусть закон распределения случайной величины Х имеет вид 

 

X: 
ix  1 2 

ip  0,6 0,4 

 

Найти ),(XD  используя свойство 3 дисперсии. 

Решение.  

,2,24,026,01)(,4,14,026,01)( 222XMXM  

.24,04,12,2)()()( 222 XMXMXD  

 

Математическое ожидание и дисперсия случайной величины называются парамет-

рами распределения этой случайной величины. 

Теорема. Пусть случайная величина mX  – биномиально распределена с пара-

метрами n  и  p , тогда параметры ее распределения могут быть найдены по формулам:  

.)(,)( npqmDnpmM  

Также справедливы равенства  

.,
n

pq

n

m
Dp

n

m
M  

Пример. Пусть случайная величина Х биномиально распределена спараметрам 

3n и 8,0p . Тогда  

.48,02,08,03)(,4,28,03)( npqmDnpXM  

Очевидно, что использование формул 

последней теоремы упрощает и уско-

ряет вычисление математического 

ожидания и дисперсии биномиально 

распределенной случайной величины 

по сравнению с применением исход-

ных определений для М(Х) и ).(XD  

Формулы для вычисления ма-

тематического ожидания и дисперсии 

непрерывной случайной величины 
Рис. 7 

у 

х 

1 

2 

)(xFy  
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аналогичны соответствующим формулам для дискретной случайной величины. Действи-

тельно, рассмотрим следующую таблицу. 

 
 Дискретная случайная величина Непрерывная случайная величина 

Способ описания Закон распределения Плотность распределения 

)(XM  

k

i

ii pxXM
1

)(  dxxxXM )()(  

)(XD  

k

i

ii pXMxXD
1

2))(()(  dxxXMxXD )())(()( 2
 

Пример. Функция распределения непрерывной случайной величины Х имеет вид: 

.3при1

,3,0при9

,0 при0

)( 2

x

xx

x

xF  

Найти математическое ожидание и дисперсию этой случайной величины. 

Решение. Для нахождения )(XM  и )(XD  нам потребуется плотность распреде-

ления данной случайной величины (см. приведенные выше формулы). Получаем: 

,3при01

,3,0при
9

2
9

,0 при00

)()( 2

x

xxx

x

xFx
  или   

случаях. остальных в0

,3,0при
9

2

)(
xx

x  

Тогда имеем 

.2
39

2
0

9

2
0)()(

3

0

3

3

3

0

0
x

dxxdxxxdxxdxxxXM  

Геометрически, полученное значение математического ожидания есть абсцисса цен-

тра тяжести фигуры под графиком плотности распределения, т.е. абсцисса прямоугольно-

го треугольника ОАВ  (см. рис. 8; напомним, что центр тяжести треугольника есть точка 

пересечения медиан этого треугольника, а медианы в точке пересечения делятся в отно-

шении 2:1, считая от вершины). 

Средним квадратическим отклонением (или стандартом) случайной величи-

ны называется корень квадратный из дисперсии этой величины: 

. 

Легко показать, что дисперсия имеет размерность, равную квадрату размерности 

случайной величины. Поэтому размерность совпадает с размерностью . В тех 

случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной вели-

чины, вычисляют среднее квадратичное отклонение, а не дисперсию. 

Понятие дисперсии и среднего квадратического отклонения широко используется 

практически во всех областях человеческой деятельности, связанных с процессами изме-

рений. Так, например, в технике, они характеризуют точность измерительной аппаратуры 

(чем выше среднеквадратическое отклонение (разброс) при измерениях, тем хуже качест-

во прибора). 

 

 

 

 

 

 

 

А 

3

2
 

)(х  

 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Лекция 5-6 (Л-5-6)  (4 ч.) 

Тема: Основные законы распределения случайных величин. 

 

1.4.1  Вопросы лекции: 

 

1. Основные законы распределения ДСВ биномиальный, Пуассона. 

2.Основные законы распределения НСВ: равномерный, показательный. 

3. Нормальное распределение и его свойства. 

 

1.4.2. Краткое содержание вопросов: 

 

1. Основные законы распределения ДСВ биномиальный, Пуассона. 

 

Случайную величину полностью задает закон ее распределения (в дискретном слу-

чае), а также функция распределения или плотность вероятностей (для непрерывной слу-

чайной величины). 

Наиболее важными законами распределения дискретной случайной величины явля-

ются биномиальный закон, закон распределения Пуассона, геометрическое и гипергео-

метрическое распределение, а непрерывной – нормальное, равномерное и показательное 

распределения.  

Закон распределения случайной величины числа появлений события в схеме 

Бернулли имеет вид , где , . 

Эта формула еще называется биномиальной, так как её правая часть представляет 

собой -й член бинома Ньютона: . 

Очевидно, что для закона биномиального распределения вероятностей выполняется 

условие нормировки, т.е. сумма всех вероятностей равна единице: . 

Биномиальное распределение для и некоторых значений приведено ниже 
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Математическое ожидание числа появлений события в независимых испыта-

ниях для биномиального распределения равно произведению числа испытаний на вероят-

ность появления события в каждом испытании (т.е. среднему числу появления события 

в данной серии испытаний).  

Дисперсия и среднее квадратическое отклонения равны соответствен-

но:   

Ранее отмечалось, что если при увеличении числа испытаний произведение 

остается постоянным, то биномиальное распределение при больших значениях n сходится 

к распределению Пуассона. 

Случайная величина называется распределенной по закону Пуассона, если она 

может принимать значения , соответствующая вероятность которых определяет-

ся по формуле Пуассона: ,  

Распределение Пуассона для приведено ниже 

  

 
Для распределения Пуассона математическое ожидание и дисперсия равны соответ-

ственно: 

. 

Равенство значений математического ожидания и дисперсии является уникальным 

свойством распределения Пуассона. Это свойство часто применяется на практике для ре-

шения вопроса, правдоподобна ли гипотеза о том, что случайная величина X распределена 

по закону Пуассона. Для этого определяют из опыта статистические характеристики слу-

чайной величины – математическое ожидание и дисперсию. Если их значения близки, то 

это может служить доводом в пользу гипотезы о пуассоновском распределении. 
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Дискретная случайная величина имеет геометрическое распределение, если она 

принимает значения (счетное множество значений) с вероятностями 

. 

 Случайная величина, имеющая геометрическое распределение, представляет собой 

число испытаний в схеме Бернулли до первого успеха. Геометрическое распределение для 

некоторых конкретных значений p приведено ниже 

  

 
  

Можно показать, что математическое ожидание и дисперсия для геометрического 

распределения равны соответственно:  

Пример. В большой партии изделий вероятность брака равна . Контроль качества 

проводится до первого появления бракованного изделия. В результате серии проверок об-

наружилось, что бракованное изделие впервые появлялось в среднем при десятом испыта-

нии. Оценить численное значение . 

Решение. Пусть - число испытаний до первого появления бракованного изделия. 

Эта случайная величина имеет геометрическое распределение. По условию ее среднее 

значение равно . Таким образом  

  

Гипергеометрическое распределение (урновая схема) 

Дискретная случайная величина имеет гипергеометрическое распределение, если 

она принимает значения с вероятностями  

представляет вероятность выбора объектов, обладающих заданным свойст-

вом, из множества объектов, случайно извлеченных (без возврата) из совокупности 

объектов, среди которых объектов обладают заданным свойством. Ниже приведен 

пример графика гипергеометрического распределения. 
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Математическое ожидание и дисперсия случайной величины, имеющей гипергео-

метрическое распределение с параметрами равны: 

 
Пример. Имеется 5 фирм, у трех из которых отчетность оформлена неправильно. 

2 ревизора проверяют 2 произвольно выбранные фирмы. Какова вероятность того, что 

при проверке будет обнаружена неправильная отчетность а) ни в одной, б) в одной, в) в 

двух фирмах? 

Решение. Данная задача может быть решена с помощью гипергеометрического рас-

пределения. По условию задачи общее число объектов (фирм) равно N = 10, число фирм с 

неправильной отчетностью M=3. Проверяется всего две фирмы (n =2). Число фирм с не-

правильной отчетностью среди двух выбранных – величина переменная (m=0, 1, 2). Таким 

образом, имеем 

а) (ни одной неправильной отчетности) 

б) (одна неправильная отчетность) 

в) (две неправильные отчетности). 

 

 

 

2.Основные законы распределения НСВ: равномерный, показательный. 

Непрерывная случайная величина считается равномерно распределенной на отрез-

ке (a,b), если ее плотность вероятности имеет вид: 

 
График плотности вероятности для равномерного распределения 
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Математическое ожидание и дисперсия непрерывной случайной величины, имею-

щей равномерное распределение, равны соответственно: 

 
Пример. Интервал движения автобуса равен 15 мин. Какова вероятность того, что 

пассажир на остановке будет ждать автобус не более 5 минут? 

Решение. Пусть случайная величина - время ожидания автобуса. Она имеет рав-

номерное распределение на отрезке [0,15]. Имеем 

 

В рассматриваемом случае   

Показательным (экспоненциальным) распределением непрерывной случайной 

величины называется распределение, имеющее плотность вероятности вида: 

 

где – постоянная положительная величина. Плотность вероятностей для показа-

тельного распределения для приведена ниже 

  

 
  

Функция распределения вероятности для показательного распределения имеет вид: 

 

Функция распределения для приведена ниже 

 
Можно показать, что математическое ожидание и дисперсия случайной величины, 

имеющей экспоненциальное распределение, равны: 
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Пример. Установлено, что время горения электрической лампочки (Т) является слу-

чайной величиной, распределенной по показательному закону. Считая, что среднее значе-

ние этой величины равно 6 месяцам, найти вероятность того, что лампочка будет исправна 

более года. 

Решение. Так как и функция распределения случайной вели-

чины T имеет вид 

  

 
Поэтому    

 
3. Нормальное распределение и его свойства. 

Непрерывная случайная величина имеет нормальный закон распределения с па-

раметрами и , если ее плотность вероятности имеет вид функции Гаусса 

 

где . С помощью непосредственного вычисления математического ожидания 

и дисперсии нормального распределения легко выяснить вероятностный смысл его пара-

метров: – есть математическое ожидание, а - среднее квадратическое отклонение 

нормального распределения. При распределение называется стандартным 

нормальным распределением. 

Графики для ряда конкретных значений математического ожидания и средне-

го квадратического отклонения приведены ниже. 

 

Рис. 1. Изменение вида функции при изменении математического ожидания 
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Рис. 2. Изменение при изменении среднего квадратического отклонения 

Функция распределения в случае нормального распределения, очевидно, равна 

. 

Графики функции для ряда значений математического ожидания и среднего 

квадратического отклонения изображены на приводимых ниже рисунках 

 
Рис. 3. Зависимость функции распределения от величины  

 
Рис. 4. Зависимость функции распределения от величины  

  

Нормальное распределение имеет исключительно важное значение для практических 

применений, так как многие непрерывные случайные величины описываются именно 

этим распределением. Оказывается, что суммирование большого числа случайных вели-

чин с различными законами распределения приводит к нормальному распределению ре-
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зультирующей суммы. Это свойство подтверждается центральной предельной теоремой 

(теорема Ляпунова). Смысл этой теоремы состоит в следующем. Если случайная величи-

на представляет собой сумму очень большого числа взаимно независимых случайных 

величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распре-

деление, близкое к нормальному. 

Следует иметь в виду, что при усилении влияния отдельных факторов могут появ-

ляться отклонения от нормального распределения результирующего параметра. Поэтому 

большое значение на практике уделяется экспериментальной проверке выдвинутых гипо-

тез, в том числе и гипотезы о нормальном распределении. 

График плотности нормального распределения называют нормальной кривой Га-

усса. 

Исследуем поведение функции плотности вероятности . 

1. Очевидно, что функция определена на всей оси . 

2. Функция принимает лишь положительные значения, т.е. нормальная кривая расположе-

на над осью . 

3. Ось служит горизонтальной асимптотой графика. Других асимптот у графика нет. 

4. При функция имеет максимум, равный  

5. Функция четная: ее график симметричен относительно прямой  

6. При график функции имеет точки перегиба. 

При любых значениях параметров и , площадь, ограниченная нормальной кри-

вой и осью равна единице. 

Часто требуется определить вероятность попадания случайной величины в заданный 

интервал. Эта вероятность может быть выражена в виде разности функции распределения 

вероятности в граничных точках этого интервала:

. 

В случае нормального распределения  

Используя замену переменной: , , , получим 

, 

где , . 

Разобьем полученный интеграл на два: 

  

Тогда искомая вероятность может быть выражена в виде: 
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Функция Лапласа протабулирована, что существенно упрощает расчет попадания 

нормально распределенной случайной величины в любой заданный интервал. 

Функция Лапласа не выражается через элементарные функции: 

. 
Для ее вычисления используются специальные таблицы или методы приближенного 

вычисления. 

Функция обладает следующими свойствами: 

1. ; 

2. ; 

3. функция – нечетная, т.е. , поэтому в таблицах обычно 

приводятся значения только для положительных ; 

4. 

функция – монотонно воз-

растающая функция (это следует из то-

го, что ). Часто 

требуется вычислить вероятность того, 

что отклонение нормально распределен-

ной случайной величины по абсо-

лютной величине от математического 

ожидания меньше заданного положительного числа , т.е. требуется найти вероятность 

того, что выполняется неравенство . 

Заменим это неравенство равносильным ему двойным неравенст-

вом . 

Воспользуемся формулой:  

Получим:  

 

 

Если в качестве взять утроенное значение среднего квадратического отклонения s, 

то получим: 

, 

Таким образом, вероятность того, что абсолютная величина отклонения превысит 

(утроенное среднее квадратическое отклонение, очень мала 0,0027 или 0,27%). Такие со-

бытия можно считать практически невозможными. 

Другими словами, если случайная величина распределена нормально, то абсолютная 

величина ее отклонения от математического ожидания не превосходит утроенного средне-

го квадратичного отклонения. В этом и состоит сущность правила «трех сигм». 
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На практике правило «трех сигм» применяют так: если распределение изучаемой 

случайной величины неизвестно, но правило «трех сигм» выполняется, то есть основания 

полагать, что изучаемая величина распределена нормально, и наоборот. 

Пример 1. Текущая цена ценной бумаги представляет собой нормально распреде-

ленную случайную величину со средним 100 у.е. и дисперсией 9. Найти вероятность 

того, что цена актива будет находиться в пределах от 91 до 109 у.е. 

Решение. Так как , то 

 
 

 

1.5 Лекция 7-8 (Л-7-8)  (4 ч.) 

Тема: Многомерные случайные величины, их числовые характеристики 

 

1.5.1  Вопросы лекции: 

 

1. Основные понятия многомерного статистического анализа 

2. Условные законы распределения СВ 

3.Условные числовые характеристики СВ 

 

1.5.2. Краткое содержание вопросов: 

 

1. Основные понятия многомерного статистического анализа 

До сих пор мы рассматривали случайные величины, возможные значения которых 

определялись одним числом (одномерные случайные величины). Например, число очков, 

которое может выпасть при бросании игральной кости (дискретная одномерная случайная 

величина) или расстояние от орудия до места падения снаряда (непрерывная одномерная 

случайная величина). 

Часто приходится иметь дело с величинами, возможные значения которых опреде-

ляются двумя или более числами. Такие величины называются n – мерными случайными 

величинами; n – мерную случайную величину можно рассматривать как систему n слу-

чайных величин. В данном контексте используется также термин многомерный случай-

ный вектор , где каждая из величин называется со-

ставляющей (компонентой). Аналогично одномерным случайным величинам различа-

ют дискретные многомерные случайные величины (их составляющие дискретны) 

и непрерывные многомерные случайные величины, составляющие которых непрерывны. 

Пример. Станок штампует стальные плитки. Если контролируемыми размерами яв-

ляются длина X, ширина Y и высота Z плитки, то мы имеем трехмерную случайную вели-

чину (X,Y,Z). 

Остановимся более подробно на двумерных случайных величинах. 

Законом распределения дискретной двумерной случайной величины 

называют перечень возможных значений этой величины, т.е. пар чисел , где 

и – возможные значения величин и , соответст-

венно, и вероятностей их совместного появления . 

Двумерная дискретная случайная величина задается в виде таблицы распре-

деления вида: 
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где первая строка таблицы указывает возможные значения составляющей , а пер-

вый столбец – все возможные значения составляющей . 

Так как события ( ; ) образуют 

полную группу, то . 

Зная закон распределения двумерной дискретной случайной величины, можно найти 

законы распределения каждой из ее составляющих. Так, например, вероятность того, 

что примет значение , равна . 

Совместная функция распределения двух случайных величин 

Функция , определяющая для каждой пары чисел вероятность того, 

что примет значение меньшее , и при этом примет значение меньшее , называ-

ется совместной функцией распределения двух случайных величин =

. 

Геометрически это равенство можно истолковать так: – это вероятность то-

го, что случайная точка ( ) попадет в бесконечный квадрант с вершиной ( ), рас-

положенный левее и ниже этой вершины. 

1. Значения совместной функции распределения удовлетворяют неравенству: 

. 

2. – неубывающая функция по каждому аргументу, т.е. 

, если ; 

, если . 

Совместная функция распределения имеет следующие предельные значения: 

; ; 

; . 

 3. При или совместная функция распределения системы становится 

функцией распределения одной из составляющих: 

 ;  

Плотность совместного распределения вероятностей 
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Непрерывную двумерную случайную величину можно задать с помощью плотности 

распределения. Плотность совместного распределения вероятностей двумер-

ной непрерывной случайной величины ( , ) – это вторая смешанная частная произ-

водная от функции распределения : 

. 

Зная плотность совместного распределения , можно найти совместную 

функцию распределения по формуле  

следующей из определения плотности распределения двумерной непрерывной слу-

чайной величины ( , ). 

Смысл плотности совместного распределения вероятностей: вероятность попадания 

случайной точки в прямоугольник (с вершиной в точке и сторонами и рав-

на произведению , когда стороны этого прямоугольника стремятся к нулю. 

В связи с этим, вероятность попадания случайной точки в произвольную область 

D равна двойному интегралу по области D от функции  

  

Свойства двумерной плотности вероятности 

1. Двумерная плотность вероятности неотрицательна: . 

2. Двойной несобственный интеграл с бесконечными пределами от двумерной плот-

ности вероятности равен единице: . 

Две случайные величины называются независимыми, если закон распределения од-

ной из них не зависит от того, какие возможные значения приняла другая величина. 

Теорема. Для того чтобы случайные величины и были независимыми, необ-

ходимо и достаточно, чтобы функция распределения системы ( , ) была равна произ-

ведению функций распределения составляющих: . 

Следствие. Для того чтобы случайные величины и были независимыми, необ-

ходимо и достаточно, чтобы плотность совместного распределения системы ( , ) бы-

ла равна произведению плотностей распределения составляю-

щих: . 

 

2. Условные законы распределения СВ 

Пусть известна плотность распределения системы двух случайных величин. Исполь-

зуя свойства функций распределения, можно вывести формулы для нахождения плотно-

сти распределения одной величины, входящей в систему: 

(*) 

Перейдём теперь к решению обратной задачи: по известным законам распределения 

отдельных случайных величин, входящих в систему, найти закон распределения системы. 
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Легко увидеть, что в общем случае эта задача неразрешима. Действительно, с одной сто-

роны, законы распределения отдельных случайных величин, входящих в систему, харак-

теризуют каждую из случайных величин в отдельности, но ничего не говорят о том, как 

они взаимосвязаны. С другой стороны, искомый закон распределения системы должен со-

держать все сведения о случайных величинах системы, в том числе и о характере связей 

между ними. 

Таким образом, если случайные величины взаимозависимы, то закон распреде-

ления системы не может быть выражен через законы распределения отдельных случайных 

величин, входящих в систему. Это приводит к необходимости введения условных законов 

распределения. 

Распределение одной случайной величины, входящей в систему, найденное при усло-

вии, что другая случайная величина, входящая в систему, приняла определённое значение, 

называется условным законом распределения. 

Для дискретных случайных величин условным распределением составляющей при 

условии, что называется совокупность условных вероятностей

, вычисленных в предположен, что случайная величина 

уже приняла значение. Для нахождения пользуются формулой 

. 

Заметим, что .  Аналогично находим   . 

Условный закон распределения можно задавать как функцией распределения, так и 

плотностью распределения. Условная функция распределения обозначается ; ус-

ловная плотность распределения обозначается
1
.  

Плотностью распределения для случайной величины при условии, что случайная ве-

личина приняла определённое значение (условной плотностью распределения), назовём 

величину 

. 

Аналогично, плотностью распределения для случайной величины при условии, что 

случайная величина приняла определённое значение, назовём величину 

. 

Отсюда получаем:    

или, с учётом формул (*)    . 

Условная плотность распределения обладает всеми свойствами безусловной плотно-

сти распределения. В частности,   . 

 

 

3.Условные числовые характеристики СВ 

Для описания условных законов распределения можно использовать различные ха-

рактеристики подобно тому, как для одномерных распределений. 

Наиболее важной характеристикой является условное математическое ожидание. 
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Условным математическим ожиданием дискретной случайной величины при

( – определённое возможное значение случайной величины ) называется сумма произ-

ведений возможных значений на их условные вероятности: 

. 

Для непрерывных случайных величин:  

, 

где – условная плотность распределения случайной величины при . 

Аналогично, условным математическим ожиданием дискретной случайной величи-

ны при ( – определённое возможное значение случайной величины) называется 

сумма произведений возможных значений на их условные вероятности: 

. 

Для непрерывных случайных величин:  , 

где – условная плотность распределения случайной величины при. 

Аналогично вводятся условные дисперсии и условные моменты более высоких по-

рядков. 

Числовые характеристики системы двух случайных величин 

Две случайные величины называются независимыми, если закон распределения од-

ной из них не зависит от того, какие возможные значения приняла другая величина. Из 

этого определения следует, что условные распределения независимых случайных величин 

равны их безусловным распределениям. Укажем необходимые и достаточные условия не-

зависимости случайных величин. 

ТЕОРЕМА 1: Для того чтобы случайные величины и были независимыми, не-

обходимо и достаточно, чтобы функция распределения системы была равна произ-

ведению функций распределения составляющих: 

 
ТЕОРЕМА 2: Для того чтобы случайные величины и были независимыми, необхо-

димо и достаточно, чтобы плотность вероятности системы была равна произведению 

плотностей вероятностей составляющих: 

. 

Для описания системы двух случайных величин кроме математических ожиданий и 

дисперсий, составляющих используют и другие характеристики, к которым относятся 

корреляционный момент и коэффициент корреляции. 

Корреляционным моментом случайных величин и называют математическое 

ожидание произведения отклонений этих величин: 

. 

Для вычисления корреляционного момента дискретных величин используют форму-

лу:  , 

а для непрерывных величин:  . 

Корреляционный момент служит для характеристики связи между величинами и . 

ТЕОРЕМА 3: Корреляционный момент двух независимых случайных величин и ра-

вен нулю. 
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Замечание: из теоремы 3 следует, что если корреляционный момент двух случайных 

величин и не равен нулю, то и – зависимые случайные величины. 

Коэффициентом корреляции случайных величин и называют отношение корре-

ляционного момента к произведению средних квадратических отклонений этих величин:  

. 

Очевидно, коэффициент корреляции двух независимых случайных величин равен 

нулю (так как ). 

Коррелированность и зависимость случайных величин 
Две случайные величины и называются коррелированными, если их корреляционный 

момент (или коэффициент корреляции) отличен от нуля; и называют некоррелированными 

величинами, если их корреляционный момент равен нулю. 

Две коррелированные величины также и зависимы. Обратное утверждение не всегда 

имеет место, то есть если две величины зависимы, то они могут быть как коррелирован-

ными, так и некоррелированными. Другими словами, корреляционный момент двух зави-

симых величин может быть не равным нулю, но может и равняться нулю. 

Заметим, что для нормально распределённых составляющих двумерной случайной 

величины понятия независимости и некоррелированности равносильны. 

Если , то и связаны линейной зависимостью , 

Если , то говорят о положительной (или прямой) корреляции между и, то есть 

с возрастанием одной случайной величины другая случайная величина также возрастает. 

Если , то говорят об отрицательной корреляции между и, то есть с возраста-

нием одной случайной величины другая случайная величина убывает. 

Задача 1. Закон распределения двумерной дискретной случайной величины задан 

таблицей 

Y 

X 

– 4 – 2  0 

0 0,1 0,1 0,2 

1 0,1 0,2 0,1 

4 0 0,1 0,1 

Найти: 

 собственные законы распределения случайных величин и; 

 математические ожидания ; 

 дисперсии ; 

 корреляционный момент; 

 коэффициент корреляции; 

 закон распределения случайной величины при условии, что случайная величина 

принимает своё наименьшее значение. 

Решение. Складывая вероятности по строкам, получим закон распределения случай-

ной величины в виде ряда распределения 

 

0 1 4  

 

0,4 0,4 0,2 

 

Складывая вероятности по столбцам, получим закон распределения случайной вели-

чины в виде ряда распределения 
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– 4  – 2  0  

 

0,2 0,4 0,4 

 

Найдём математические ожидания и дисперсии составляющих: 

 
Найдём корреляционный момент и коэффициент корреляции: 

 
Найдём закон распределения случайной величины при условии, что случайная вели-

чина принимает своё наименьшее значение, то есть при условии, что . 

Искомый закон распределения, как ранее отмечалось, определяется совокупностью услов-

ных вероятностей , где 

 
Следовательно, искомый закон распределения имеет вид: 

 0 1 4 

 

0,5 0,5 0 

Задача 2. Вне области плотность распределения дву-

мерной случайной величины равна 0; в области плотность распределения . 

Найти: 

 коэффициент ; 

 вероятность , где ; 
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 одномерные плотности распределения ; 

 математические ожидания; 

 дисперсии; 

 корреляционный момент; 

 коэффициент корреляции. 

Решение. Для нахождения параметра А воспользуем-

ся формулой 

. 

Тогда 

 
Получим: 

 
 

Найдём теперь вероятность попадания двумерной 

случайной величины в плоскую область G: 

 
Далее, найдём одномерные плотности распределения: 

 
Итак: 

 
Найдём математические ожидания и дисперсии составляющих 

1
: 

 
Далее 
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Тогда 

 

Так как , то нетрудно вычислить 

. 

 

 

 

 

 

1.6 Лекция 9 (Л-9) (2 ч.) 

Тема: Генеральная и выборочная совокупность.  

 

1.6.1  Вопросы лекции: 

 

1. Статистический материал и его первичная обработка. Эмпирические законы рас-

пределения. Полигон частот, гистограмма. 

2. Числовые характеристики выборки. Точечные оценки выборочных характеристик. 

3. Интервальные оценки, их свойства. Метод доверительных интервалов при задан-

ных условиях. 

4. Метод моментов 

 

1.6.2. Краткое содержание вопросов: 

 

1. Статистический материал и его первичная обработка. Эмпирические законы рас-

пределения. Полигон частот, гистограмма. 

Предметом математической статистики является изучение случайных событий 

и случайных величин по результатам наблюдений. Совокупность предметов или явлений, 

объединенных каким-либо общим признаком, называется статистической совокупно-

стью. Результатом наблюдений над статистической совокупностью являют-

ся статистические данные – сведения о том, какие значения принял в итоге наблюдений 

интересующий нас признак (случайная величина X). 

Обработка статистических данных методами математической статистики приводит к 

установлению определенных закономерностей, присущих массовым явлениям. При 

этом точность статистических выводов повышается с ростом числа наблюдений. 
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Статистические данные, как правило, представляют собой ряд значе-

ний некоторой случайной величины. Обработка этого ряда значений пред-

ставляет собой первый этап исследования случайной величины. 

Первая задача математической статистики – указать способы сбора и группировки 

статистических данных, полученных в результате наблюдений или в результате специ-

ально поставленных экспериментов. 

Второй задачей математической статистики является разработка методов анали-

за статистических данных в зависимости от целей исследования. К этой задаче относятся: 

 - Оценка неизвестной вероятности события; оценка неизвестной функции рас-

пределения; оценка параметров распределения, вид которого известен; оценка зависи-

мости случайной величины от одной или нескольких случайных величин и т.п. 

- Проверка статистических гипотез о виде неизвестного распределения или о величине 

параметров распределения, вид которого известен. 

В современной математической статистике есть много общего с наукой о принятии 

решений в условиях неопределенности, так как она разрабатывает способы определения 

числа необходимых испытаний до начала исследования (планирование эксперимента), в 

процессе исследования (последовательный анализ) и решает многие другие аналогичные 

задачи. 

Пусть требуется изучить совокупность однородных объектов относительно некото-

рого качественного или количественного признака, характеризующего эти объекты. На-

пример, для партии деталей качественным признаком может служить стандартность дета-

ли, а количественным – контролируемый размер детали. 

В принципе, возможно проведение сплошного обследования, т.е. обследование всех 

объектов. На практике такое обследование применяется редко, например, 

- из–за большого числа объектов 

- из–за дороговизны проведения операции контроля, 

- из–за того, что контроль часто связан с разрушением объекта (проверка электролампы на 

долговечность ее работы), и т.д. 

В таких случаях случайно отбирается и изучается ограниченное число объектов из 

совокупности. 

Выборочной совокупностью или случайной выборкой называют совокупность слу-

чайно отобранных объектов. 

Генеральной совокупностью называют совокупность объектов, из которых произ-

водится выборка. 

Объемом совокупности (выборочной или генеральной) называют число объектов 

этой совокупности. Например, если из 1000 деталей отбирается для обследования 100, то 

объем генеральной совокупности N=1000, а объем выборки n = 100. 

При составлении выборки можно поступать двумя способами: после того как объект 

отобран и исследован, его можно возвратить или не возвращать в генеральную совокуп-

ность. В связи с этим выборки подразделяются на повторные и бесповторные. 

Повторной называют выборку, при которой отобранный объект (перед отбором 

следующего) возвращается в генеральную совокупность. При бесповторной выборке 

отобранный объект в генеральную совокупность не возвращается. 

Для того чтобы по данным выборки можно было достаточно уверенно судить об ин-

тересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки 

правильно его представляли. Выборка должна правильно представлять пропорции гене-

ральной совокупности, т.е. выборка должна быть репрезентативной (представительной).  

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, 

если ее осуществить случайно: каждый объект выборки отобран случайно из генеральной 

совокупности, если все объекты имеют одинаковую вероятность попасть в выборку. 

Если объем выборки достаточно велик, а выборка составляет лишь незначительную 

часть совокупности, то различие между повторной и бесповторной выборкой стирается. 
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На практике применяются различные способы отбора, которые можно подраз-

делить на два вида: 
-  Отбор, не требующий расчленения генеральной совокупности на части. Сюда относятся 

: а) простой случайный бесповторный отбор и б) простой случайный повторный отбор. 

- Отбор, при котором генеральная совокупность разбивается на части. Сюда относятся: 

а) типический отбор, б) механический отбор и в) серийный отбор. 

Простым случайным называют отбор, при котором объекты извлекаются по одно-

му из генеральной совокупности. Осуществить такой отбор для генеральной совокупности 

из N объектов можно, например, посредством записи на карточках номеров от 1 до N, по-

следующем перемешиванием карточек и выниманием их наугад. При этом обследованию 

подлежат объекты, имеющие номера, совпадающие с номерами карточек. Если карточки 

возвращаются в пачку, то имеем простую случайную повторную выборку, в противном 

случае – простую бесповторную. При большом объеме генеральной совокупности более 

рациональным является использование таблиц случайных чисел. Например, чтобы вы-

брать 50 объектов из пронумерованной генеральной совокупности, открывают любую 

страницу таблицы случайных чисел и выписывают 50 чисел подряд; в выборку попадают 

те объекты, номера которых совпадают с выписанными случайными числами. Если слу-

чайное число таблицы превосходит число N, такое число пропускают. При проведении 

бесповторной выборки пропускают также случайные числа, уже встречавшиеся раньше. 

Типическим называют отбор, при котором объекты отбираются не из всей генераль-

ной совокупности, а из каждой ее «типической» части. Например, если детали изготовле-

ны на нескольких станках, то отбор производят из продукции каждого станка в отдельно-

сти. 

Механическим называют отбор, при котором генеральная совокупность механиче-

ски делится на столько групп, сколько объектов должно войти в выборку, а из каждой 

группы выбирается один объект. Например, если нужно отобрать 20% изготовленных 

станком деталей, то отбирают каждую пятую деталь. 

Серийным называют отбор, при котором объекты отбирают из генеральной сово-

купности не по одному, а «сериями», которые подвергаются сплошному обследованию. 

Например, если изделия производятся большой группой станков-автоматов, то подверга-

ют сплошному обследованию продукцию только нескольких станков. Этим видом отбора 

пользуются тогда, когда обследуемый признак колеблется в различных сериях незначи-

тельно. 

На практике часто применяют комбинированный отбор, при котором сочетаются 

указанные выше способы. Например, разбивают генеральную совокупность на серии оди-

накового объема, затем простым случайным отбором выбирают несколько серий и, нако-

нец, из каждой серии простым случайным отбором извлекают отдельные объекты. 

Пусть из генеральной совокупности извлечена выборка, причем значение исследуе-

мого параметра наблюдалось раз, - раз и т.д. При этом  

объем выборки. Наблюдаемые значения называют вариантами, а последователь-

ность вариант, записанных в возрастающем порядке – вариационным рядом. Числа на-

блюдений называют частотами, а их отношения к объему выборки -

 относительными частотами. Вариационный ряд можно представить таблицей: 

X 
  

….. 
 

n 
  

…. 
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Статистическим распределением выборки называют перечень вариант и соответ-

ствующих им относительных частот. Статистическое распределение можно представить 

как 

X 
  

….. 
 

w 
  

…. 
 

где относительные частоты . 

Заметим, что в теории вероятностей под распределением понимают соответствие 

между возможными значениями случайной величины и их вероятностями, а в матема-

тической статистике – соответствие между наблюдаемыми вариантами и 

их частотами или относительными частотами. 

Приведенный способ представления статистических данных применяют в случае 

дискретных случайных величин. Для непрерывных случайных величин удобнее разбить 

отрезок [a,b] возможных значений случайной величины на частичные полуинтерва-

лы ( замкнут также и справа) с помощью некоторой системы 

точек . Часто разбиение [a,b] производят на равные части, то-

гда , где  

В качестве частот теперь надо брать количество наблюдаемых значений, попав-

ших на каждый из частичных интервалов . Вариационный ряд имеет в таком случае 

вид 

X 
  

….. 
 

n 
  

…. 
 

а статистическое распределение – 

X 
  

….. 
 

n 
  

…. 
 

Число интервалов часто выбирают на основании формулы Стерджер-

са . 

Графически статистическое распределение представляется в частности, с помо-

щью полигона и гистограммы. 

Полигоном частот называют ломаную линию, отрезки которой соединяют точ-

ки . Для построения полигона частот на оси абсцисс отклады-

вают варианты , а на оси ординат – соответствующие им частоты и соединяют точ-

ки отрезками прямых. 

Полигон относительных частот строится аналогично, за исключением того, что на 

оси ординат откладываются относительные частоты . 

В случае непрерывного признака строится гистограмма, для чего интервал, в кото-

ром заключены все наблюдаемые значения признака, разбивают на несколько частичных 
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интервалов длиной h и находят для каждого частичного интервала - сумму частот вари-

ант, попавших в i – й интервал. 

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоуголь-

ников, основаниями которой служат частичные интервалы длиною h, а высоты равны от-

ношению . Для построения гистограммы частот на оси абсцисс откладывают частич-

ные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии 

(высоте) . Площадь гистограммы частот равна сумме всех частот, т.е. объему выбор-

ки. 

В случае гистограммы относительных частот по оси ординат откладываются отно-

сительные частоты , на оси абсцисс – частичные интервалы, над ними проводят отрез-

ки, параллельные оси абсцисс на высоте . Площадь i-го прямоугольника равна отно-

сительной частоте вариант , попавших в i-й интервал. Поэтому площадь гистограммы 

относительных частот равна сумме всех относительных частот, то есть единице. 

  

 

2. Числовые характеристики выборки. Точечные оценки выборочных характери-

стик. 

Пусть известно статистическое распределение частот количественного признака X. 

Обозначим через число наблюдений, при которых наблюдалось значение признака, 

меньшее x и через n – общее число наблюдений. Очевидно, относительная частота собы-

тия X < x равна и является функцией x. Так как эта функция находится эмпириче-

ским (опытным) путем, то ее называют эмпирической. 

Эмпирической функцией распределения (функцией распределения выборки) на-

зывают функцию , определяющую для каждого значения x относительную частоту 

события X < x. Таким образом, по определению ,где - число вариант, 

меньших x, n – объем выборки. 

В отличие от эмпирической функции распределения выборки, функцию распределе-

ния генеральной совокупности называют теоретической функцией распределения. 

Различие между этими функциями состоит в том, что теоретическая функция опреде-

ляет вероятность события X < x, тогда как эмпирическая – относительную частоту этого 

же события. 

При росте n относительная частота события X < x, т.е. стремится по вероятно-

сти к вероятности этого события.  

Иными словами:  
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Свойства эмпирической функции распределения: 

1) Значения эмпирической функции принадлежат отрезку [0,1] 

2) - неубывающая функция 

3) Если - наименьшая варианта, то = 0 при , если - наибольшая ва-

рианта, то =1 при . 

Эмпирическая функция распределения выборки служит для оценки теоретической 

функции распределения генеральной совокупности. 

Пример. Построим эмпирическую функцию по распределению выборки: 

  

Варианты  2 6 10 

Частоты  12 18 30 

  

Найдем объем выборки: 12+18+30=60. Наименьшая варианта равна 2, поэто-

му =0 при x £ 2. Значение x<6, т.е. , наблюдалось 12 раз, следователь-

но, =12/60=0,2 при 2< x £6. Аналогично, значения X < 10, т.е. и наблю-

дались 12+18=30 раз, поэтому =30/60 =0,5 при 6< x £10. Так как x=10 – наибольшая 

варианта, то =1 при x> 10. таким образом, искомая эмпирическая функция имеет 

вид: 

 
  

Важнейшие свойства статистических оценок 

Пусть требуется изучить некоторый количественный признак генеральной совокуп-

ности. Допустим, что из теоретических соображений удалось установить, какое имен-

но распределение имеет признак и необходимо оценить параметры, которыми оно опре-

деляется. Например, если изучаемый признак распределен в генеральной совокупности 

нормально, то нужно оценить математическое ожидание и среднее квадратическое откло-

нение; если признак имеет распределение Пуассона – то необходимо оценить параметр l. 

Обычно имеются лишь данные выборки, например, значения количественного при-

знака , полученные в результате n независимых наблюдений. Рассматри-

вая как независимые случайные величины можно сказать, 

что найти статистическую оценку неизвестного параметра теоретического распре-

деления – значит найти функцию от наблюдаемых случайных величин, которая дает 

приближенное значение оцениваемого параметра. Например, для оценки математиче-

ского ожидания нормального распределения роль функции выполняет среднее арифмети-

ческое  

Для того чтобы статистические оценки давали корректные приближения оценивае-

мых параметров, они должны удовлетворять некоторым требованиям, среди которых важ-

нейшими являются требования несмещенности и состоятельности оценки. 

Пусть - статистическая оценка неизвестного параметра теоретического рас-

пределения. Пусть по выборке объема n найдена оценка . Повторим опыт, т.е. извлечем 
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из генеральной совокупности другую выборку того же объема и по ее данным получим 

другую оценку . Повторяя опыт многократно, получим различные числа 

. Оценку можно рассматривать как случайную величину, а чис-

ла - как ее возможные значения. 

Если оценка дает приближенное значение с избытком, т.е. каждое чис-

ло больше истинного значения то, как следствие, математическое ожида-

ние (среднее значение) случайной величины больше, чем : . Аналогично, 

если дает оценку с недостатком, то . 

Таким образом, использование статистической оценки, математическое ожидание 

которой не равно оцениваемому параметру, привело бы к систематическим (одного знака) 

ошибкам. Если, напротив, , то это гарантирует от систематических ошибок. 

Несмещенной называют статистическую оценку , математическое ожидание ко-

торой равно оцениваемому параметру при любом объеме выборки . 

Смещенной называют оценку, не удовлетворяющую этому условию. 

Несмещенность оценки еще не гарантирует получения хорошего приближения для 

оцениваемого параметра, так как возможные значения могут быть сильно рассея-

ны вокруг своего среднего значения, т.е. дисперсия может быть значительной. В 

этом случае найденная по данным одной выборки оценка, например, , может оказаться 

значительно удаленной от среднего значения ,а значит, и от самого оцениваемого па-

раметра. 

Эффективной называют статистическую оценку, которая, при заданном объеме вы-

борки n, имеет наименьшую возможную дисперсию. 

При рассмотрении выборок большого объема к статистическим оценкам предъявля-

ется требование состоятельности. 

Состоятельной называется статистическая оценка, которая при n®¥ стремится по 

вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки 

при n®¥ стремится к нулю, то такая оценка оказывается и состоятельной. 

Пусть для изучения генеральной совокупности относительно количественного при-

знака X извлечена выборка объема n. 

Выборочным средним называют среднее арифметическое значение признака вы-

борочной совокупности. Если все значения признака выборки объема n раз-

личны, то . 

Если значения признака имеют частоты соответственно, 

причем , то . 

Выборочное среднее, найденное по данным одной выборки, равно определенному 

числу. При извлечении других выборок того же объема выборочное среднее будет ме-

няться от выборки к выборке. То есть выборочное среднее можно рассматривать как слу-

чайную величину и говорить о его распределениях (теоретическом и эмпирическом) и о 

числовых характеристиках этого распределения (например, о математическом ожидании и 

дисперсии). 
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Для характеристики рассеяния наблюдаемых значений количественного признака 

выборки вокруг среднего значения вводится выборочная дисперсия. Выборочной 

дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых 

значений признака от их среднего значения . Если все значения признака 

выборки объема n различны, то . 

Если значения признака имеют частоты соответственно, 

причем , то . 

Аналогично выборочным среднему и дисперсии определяются генеральные среднее 

и дисперсия, характеризующие генеральную совокупность в целом. Для расчета этих ха-

рактеристик достаточно в вышеприведенных соотношениях заменить объем выборки n на 

объем генеральной совокупности N. 

Фундаментальное значение для практики имеет нахождение среднего и дисперсии 

признака генеральной совокупности по соответствующим извест-

ным выборочным параметрам. Можно показать, что выборочное среднее является несме-

щенной состоятельной оценкой генерального среднего. В то же время, несмещенной со-

стоятельной оценкой генеральной дисперсии оказывается не выборочная дисперсия , а 

так называемая «исправленная» выборочная дисперсия, равная . 

Таким образом, в качестве оценок генерального среднего и дисперсии в математиче-

ской статистике принимают выборочное среднее и исправленную выборочную диспер-

сию. 

  

3. Интервальные оценки, их свойства. Метод доверительных интервалов при задан-

ных условиях. 

До сих пор мы рассматривали точечные оценки, т.е. такие оценки, которые опре-

деляются одним числом. При выборке малого объема точечная оценка может значи-

тельно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. В связи 

с этим при небольшом объеме выборки пользуются интервальными оценками. 

Интервальной называют оценку, определяющуюся двумя числами – концами ин-

тервала. Пусть найденная по данным выборки статистическая характеристика служит 

оценкой неизвестного параметра . Очевидно, тем точнее определяет параметр , 

чем меньше абсолютная величина разности . Другими словами, если 

и , то чем меньше d, тем точнее оценка. Таким образом, положительное чис-

ло d характеризует точность оценки. 

Статистические методы не позволяют утверждать, что оценка удовлетворяет 

неравенству ; можно говорить лишь о вероятности, с которой это неравенст-

во осуществляется. 

Надежностью (доверительной вероятностью) оценки по называют веро-

ятность g, с которой осуществляется неравенство . Обычно надежность 
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оценки задается заранее, причем в качестве g берут число, близкое к единице – как пра-

вило 0,95; 0,99 или 0,999. 

Пусть вероятность того, что равна g: . 

Заменим неравенство равносильным ему двойным неравенством 

. 

Это соотношение следует понимать так: вероятность того, что интер-

вал заключает в себе (покрывает) неизвестный параметр Q, равна . 

Таким образом, доверительным называют интервал , который по-

крывает неизвестный параметр с заданной надежностью . 

 Величину 1 - g = a называют уровнем значимости или вероятностью ошибки. 

Для построения интервальной оценки параметра необходимо знать закон его рас-

пределения как случайной величины 

Доверительный интервал для математического ожидания нормального распре-

деления при известной дисперсии. 

Пусть количественный признак X генеральной совокупности распределен нормаль-

но, причем среднее квадратическое отклонение s этого распределения известно. Требует-

ся оценить неизвестное математическое ожидание по выборочному среднему . Най-

дем доверительные интервалы, покрывающие параметр a с надежностью . 

Будем рассматривать выборочное среднее как случайную величину (т.к. ме-

няется от выборки к выборке) и выборочные значения - как одинаково рас-

пределенные независимые случайные величины (эти числа также меняются 

от выборки к выборке). Другими словами, математическое ожидание каждой из этих ве-

личин равно и среднее квадратическое отклонение - s. Так как случайная величина X 

распределена нормально, то и выборочное среднее также распределено нормально. Па-

раметры распределения равны . 

Потребуем, чтобы выполнялось соотношение , 

где - заданная надежность. Используем формулу . 

Заменим X на и s на и получим 

 

где . Выразив из последнего равенства , полу-

чим  

Так как вероятность P задана и равна , окончательно имеем 

. 
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Таким образом, с надежностью можно утверждать, что доверительный интер-

вал покрывает неизвестный параметр a, причем точность 

оценки равна . 

Число определяется из равенства ; по таблице функции Лапласа нахо-

дят аргумент , которому соответствует значение функции Лапласа, равное . 

Отметим два момента:  

1) при возрастании объема выборки n число убывает и, следовательно, точность 

оценки увеличивается,  

2) увеличение надежности оценки приводит к увеличению (так как 

функция Лапласа возрастающая функция) и, следовательно, к возрастанию , то 

есть увеличение надежности оценки влечет за собой уменьшение ее точности. 

Если требуется оценить математическое ожидание с наперед заданной точностью 

и надежностью , то минимальный объем выборки, который обеспечит эту точность, на-

ходят по формуле  ,  следующей из равенства . 

  

 Доверительный интервал для математического ожидания нормального рас-

пределения при неизвестной дисперсии 

Пусть количественный признак X генеральной совокупности распределен нормаль-

но, причем среднее квадратическое отклонение s этого распределения неизвестно. Требу-

ется оценить неизвестное математическое ожидание с помощью доверительных интерва-

лов. 

Оказывается, что по данным выборки можно построить случайную величи-

ну , которая имеет распределение Стьюдента с степенями свободы. В 

последнем выражении - - выборочное среднее, - исправленное среднее квадратиче-

ское отклонение, - объем выборки; возможные значения случайной величины T мы бу-

дем обозначать через t. Плотность распределения Стьюдента имеет вид 

, где некоторая постоянная, выражающаяся через гамма – 

функцию. 

Несколько слов о распределении Стьюдента. Пусть - независимые 

стандартные нормальные величины. Тогда случайная величина  

имеет распределение Стьюдента (В. Госсет) с степенями свободы. При росте 

числа степеней свободы распределение Стьюдента стремится к нормальному распределе-

нию и уже при использование нормального распределения дает хорошие результа-

ты. 

Как видно, распределение Стьюдента определяется параметром n – объемом выбор-

ки (или, что то же самое – числом степеней свободы ) и не зависит от неизвестных 
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параметров . Поскольку - четная функция от t, то вероятность выполнения не-

равенства  определяется следующим образом: . 

Заменив неравенство в круглых скобках двойным неравенством, получим выражение 

для искомого доверительного интервала  

Итак, с помощью распределения Стьюдента найден доверительный интер-

вал , покрывающий неизвестный параметр a с надежностью . По 

таблице распределения Стьюдента и заданным n и можно найти и используя найден-

ные по выборке и ,  можно определить доверительный интервал. 

Пример. Количественный признак X генеральной совокупности распределен нор-

мально. По выборке объема n = 16 найдены генеральное среднее и исправленное 

среднее квадратическое отклонение . Требуется оценить неизвестное математиче-

ское ожидание при помощи доверительного интервала с надежностью 0,95. 

Решение. Найдем по таблице распределения Стьюдента, используя значе-

ния . Этот параметр оказывается равным 2,13. Найдем границы довери-

тельного интервала: 

 

 
То есть с надежностью 0,95 неизвестный параметр a заключен в доверительном ин-

тервале  

Можно показать, что при возрастании объема выборки n распределение Стьюдента 

стремится к нормальному. Поэтому практически при n > 30 можно вместо него пользо-

ваться нормальным распределением. При малых n это приводит к значительным ошиб-

кам. 

 Доверительный интервал для оценки среднего квадратического отклонения s 

нормального распределения 

Пусть количественный признак X генеральной совокупности распределен нормально 

и требуется оценить неизвестное генеральное среднее квадратическое отклонение s по ис-

правленному выборочному среднему квадратическому отклонению s. Найдем довери-

тельные интервалы, покрывающие параметр s с заданной надежностью . 

Потребуем, чтобы выполнялось соотношение 

 или  

Преобразуем двойное неравенство в равносильное неравенст-

во и обозначим d / s = q. Име-

ем (A) 

и необходимо найти q. С этой целью введем в рассмотрение случайную величи-

ну  
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Оказывается, величина распределена по закону с n – 1 степенями сво-

боды. 

Несколько слов о распределении хи-квадрат. Если - независимые стан-

дартные нормальные величины, то говорят, что случайная величина  

имеет распределение хи-квадрат с степенями свободы. 

Плотность распределения c имеет вид 

 
Это распределение не зависит от оцениваемого параметра s, а зависит только от объ-

ема выборки n. 

Преобразуем неравенство (A) так, чтобы оно приняло вид . Веро-

ятность этого неравенства равна заданной вероятности , т.е. . 

Предполагая, что q < 1, перепишем (A) в виде 

 , 

далее, умножим все члены неравенства на : 

  

  или . 

  

Вероятность того, что это неравенство, а также равносильное ему неравенство (A) 

будет справедливо, равна 

. 

Из этого уравнения можно по заданным найти , используя имеющиеся рас-

четные таблицы. Вычислив по выборке и найдя по таблице , получим искомый интер-

вал (A1), покрывающий s с заданной надежностью . 

Пример. Количественный признак X генеральной совокупности распределен нор-

мально. По выборке объема n = 25 найдено исправленное среднее квадратическое откло-

нение s = 0.8. Найти доверительный интервал, покрывающий генеральное среднее квадра-

тическое отклонение s с надежностью 0,95. 

Решение. По заданным по таблице находим значение q = 0.32. Искомый до-

верительный интервал есть 

. 

Мы предполагали, что q < 1. Если это не так, то мы придем к соотношениям 
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, 

и значение q >1 может быть найдено из уравнения 

  

 

 4. Метод моментов 

Параметрическое оценивание закона распределения 

Результаты предварительной обработки наблюдений случайной величины, допол-

ненные сведениями о сущности изучаемого явления, зачастую оказываются достаточными 

для того, чтобы сформулировать гипотезу о модели закона распределения изучаемой слу-

чайной величины, нормальный ли этот закон, биномиальный или какой-либо другой. Ис-

пользуя наблюдения, можно найти оценки параметров предполагаемой модели, т.е. оцен-

ки входящих в модель числовых характеристик. Подставив в модель вместо параметров 

найденные оценки, получим оценку предполагаемой модели закона распределения, кото-

рая называется параметрической. Оценивание закона распределения, не требующее 

предварительного выбора его модели и оценивания входящих в неё параметров, называет-

ся непараметрическим. Примерами непараметрических оценок неизвестного закона рас-

пределения являются вариационный ряд, выборочная функция распределения и выбороч-

ная плотность распределения. 

Пример (*). Дано случайное распределение успеваемости 100 студентов-заочников, 

сдававших четыре экзамена: 

Число сданных экзаменов 0 1 2 3 4 

Число студентов 1 1 3 35 60 

     Здесь случайной величиной является число сданных экзаменов среди четырёх. 

Обозначим её Х. Установим закон распределения этой величины. 

     Построим сначала его непараметрическую оценку. Величина Х – дискретная. 

Дискретный вариационный ряд, заданный столбцами 2 и 4 табл. 1, даёт непараметриче-

скую оценку закона распределения числа сданных экзаменов среди четырёх сдаваемых. 

     Теперь сформулируем гипотезу о модели закона распределения случайной вели-

чины Х – числе сданных экзаменов среди четырёх сдаваемых. Процесс сдачи четырёх эк-

заменов представим как четыре испытания, относительно которых сделаем следующие 

допущения: 

Таблица 1. 

I Число 

сданных 

экзаменов 

xi 

Число 

студентов 

mi 

Частость 

n

m
p i

i
*  

pi
теор

= 

= ix
Ñ

4 ∙ ix
88,0 ∙ 

ix4
12,0  

mi
теор

=npi
теор (mi – 

mi
теор

)
2 

(mi – 

- mi
теор

)
2
: 

:mi
теор 

 

1 2 3 4 5 6 7 8 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

1 

1     5 

3 

35 

60 

0,01 

0,01 

0,03 

0,35 

0,60 

0,00021 

0,00608 

0,06691 

0,32711 

0,59969 

0,021 

0,608    7,32 

6,691 

32,711 

59,969 

 

5,382 

 

5,239 

0,001 

 

0,735 

 

0,160 

0,000 

Итого n = 100 1,00 1,00000   0,895 

     - эти испытания независимы, т.е. вероятность сдачи любым студентом любого эк-

замена не зависит от того, будет сдано или нет любое количество других экзаменов; 
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     - вероятность сдачи студентом любого отдельно взятого экзамена одна и та же и 

равна р, а вероятность «несдачи» равна (1 – р). 

     Конечно, эти допущения могут вызывать некоторые сомнения, но возможно, что 

они не будут противоречить результатам наблюдений. При этих допущениях мы имеем 

дело с испытаниями Бернулли и число сданных экзаменов среди четырёх сдаваемых будет 

иметь биномиальный закон распределения, т.е. вероятность того, что студент сдаст λ эк-

заменов, равна 

Р(Х = х) = С4
х
р

х
(1 – р)

4 – х
,     х = 0, 1, 2, 3, 4.                        (1) 

      Найдём оценку параметра р, входящего в модель (6). В условиях испытаний Бер-

нулли состоятельной, несмещённой и эффективной оценкой вероятности является час-

тость. В рассматриваемом примере р – вероятность того, что студент сдаст экзамен, по-

этому частость р* этого события, учитывая, что имеются сведения об успеваемости 100 

студентов, вычисляем следующим образом: 

р* =  = 
4100

604353321110

1004

5

1i

ii
mx

=0,88. 

     Так как Xmx
i

ii
100/

5

1

 - это среднее число экзаменов, сданных одним студен-

том, то р* можно было бы определить и так: 

р* =  = 
4

Õ
= 0,88. 

     Заметим, что если находить оценку параметра р в модели (6) методом максималь-

ного правдоподобия и при этом учесть, что число xi наблюдалось mi раз, то мы получили 

бы для р* такую же формулу, а именно 

р*мп = )4/(
5

1

nmx
i

ii . 

     Подставив в модель (1) вместо параметра р его оценку р*, получим параметриче-

скую оценку неизвестного закона распределения числа сданных экзаменов, построенную в 

предположении, что допустима биномиальная модель 

                Р(Х = х) = С4
х
0,88

х
0,12

4 – х
;      х = 0,  1,  2,  3,  4.                                 (2) 

     Теоретические вероятности pi
теор

 и частоты mi
теор

, вычисленные в предположении, 

что имеет место модель (2), содержатся в столбцах 5 и 6 табл. 5. Поскольку различия меж-

ду соответствующими числами столбцов 4 и 5 или между числами столбцов 3 и 6 неболь-

шие, можно сделать предварительное заключение о приемлемости биномиальной модели. 

Графически это заключение подтверждается рисунком, на котором кривая вероятностей 

pi
теор

 близка к кривой частостей pi*. 

     Метод более глубокого обоснования приемлемости той или иной модели называ-

ется критерием согласия. 

 

1.7 Лекция 10 (Л-10) (2 ч.) 

Тема: Оценки статистических параметров распределения 

 

1.7.1  Вопросы лекции: 

 

1. Статистические гипотезы, ошибки первого и второго рода. 

2. Статистические критерии, их виды, мощность критерия.  

 

1.7.2. Краткое содержание вопросов: 

1. Статистические гипотезы, ошибки первого и второго рода. 
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На прошлой лекции мы рассматривали задачу построения доверительных интерва-

лов для неизвестных параметров генеральной совокупности. Сегодня мы продолжим изу-

чение основных задач математической статистики и перейдем к вопросу проверки ста-

тистических гипотез. 

Проверка статистических гипотез представляет собой важнейший этап процесса 

принятия решения в управленческой деятельности, позволяя проводить подготовительный 

этап предстоящих действий с учетом реальных характеристик процесса производства, 

контроля качества продукции, коммерческой деятельности, и т.п. 

Как известно, закон распределения определяет количественные характеристики ге-

неральной совокупности. 

Если закон распределения неизвестен, но есть основания предположить, что он име-

ет определенный вид (например, А), то выдвигают гипотезу: генеральная совокупность 

распределена по закону А. В этой гипотезе речь идет о виде предполагаемого распределе-

ния. 

Часто закон распределения известен, но неизвестны его параметры. Если есть осно-

вания предположить, что неизвестный параметр равен определенному значению , 

то может выдвигаться гипотеза . В этой гипотезе речь идет о предполагаемой ве-

личине параметра известного распределения. 

Возможны и другие гипотезы: о равенстве параметров двух или нескольких распре-

делений, о независимости выборок и т. д. 

Приведем несколько задач, которые могут быть решены с помощью проверки стати-

стических гипотез. 

1. Используется два метода измерения одной и той же величины. Первый метод дает 

оценки этой величины, второй - . Требуется определить, 

обеспечивают ли оба метода одинаковую точность измерений. 

2. Контроль точности работы некоторой производственной системы. Получаемые 

характеристики выпускаемой продукции характеризуются некоторым разбросом (диспер-

сией). Обычно величина этого разброса не должна превышать некоторого заранее задан-

ного уровня. Требуется определить, обеспечивает ли система (например, линия сборки 

или отдельный станок) заданную точность. 

Итак, статистической называют гипотезу о виде неизвестного распределения или о 

параметрах известных распределений. Примеры статистических гипотез: генеральная со-

вокупность распределена по закону Пуассона; дисперсии двух нормальных распределений 

равны между собой. 

Наряду с выдвинутой гипотезой всегда рассматривают и противоречащую ей гипо-

тезу. Если выдвинутая гипотеза будет отвергнута, то принимается противоречащая гипо-

теза. 

Нулевой (основной) называют выдвинутую гипотезу . 

Альтернативной (конкурирующей)называют гипотезу , которая противоречит 

нулевой. Например, если нулевая гипотеза состоит в предположении, что математическое 

ожидание нормального распределения равно 5, то альтернативная гипотеза, например, 

может состоять в предположении, что . Кратко это записывают 

так: . 

Простой называют гипотезу, содержащую только одно предположение. Например, 

если - параметр показательного распределения, то гипотеза - про-

стая. Сложной называют гипотезу, состоящую из конечного или бесконечного числа про-
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стых гипотез. Например, сложная гипотеза состоит из бесконечного множества 

простых гипотез вида , где - любое число, большее 3. 

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает 

необходимость ее проверки. Так как проверку производят статистическими методами, то 

ее называют статистической. В итоге статистической проверки гипотезы в двух 

случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки 

двух родов. 

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. 

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Следует 

отметить, что последствия ошибок могут оказаться различными. Если отвергнуто пра-

вильное решение "продолжать строительство жилого дома", то эта ошибка первого рода 

повлечет материальный ущерб; если же принято неправильное решение "продолжать 

строительство" несмотря на опасность обвала дома, то эта ошибка второго рода может 

привести к многочисленным жертвам. Иногда, наоборот, ошибка первого рода влечет бо-

лее тяжелые последствия. 

Естественно, правильное решение может быть принято также в двух случаях, ко-

гда принимается правильная гипотеза или отвергается неверная гипотеза. 

Вероятность совершения ошибки первого рода называют уровнем значимости и 

обозначают . Чаще всего уровень значимости принимают равным 0,05 или 0,01. Если, 

например, принят уровень значимости 0,05, то это означает, что в пяти случаях из ста 

имеется риск допустить ошибку первого рода (отвергнуть правильную гипотезу).  

Для проверки нулевой гипотезы используют специально подобранную случайную 

величину, точное или приближенное распределение которой известно. 

 

2. Статистические критерии, их виды, мощность критерия.  

Статистическим критерием (или просто критерием) называют случайную величи-

ну (K), которая служит для проверки нулевой гипотезы. Например, если проверяют гипо-

тезу о равенстве дисперсий двух нормальных генеральных совокупностей, то в качестве 

критерия K принимают отношение исправленных выборочных дисперсий . 

Очевидно, что эта величина случайная, т.к. в различных опытах исправленные дис-

персии принимают различные, заранее неизвестные значения. 

Наблюдаемым значением критерия Kнабл называют значение критерия, вычислен-

ное по выборкам. Например, если в вышеприведенном случае ,то Kнабл = 

20/5 = 4. 

После выбора определенного критерия множество всех его возможных значений 

разбивают на два непересекающихся подмножества, одно из которых содержит значения 

критерия, при которых нулевая гипотеза отвергается, а другое – при которых 

она принимается. 

Критической областью называют совокупность значений критерия, при которых 

нулевую гипотезу отвергают. 

Соответственно, областью принятия гипотезы (областью допустимых значений) 

называют совокупность значений критерия, при которых гипотезу принимают. 

Основной принцип проверки статистических гипотез можно сформулировать так: 

если наблюдаемое значение критерия принадлежит критической области – гипотезу от-

вергают, если области принятия гипотезы – гипотезу принимают. 

Так как критерий K – одномерная случайная величина, то все ее возможные значе-

ния принадлежат некоторому интервалу и, соответственно, должны существовать точки, 

разделяющие критическую область и область принятия гипотезы. Такие точки называют-

ся критическими точками. 
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Различают одностороннюю (правостороннюю и левостороннюю) 

и двустороннюю критические области. 

Правосторонней называют критическую область, определяемую неравенст-

вом , где - положительное число. 

Левосторонней называют критическую область, определяемую неравенст-

вом , где - отрицательное число. 

Двусторонней называют критическую область, определяемую неравенства-

ми , где . В частности, если критические точки симметричны 

относительно нуля, двусторонняя критическая область определяется неравенства-

ми или равносильным неравенством . Различия между ва-

риантами критических областей иллюстрирует следующий рисунок. 

 
Рис. 1. Различные варианты критических областей a) правосторонняя, b) левосто-

ронняя, с) двусторонняя 

Мы подошли к вопросу об этапах проверки статистических гипотез. 

Выделим следующие этапы: 

- Формулируется нулевая гипотеза  

- Определяется критерий K, по значениям которого можно будет принять или отверг-

нуть и выбирается уровень значимости  

- По уровню значимости определяется критическая область 

-  По выборке вычисляется наблюдаемое значение критерия K, определяется, принадле-

жит ли оно критической области и на основании этого принимается гипотеза или аль-

тернативная гипотеза . 

 

 

 

1.8 Лекция 11-12 (Л-11-12) (4 ч.) 

Тема: Статистические критерии, их виды  

 

1.8.1  Вопросы лекции: 

 

1. Критерий Пирсона. 

2.Выравнивание статистических рядов. 

 

1.8.2. Краткое содержание вопросов: 

 

1. Критерий Пирсона. 
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Если закон распределения неизвестен, но есть основания предполагать, что он имеет 

определенный вид , то проверяют нулевую гипотезу: генеральная совокупность рас-

пределена по закону . Проверка этой гипотезы производится при помощи специально 

подобранной случайной величины – критерия согласия. 

Таким образом, критерием согласия называют критерий проверки гипотезы 

о предполагаемом законе неизвестного распределения. 

Имеется несколько критериев согласия, причем наиболее часто используемым явля-

ется критерий согласия К. Пирсона («хи квадрат»). 

Пусть по выборке объема получено эмпирическое распределение 

Варианты……………………   

Эмпирические частоты…….   

Для определенности рассмотрим сначала случай проверки статистической гипотезы 

о нормальном распределении генеральной совокупности. 

Допустим, что в предположении нормального распределения генеральной совокуп-

ности вычислены теоретические частоты . При уровне значимости требуется прове-

рить нулевую гипотезу: генеральная совокупность распределена нормально. 

В качестве критерия проверки нулевой гипотезы примем случайную величину 

(А) 

Естественно, чем меньше различаются эмпирические и теоретические частоты, тем 

меньше величина критерия, и, следовательно, он характеризует близость эмпирического 

и теоретического распределений. 

Доказано, что при n больших распределения случайной величины (А) стремится к 

закону распределения с степенями свободы независимо от того, какому закону рас-

пределения подчинена генеральная совокупность. Поэтому сам критерий называ-

ют критерием согласия . 

Число степеней свободы определяется из равенства , где s – число 

групп (частичных интервалов) выборки, – число параметров предполагаемого распре-

деления. В частности, если предполагаемое распределение – нормальное, то оценивают 

два параметра (математическое ожидание и среднее квадратическое отклонение), поэтому 

число степеней свободы . 

Построим правостороннюю критическую область, исходя из требования, чтобы ве-

роятность попадания критерия в эту область в предположении справедливости нулевой 

гипотезы была равна принятому уровню значимости : . 

Таким образом, правосторонняя критическая область определяется неравенст-

вом , а область принятия нулевой гипотезы – соответственно неравенст-

вом . Обозначим значение критерия, вычисленного по данным наблюде-

ний, через и сформулируем правило проверки нулевой гипотезы: 

Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу H0 : 

генеральная совокупность распределена нормально, необходимо сначала вычислить тео-

ретические частоты, а затем наблюдаемое значение критерия и 
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по таблице критических точек распределения , по заданному уровню значимости a и 

числу степеней свободы k = n – 3 найти критическую точку . Если - 

нет оснований отвергать нулевую гипотезу. В противном случае нулевую гипотезу отвер-

гают, считая, что генеральная совокупность не распределена по нормальному закону. 

Отметим два обстоятельства. 

- Объем выборки должен быть достаточно велик (не менее 50). Каждая группа должна 

содержать не менее 5-8 вариант, а малочисленные группы следует объединять в одну, 

суммируя частоты. 

- Поскольку возможны ошибки первого и второго рода, следует проявлять осторожность. 

Например, можно повторить опыт, увеличить число наблюдений, построить предвари-

тельно график распределения и т.п. 

Применение критерия согласия Пирсона не ограничивается случаем нормального 

распределения. Приведем примеры использования критерия Пирсона. 

Пример1. При уровне значимости 0,05 проверить гипотезу о распределении по за-

кону Пуассона генеральной совокупности, если по данным выборки объема полу-

чен следующий вариационный ряд: 

Варианты  
 

1 2 3 4 5 6 7 

Частоты  8 17 16 10 6 2 0 1 

Решение: Для расчета теоретических частот используем формулу Пуассона  

Для оценки параметра используем соотношение  

Вычислим   

 . 

Значение рав-

но . 

Вычислим число степеней свободы . По таблице критиче-

ских точек распределения хи-квадрат при и находим . Так как на-

блюдаемое значение меньше критического, то наблюдаемые значения согласуются с рас-

пределением Пуассона и нулевая гипотеза принимается. 

 

2.Выравнивание статистических рядов. 

Рассмотрим задачу «выравнивания» статистического распределения. Порядок реше-

ния этой задачи может быть следующим. 

1.  На основании статистических данных, оформленных в виде интервальной таблицы 

частот р*, строят полигон или гистограмму и по внешнему виду этих графиков выдвигают 

гипотезу (делают предположение) о возможном теоретическом законе распределения слу-

чайной величины (кривой распределения). 

Замечание. В некоторых случаях вид теоретической кривой распределения выбирает-

ся заранее из соображений, связанных с существом задачи. 
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2.  Выясняют, от каких параметров зависит аналитическое выражение выбранной кри-

вой распределения, и находят статистические оценки этих параметров. В этом случае за-

дача выравнивания статистического распределения переходит в задачу рационального 

выбора тех значений параметров, при которых соответствие между статистическим и тео-

ретическим распределениями оказывается наилучшим. 

Например, если выдвигается гипотеза о нормальном законе распределения X ~ N(а; σ), 

то он зависит только от двух параметров: математического ожидания а и среднего квадра-

тического отклонения σ. Их наилучшими статистическими оценками будут соответствен-

но среднее выборочное  и выборочное среднее квадратическое отклонение   , т. е.  

   

3.  С учетом выдвинутой гипотезы о законе распределения случайной величины нахо-

дят вероятности рi попадания случайной величины в каждый из интервалов, указанных в 

статистической таблице распределения; записывают их в третьей строке таблицы и срав-

нивают полученные значения вероятностей рi с соответствующими заданными частотами 

рi* (для наглядности можно изобразить графически). Проводя такое сравнение, делается 

приблизительная оценка степени согласования статистического и теоретического распре-

делений. На этом первый этап решения задачи по определению закона распределения слу-

чайной величины заканчивается. 

 Пример. Для разумного планирования и организации работы ремонтных мастерских 

специальной техники оказалось необходимым изучить длительность ремонтных операций, 

производимых мастерскими.  

Результаты (сгруппированные по интервалам) соответствующего статистического обсле-

дования (фиксированы длительности операций в  

100 случаях) представлены в таблице: 

  

li 0–20 20–40 40–60 60–80 80–100 100–120 120–140 

ni 36 24 16 10 7 4 3 

  

Требуется выровнять это статистическое распределение с помощью показательного 

закона  (при ),  где λ – длительность операции в единицу времени. 

  

Решение 

1. По данной таблице абсолютных частот построим таблицу относительных частот и 

соответствующую ей гистограмму: 

 

  

  

. 

 
Гистограмма относи-

тельных частот имеет вид: 

  

Высоты прямоуголь-

ников гистограммы равны: 

;      

;   

li 0–20 20–40 40–60 60–80 80–100 100–120 120–140 

рi* 0,36 0,24 0,16 0,10 0,07 0,04 0,03 
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; ;  ;    ; . 

2. По внешнему виду гистограммы выдвигаем гипотезу, что случайная величина T 

(время ремонта) подчиняется показательному закону 

, 

который зависит только от одного параметра λ (длительность операции в единицу време-

ни). 

Параметр , где mi – математическое ожидание (среднее время ремонта) слу-

чайной величины T. 

Следовательно, для выравнивания статистического распределения с помощью кривой 

показательного распределения найдем статистическую оценку параметра mi: 

 
(числа 10, 30, 50, 70, 90, 110, 130 – это середины интервалов). 

Тогда параметр . 

3. Запишем теоретический закон распределения в виде функции плотности вероятно-

сти с учетом значения : 

. 

По формуле вероятности попадания случайной величины (распределенной по показа-

тельному закону) на заданный интервал (α, β) 

 
найдем теоретические вероятности рi, попадания случайной величины Т в каждый из семи 

интервалов и сравним их с соответствующими статистическими частотами pi*: 

; 

; 

; 

; 

; 

; 

. 

Для удобства сравнения теоретических вероятностей pi с частотами рi* запишем по-

лученные вероятности pi в третью строку таблицы: 

  

li 0–20 20–40 40–60 60–80 80–100 100–120 120–140 

pi* 0,36 0,24 0,16 0,10 0,07 0,04 0,03 

pi 0,40 0,23 0,15 0,08 0,06 0,03 0,02 
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Замечаем, что расхождение между опытными частотами рi* и теоретическими вероят-

ностями рi незначительны. Следовательно, вполне допустима гипотеза о показательном 

законе распределения изучаемой случайной величины Т. 

4. Построим на одном графике с гистограммой выравнивающую ее кривую распреде-

ления f(t). Для этого вычислим значения 

 
например, на правых концах интервалов: 

;      ;
 

;    ;
 

;   ;
 

.
 

Построим график полученной кривой распределения f(t), в той же системе координат, 

что и гистограмма относительных частот.  

Из рисунка видно, что теоретическая кривая f(t) сохраняет в основном существенные 

особенности статистического распределения. 

 

1.9Лекция 13-14 (Л-13-14) (4 ч.) 

Тема: Стохастическая зависимость, функция регрессии. 

 

1.9.1  Вопросы лекции: 

 

1. Виды зависимостей между величинами.  Функция регрессии. 

2.Корреляционное отношение, коэффициент детерминации. Корреляционная зави-

симость. 

 

1.9.2. Краткое содержание вопросов: 

 

1. Виды зависимостей между величинами.  Функция регрессии. 

Две или несколько случайных величин могут быть связаны либо функциональной, 

либо статистической (стохастической) зависимостью. 

В экономике строгая функциональная зависимость реализуется редко, так как эко-

номические показатели подвержены действию случайных, часто неконтролируемых фак-

торов. Чаще имеет место так называемая статистическая зависимость, при которой из-

менение одной из величин влечет изменение распределения другой. В частности, при из-

менении одной из величин может изменяться среднее значение другой. 

Пример статистической зависимости: урожай зерна Y зависит от количества внесен-

ных удобрений X . С одинаковых по площади участков при равных количествах внесен-

ных удобрений снимают разные урожаи. Это связано с влиянием случайных факторов 

(осадки, температура воздуха и др.). Вместе с тем, средний урожай зависит от количества 

удобрений, т.е. Y связано с X статистической зависимостью. 

При изучении статистических зависимостей различают корреляцию и регрессию. 

Основным методом исследования статистических зависимостей выступа-

ет корреляционно – регрессионный анализ. 
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Корреляционный анализ состоит в определении степени связи между случайными 

величинами. 

Регрессионный анализ устанавливает формы зависимости между случайной вели-

чиной Y (зависимой переменной) и значениями одной или нескольких переменных вели-

чин X (независимыми переменными). 

Одна из наиболее распространенных задач статистического исследования состоит в 

изучении связи между наблюдаемыми переменными. Знание взаимосвязей отдельных 

признаков дает возможность прогнозировать развитие ситуации при изменении конкрет-

ных характеристик объекта исследования. Основное содержание экономической полити-

ки, в конечном счете, может быть сведено к регулированию экономических переменных, 

осуществляемому на базе выявленной информации об их взаимовлиянии. Поэтому про-

блема изучения взаимосвязей показателей является одной из важнейших в статистическом 

анализе экономических систем. 

Корреляция в широком смысле слова означает связь, соотношение между объектив-

но существующими явлениями. Если случайные переменные причинно обусловлены, то 

имеется корреляция. 

Корреляция может быть: 

- положительной или отрицательной; 

- в зависимости от числа переменных – простой или множественной; 

- в зависимости от формы связи – линейной или нелинейной. 

Важнейшими задачами корреляционного анализа являются: 

- измерение силы связи двух или более факторов; 

-отбор факторов, оказывающих существенное влияние на результативный признак (зави-

симую переменную) на основании измерения тесноты связи между факторами. 

 

2.Корреляционное отношение, коэффициент детерминации. Корреляционная зави-

симость. 

В случае лишь одной независимой переменой X в качестве меры связи между ней и 

зависимой переменной Y служит коэффициент корреляции. Он оценивается по выборке 

объема n связанных пар наблюдений (xi, yi). В случае нескольких переменных необходимо 

последовательно вычислять коэффициенты корреляции по нескольким рядам числовых 

данных. Полученные коэффициенты сводят в таблицы, называемые корреляционными 

матрицами. 

Корреляционная матрица представляет собой квадратную матрицу, на пересечении 

строки и столбца которой находится коэффициент корреляции между соответствующими 

переменными. 

Если в результате испытаний система двух случайных величин приняла зна-

чения , то коэффициент корреляции ра-

вен  

  

где - средние значения, а - средние квадратические отклонения случайных 

величин соответственно. 
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Для многомерной выборки (т. е. в случае более двух факторов) необходимо рассчи-

тать корреляционную матрицу ,которая являет-

ся симметричной относительно главной диагонали. 

При рассмотрении взаимосвязей, как правило, рассматривают одну из величин (X) 

как независимую (объясняющую), а другую (Y) как зависимую (объясняемую). При этом 

изменение первой из них может служить причиной изменения другой. Например, рост до-

хода ведет к увеличению потребления; рост цены – к снижению спроса; снижение про-

центной ставки увеличивает инвестиции и т.д. Эта зависимость не является однозначной в 

том смысле, что каждому конкретному значению объясняющей переменой X может соот-

ветствовать не одно, а множество значений Y. Другими словами, каждому конкретному 

значению независимой переменной соответствует некоторое вероятностное распределе-

ние зависимой переменной. Поэтому анализируют, как объясняющая переменная (или пе-

ременные) влияет (или влияют) на зависимую переменную «в среднем». Зависимость та-

кого типа, выражаемая соотношением называется функцией регрессии Y 

на X. При рассмотрении зависимости двух случайных величин говорят о парной регрес-

сии. 

Зависимость нескольких переменных, выражаемую функци-

ей называют множественной регресси-

ей. 

Под регрессией понимается функциональная зависимость между объясняющими пе-

ременными и условным математическим ожиданием (средним значением) зависимой 

переменной Y, которая строится с целью предсказания (прогнозирования) среднего значе-

ния Y при некоторых значениях независимых переменных. 

Установление формы зависимости и оценка параметров функции регрессии являют-

ся задачами регрессионного анализа. 

Так как реальные значения зависимой переменной могут быть различными при дан-

ном X (или ), зависимость должна быть дополнена некоторым слагаемым e, 

которое, по существу, является случайной величиной. Получающиеся в результате соот-

ношения или 

 
называются регрессионными уравнениями (или моделями). 

Построение уравнения регрессии, описывающего эмпирические данные, включает 

три этапа: 

- выбор формулы уравнения регрессии; 

- определение параметров выбранного уравнения; 

- анализ качества уравнения и проверка адекватности уравнения эмпирическим 

данным и, при необходимости, совершенствование уравнения. 

В случае парной регрессии выбор уравнения обычно осуществляется по графиче-

скому изображению реальных статистических данных - корреляционному полю. 
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Рис.1 Корреляционные поля. А) – линейная регрессия; Б) – квадратичная регрессия; 

В) – отсутствие выраженной связи Y и X. 

Для определения значений теоретических коэффициентов, входящих в уравнения 

регрессии, необходимо знать и использовать все значения переменных генеральной сово-

купности, что практически невозможно. В связи с этим по выборке ограниченного объе-

ма строится так называемое выборочное (эмпирическое) уравнение регрессии. Из-

за ограниченности выборки оценки коэффициентов, входящих в выборочное уравнение 

регрессии, отличаются от истинных (теоретических) значений, что приводит к несовпаде-

нию эмпирической и теоретической линий регрессии. Различные выборки из одной и той 

же генеральной совокупности обычно приводят к отличающимся друг от друга оценкам. 

Задача состоит в том, чтобы по конкретной выборке найти оценки неиз-

вестных параметров так, чтобы построенная линия регрессии являлась наилучшей среди 

всех других линий. Если функция регрессии линейна, то говорят о линейной регрессии. 

Линейная регрессия (линейное уравнение) является распространенным (и простым) видом 

зависимости между экономическими переменными. Для простейшего случая парной ли-

нейной регрессии 

 или , 

где - теоретические параметры регрессии; - случайное отклонение. 

По выборке ограниченного объема строится выборочное уравнение регрессии

(1) 

где - оценки неизвестных параметров , называемые выборочными 

коэффициентами регрессии, - оценка условного математического ожида-

ния . Для величин справедлива формула 

 (2), где - оценка теоретического отклонения . 

Построенная прямая выборочной регрессии должна наилучшим образом описывать 

эмпирические данные, т.е. коэффициенты должны быть такими, чтобы случай-

ные отклонения были минимальны. Наиболее распространенным методом нахождения 

коэффициентов уравнения регрессии является метод наименьших квадратов (МНК). 

Если по выборке требуется определить оценки выборочного 

уравнения регрессии (2), то вводится в рассмотрение и минимизируется функция 

. 
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Необходимым условием существования минимума данной функции двух переменных 

является равенство нулю ее частных производных по неизвестным параметрам : 

 

. 

Отсюда  

, 

и выразив из последних соотношений коэффициенты, получим 

 . (3) 

где введены обозначения . 

На экономический показатель чаще всего оказывает влияние не один, а несколько 

факторов. Например, спрос на некое благо определяется не только ценой данного блага, 

но и ценами на замещающие и дополняющие блага, доходом потребителей и многими 

другими факторами. В этом случае рассматривается множественная регрес-

сия . 

Теоретическое линейное уравнение регрессии имеет  

вид . 

Для оценки параметров уравнения множественной линейной регрессии также, как 

правило, используется метод наименьших квадратов. 

Нелинейная регрессия 
 Многие экономические зависимости не являются линейными. Например, при анали-

зе эластичности спроса по цене применяется так называемая логарифмическая модель, 

при анализе издержек от объема выпуска – полиномиальная (кубическая) модель. Часто 

применяются и другие модели – например, обратная и экспоненциальная. Кратко рас-

смотрим некоторые из моделей нелинейной регрессии. 

 Пусть некоторая экономическая зависимость моделируется формулой 

 
где A, b - параметры модели. Эта функция может отражать зависимость спроса Y на 

благо от его цены X (в этом случае b < 0) или от дохода X (b>0 – функция Энгеля). Проло-

гарифмировав обе части последнего соотношения, получим ; замена 

переменных позволяет свести уравнение к линейному виду 

. 

По МНК можно рассчитать значения параметров аналогично случаю линейной мо-

дели (при этом вместо рассматриваются ). 

 Обратная модель. 

 Обратная модель имеет вид   . 
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Заменой эта модель сводится к линейной. Обратная модель применяется, на-

пример, для характеристики связи удельных расходов сырья, материалов, топлива с объе-

мом выпускаемой продукции. 

  Степенная функция вида    

при m=3 (кубическая функция) в микроэкономике моделирует зависимость общих 

издержек от объема выпуска; квадратичная функция (m=2) отражает зависимость между 

объемом выпуска и средними или предельными издержками. Модель может быть сведена 

к линейной модели множественной регрессии с помощью заме-

ны . Параметры модели определяют с помощью МНК. 

  

Показательная функция     

может использоваться при анализе изменения переменной Y с постоянным темпом 

прироста во времени. Примером может служить производственная функция Кобба – Ду-

гласа с учетом научно – технического прогресса 

, 

где K – затраты капитала, L – затраты труда, g характеризует темпы роста объема 

производства. 

Прологарифмировав, получаем соотношение 

, 

которое сводится к линейному виду с помощью за-

мен . 

В заключение отметим, что построение и проверка качества уравнения регрессии 

требуют применения методов корреляционного анализа, позволяющих производить отбор 

существенных для описания регрессионной зависимости факторов. 

 

 

1.10 Лекция 15 (Л-15) (2 ч.) 

Тема: Основные понятия теории марковских процессов. Простейший поток. Классифика-

ция марковских процессов 

 

1.10.1  Вопросы лекции: 

 

1. Основные понятия теории марковских процессов. Поток СС, простейший поток, 

его свойства. 

2. Классификация марковских процессов 

 

1.10.2. Краткое содержание вопросов: 

 

1. Основные понятия теории марковских процессов. Поток СС, простейший поток, 

его свойства. 

Поток событий. Простейший поток и его свойства 
При рассмотрении процессов, протекающих в системе с дискретными состояниями и 

непрерывным временем, часто бывает удобно представить себе процесс так, как будто пе-

реходы системы из состояния в состояние происходят под действием каких-то потоков 

событий. Потоком событий называется последовательность однородных событий, сле-

дующих одно за другим в какие-то, вообще говоря, случайные моменты времени. (Поток 

вызовов на телефонной станции; поток неисправностей (сбоев) ЭВМ; поток грузовых со-
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ставов, поступающих на станцию; поток посетителей; поток выстрелов, направленных на 

цель). Будем изображать поток событий последовательностью точек на оси времени ot. 

Положение каждой точки на оси случайно. Поток событий называется регулярным, если 

события следуют одно за другим через строго определенные промежутки времени (редко 

встречается на практике). Рассмотрим специального типа потоки, для этого введем ряд 

определений. 1. Поток событий называется стационарным, если вероятность попадания 

того или иного числа событий на участок времени длиной  зависит только от длины 

участка и не зависит от того, где именно на оси ot расположен этот участок (однородность 

по времени) – вероятностные характеристики такого потока не должны меняться от вре-

мени. В частности, так называемая интенсивность (или плотность) потока событий (сред-

нее число событий в единицу времени) постоянна. 

2. Поток событий называется потоком без последствия, если для любых непересе-

кающихся участков времени число событий, попадающих на один из них, не зависит от 

того, сколько событий попало на другой (или другие, если рассматривается больше двух 

участков). Отсутствие последствия в потоке означает, что события, образующие поток, 

появляются в последовательные моменты времени независимо друг от друга. 

3. Поток событий называется ординарным, если вероятность попадания на элемен-

тарный участок двух или более событий пренебрежительно мала по сравнению с вероят-

ностью попадания одного события (события в потоке приходят поодиночке, а не парами, 

тройками и т. д.). 

Поток событий, обладающий всеми тремя свойствами, называется простейшим (или 

стационарным пуассоновским). Нестационарный пуассоновский поток обладает только 

свойствами 2 и 3. Пуассоновский поток событий (как стационарный, так и нестационар-

ный) тесно связан с известным распределением Пуассона. А именно, число событий пото-

ка, попадающих на любой участок, распределено по закону Пуассона. Поясним это под-

робнее. 

Рассмотрим на оси оt, где наблюдается поток событий, некоторый участок длины t, 

начинающийся в момент t0 и заканчивающийся в момент t0+t. Нетрудно доказать (доказа-

тельство дается во всех курсах теории вероятности), что вероятность попадания на этот 

участок ровно m событий выражается формулой: 

 (m=0,1…), 

где а – среднее число событий, приходящееся на участок t. 

Для стационарного (простейшего) пуассоновско-

го потока а=lt, т. е. не зависит от того, где на 

оси ot взят участок t. Для нестационарного пуассонов-

ского потока величина а выражается формулой 

 
и значит, зависит от того, в какой точке t0 начинается 

участок t. 

Рассмотрим на оси ot простейший поток событий с постоянной интенсивностью l. 

Нас будет интересовать интервал времени T между событиями в этом потоке. Пусть l - 

интенсивность (среднее число событий в 1 времени) потока. Плотность распределе-

ния f(t) случайной величины Т (интервал времени между соседними событиями в пото-

ке) f(t)=le-lt (t>0). Закон распределения с такой плотностью называется показательным 

(экспоненциальным). Найдем численные значения случайной величины Т: математиче-
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ское ожидание (среднее значение) 

 и дисперсию . 

Промежуток времени Т между соседними событиями в простейшем потоке распре-

делен по показательному закону; его среднее значение и среднее квадратичное отклоне-

ние равны , где l - интенсивность потока. Для такого потока вероятность появления на 

элементарном участке времени ∆t ровно одного события потока выражается 

как . Эту вероятность мы будем называть «элементом вероятности появления 

события». 

Для нестационарного пуассоновского потока закон распределения промежутка Т 

уже не будет показательным. Вид этого закона будет зависеть, во- первых, от того, где на 

оси ot расположено первое из событий, во-вторых, от вида зависимости . Однако, ес-

ли меняется сравнительно медленно и его изменение за время между двумя события-

ми невелико, то закон распределения промежутка времени между событиями можно при-

ближенно считать показательным, полагая в этой формуле величину равной среднему 

значению на том участке, который нас интересует. 

Пуассоновские потоки событий и непрерывные марковские цепи 

Рассмотрим некоторую физическую систему S={S1,S2,…Sn}, которая переходит из 

состояния в состояние под влиянием каких-то случайных событий (вызовы, отказы, вы-

стрелы). Будем себе это представлять так, будто события, переводящие систему из со-

стояния в состояние, представляют собой какие-то потоки событий. 

  

Пусть система S в момент времени t находится в состоянии Si и может перейти из 

него в состояние Sj под влиянием какого-то пуассоновского потока событий с интенсив-

ностью lij: как только появляется первое событие этого потока, система мгновенно пере-

ходит из Si в Sj . Как мы знаем, вероятность этого перехода за элементарный промежуток 

времени  (элемент вероятности перехода) равна, отсюда вытекает, что плотность веро-

ятности перехода lij в непрерывной цепи Маркова представляет собой не что иное, как ин-

тенсивность потока событий, переводящих систему по соответствующей стрелке. Если все 

потоки событий, переводящие систему S из состояния в состояние пуассоновские, то про-

цесс, протекающий в системе, будет марковским. 

Проставим интенсивности пуассоновских потоков (плотности вероятностей перехо-

дов) на графе состояний системы у соответствующих стрелок. Получим размеченный граф 

состояний. На его основе можно написать уравнения Колмогорова и вычислить вероятно-

сти состояний. 

Пример. Техническая система S состоит из двух узлов I и II, каждый из которых не-

зависимо от другого может отказывать. Поток отказов первого узла пуассоновский с ин-

тенсивностью lI, второго также пуассоновский с интенсивностью lII. Каждый узел сразу 

после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений 

(окончаний ремонта узла) для обоих узлов – пуассоновский с интенсивностью l. Соста-

http://pandia.ru/text/category/dispersiya/
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вить граф состояний системы и написать уравнение Колмогорова. Состояния систе-

мы: S11 - оба узла исправны; S21 – первый узел ремонтируется, второй исправен; S12, S22. 

 
2. Классификация марковских процессов 

 

Аппарат теории марковских процессов с дискретными состояниями и цепей Маркова 

широко используют в теории систем, в исследовании операций и других прикладных дис-

циплинах. Это обусловлено многими причинами, среди которых отметим следующие: 

1) многие реальные технические системы имеют конечные множества возможных 

состояний, а их поведение в процессе функционирования адекватно моделируется мар-

ковскими процессами, 

2) теория марковских процессов с дискретными состояниями и цепей Маркова раз-

работана настолько глубоко, что позволяет решать широкий класс прикладных задач. 

 

 Марковские процессы. Представление случайных процессов графом состояний 

Рассмотрим физическую систему S, в которой протекает случайный процесс с дис-

кретными состояниями:  isss ,...,, 21 ,    (1) число которых конечно (или счетно). Состоя-

ния ,..., 21 ss  могут быть качественными (т. е. описываться словами) или же каждое из 

них характеризуется случайной величиной (либо случайным вектором). 

Прежде всего, рассмотрим множество состояний (1) с точки зрения его структуры - 

возможности системы S переходить из состояния sj в данное состояние si - непосредствен-

но или через другие состояния. Для этого удобно пользоваться наглядной схемой, так на-

зываемым графом состояний. Здесь и далее мы будем отчасти пользоваться терминологи-

ей теории графов. Имеется две основные разновидности графов: неориентированные и 

ориентированные. 

Неориентированный граф - совокупность точек (вершин графа) с соединяющими не-

которые из них отрезками (ребрами графа). 

Ориентированный граф - это совокупность точек (вершин) с соединяющими некото-

рые из них ориентированными отрезками (стрелками). 

При изложении теории случайных процессов с дискретными состояниями мы будем 

пользоваться только ориентированными графами. Вершины графа будут соответствовать 

состояниям системы. Вершину будем изображать прямоугольником, в который вписано 

обозначение состояния; стрелка, ведущая из вершины sj в вершину si , будет обозначать 

возможность перехода системы S из состояния sj в состояние si - непосредственно, минуя 

другие состояния. Стрелки графа могут изображаться не только прямолинейными, но и 

криволинейными отрезками (рис. 1). Сам граф системы S будем обозначать буквой G. 
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Рисунок 1 – Пример графа состояний 

Переход по стрелке, ведущей из состояния si в него же, означает задержку системы в 

состоянии si. «Обратные стрелки» можно на графе не проставлять, так как все расчеты 

можно вести и без них. 

Проведем некоторую необходимую для дальнейшего классификацию состояний. Со-

стояние si называется источником, если система S может выйти из этого состояния, но по-

пасть в него обратно уже не может, т. е. на графе G состояний в состояние si не ведет ни 

одна стрелка. На рисунке 1 состояние s1 является источником. 

Состояние si называется концевым (или поглощающим), если система S может по-

пасть в это состояние, но выйти из него уже не может. Для графа состояний это означает, 

что из состояния si не ведет ни одна стрелка (для графа, изображенного на рисунке 1, со-

стояние s6 поглощающее). 

Если система S может непосредственно перейти из состояния si в состояние sj то со-

стояние sj - называется соседним по отношению к состоянию si. 

Состояние si называется транзитивным, если система S может войти в это состояние 

и выйти из него, т. е. на графе состояний есть хотя бы одна стрелка, ведущая в si и хотя бы 

одна стрелка, ведущая из si. На рисунке 1 все состояния, кроме s1 и s6, являются транзи-

тивными. 

Для полноты картины можно рассматривать также и «изолированные» состояния. 

Состояние si называется изолированным, если из него нельзя попасть ни в одно из других 

состояний и в него нельзя попасть ни из какого другого состояния. 

Наряду с отдельными состояниями системы S в ряде задач практически бывает нуж-

но рассматривать подмножества ее состояний. 

Обозначим W множество всех состояний системы S (конечное или бесконечное, но 

счетное) и рассмотрим его подмножество WV . Подмножество V называется замкнутым 

(концевым), если система S, попав в одно (или находясь в одном) из состояний Vsi , не 

может выйти из этого подмножества состояний. Концевое подмножество состояний мо-

жет включать в себя поглощающее состояние, а может и не включать. 

Подмножество состояний WV  называется связным или эргодическим, если из 

любого состояния, входящего в него, можно попасть в любое другое состояние, принад-

лежащее этому подмножеству. Эргодическим может быть и все множество W состояний 

системы S. В эргодическом множестве состояний нет ни источников, ни поглощающих 

состояний. 

Подмножество состояний V называется транзитивным, если система S может войти в 

это подмножество и выйти из него, т. е. из любого состояния Vsi  можно (за то или 

другое число перескоков) выйти из этого подмножества. 

Случайный процесс, протекающий в системе S, можно трактовать как процесс блуж-

дания системы по множеству состояний W. Если подмножество WV  является конце-

вым, то, попав в него, система будет продолжать блуждание уже по этому подмножеству 

состояний V. Если все множество эргодично, то блуждание будет происходить по всем его 

состояниям. 
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На практике очень часто встречаются системы, состояния которых образуют цепь 

(рисунок 2), в которой каждое состояние si (кроме двух крайних s0 и sn) связано прямой и 

обратной связью с двумя соседними 11, ii ss , a каждое из двух крайних связано прямой и 

обратной связью только с одним соседним. 

 

 
Рисунок 2 - Схема процесса гибели и размножения 

Такая схема случайного процесса называется схемой гибели и размножения, а сам 

процесс — процессом гибели и размножения. 

Если на графе состояний системы S стрелки, ведущие справа налево, отсутствуют, то 

говорят о процессе «чистого размножения», в противоположном случае — о процессе 

«чистой гибели». 

Процесс гибели и размножения может в некоторых случаях иметь не конечное число 

состояний: ni ssss ,...,,...,, 21 , а бесконечное (счетное): ,...,...,, 21 isss . 

При анализе случайных процессов, протекающих в системах с дискретными состоя-

ниями, важную роль играют вероятности состояний. 

Обозначим S(t) состояние системы S в момент t. Вероятностью i-го состояния в мо-

мент t называется вероятность события, состоящего в том, что в момент t система S будет 

в состоянии si. Обозначим ее )(tpi : 

})({)( ii stSPtp ,                                          (2) 

где S(t) - случайное состояние системы S в момент t. Очевидно, что для системы с 

дискретными состояниями ,...,,...,, 21 isss  в любой момент t сумма вероятностей состоя-

ний равна единице: 

i

i tp 1)( ,                                                  (3) 

как сумма вероятностей полной группы несовместных событий. 

В ряде задач практики нас интересует так называемый установившийся или стацио-

нарный режим работы системы, который в ней устанавливается, когда от начала процесса 

прошло достаточно большое время t. Например, процесс изменения напряжения в сети 

питания технического устройства, пройдя сразу после включения через ряд колебаний, по 

прошествии времени, устанавливается. Аналогично этому и в некоторых случайных про-

цессах по прошествии достаточно большого времени t устанавливается стационарный ре-

жим, во время которого состояния системы хотя и меняются случайным образом, но их 

вероятности .)()( 1, 2,..itpi
 остаются постоянными. Обозначим эти постоянные вероят-

ности ip . 

)(lim tpp ii                                       (4) 

Вероятности )( 2,... 1,ipi , если они существуют, называются финальными (пре-

дельными) вероятностями состояний. Финальную вероятность pi можно истолковать как 

среднюю долю времени, которую в стационарном режиме проводит система S в состоянии 

si. В дальнейшем будет показано, при каких условиях финальные вероятности существуют 

и какими они могут быть для разных состояний и подмножеств состояний. 

Введем очень важное для дальнейшего понятие марковского случайного процесса. 

Случайный процесс, протекающий в системе S с дискретными состояниями 

,...,,...,, 21 isss  называется марковским, если для любого момента времени t0 вероятность 

каждого из состояний системы в будущем (при t>t0) зависит только от ее состояния в на-
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стоящем (при t = t0) и не зависит от того, когда и как она пришла в это состояние; т. е. не 

зависит от ее поведения в прошлом (при t < t0). 

Не надо понимать марковское свойство случайного процесса как полную независи-

мость «будущего» от «прошлого»; в общем случае «будущее» зависит от «настоящего», т. 

е. вероятности pi(t) при t > t0 зависят от того, в каком состоянии si находится система в на-

стоящем (при t=t0); само же это «настоящее» зависит от «прошлого», от того, как вела се-

бя система S при t < t0. Это можно сформулировать следующим образом: для марковского 

случайного процесса «будущее» зависит от «прошлого» только через «настоящее» (рису-

нок 3). При фиксированном «настоящем» условные вероятности всех состояний системы в 

«будущем» не зависят от предыстории процесса, т. е. от того, когда и как система S к мо-

менту t0 пришла в состояние 

 
 

Рисунок 3 – Схема марковского свойства случайного процесса 

«Настоящее» может быть задано не одним каким-то состоянием si, а целым подмно-

жеством состояний WV , где W - множество всех возможных состояний системы. 

Подчеркнем также, что «настоящее» может быть задано не только одним состоянием 

системы S в момент t0; в него при желании можно включить и те элементы из «прошлого», 

от которых, при заданном «настоящем», зависит будущее. Например, вероятности состоя-

ний в «будущем» могут зависеть не только от состояния si системы в настоящем, но и от 

того, из какого состояния si система перешла к моменту t0 в состояние si; в этом случае на-

стоящее характеризуется не только состоянием si , в которое система перешла к моменту 

t0, но и состоянием sj, из которого она перешла в si. Вводя в состав параметров, характери-

зующих настоящее состояние системы, те параметры из прошлого, от которых зависит 

будущее, можно, как говорится, «марковизировать» многие немарковские случайные про-

цессы, но, как правило, это приводит к сильному усложнению математического аппарата. 

 

Марковские случайные процессы с дискретными состояниями и дискретным 

временем 

Пусть имеется система S с дискретными состояниями ni ssss ,...,,...,, 21 . Предполо-

жим, что случайные переходы («перескоки») системы из состояния в состояние могут 

происходить только в определенные моменты времени ... ,t ,t ,t 210 . Эти моменты мы будем 

называть шагами процесса; t0=0 - его началом. Сам процесс представляет собой случайное 

блуждание системы S по состояниям. После первого шага система может оказаться в од-

ном (и только в одном) из своих возможных состояний: 
)1()1()1(

2

)1(

1 ,...,,...,, ni ssss ; на втором 

шаге - 
)2()2()2(

2

)2(

1 ,...,,...,, ni ssss , на k-м шаге 
)()()(

2

)(

1 ,...,,...,, k

n

k

i

kk ssss  (число состояний в общем 

случае может быть бесконечным, но счетным. Здесь же для простоты ограничимся конеч-

ным числом n состояний). 

Предположим, что граф состояний системы S имеет вид, представленный на рисунке 

4. Процесс блуждания системы S по состояниям можно представить как последователь-

ность или «цепь» событий, состоящих в том, что в начальный момент t0=0 система нахо-

дится в одном из состояний (например, в состоянии 
)0(

1s ), в момент первого шага перешла 
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из него скачком в состояние 
)1(

5s , из которого на втором шаге перешла в 
)2(

3s , на третьем 

шаге перешла в 
)3(

2s  и т. д. «Траектория» системы, блуждающей по состояниям 

2351 ,,, ssss  показана на рисунке 4 жирными линиями. На каких-то шагах система может 

задерживаться в том или другом из своих состояний, 
)1()( k

i

k

i ss  (это показано «возврат-

ной стрелкой» на рисунке 4) или же вернуться в него после ряда шагов. 

 
Рисунок 4 – Граф состояний системы S 

 

«Траектория» блуждания системы по графу состояний, изображенная на рисунке 4 

жирными линиями, представляет собой не что иное, как реализацию случайного процесса, 

полученную в результате одного опыта. При повторении опыта, естественно, реализации в 

общем случае не совпадают. 

Рассмотрим общий случай. Пусть происходит случайный процесс в системе S с дис-

кретными состояниями ni ssss ,...,,...,, 21 , которые она может принимать в последователь-

ности шагов с номерами 0, 1, 2, …, k, …. 

Случайный процесс представляет собой последовательность событий вида 

)(})({ 0,1,2,...kn;...1,2,...iskS i . Наиболее важной ее характеристикой являются ве-

роятности состояний системы 

)()( 0,1,2,...k n;1,2,......iskS iP ,                               (5) 

где Р{S(k)=si} - вероятность того, что на k-м шаге система S будет находиться в со-

стоянии si. 

Распределение вероятностей (5) представляет собой не что иное, как одномерный за-

кон распределения случайного процесса S(t), протекающего в системе S с «качественны-

ми» дискретными состояниями и дискретным временем ktttt ,...,,, 210 . 

Процесс, протекающий в такой системе S, называется марковским процессом с дис-

кретными состояниями и дискретным временем (или, короче, марковской цепью), если 

выполняется условие: для любого фиксированного момента времени (любого шага k0) ус-

ловные вероятности состояний системы в будущем (при k > k0) зависят только от состоя-

ния системы в настоящем (при k = k0) и  не зависят от того, когда (на каком шаге, при k < 

k0) и откуда система пришла в это состояние. Марковская цепь представляет собой разно-

видность марковского процесса, в котором будущее зависит от прошлого только через на-

стоящее. 

Цепь, в которой условные вероятности состояний в будущем зависят только от со-

стояния на данном, последнем, шаге и не зависят от предыдущих, иногда называют про-

стой цепью Маркова, в отличие от такой, где будущее зависит от состояний системы не 

только в настоящем на данном шаге, но и от ее состояний на нескольких предыдущих ша-

гах; такую цепь называют сложной цепью Маркова. Сам А. А. Марков рассматривал 

сложные цепи, построенные на материале буквенных последовательностей, взятых из тек-

ста пушкинского «Евгения Онегина». 
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Если в качестве системы, в которой происходит случайный процесс, рассмотреть бу-

кву, входящую в текст, которой могут быть: а, б, в, .... щ, ъ, ы, ь, э, ю, я, «пробел», то сразу 

ясно, что вероятность последующей буквы быть той или другой зависит от того, какова 

была предыдущая (например, последовательности букв «яы» или «эь» в русском языке 

исключены); не так очевидно, но все же ясно, что эта вероятность зависит не только от 

предыдущей буквы, но и от других, ей предшествовавших (например, последовательность 

букв «ттт» в русском языке если не исключена, то практически невозможна, тогда как по-

следовательность «тт» встречается довольно часто). Мы в данном элементарном изложе-

нии будем рассматривать только простые цепи Маркова и вычислять для них вероятности 

состояний. 

Из определения марковской цепи следует, что для нее вероятность перехода системы 

S в состояние si на (k+1)-м шаге зависит только от того, в каком состоянии si находилась 

система на предыдущем k-м шаге и не зависит от того, как она вела себя до этого k-го ша-

га. 

Основной задачей исследования марковской цепи является нахождение безусловных 

вероятностей нахождения системы S на любом k-м шаге в состоянии si; обозначим эту ве-

роятность )(kpi : 

)()()( 0,1,2,...k n;1,2,......i  skSPkp ii .                      (6) 

Для нахождения этих вероятностей необходимо знать условные вероятности перехо-

да системы S на k-м шаге в состояние si, если известно, что на предыдущем (k - 1)-м шаге 

она была в состоянии si. Обозначим эту вероятность 

..),()(|)()( 0,1,2,.k n;1,2,......jis1kSskSPkp jiij .            (7) 

Вероятности )(kpij
 называются переходными вероятностями марковской цепи на k-

м шаге. Вероятность )(kpij
 есть вероятность того, что на k-м шаге система задержится 

(останется) в состоянии si. 

Переходные вероятности )(kpij
 можно записать в виде квадратной таблицы (матри-

цы) размерности n х n: 

)(

)(...)(...)()(

........................................................

)(...)(...)()(

.......................................................

)(...)(...)()(

)(...)(...)()(

)(

21

21

222221

111211

2,... 1, 0,k

kp    kp    kpkp

kp    kp    kpkp

kp    kp    kpkp

kp    kp    kpkp

kp

nnnjnn

inijii

nj

nj

ij

.                (8) 

По главной диагонали матрицы (8) стоят вероятности задержки системы в данном 

состоянии ),( n ... 1,js j
 на k-м шаге. 

)(),...,(),...,(),( 2211 kpkpkpkp nnii .                                  (9) 

Так как на каждом шаге система S может находиться только в одном из взаимно ис-

ключающих состояний, то для любой k-й строки матрицы (8) сумма всех стоящих в ней 

вероятностей равна единице: 
n

j

ij kp
1

1)( .                                                   (10) 

Матрица, обладающая таким свойством, называется стохастической. Естественно, 

что все элементы стохастической матрицы отвечают условию 1)(0 kpij . В силу усло-
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вия (10) можно в матрице (8) не задавать вероятности задержки, а получать их как допол-

нения до единицы всех остальных членов строки: 
n

j

ijii kpkp
1

)(1)( .                                           (11) 

Чтобы найти безусловные вероятности рi(k), недостаточно знать матрицу переход-

ных вероятностей (8); нужно еще знать начальное распределение вероятностей, т. е. веро-

ятности состояний pi(0), соответствующие началу процесса - моменту t0 = 0: 

)0(),...,0(),...,0(),0( 21 ni pppp
,                                  (12) 

в сумме образующие единицу: 
n

1i

i 1(0)p                                                      (13) 

Если известно, что в начальный момент система S находится во вполне определен-

ном состоянии si, то вероятность pi(0) этого состояния в формуле (13) равна единице, а все 

остальные - нулю: 

0)0(...)0()0(...)0()0(),0( 1121 iiii pppppp .              (14) 

Цепь Маркова называется однородной, если переходные вероятности )(kpij
 не зави-

сят от номера шага k: 
ijij pkp )(  . Матрица переходных вероятностей для однородной це-

пи Маркова имеет вид: 

nnnjnn

inijii

nj

nj

ij

pppp

pppp

pppp

pppp

p

......

...............................

......

................................

......

......

21

21

222221

111211

                                          (14) 

При выводе формул для вероятностей состояний, в целях простоты записи, будем 

рассматривать только однородные цепи Маркова (в случае, когда цепь неоднородна, мож-

но все переходные вероятности в формулах просто положить зависящими от номера шага 

k). 

При нахождении вероятностей состояний марковской цепи на k-м шаге 

)()( 1,2,...kkpi  удобно бывает пользоваться так называемым размеченным графом со-

стояний системы S, где возле каждой стрелки, ведущей из состояния si в состояние sj, про-

ставлена переходная вероятность ijp ; вероятности задержки на размеченном графе не 

проставляются, а просто получаются дополнением до единицы суммы вероятностей, 

стоящих у всех стрелок, ведущих из данного состояния si. 

Теперь покажем, как найти для однородной цепи Маркова безусловную вероятность 

нахождения системы S на k-м шаге в состоянии sj (j=1, 2, ..., n) 

jj skSkp )()( P ,                                                (15) 

если задана матрица переходных вероятностей ||рij|| (или, что равнозначно, разме-

ченный граф состояний) и начальное распределение вероятностей  

n

j

ij

i

kp

nip

1

1)(

).,...,2,1()0(

.                                            (16) 

Сделаем гипотезу, состоящую в том, что в начальный момент (k=0) система находи-

лась в состоянии si. Вероятность этой гипотезы известна из (16) и равна pi(0)=P{S(0)=si). В 
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предположении, что эта гипотеза имеет место, условная вероятность того, что система S 

на первом шаге будет в состоянии sj, равна переходной вероятности 

})0(|)1({)( ijij sSsSkp P . 

По формуле полной вероятности получим: 
n

1i

n

1i

iijiijj 1,...,n)(j(0),ppsS(0)Ps|S(0)sS(1)P1)p (    (17) 

Таким образом, мы нашли распределение вероятностей системы S на первом шаге. 

Теперь у нас есть все необходимое для того, чтобы найти распределение вероятностей на 

втором шаге, которое для цепи Маркова зависит только от распределения вероятностей на 

первом шаге и матрицы переходных вероятностей. 

Опять сделаем гипотезу, состоящую в том, что на первом шаге система находится в 

состоянии si вероятность этой гипотезы нам уже известна и равна ii sS(1)P(1)p . При 

этой гипотезе условная вероятность того, что на втором шаге система S будет в состоянии 

si, равна: 

ijij s)|S(sS(2)P(k)p 1  

По формуле полной вероятности находим 

)1,2,...,n,(j(1)pp(2)p
n

1i

ijij                              (18) 

Таким образом, мы выразили распределение вероятностей (18) на втором шаге через 

распределение вероятностей на первом шаге и матрицу ||рij||. Переходя таким же способом 

от k = 2 к k = 3 и т. д., получим рекуррентную формулу: 

1,2,...,n)j1,2,...,n;,(k1)p(kp(k)p
n

1i

ijij                (19) 

При некоторых условиях в цепи Маркова с возрастанием k (номера шага) устанавли-

вается стационарный режим, в котором система S продолжает блуждать по состояниям, но 

вероятности этих состояний уже от номера шага не зависят. Такие вероятности называют-

ся предельными (или финальными) вероятностями цепи Маркова. 

Например, если рассматривать ЭВМ в двух состояниях: s1 - исправна, s2 - не исправ-

на, то имеет место следующая динамика изменения вероятностей (при начальных услови-

ях): 

0,5749(4)0,583;p(3)0,61;p(2)0,7;p(1)0: p(0)1,p(0)p 111121 . 

Ниже мы покажем, что в этом случае (k)plimp 1
k

1 =0,4/(0,4+0,3)=0,5714. Таким 

образом, в рассматриваемой системе стационарный режим наступит практически через 

четыре шага. 

Можно убедиться в том, что в этом примере финальные вероятности не зависят от 

начальных условий. 

Сформулируем условия существования стационарного режима для системы S с ко-

нечным числом состояний n, в которой протекает марковский случайный процесс с дис-

кретными состояниями и дискретным временем (цепь Маркова): 

1. Множество всех состояний W системы S должно быть эргодическим. 

2. Цепь Маркова должна быть однородной: 

ijij pkp )(                                                (20) 

3. Цепь Маркова должна быть «достаточно хорошо перемешиваемой» (не должна 

быть «циклической»). 

Цепи Маркова, отвечающие этим условиям, будем называть эргодическими цепями 

Маркова. 
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1.11 Лекция 16-17 (Л-16-17) (4 ч.) 

Тема:  СМО, их свойства, классификация 

 

1.11.1  Вопросы лекции: 

 

1. Основные понятия теории систем массового обслуживания. 

2. СМО с отказами и СМО с ожиданием (очередью). 

3. Предельные вероятности состояний. 

4. Модели систем массового обслуживания при пуассоновских потоках заявок.  

 

1.11.2. Краткое содержание вопросов: 

 

1. Основные понятия теории систем массового обслуживания. 

Марковский случайный процесс с дискретными состояниями и непрерывным време-

нем характерен для систем массового обслуживания (СМО). 

 

Понятие систем массового обслуживания 
 

При решении задач оптимизации управления производством, информационными се-

тями, транспортными системами часто возникает ряд однотипных задач: 

 оценка пропускной способности каналов связи, системы автомобильных и желез-

ных дорог и т. п.; 

 оценка эффективности работы предприятия, компьютерной сети; 

 определение количества кналов связи и транспортных путей сообщения и др. 

Все эти задачи однотипны в том смысле, что в них присутствует массовый спрос на 

обслуживание. В удовлетворении этого спроса участвует определенная совокупность эле-

ментов, образующая систему массового обслуживания (СМО) (рис. 1). 

 

 

 
 

 

Рис. 1.  Система массового обслуживания 

Элементами СМО являются: 

 входной (входящий) поток требований (заявок) на обслуживание; 

 приборы (каналы) обслуживания; 

 очередь заявок, ожидающих обслуживания; 

 выходной (выходящий) поток обслуженных заявок; 

 поток не обслуженных заявок; 

 очередь свободных каналов (для многоканальных СМО). 

http://math.semestr.ru/cmo/cmo_otkaz.php
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Входящий поток - это совокупность заявок на обслуживание. Часто заявка отожде-

ствляется с ее носителем. Например, поток неисправной радиоаппаратуры, поступающий 

в мастерскую объединения, и представляет собой поток заявок - требований на обслужи-

вание в данной СМО. 

Как правило, на практике имеют дело с так называемыми рекуррентными потоками, 

потоками, обладающими свойствами: 

 стационарности; 

 ординарности; 

 ограниченного последействия. 

Первые два свойства мы определили ранее. Что касается ограниченного последейст-

вия, то оно заключается в том, что интервалы между поступающими заявками являются 

независимыми случайными величинами. 

Рекуррентных потоков много. Каждый закон распределения интервалов порождает 

свой рекуррентный поток. Рекуррентные потоки иначе называют потоками Пальма. 

Простейший стационарный поток - пуассоновский поток с полным отсутствием 

последействия. У него случайные интервалы между заявками имеют экспоненциальное 

распределение: 

 
здесь  - интенсивность потока. 

Название потока - пуассоновский - происходит от того, что для этого потока вероят-

ность  появления  заявок за интервал  определяется законом Пуассона: 

 
Именно такой поток предполагают проектировщики при разработке СМО. Вызвано 

это тремя причинами. 

Во-первых, поток этого типа в теории массового обслуживания аналогичен нор-

мальному закону распределения в теории вероятностей в том смысле, что к простейшему 

потоку приводит предельный переход для потока, являющегося суммой потоков с произ-

вольными характеристиками при бесконечном увеличении слагаемых и уменьшении их 

интенсивности. То есть сумма произвольных независимых (без преобладания) потоков с 

интенсивностями  является простейшим потоком с интенсивностью   

Во-вторых, если обслуживающие каналы (приборы) рассчитаны на простейший по-

ток заявок, то обслуживание других типов потоков (с той же интенсивностью) будет обес-

печено с не меньшей эффективностью. 

В-третьих, именно такой поток определяет марковский процесс в системе и, следо-

вательно, простоту математического анализа системы. При других потоках анализ функ-

ционирования СМО сложен. 

Часто встречаются системы, у которых поток входных заявок зависит от количества 

заявок, находящихся в обслуживании. Такие СМО называют замкнутыми (иначе -

 разомкнутыми). Например, работа мастерской связи объединения может быть представ-

лена моделью замкнутой СМО. Пусть эта мастерская предназначена для обслуживания 

радиостанций, которых в объединении . Каждая из них имеет интенсивность отка-

зов . Входной поток отказавшей аппаратуры будет иметь интенсивность : 

 
где  - количество радиостанций, уже находящихся в мастерской на ремонте. 

Заявки могут иметь разные права на начало обслуживания. В этом случае говорят, 

что заявки неоднородные. Преимущества одних потоков заявок перед другими задаются 

шкалой приоритетов. 

Важной характеристикой входного потока является коэффициент вариации: 
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  где  - математическое ожидание длины интервала;   - средне-

квадратическое отклонение случайной величины (длины интервала) . 

Для простейшего потока  

Для большинства реальных потоков . 

При  поток регулярный, детерминированный. 

Коэффициент вариации - характеристика, отражающая степень неравномерности по-

ступления заявок. 

Каналы (приборы) обслуживания. В СМО могут быть один или несколько обслу-

живающих приборов (каналов). Согласно с этим СМО называют одноканальными или 

многоканальными. 

Многоканальные СМО могут состоять из однотипных или разнотипных приборов. 

Обслуживающими приборами могут быть: 

 линии связи; 

 мастера ремонтных мастерских, продавцы, кассиры; 

 маршрутизаторы в компьютерных сетях; 

 транспортные средства; 

 платежные терминалы; 

 серверы, и др. 

Основная характеристика канала - время обслуживания. Как правило, время обслу-

живания - величина случайная. 

Обычно практики полагают, что время обслуживания имеет экспоненциальный за-

кон распределения: 

где  - интенсивность обслуживания,  ; 

 - математическое ожидание времени обслуживания. 

То есть процесс обслуживания - марковский, а это, как теперь нам известно, дает 

существенные удобства в численно-математическом моделировании. 

Кроме экспоненциального встречаются  -распределение Эрланга, гиперэкспонен-

циальное, треугольное и некоторые другие. Это нас не должно смущать, так как показано, 

что значение критериев эффективности СМО мало зависят от вида закона распределения 

вероятностей времени обслуживания. 

При исследовании СМО выпадает из рассмотрения сущность обслуживания, качест-

во обслуживания. 

Каналы могут быть абсолютно надежными, то есть не выходить из строя. Вернее, 

так может быть принято при исследовании. Каналы могут обладать конечной надежно-

стью. В этом случае модель СМО значительно сложнее. 

Очередь заявок. В силу случайного характера потоков заявок и обслуживания при-

шедшая заявка может застать канал (каналы) занятым обслуживанием предыдущей заяв-

ки. В этом случае она либо покинет СМО не обслуженной, либо останется в системе, 

ожидая начало своего обслуживания. В соответствии с этим различают: 

 СМО с отказами; 

 СМО с ожиданием. 

СМО с ожиданием - характеризуются наличием очередей. Очередь может иметь ог-

раниченную или неограниченную емкость:  

Исследователя обычно интересуют такие статистические характеристики, связанные 

с пребыванием заявок в очереди: 

 среднее количество заявок в очереди за интервал исследования; 
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 среднее время пребывания (ожидания) заявки в очереди. СМО с ограниченной 

емкостью очереди относят к СМО смешанного типа. 

СМО смешанного типа - такие СМО, в которых заявки имеют ограниченное время 

пребывания в очереди независимо от ее емкости. 

Выходящий поток - это поток обслуженных заявок, покидающих СМО. 

Встречаются случаи, когда заявки проходят через несколько СМО: транзитная связь, 

производственный конвейер и т. п. В этом случае выходящий поток является входящим 

для следующей СМО. 

Многофазные СМО, сети СМО - совокупность последовательно связанных между 

собой СМО 

Входящий поток первой СМО, пройдя через последующие СМО, искажается и это 

затрудняет моделирование. Однако, следует иметь в виду, что при простейшем входном 

потоке и экспоненциальном обслуживании (то есть в марковских системах) выходной по-

ток тоже простейший. Если время обслуживания имеет не экспоненциальное распределе-

ние, то выходящий поток не только не простейший, но и не рекуррентный. 

Заметим, что интервалы между заявками выходящего потока, это не то же самое, что 

интервалы обслуживания. Ведь может оказаться, что после окончания очередного обслу-

живания СМО какое-то время простаивает из-за отсутствия заявок. В этом случае интер-

вал выходящего потока состоит из времени незанятости СМО и интервала обслуживания 

первой, пришедшей после простоя, заявки. 

В системах с отказами есть поток необслуженных заявок. Если в СМО с отказами 

поступает рекуррентный поток, а обслуживание - экспоненциальное, то и поток необслу-

женных заявок - рекуррентный. 

Очереди свободных каналов 

В многоканальных СМО могут образовываться очереди свободных каналов. Количе-

ство свободных каналов - величина случайная. Исследователя могут интересовать различ-

ные характеристики этой случайной величины. Обычно это среднее число каналов, заня-

тых обслуживанием за интервал исследования. 

Таким образом, по признакам, влияющим на функционирование, СМО может при-

надлежать к одному из типов в соответствии с приводимой классификацией (рис. 2). 

 
Рис. 2  Классификация СМО 

Для обозначения простых (однофазных) СМО используется символика, предложен-

ная Кендаллом: 
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 - входящий поток заявок:  - рекуррентный поток;  - простей-

ший поток с показательным законом распределения вероятностей;  - регулярный 

или детерминированный поток (с постоянными интервалами между моментами поступле-

ния заявок). 

 - случайная длительность обслуживания:  или  - рекуррентное 

обслуживание с одной и той же функцией распределения  для разных кана-

лов;  - показательное обслуживание;  - регулярное обслуживание. 

 - количество обслуживающих каналов. Если n > 1, то система называется много-

канальной. 

 - количество мест для ожидания заявок в очереди. Если , то СМО с поте-

рями (без ожидания);  - система с неограниченным ожиданием;  - 

система с ограниченным числом мест для ожидания. 
 

2. СМО с отказами и СМО с ожиданием (очередью). 

СМО с ожиданием (очередью) 

В качестве показателей эффективности СМО с ожиданием, кроме уже известных показа-

телей — абсолютной  и относительной  пропускной способности, вероятности отка-

за , среднего числа занятых каналов к (для многоканальной системы) будем рассмат-

ривать также следующие: 

1)  — среднее число заявок в системе; 

2)  — среднее время пребывания заявки в системе; 

3)  — среднее число заявок в очереди (длина очереди); 

4)  — среднее время пребывания заявки в очереди; 

5)  — вероятность того, что канал занят (степень загрузки канала). 

Одноканальная система с неограниченной очередью 

На практике часто встречаются одноканальные СМО с неограниченной очередью (напри-

мер, телефон-автомат с одной будкой). Рассмотрим задачу. 

Имеется одноканальная СМО с очередью, на которую не наложены никакие ограни-

чения (ни по длине очереди, ни по времени ожидания). Поток заявок, поступающих в 

СМО, имеет интенсивность , а поток обслуживании — интенсивность . Необходимо 

найти предельные вероятности состояний и показатели эффективности СМО. 

Система может находиться в одном из состояний , по числу заявок, 

находящихся в СМО:  — канал свободен;  — канал занят (обслуживает заявку), оче-

реди нет;  — канал занят, одна заявка стоит в очереди;  — канал занят, 

 заявок стоят в очереди и т.д. 

 

 

Граф состояний СМО представлен на рис. 1. 

 

 
 

Рис. 1 

Это процесс гибели и размножения, но с бесконечным числом состояний, в котором ин-

тенсивность потока заявок равна , а интенсивность потока обслуживании . 

Прежде чем записать формулы предельных вероятностей, необходимо быть уверен-

ным в их существовании, ведь в случае, когда время , очередь может неограни-

ченно возрастать. Доказано, что если , т.е. среднее число приходящих заявок меньше 

http://math.semestr.ru/cmo/cmo_otkaz.php
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среднего числа обслуженных заявок (в единицу времени), то предельные вероятности су-

ществуют. Если , очередь растет до бесконечности. 

Для определения предельных вероятностей состояний воспользуемся формулами 

(16), (17) для процесса гибели и размножения (здесь мы допускаем известную нестро-

гость, так как ранее эти формулы были получены для случая конечного числа состояний 

системы). Получим: 

(1) 

Так как предельные вероятности существуют лишь при , то геометрический 

ряд со знаменателем , записанный в скобках в формуле (1), сходится к сумме, рав-

ной . Поэтому      (2)    и с учетом  

 
 

найдем предельные вероятности других состояний 

(3) 

 

Предельные вероятности  образуют убывающую геометриче-

скую профессию со знаменателем , следовательно, вероятность  — наибольшая. 

Это означает, что если СМО справляется с потоком заявок (при ), то наиболее веро-

ятным будет отсутствие заявок в системе. 

Среднее число заявок в системе  определим по формуле математического ожи-

дания, которая с учетом (34) примет вид 

(4) 

(суммирование от 1 до , так как нулевой член ). 

 

Можно показать, что формула (4) преобразуется (при ) к виду 

  (5) 

Найдем среднее число заявок в очереди . Очевидно, что 

 

 (6) 

где  — среднее число заявок, находящихся под обслуживанием. 

Среднее число заявок под обслуживанием определим по формуле математического ожи-

дания числа заявок под обслуживанием, принимающего значения 0 (если канал свободен) 

либо 1 (если канал занят):   

т.е. среднее число заявок под обслуживанием равно вероятности того, что канал занят: 

 (38)      В силу (2)    (7) 

Теперь по формуле (6) с учетом (5) и (7)      (8) 

Доказано, что при любом характере потока заявок, при любом распределении вре-

мени обслуживания, при любой дисциплине обслуживания среднее время пребывания заяв-

ки в системе (очереди) равна среднему числу заявок в системе (в очереди), деленному на 

интенсивность потока заявок, т.е. 

 (9)  
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 (10) 

формулы (9) и (10) называются формулами Литтла. Они вытекают из того, что в пре-

дельном, стационарном режиме среднее число заявок, прибывающих в систему, равно 

среднему числу заявок, покидающих ее: оба потока заявок имеют одну и ту же интен-

сивность . 

На основании формул (9) и (10) с учетом (5) и (8) среднее время пребывания заявки в сис-

теме определится по формуле:    (11) 

 

а среднее время пребывания заявки в очереди —    (12) 

Пример 8.  В порту имеется один причал для разгрузки судов. Интенсивность пото-

ка судов равна 0,4 (судов в сутки). Среднее время разгрузки одного судна составляет 2 су-

ток. Предполагается, что очередь может быть неограниченной длины. Найти показатели 

эффективности работы причала, а также вероятность того, что ожидают разгрузки не бо-

лее чем 2 судна. 

Решение.  Имеем . Так как , то очередь на 

разгрузку не может бесконечно возрастать и предельные вероятности существуют. Най-

дем их. 

 

 

Вероятность того, что причал свободен, по (2) , а вероятность 

того, что он занят, . По формуле (3) вероятности того, что у при-

чала находятся 1, 2, 3 судна (т.е. ожидают разгрузки 0, 1, 2 судна), равны 

 

 
 

Вероятность того, что ожидают разгрузку не более чем 2 судна, равна 

 

 
По формуле (8) среднее число судов, ожидающих разгруз-

ки,  среднее время ожидания разгрузки по формуле 

(10)  (сутки). 

По формуле (5) среднее число судов, находящихся у причала, 

 (сутки) (или проще по (6)  (сутки), а среднее время пребывания 

судна у причала по формуле (9)  (сутки). 

 

Очевидно, что эффективность разгрузки судов невысокая. Для ее повышения необходимо 

уменьшение среднего времени разгрузки судна  либо увеличение числа  причалов. 

 

Многоканальная СМО с неограниченной очередью 
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Рассмотрим задачу. Имеется n-канальная СМО с неограниченной очередью. Поток 

заявок, поступающих в СМО, имеет интенсивность , а поток обслуживании — интен-

сивность . Необходимо найти предельные вероятности состояний СМО и показатели ее 

эффективности. 

Система может находиться в одном из состояний 

 нумеруемых по числу заявок, находящихся в СМО:  — в системе нет заявок (все кана-

лы свободны);  — занят один канал, остальные свободны;  — заняты два канала, ос-

тальные свободны;  — занято  каналов, остальные свободны;  — заняты 

все  каналов (очереди нет);  — заняты все  каналов, в очереди одна заяв-

ка;  — заняты все  каналов,  заявок стоит в очереди, и т.д. 

Граф состояний системы показан на рис. 2. Обратим внимание на то, что в отличие 

от предыдущей СМО, интенсивность потока обслуживании (переводящего систему из од-

ного состояния в другое справа налево) не остается постоянной, а по мере увеличения 

числа заявок в СМО от 0 до  увеличивается от величины  до , так как соответст-

венно увеличивается число каналов обслуживания. При числе заявок в СМО большем, 

чем , интенсивность потока обслуживании сохраняется равной . 

 

 
Рис. 2 

 

Можно показать, что при  предельные вероятности существуют. Если , 

очередь растет до бесконечности. Используя формулы для процесса гибели и размноже-

ния, можно получить следующие формулы для предельных вероятностей состояний n-

канальной СМО с неограниченной очередью 

 

 (13) 

 

 (14) 

 

 (15) 

 

Вероятность того, что заявка окажется в очереди,   (16) 

 

Для n-канальной СМО с неограниченной очередью, используя прежние приемы, 

можно найти:    
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среднее число занятых каналов     (17) 

 

среднее число заявок в очереди   (18) 

 

среднее число заявок в системе     (19) 

 

 

Среднее время пребывания заявки в очереди и среднее время пребывания заявки в 

системе, как и ранее, находятся по формулам Литтла (10) и (9). 

Замечание.  Для СМО с неограниченной очередью при  любая заявка, при-

шедшая в систему, будет обслужена, т.е. вероятность отказа , относительная 

пропускная способность , а абсолютная пропускная способность равна интенсив-

ности входящего потока заявок, т.е. . 

Пример 9.  В универсаме к узлу расчета поступает поток покупателей с интенсив-

ностью  чел. в час. Средняя продолжительность обслуживания контролером-

кассиром одного покупателя  мин. Определить: 

а. Минимальное количество контролеров-кассиров , при котором очередь не 

будет расти до бесконечности, и соответствующие характеристики обслуживания 

при . 

б. Оптимальное количество  контролеров-кассиров, при котором относительная 

величина затрат , связанная с издержками на содержание каналов обслуживания и с 

пребыванием в очереди покупателей, задаваемая, например, как , бу-

дет минимальна, и сравнить характеристики обслуживания при  и . 

в. Вероятность того, что в очереди будет не более трех покупателей. 

Решение.  а. По условию  (1/ч)  (1/мин.). По формуле 

 . Очередь не будет возрастать до бесконечности при 

условии , т.е. при . Таким образом, минимальное количество контро-

леров-кассиров . 

 

Найдем характеристики обслуживания СМО при . 

Вероятность того, что в узле расчета отсутствуют покупатели, по формуле (13) 

 

 
т.е. в среднем 2,5% времени контролеры-кассиры будут простаивать. 

Вероятность того, что в узле расчета будет очередь, по (16)   

 
 

Среднее число покупателей, находящихся в очереди, по (18)    

 

Среднее время ожидания в очереди по (10)    (мин). 
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Среднее число покупателей в узле расчета по (19)  

Среднее время нахождения покупателей в узле расчета по (9)   (мин). 

 

Среднее число контролеров-кассиров, занятых обслуживанием покупателей, по 

(17) . 

Коэффициент (доля) занятых обслуживанием контролеров-

кассиров . 

Абсолютная пропускная способность узла расчета  (1/мин), или 81 (1/ч), 

т.е. 81 покупатель в час. 

Анализ характеристик обслуживания свидетельствует о значительной перегрузке уз-

ла расчета при наличии трех контролеров-кассиров. 

 

б. Относительная величина затрат при  

 

 
 

Рассчитаем относительную величину затрат при других значениях  (табл. 2). 

 

 
 

Как видно из табл. 2, минимальные затраты получены при  контролерах-

кассирах. 

Определим характеристики обслуживания узла расчета при . Полу-

чим 

 
Как видим, при  по сравнению с  существенно уменьшились вероят-

ность возникновения очереди , длина очереди  и среднее время пребывания в 

очереди , и соответственно среднее число покупателей  и среднее время нахо-

ждения в узле расчета , а также доля занятых обслуживанием контролеров . Но 

среднее число занятых обслуживанием контролеров-кассиров  и абсолютная пропускная 

способность узла расчета  естественно не изменились. 

 

в. Вероятность того, что в очереди будет не более 3 покупателей, определится как 
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где каждое слагаемое найдем по формулам (13)–(16). Получим при  

 

 
(Заметим, что в случае  контролеров-кассиров та же вероятность существенно 

меньше: ). 

Пример 10.  Железнодорожная касса с двумя окошками продает билеты в два пунк-

та  и . Интенсивность потока пассажиров, желающих купить билеты, для обоих пунк-

тов одинакова: (пассажиров в минуту). На обслуживание пассажиров 

кассир тратит в среднем 2 мин. Рассматриваются два варианта продажи билетов: первый 

— билеты продаются в одной кассе с двумя окошками одновременно в оба пункта  и , 

второй — билеты продаются в двух специализированных кассах (по одному окошку в ка-

ждой), одна только в пункт , другая — только в пункт . Необходимо: 

а. Сравнить два варианта продажи билетов по основным характеристикам обслужи-

вания. 

б. Определить, как надо изменить среднее время обслуживания одного пассажира, 

чтобы по второму варианту продажи пассажиры затрачивали на приобретение билетов в 

среднем меньше времени, чем по первому варианту. 

Решение.  

а. По первому варианту имеем двухканальную СМО, на которую поступает поток заявок 

интенсивностью ; интенсивность потока обслужива-

нии  . Так как , то предельные вероятно-

сти существуют. 

Вероятность простоя двух кассиров по (13) 

 
Среднее число пассажиров в очереди по (18) 

 
Среднее число пассажиров у кассы по (19) 

 
Среднее время на ожидание в очереди и покупку билетов равно соответственно (по 

формулам (10) и (9)): 

 (мин) и  (мин). 

По второму варианту имеем две одноканальные СМО (два специализированных 

окошка); на каждую поступает поток заявок с интенсивностью . По-

прежнему  , предельные вероятности существуют. По формулам 

(8), (5), (10), (9) 

 
Итак, по второму варианту увеличились и длина очереди, и среднее время ожидания 

в ней и в целом на покупку билетов. Такое различие объясняется тем, что в первом вари-

анте (двухканальная СМО) меньше средняя доля времени, которую простаивает каждый 

из двух кассиров: если он не занят обслуживанием пассажира, покупающего билет в 

пункт , он может заняться обслуживанием пассажира, покупающего билет в пункт , и 

наоборот. Во втором варианте такой взаимозаменяемости нет. 
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Можно заметить, что среднее время на покупку билетов по второму варианту увели-

чилось более чем в 2 раза. Такое значительное увеличение связано с тем, что СМО рабо-

тает на пределе своих возможностей : достаточно незначительно увеличить 

среднее время обслуживания , т.е. уменьшить , и  превзойдет 1, т.е. очередь начнет 

неограниченно возрастать. 

б. Выше было получено, что по первому варианту продажи билетов при среднем 

времени обслуживания одного пассажира  (мин) среднее время на покупку биле-

тов составит  (мин). По условию для второго варианта прода-

жи , или с учетом (5) и (9): . 

Полагая , получим , откуда най-

дем  или  (мин). 

Итак, средние затраты времени на покупку билетов по второму варианту продажи 

уменьшатся, если среднее время обслуживания одного пассажира уменьшится более чем 

на 0,17 мин, или более чем на 8,5%. 

СМО с ограниченной очередью 

СМО с ограниченной очередью отличаются от рассмотренных выше задач лишь тем, 

что число заявок в очереди ограничено (не может превосходить некоторого заданного ). 

Если новая заявка поступает в момент, когда все места в очереди заняты, она покидает 

СМО необслуженной, т.е. получает отказ. 

Очевидно: для вычисления предельных вероятностей состояний и показателей эф-

фективности таких СМО может быть использован тот же подход, что и выше, с той раз-

ницей, что суммировать надо не бесконечную прогрессию (как, например, мы делали при 

выводе формулы (2)), а конечную. Соответствующие формулы сведем в табл. 3. 

Среднее время пребывания заявки в очереди и в системе, как и ранее, определяем по 

формулам Литтла (12) и (11). 

Пример 11.  По условию примера 8 найти показатели эффективности работы при-

чала. Известно, что приходящее судно покидает причал (без разгрузки), если в очереди на 

разгрузку стоит более 3 судов. 

Решение.  По условию . Используем формулы, приведенные во второй гра-

фе табл. 3. 

Вероятность того, что причал свободен: 

 
Вероятность того, что приходящее судно покинет причал без разгрузки: 

 
Относительная пропускная способность причала: 

 
Абсолютная пропускная способность причала , т.е. в сред-

нем в сутки разгружается 0,35 судна. 

Среднее число судов, ожидающих разгрузку 

 

 
а среднее время ожидания разгрузки по (10)   

 (сутки). 
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Среднее число судов, находящихся у причала  , а 

среднее время пребывания судна у причала по (9):   (сутки). 

СМО с ограниченным временем ожидания 

На практике часто встречаются СМО с так называемыми «нетерпеливыми» заявка-

ми. Такие заявки могут уйти из очереди, если время ожидания превышает некоторую ве-

личину. В частности, такого рода заявки возникают в различных технологических систе-

мах, в которых задержка с началом обслуживания может привести к потере качества про-

дукции, в системах оперативного управления, когда срочные сообщения теряют ценность 

(или даже смысл), если они не поступают на обслуживание в течение определенного вре-

мени. 

В простейших математических моделях таких систем предполагается, что заявка 

может находиться в очереди случайное время, распределенное по показательному закону 

с некоторым параметром , т.е. можно условно считать, что каждая заявка, стоящая в 

очереди на обслуживание, может покинуть систему с интенсивностью . 

Соответствующие показатели эффективности СМО с ограниченным временем полу-

чаются на базе результатов, полученных для процесса гибели и размножения. 

В заключение отметим, что на практике часто встречаются замкнутые системы об-

служивания, у которых входящий поток заявок существенным образом зависит от со-

стояния самой СМО. В качестве примера можно привести ситуацию, когда на ремонтную 

базу поступают с мест эксплуатации некоторые машины: понятно, что чем больше машин 

находится в состоянии ремонта, тем меньше их продолжает эксплуатироваться и тем 

меньше интенсивность потока вновь поступающих на ремонт машин. Для замкнутых 

СМО характерным является ограниченное число источников заявок, причем каждый ис-

точник "блокируется" на время обслуживания его заявки (т.е. он не выдает новых заявок). 

В подобных системах при конечном числе состояний СМО предельные вероятности будут 

существовать при любых значениях интенсивностей потоков заявок и обслуживании. Они 

могут быть вычислены, если вновь обратиться к процессу гибели и размножения. 

 

3. Предельные вероятности состояний. 

Пусть имеется физическая система S={S1,S2,…Sn}, в которой протекает марковский 

случайный процесс с непрерывным временем (непрерывная цепь Маркова). Предполо-

жим, что lij=const, т. е. все потоки событий простейшие (стационарные пуассоновские). 

Записав систему дифференциальных уравнений Колмогорова для вероятностей состояний 

и проинтегрировав эти уравнения при заданных начальных условиях, мы полу-

чим p1(t),p2(t),… pn(t), при любом t. Поставим следующий вопрос, что будет происходить с 

системой S при t б.б. Будут ли функции pi(t) стремиться к каким-то пределам? Эти преде-

лы, если они существуют, называются предельными вероятностями состояний. Можно 

доказать теорему: если число состояний S конечно и из каждого состояния можно перейти 

(за то или иное число шагов) в каждое другое, то предельные вероятности состояний су-

ществуют и не зависят от начального состояния системы. Предположим, что поставленное 

условие выполнено и предельные вероятности существуют  

(i=1,2,…n), . 

Таким образом, при t б.б в системе S устанавливается некоторый предельный ста-

ционарный режим. Смысл этой вероятности: она представляет собой не что иное, как 

среднее относительное время пребывания системы в данном состоянии. Для вычисле-
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ния pi в системе уравнений Колмогорова, описывающих вероятности состояний, нужно 

положить все левые части (производные) равными 0. Систему получающихся линейных 

алгебраических уравнений надо решать совместно с уравнением. 

Схема гибели и размножения 
Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко на-

писать уравнения Колмогорова для вероятностей состояний, а также написать и решить 

алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается 

последние уравнения решить заранее, в буквенном виде. В частности, это удается сделать, 

если граф состояний системы представляет собой так называемую «схему гибели и раз-

множения». 

 
Рис. 1 

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 1. 

Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепоч-

ку, в которой каждое из средних состояний (S1, S2, ..., Sn-1) связано прямой и обратной 

стрелкой с каждым из соседних состояний — правым и левым, а крайние состояния (S0, 

Sn) — только с одним соседним состоянием. Термин «схема гибели и размножения» ведет 

начало от биологических задач, где подобной схемой описывается изменение численности 

популяции. 

Схема гибели и размножения очень часто встречается в разных задачах практики, в 

частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, 

найти для нее финальные вероятности состояний. 

Предположим, что все потоки событий, переводящие систему по стрелкам графа,— 

простейшие (для краткости будем называть и систему S и протекающий в ней процесс — 

простейшими). 

Пользуясь графом рис. 1, составим и решим алгебраические уравнения для финаль-

ных вероятностей состояний (их существование вытекает из того, что из каждого состоя-

ния можно перейти в каждое другое, и число состояний конечно). Для первого состояния 

S0 имеем:    (1) 

Для второго состояния S1:  

В силу (1) последнее равенство приводится к виду   

далее, совершенно аналогично    и вообще  , где k прини-

мает все значения от 0 до n. Итак, финальные вероятности р0, p1,..., рn удовлетворяют 

уравнениям 

(2) 

кроме того, надо учесть нормировочное условие  p0 + р1+ р2+…+ рn=1 (3) 

Решим эту систему уравнений. Из первого уравнения (2) выразим р1 через р0. 
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 (4)  Из второго, с учетом (4), получим:  (5) 

из третьего, с учетом (5),   (6)  и вообще, для любого k (от 1 до N): 

 (7) 

Обратим внимание на формулу (7). В числителе стоит произведение всех интенсив-

ностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния Sk), а 

в знаменателе — произведение всех интенсивностей, стоящих у стрелок, ведущих справа 

налево (с начала и до Sk). 

Таким образом, все вероятности состояний p1, р2, …, pn выражены через одну из них 

(p0). Подставим эти выражения в нормировочное условие (3). Получим, вынося за скобку 

p0: 

  отсюда получим выражение для р0. 

(8) 

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные 

вероятности выражены через р0 (см. формулы (4) — (7)). Заметим, что коэффициенты при 

p0 в каждой из них представляют собой не что иное, как последовательные члены ряда, 

стоящего после единицы в формуле (8). Значит, вычисляя р0, мы уже нашли все эти коэф-

фициенты. Полученные формулы очень полезны при решении простейших задач теории 

массового обслуживания. 

 

4. Модели систем массового обслуживания при пуассоновских потоках заявок.  

 

Простейший пуассоновский поток. 

Для решения большого числа прикладных задач бывает достаточным применить ма-

тематические модели однородных потоков, удовлетворяющих требованиям стационарно-

сти, без последействия и ординарности. 

Определение: Поток называется стационарным, если вероятность появле-

ния n событий на интервале времени (t,t+T) зависит от его расположения на временной 

оси t. 

Определение: Поток событий называется ординарным, если вероятность появления 

двух или более событий в течении элементарного интервала времени D t есть величина 

бесконечно малая по сравнению с вероятностью появления одного события на этом ин-

тервале, т.е. при n=2,3,… 

Определение: Поток событий называется потоком без последствия, если для любых 

непересекающихся интервалов времени число событий, попадающих на один из них, не 

зависит от числа событий, попадающих на другой. 

Определение: Если поток удовлетворяет требованиям стационарности, ординарности 

и без последствия он называется простейшим, пуассоновским потоком. 

Доказано, что для простейшего потока число n событий, попадающих на любой ин-

тервал z распределено по закону Пуассона: 

 (1) 

  

Вероятность того, что на интервале времени z не появится ни одного события равна: 
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(2) 

тогда вероятность противоположного события: 

где по определению P(T<z)=F(z) это функция распределения вероятности Т. Отсюда 

получим, что случайная величина Т распределена по показательному закону: 

 (3) 

параметр называют плотностью потока. Причем, 

 
  

Впервые описание модели простейшего потока появились в работах выдающихся 

физиков начала века – А. Эйнштейна и Ю. Смолуховского, посвященных броуновскому 

движению. 

Свойства простейшего пуассоновского потока. 

Известны два свойства простейшего потока, которые могут быть использованы при 

решении практических задач. 

 Введем величину a= х. В соответствии со свойствами Пуассоновского распреде-

ления при  оно стремится к нормальному. Поэтому для больших а для вычисления 

Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону 

с мат. ожиданием а можно воспользоваться следующим приближенным равенством: 

 

 
Еще одно свойство простейшего потока связано со следующей теоремой: 

Теорема: При показательном распределении интервала времени между требования-

ми Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон 

распределения. 

Доказательство: пусть Т распределено по показательному закону: 

Предположим, что промежуток а уже длился некоторое время а<Т. Найдем условный за-

кон распределения оставшейся части промежутка Т1=Т-а 

Fa(x)=P(T-a<x½ T>x) 

По теореме умножения вероятностей: 

P((T>a)(T-a<z))=P(T>z) P(T-a<z|T>a)=P(T>a) Fa(z). 

Отсюда, 

 
равносильно событию а<T<z+a, для которого P(а<T<z+a)=F(z+a)-F(a); с другой сто-

роны 

P(T>a)=1-F(a), таким образом 

Fa(x)=(F(z+a)-F(a))/(1-F(a)) 

Отсюда, учитывая (3): 
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Этим свойством обладает только один вид потоков – простейшие пуассоновские. 

Исследование задач ТСМО становится намного проще в предположении, что исход-

ный поток является простейшим пуассоновским. 

Однако критическое изучение условий, которые приводят к простейшему потоку, за-

ставляют сделать вывод, что простейшие потоки встречаются не так часто. Например, за-

частую нарушается ординарность – одновременно происходят заказ одного и того же но-

мера по телефону, необходимо ставить несколько машин под загрузку или разгрузку и т.д. 

Условие стационарности так же часто не выполняется, например, меняется интенсивность 

заказов на переговоры в течении суток. Несоблюдение условия без последствия так же 

является обычным. Примером этого может служить поломка машин таксопарка, которая 

может привести (из-за увеличения нагрузки) к поломкам других машин. 

Но в действительности простейшие потоки встречаются гораздо чаще, чем это ка-

жется после приведенных соображений. Объяснением этого занимался шведский ученый 

Пальма. Позднее Хинчин А.Я. доказал одну общую теорему, которая представляет исклю-

чительную теоретическую ценность. 

Хинчин доказал, что если поток является суммой большого числа n независимых ор-

динарных, стационарных потоков интенсивности которых и ни один из них не 

является сравнимым по мощности со всем суммарным потоком, то при некоторых анали-

тических ограничениях суммарный поток сходится к простейшему с интенсивностью 

 
Теорема Хинчина широко применяется на практике. Так под руководством Гнеденко 

был исследован поток судов, прибывающих в грузовой порт. Статистическая обработка 

позволила сделать вывод о достаточно хорошем совпадении реального потока с простей-

шим. На основании этого были сделаны прогнозы относительно прибытия судов на по-

следующие месяцы. 

Нестационарные пуассоновские потоки. 

Теорема Хинчина была обобщена на случай, когда слагаемые потоки являются неор-

динарными и нестационарными. При этом, если слагаемые потоки независимы и их ин-

тенсивность приблизительно одинакова, то суммарный поток близок к пуассоновскому, 

но с примененным параметром  (t). 

Причем (t) называется мгновенной плотностью. Она является пределом отноше-

ния среднего числа событий, приходящихся на элементарный интервал времени (t, t+x) к 

длине интервала, когда последний стремится к нулю. 

 
Здесь M(t) – мат ожидание числа событий на интервале  t. 

Доказано, что для такого потока число событий n попадающих на временной интер-

вал z, начинающихся в момент t0, распределено по закону Пуассона, а именно: 

( *), 

Где  - математическое ожидание числа событий на интервале (t0,t+x), равные: 

 

Здесь  очевидно зависит от длины интервала и от его положения на временной оси. 
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Аналогично тому как была выведена функция плотности распределения вероятности 

для простейшего пуассоновского потока (3), можно получить функцию плотности распре-

деления вероятности Т для нестационарного пуассоновского потока: 

 
Рассматриваемая модель принадлежит математику из Вильнюса Б.И. Григелионису. 

Этой математической моделью описывается огромнейшее число потоков – вызов врача к 

больному, поток телеграмм, поток заказов на переговоры, потоки пассажиров и т.д. 

Потоки с ограниченным последствием (потоки Пальма). 

Другим обобщением простейшего потока является поток Пальма: 

Определение: Потоком Пальма называется поток, обладающий свойствами стацио-

нарности, ординарности и независимости интервалов времени Т между событиями. 

Требование независимости интервалов Т является более слабым чем требование без 

последствия, поэтому такие потоки называют также потоками с ограниченными по-

следствиями. 

Теорема: пусть в систему поступает поток заявок типа Пальма. Заявка, заставшая все 

каналы занятыми, получает отказ. Если при этом время обслуживания имеет показатель-

ный закон распределения, то поток не обслуженных заявок является потоком Пальма. 

Простейший поток является частным случаем потока Пальма. Его независимые ин-

тервалы распределены по показательному закону. 

Еще одним примером потоков Пальма являются потоки Эрланга, которые могут 

быть получены следующим образом: 

Если из простейшего потока исключается каждое второе требование, то оставшийся 

поток образует поток второго порядка, если в потоке сохраняется каждое третье, то это – 

поток третьего порядка и т.д. Для потока к-го порядка функция плотности для интервала Т 

имеет вид: 

(**) 

C увеличением порядка k функция fk(х) убывает, но М[Т] возрастает: 

 
При достаточно большом k (практически при k-5) поток Эрланга k-ого порядка мож-

но считать нормальным с указанными М[T] и D[T]. Это следует из того, что интервал 

времени Т между двумя последовательными событиями в потоке Эрланга k-ого порядка 

представляет собой сумму k независимых случайных величин с одним законом распреде-

ления. Тогда на основании центральной предельной теоремы теории вероятностей имеем 

доказательство утверждения. 

Задавая различные значения k в (6) можно получить потоки, обладающие различны-

ми последействиями – от полного его отсутствия (k=1) до полной функциональной связи 

между моментами появления событий (регулярный поток). 

На самом деле: при k=1 получаем простейший поток, а при l =const и при k  по-

ток Эрланга приближается к регулярному. 

Свойства потоков Эрланга дает возможность широкого применения этой математи-

ческой модели. 

Потоки восстановления. 

На практике нередко приходится сталкиваться с потоками, получившими название 

потоков восстановления. Примером образования такого потока является ситуация, когда в 

состоянии непрерывной работы должно находиться устройство. Как только оно перестает 
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выполнять свои функции (старение, поломка) его заменяют на такое же, но новое. Момен-

ты замены tk, k=1,2, … являются случайными, так как длительность безотказной работы 

каждого устройства тоже величина случайная, независимая и имеет свое распределение 

F(z). В литературе такие потоки обозначают GI – общий входящий поток (general imput). 

Для потоков восстановления существует большое число разнообразных задач; в ча-

стности, задача определения вероятности того, что в течении заданного промежутка вре-

мени T появится k событий потока. Простых формул, которые были выведены для про-

стейшего потока, здесь уже нет. 

Интересными для практики являются потоки, которые с течениями времени “реде-

ют”, проходя через последовательность приборов обслуживания. Примером этого может 

быть деталь, которая проходит ряд операций и на каждой операции есть вероятность об-

наружения скрытого дефекта. В таких случаях деталь устраняется, а первоначальный по-

ток редеет. Еще одним примером может служить исправление последовательно во време-

ни текста несколькими корректорами. При этом количество незамеченных опечаток реде-

ет. Венгерским математиком А.Реньи был получен интересный результат, который заклю-

чается в следующем. Поток восстановления подвергается операции: каждое требование 

остается в потоке с вероятностью q и выбрасывается из потока с вероятностью p=1-q. Од-

новременно производится изменение масштаба времени: за единицу масштаба считается 

промежуток длиной q
-1

. Если это двойное преобразование обозначить символом Rq, то по-

следовательное проведение преобразований Rq1 , Rq2 , …, Rqn эквивалентно одному преоб-

разованию Rq1q2…qn . Теорема Реньи состоит в том, что если длительность безотказной ра-

боты распределена по закону F(х) имеет конечное математическое ожидание М и 

, 

то последовательность редеющих потоков стремится к простейшему пуассоновскому по-

току. Таким образом, в определенных условиях потоки восстановления становятся про-

стейшими, что еще раз подтверждает справедливость теоремы Хинчина. 

 

 

 

 

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 

ПО ПРОВЕДЕНИЮ ЛАБОРАТОРНЫХ ЗАНЯТИЙ (НЕ ПРЕДУСМОТРЕНЫ РПД) 

 

 

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

 

. 

 

3.1  Практическое занятие 1 - 2 (ПЗ-1-2)  

 

Тема: Случайные события, их вероятность.  

 
 3.1.1 Задание для работы: 

 

1. Элементы комбинаторики. Непосредственное вычисление вероятности случай-

ного события.  Операции над случайными событиями и их свойства. 

2. Теоремы о вероятности суммы случайных событий. Теоремы о вероятности 

суммы произведения событий. 

3.  Условная вероятность. Формула полной вероятности.  Формула Байеса. 
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3.1.2  Краткое описание проводимого занятия 

 

1. Элементы комбинаторики. Непосредственное вычисление вероятности случайного 

события.  Операции над случайными событиями и их свойства. 

Элементы комбинаторики 

 

Комбинаторика изучает способы подсчета числа элементов в конечных множествах. 

Формулы комбинаторики используются при непосредственном вычислении вероятностей. 

Приведем некоторые сведения. 

Соединениями называют различные группы предметов, составленные из каких-либо 

объектов. 

Элементами называются объекты, из которых составлены соединения. Рассмотрим 

следующие три вида соединений: перестановки, размещения и сочетания. 

Перестановками из n элементов называют соединения, содержащие все n   элементов 

и отличающиеся между собой лишь порядком элементов. 

Число перестановок из n элементов находится по формуле  !nPn , 

где п! - произведение натуральных чисел от 1 до n включительно, т.е. n!=1∙2∙3∙...∙n.  

Например, Р6 = 6!= 1 ∙ 2 ∙  3 ∙ 4 ∙  5 ∙ 6 = 720. 

Размещениями из n элементов по k в каждом (п ≥ k) называются такие соединения, в 

каждый из которых входит k элементов, взятых из данных n элементов, и отличающихся 

друг от друга либо самими элементами, либо порядком их расположения. 

Число размещений из n элементов по k находят по формуле 

)1)...(2)(1( knnnnAk
n или,  

)!(

!

kn

n
Ak

n  

 

Например,  360
21

654321

)!46(

!6
34564

6A  

Сочетаниями из n элементов по k (п>k) называют соединения, в каждый из которых 

входит k элементов, взятых из данных n элементов и отличающихся друг от друга, по край-

ней мере, одним элементом. Число сочетаний из n элементов по k находят по формуле: 

k

k
nk

n
P

A
C  или  

!)!(

!

kkn

n
C k

n . 

Для упрощения вычислений при nk
2

1
полезно использовать следующее свойство 

сочетаний:  kn
n

k
n CC . 

Замечания: 

1) по определению 10
nC ; 

2) для определения числа сочетаний справедливы равенства 
mn

n
m
n CC , 11

1
m
n

m
n

m
n CCC , nn

nnn CCC 2...10  

3) В записанных выше формулах комбинаторики предполагалось, что все n элементов 

различны. Если же некоторые элементы в соединениях повторяются, то в этом случае со-

единения с повторениями вычисляются по другим формулам. 

Пусть среди n элементов рассматриваемого множества есть n1 элементов одного вида, 

п2 элементов другого вида и т.д. Число перестановок с повторениями определяется по 

формуле  
!...!!

!
),...,,(

21
21

k
kn

nnn

n
nnnP , 
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где nnnn k...21 . 

Число размещений по т элементов с повторениями из n элементов равно п
т
, т.е. 

mm
n nA

повт. с
. 

Число сочетаний с повторениями из n элементов по т элементов равно числу сочета-

ний без повторений из (n+m-1) элементов по т, т.е. 
m

m-n
m
n CC 1повт. с

 

4) При решении задач комбинаторики можно использовать следующие правила: 

правило суммы. Если некоторый объект А может быть выбран из множества объек-

тов т способами, а объект В может быть выбран n способами, то выбрать либо А, либо В 

можно (т + п) способами. 

правило произведения. Если объект А можно выбрать из множества объектов т 

способами и после каждого такого выбора объект В можно выбрать n способами, то пара 

объектов (А, В) в указанном порядке может быть выбрана т · n способами. 

 

Непосредственное вычисление вероятности случайного события 

 

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из которых 4 красных и 6 

голубых. Из урны извлекается один шар. Какова вероятность того, что извлеченный шар 

окажется голубым? 

Решение. Событие, состоящее в том, что «извлеченный шар оказался голубым», обо-

значим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из 

которых 6 благоприятствуют появлению события А. По формуле классической вероятности 

события получим:  6,0
10

6
)(AP . 

Пример 2. Среди 25 студентов группы, в которой 10 девушек, разыгрывается 5 би-

летов лотереи. Найти вероятность того, что среди обладателей билетов окажутся две де-

вушки. 

Решение. Пусть А - событие, состоящее в том, что среди обладателей билетов окажут-

ся две девушки. Найдем числа m, n. 

Число всех равновозможных случаев распределения 5 билетов среди 25 студентов 

равно числу сочетаний из 25 элементов по 5, т.е. 5
15C ∙ Число групп по трое юношей из 15, 

которые могут получить билеты, равно 3
15C . Каждая такая тройка может сочетаться с лю-

бой парой из десяти девушек, а число таких пар равно 2
10C . Следовательно, число групп по 

5 студентов, образованных из групп в 25 студентов, в каждую из которых будут входить 

трое 

юношей и две девушки, равно произведению 2
10

3
15 CC . Это произведение равно числу 

благоприятствующих случаев распределения пяти билетов среди студентов группы так, 

чтобы три билета получили юноши и два билета - девушки. 

В соответствии с формулой 
n

m
AP )(  находим искомую вероятность 

385,0
506

195

2223

3513

22122232425

54109151413

!2!3!8!12!25

!5!10!15!20

!20!5

!25
:

!8!2

!10

!12!3

!15
)(

5
25

2
10

3
15

C

CC
AP  

Пример 3. В круг вписан квадрат (рис.2). В круг наудачу бросается 

точка. Какова вероятность того, что эта точка попадет в квадрат? 

Решение. Введем обозначения: R - радиус круга, а - сторона 

вписанного квадрата, А - событие, состоящее в том, что точка по-

пала в квадрат, S - площадь круга, S1 - площадь вписанного квадра-

та. Известно, что площадь круга S = πR
2
 .                                                          Рис. 2. 
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Сторона вписанного квадрата через радиус описанной окружности выражается 

формулой Ra 2 , поэтому площадь квадрата S1 = 2R
2
  

Полагая в формуле 
G

g

S

S
AP )(  Sg= S1, SG = S ,                                         

находим искомую вероятность 637,0
22

)(
2

2

R

R
AP .                     

               Замечание. Выражение стороны квадрата через радиус окружности можно полу-

чить следующим образом. Из треугольника KMN по теореме Пифагора будем иметь: KN
2
 

+ NM
2
 = КМ

2
 , т.е. 

a
2
 + a

2
=(2R)

2
, 2a

2
=4R

2
, a

2
 =2R

2
, Ra 2 . 

 

3.1.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия комбинаторики, теории случайных событий, классификацию 

случайных событий; 

- усвоили основные правила, применяемые в теории случайных событий; 

 

3.2  Практическое занятие 3 (ПЗ-3)  

 

Тема: Основные теоремы теории вероятностей.  

 
 3.2.1 Задание для работы: 

 

1. Теоремы о вероятности суммы случайных событий. Теоремы о вероятности 

суммы произведения событий. 

 

3.2.2  Краткое описание проводимого занятия 

 

1. Теоремы о вероятности суммы случайных событий. Теоремы о вероятности сум-

мы произведения событий. 

 

Пример 1. Подбрасываются два игральных кубика. Найти вероятность события А, 

состоящего в том, что - «сумма выпавших очков не превосходит четырех». 

Решение. Событие А - событие, состоящее в том, что есть сумма трех несовместных 

событий В2, В3, В4. Тогда сумма очков   равна   соответственно   2, 3, 4.   Поскольку 

36

1
)( 2BP , 

36

2
)( 3BP , 

36

3
)( 4BP , по теореме сложения вероятностей несовместных 

событий получим 

6

1

36

6

36

3

36

2

36

1
)()()()( 432 BPBPBPAP . 

Замечание. Этот же результат можно было получить, используя непосредственный 

подсчет вероятности. Действительно, событию А благоприятствуют 6 элементарных исхо-

дов: (1,1), (1,2), (2,1), (1,3), (3,1), (2,2). Всего же элементарных исходов, образующих пол-

ную группу событий, n= 36, поэтому 
6

1

36

6
)(AP . 

Пример 2. Три станка работают независимо. Вероятность того, что в течение смены 

станок (любой) потребует наладки равна 0,1. Найти вероятность того, что в течение смены 

хотя бы один станок из трех потребует внимания наладчика. 
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Решение. Пусть Аk - событие, заключающееся в том, что k- тый по счету станок по-

требует наладки в течение смены (k = 1, 2,3). Тогда событие А1 + А2 + А3 заключается в том, 

что в течение смены наладки потребует хотя бы один из трех станков. Сначала вычислим 

вероятность противоположного события 321 AAA , заключающегося в том, что все три 

станка всю смену проработают безотказно. Поскольку 321321 AAAAAA , причем со-

бытия 321 ,, AAA  независимы, то )()()()()( 321321321 APAPAPAAAPAAAP

по теореме умножения вероятностей для независимых событий. По условию Р(Аk)=0,1,тогда   

вероятность противоположного   события 9,0)(1)( kk APAP . Итак, 

)(1)( 321321 AAAPAAAP и искомая вероятность события будет 

271,09,09,09,01)( 321 AAAP . 

Пример 3. Имеются две урны с шариками трех цветов. В первой находятся 2 голубых, 

3 красных, 5 зеленых, а во второй - 4 голубых, 2 красных и 4 зеленых. Из каждой урны из-

влекают по одному шару и сравнивают их цвета. Найти вероятность того, что цвета выну-

тых шаров одинаковы (событие А). 

Решение. Обозначим событие, состоящее в извлечении из первой урны голубого ша-

ра, через В1, красного - С1, зеленого - D1 . Аналогичные события для второй урны обозна-

чим соответственно через В2 , С2 , D2 . Событие А наступает в случае В1В2 , С1С2 или D1D2. 

Они несовместны. Для вычисления искомой вероятности события А применим формулы ве-

роятностей суммы несовместных событий и произведения независимых событий 

Р(А) = P(B1B2+C1C2 + D1D2) = Р(В1В2) + Р(С1С2) + P(D1D2). 

Так как независимы события: В1 и В2 , С1 и С2, D1 и D2, то можно пользоваться фор-

мулой Р(АВ)= Р(А)Р(В) для каждой пары событий: 

Р(В1В2) = Р(В1)Р{В2), 

Р(С1С2) = Р(С1)Р(С2), 

P(D1D2) = P(D1)P(D2). 

Окончательно 

Р(А) = Р(В1 )Р(В2 ) + Р(С1 )Р(С2) + P(D1)P(D2 ) = 0,2 ∙ 0,4 + 0,3 ∙ 0,2 + 0,5 ∙ 0,4 = 0,34 

Пример4. Сколько раз нужно подбросить два игральных кубика, чтобы вероятность 

выпадения хотя бы один раз двух шестерок была бы больше 
2

1
? (Эта задача впервые по-

ставлена французским математиком и писателем де Мере (1610-1684 гг.), поэтому задача 

называется его именем). 

Решение. Пусть событие Аi  - «выпадение двух шестерок при i-м  подбрасывании». 

Так как с каждой из шести граней первого кубика может выпасть любая из шести граней 

второго кубика, 

то всего равновозможных попарно несовместных событий 6 ∙ 6 = 36. Только одно из них - 

выпадение шестерки и на первом и на втором кубике - благоприятствуют событию Ai. Сле-

довательно, 
36

1
)( iAP , откуда 

36

35

36

1
11 pq . 

Подбрасывание игральных кубиков - независимые испытания, поэтому воспользуем-

ся формулой 
nqAP 1)( , тогда в данном случае получим: 

2

1

36

35
1

n

, или 
2

1

36

35
n

. 

Решив неравенство, найдем п.  Логарифмируя обе части неравенства, получим 

2

1
ln

36

35
lnn , откуда 4,24

0284,0

6931,0

35ln36ln

2ln
n . 

Итак, чтобы вероятность выпадения двух шестерок была больше 
2

1
, достаточно 
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подбросить кубик не менее 25 раз. 

 

 

3.2.3 Результаты и выводы: В результате проведенного занятия студенты: 

- выработали навыки по вычислению вероятностей случайных событий, их суммы, произ-

ведения; 

 

3.3  Практическое занятие 4 (ПЗ-4)  

 

Тема: Условная вероятность. Следствия основных теорем теории вероятностей. 

 
 3.3.1 Задание для работы: 

 

1. Условная вероятность. Формула полной вероятности.  Формула Байеса. 

 

3.3.2  Краткое описание проводимого занятия 

 

1.  Условная вероятность. Формула полной вероятности.  Формула Байеса. 

Пример 1. Слово папаха составлено из букв разрезной азбуки. Карточки с буквами 

тщательно перемешаны. Четыре карточки извлекаются по очереди и раскладываются в 

ряд. Какова вероятность получить при этом слово папа? 

Решение. Обозначим через А, В, С, D соответственно события, состоящие в том, что: 

извлечена первая, вторая, третья и четвертая буква слова папа из набора в 6 букв: а, а, а, п, 

п, х. Найдем вероятности событий: А, В/А, С/АВ , D/ABC. 

3

1

6

2
)(AP ;  

5

3
)/( ABP ;  

4

1
)/( ABCP ;  

3

2
)/( ABCDP . 

В соответствии с формулой вероятности произведения зависимых событий при п=4 

будем иметь: 

P(ABCD) = Р(А)Р(В/ А)Р(С / AB)P(D/ ABC) =
30

1

3

2

4

1

5

3

3

1
. 

Пример 2. В пяти ящиках находятся одинаковые по размерам и весу шары. В двух 

ящиках - по 6 голубых и 4 красных шара (это ящик состава H1). В двух других ящиках (со-

става H2) - по 8 голубых и 2 красных шара. И в пятом ящике (состава H3) - 8 красных и 2 

голубых шара. Наудачу выбирается ящик, и из него извлекается шар. Какова вероятность 

того, что извлеченный шар оказался красным? 

Решение. Событие, состоящее в том, что «извлечен красный шар»   обозначим   через   

А.   Из условия задачи следует, что 4,0
5

2
)( 1HP , 4,0

5

2
)( 2HP , 2,0

5

1
)( 3HP . 

Вероятность вынуть красный шар, если известно, что взят ящик первого состава Н2, 

будет определяться так: 

4,0
10

4
)/( 1HAP  

Вероятность извлечь красный шар, если известно, что взят ящик второго состава H2, 

будет 

2,0
10

2
)/( 2HAP . Вероятность извлечь красный шар, если известно, что взят 

ящик третьего состава Н3, будет 8,0
10

8
)/( 3HAP . 
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При n = 3 находим искомую вероятность 

4,08,02,02,04,04,04,0)/()()/()()/()()( 332211 HAPHPHAPHPHAPHPAP

Пример 3. Партия электрических лампочек на 20% изготовлена первым заводом, на 30% - 

вторым, на 50% - третьим. Вероятность выпуска бракованных лампочек соответственно 

равны: q] = 0,01, q2 = 0,005 , q3 = 0,006 . Найти вероятность того, что наудачу взятая из пар-

тии лампочка окажется стандартной. 

Решение. Введем обозначения: А - событие, состоящее в том, что «из партии взята 

стандартная лампочка», H1 - событие, состоящее в том, что «взятая лампочка изготовлена 

первым заводом», Н2 - событие, состоящее в том, что «взятая лампочка изготовлена вторым 

заводом», Н3 - событие, состоящее в том, что взятая лампочка изготовлена «третьим заво-

дом». Найдем условные вероятности 

Р(А/Нi), (i= 1,2,3) по формуле Р(А/Нi) =1-Р( A / Нi), где A  - событие, противополож-

ное событию А (взята нестандартная лампочка): 

99,001,01)/(1)/( 11 HAPHAP , 

995,0005,01)/(1)/( 22 HAPHAP , 

994,0006,01)/(1)/( 33 HAPHAP . 

Из условия задачи следует, что Р(Н1) = 0,2, Р(Н2) = 0,3, Р(Н3) = 0,5. 

Получим по формуле полной вероятности:  

9935,0994,05,0995,03,099,02,0

)/()()/()()/()()( 332211 HAPHPHAPHPHAPHPAP
 

Пример 4. В пяти ящиках находятся одинаковые по весу и размерам шары. В двух 

ящиках - по 6 зеленых и 4 красных шара (по ящик состава H1). В двух других ящиках (со-

става H2) - по 8 зеленых и 2 красных шара. В одном ящике (состава H3 ) - 2 зеленых и 8 

красных шаров. Наудачу выбирается ящик, и из него извлекается шар. Извлеченный шар 

оказался голубым. Какова вероятность того, что зеленый шар извлечен из ящика первого 

состава? 

Решение. Обозначим через А событие, состоящее в том, что и i ящика извлечен голу-

бой шар. Из условия задачи следует, что 

4,0
5

2
)( 1HP ; 4,0

5

2
)( 2HP ; 2,0

5

1
)( 3HP . 

Вероятность вынуть голубой шар, если известно, что взят ящик состава H1,H2,...,H3 

соответственно будут равны: 

6,0
10

6
)/( 1HAP ; 

8,0
10

8
)/( 2HAP ; 

2,0
10

2
)/( 1HAP . 

По формуле полной вероятности находим Р(А) = 0,4 • 0,6 + 0,4 • 0,8 + 0,2 • 0,2 = 0,6 . 

По формуле Бейеса найдем искомую вероятность 

0,4
6,0

6,04,0

)(

)/()(
)/( 11

1
AP

HAPHP
AHP . 

3.3.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие условная вероятность, формулу полной вероятности, формулы Байеса; 

- усвоили основные правила применения формул Байеса. 

 

 

3.4  Практическое занятие 5-6 (ПЗ-5-6) 
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Тема:  Схема повторных испытаний.  

 

3.4.1 Задание для работы: 

 

1. Схема повторных испытаний. Формула Бернулли.  Формула Пуассона. 

2. Локальная формулы Лапласа.  Интегральная формула Лапласа. 

 

3.4.2  Краткое описание проводимого занятия 

 

1. Схема повторных испытаний. Формула Бернулли.  Формула Пуассона. 

Пример 1. Частица находится на прямой в начале координат. Под действием слу-

чайных толчков частица каждую секунду перемещается вправо (с вероятностью 
3

1
) или 

влево (с вероятностью 
3

2
) на единицу масштаба. Найти вероятность того, что через 4 се-

кунды частица вернется в начало координат. 

Решение. Через 4 секунды частица вернется в начало координат в том случае, если она 

переместится ровно два раза вправо (и, значит, два раза влево). По формуле Бернулли най-

дем вероятность того, что из четырех независимых перемещений частицы ровно два пере-

мещения будут вправо: 

4n   2k   
3

1
p   

3

2
q .  296,0

81

24

9

4

9

1
6

3

2

3

1
)2(4

22
2
4CP . 

Пример 2. Вероятность того, что при броске мяча баскетболист попадёт в корзину, 

равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую 

вероятность. 

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =) 

Решение: для оценки наивероятнейшего числа попаданий используем двойное неравенст-

во . В данном случае: 

 – всего бросков; 

 – вероятность попадания в корзину при каждом броске; 

 – вероятность промаха при каждом броске. 

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в сле-

дующих пределах: 

 
Поскольку левая граница – дробное число (пункт №1), то существует единственное наи-

вероятнейшее значение, и, очевидно, что оно равно . 

Используя формулу Бернулли ,  вычислим вероятность того, что при 8 

бросках будет ровно 2 попадания: 

  

Ответ:  – наивероятнейшее количество попаданий при 8 бросках,  

 – соответствующая вероятность. 
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Пример 3. Станок изготавливает за смену 100000 деталей. Вероятность изготовле-

ния бракованной детали p=0,0001. Найти вероятность того, что за смену будет изготовле-

но 5 бракованных деталей. 

Решение 
Обозначим n=100000, k=5, p=0,0001. События, состоящие в том, что отдельная деталь 

бракована, независимы, число испытаний велико, а вероятность мала, поэтому воспользу-

емся распределением Пуассона  

 
Пример 4.  Пусть известно, что при изготовлении некоторого препарата брак (коли-

чество упаковок, не соответствующих стандарту) составляет 0,2%. Оценить приближенно 

вероятность того, что серди 1000 наугад выбранных упаковок окажутся три упаковки, не 

соответствующие стандарту. 

Решение: Выбор каждой очередной упаковки можно рассматривать как независимое ис-

пытание. Из условий задачи следует, что n=1000 (т.е. велико) а p=0.002 (т.е. мало) следо-

вательно, А можно считать редким событием. λ=np=1000•0.002=2<10  

Воспользуемся приближенной формулой Пуассона или таблицей.  

 
 

2. Локальная формулы Лапласа.  Интегральная формула Лапласа. 

Пример 1. К электросети подключено 36 приборов, каждый мощностью 5 киловатт и 

потребляет в данный момент энергию с вероятностью 0,2. Найти вероятность того, что по-

требляемая в данный момент мощность: 

а) составит ровно 50 киловатт; 

б) превзойдет 50 киловатт. 

Решение. В случае а) надо найти вероятность того, что из 36 приборов работают ровно 

10. Применим локальную теорему Лапласа: 36n   10k   2,0p   8,0q . 

24npq  4,1
npq

npk
x .  0624,0)4,1(

4,2

1
)(

1
)10(36 x

npq
P . 

Значение функции локальной функции Лапласа φ(х) взято из таблицы приложений. 

В случае б) находим вероятность P36(k ≥ 10) того, что работают более десяти приборов. 

Применяем для решения этой части задачи интегральную теорему Лапласа. Находим сна-

чала значения x1, x2: 

4,11
npq

npk
x , 122

npq

npn
x / 

Тогда искомая вероятность будет: 

08808,04192,05,0)()()10( 1236 xxkP , 

Значения функции Лапласа 
x t

dtex

0

2

2

2

1
)(  взяты из таблицы приложений. 

Пример 2. В нерестовике содержится 200 рыб - производителей вида А. Вероятность 

отдачи икры в искусственных условиях рыбы вида А равна 
4

3
. Требуется найти вероят-

ность того, что 

икру отдадут 150 рыб. 

Решение. Вероятность того, что ровно 150 рыб из 200 отдадут икру, найдем, исполь-
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зуя локальную теорему Лапласа 

)(
1

2

11
)( 2

2

x
npq

e
npq

kP

x

n , где 
npq

npk
x . 

Значение функции φ(х) возьмем из таблицы. Находим: 

п = 200, npq = 200 ∙ 0,75 ∙ 0,25 = 150 ∙ 0,25 = 0,375 . 

т = к = пр = 150 12,6npq . 

р = 0,75       0
12,6

150150
x . 

q = 0,25. 

Получим: 07,0
12,6

3989,0
)0(

12,6

1
)150(200P . 

Пример 3. В партии из 400 деталей 80% - стандартных. Найти границы, в которых с 

вероятностью 0,9544 заключена доля стандартных деталей. 

Решение. Воспользуемся формулой, являющейся частным случаем формулы Муав-

ра-Лапласа 

pq

n
p

n

m
P 2)( , 

где т/п - доля числа наступивших событий А в п испытаниях, 

п - число испытаний, 

р - вероятность наступления события А в одном испытании,  

ε - величина отклонения доли т/п от вероятности р,  

q = 1 - р - вероятность ненаступления события А в одном испытании. 

Для данной задачи А - событие, состоящее в том, что деталь стандартная, п = 400; р = 

0,8; q=0,2; Р = 0,9544, величину ε нужно найти. 

Итак: 4772,0)50(
2,08,0

400
29544,0 . 

По таблице- приложений значений функции Лапласа Ф(х) находим, что ε · 50 = 2, 

следовательно, ε = 0,04. Таким образом, |m/n - 0,8| < 0,04 и 0,76 < т/п < 0,84 . 

 

3.4.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия, связанные со схемой повторных испытаний; 

- усвоили основные формулы, применяемые при решении задач по схеме повторных испы-

таний; 

- выработали навыки по вычислению вероятностей случайных событий по формулам Бер-

нулли, Пуассона, Лапласа; 

 

3.5  Практическое занятие 7 (ПЗ-7) 

Тема:  Простейший поток событий 

 

3.5.1 Задание для работы: 

 

1. Простейший поток событий. Вероятность случайного события с заданной интен-

сивностью. 

 

3.5.2  Краткое описание проводимого занятия 

 

/rnjn
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1. Простейший поток событий. Вероятность случайного события с заданной ин-

тенсивностью. 

Пример 1. Среднее число заявок, поступающих на предприятие бытового обслужи-

вания за 1 час, равно трем. Найти вероятность того, что за 2 часа поступит 5 заявок. Пред-

полагается, что поток заявок - простейший.  

Решение. По условию λ = 3, t =2 ,  k = 5. Воспользуемся формулой 

!

)(
)(

k

et
kP

tk

t . 

Искомая вероятность того, что за 2 часа поступит 5 заявок, равна 

268,0
120

00248,0)6(
)5(

5

2P . 

Пример 2. Среднее число заявок, поступающих на АТС в одну минуту, равно двум. 

Найти вероятности того, что за четыре минуты поступит: 

а) три вызова; 

б) менее трех вызовов; 

в) не менее трех вызовов. 

Решение, а) По условию λ = 3, t = 2 , k=5. Воспользуемся формулой: 

!

)(
)(

k

et
kP

tk

t    

Подставив данные условия задачи, получим: 03,0
6

000335,0512

!3

8
)3(

83

4

e
P . 

б) Найдем вероятность того, что за четыре минуты поступит менее трех вызовов, т.е. ни 

одного вызова, или один вызов, или два вызова. Поскольку эти события несовместны, 

применим теорему суммы несовместных событий: 

01,0000335,041
!2

8
8)2()1()0()3(

82
88

4444

e
eePPPkP . 

в) Найдем вероятность того, что за четыре минуты поступит не менее трех вызовов: 

так как события «поступило менее трех вызовов» и «поступило не менее трех вызовов» - 

противоположные, то сумма вероятностей этих событий равна единице: Р4(k <3) + Р4(k≥3) 

= 1. Поэтому 99,001,01)]2()1()0([1)3(1)3( 44444 PPPkPkP . 

 

3.5.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие случайный поток, его свойства; 

- усвоили основные правила формулы вероятности случайного события с заданной интен-

сивностью. 

 

3.6  Практическое занятие 8-9 (ПЗ-8-9) 

Тема:   Случайные величины. Функция и плотность распределения СВ.  

3.6.1 Задание для работы: 

 

1.Случайные величины, их классификация. Закон распределения случайной вели-

чины. Ряд распределения. 

2. Функция распределения .  Плотность распределения. 

 

3.6.2  Краткое описание проводимого занятия 
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1.Случайные величины, их классификация. Закон распределения случайной вели-

чины. Ряд распределения. 

Пример1. Найти закон распределения дискретной случайной величины X – числа 

появлений «орла» при двух бросаниях монеты. 

Решение. Возможные значения случайной величины: 0, 1, 2. Вероятности этих зна-

чений находим по формуле Бернулли: 

 
Записываем ряд распределения: 

X 0 1 2 

P 0.25 0.50 0.25 

Пример 2. В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и де-

сять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возмож-

ного выигрыша. 

Решение. Возможные значения величины X: x1 = 0; x2 = 10 и x3 = 50. Так как «пустых» 

билетов – 89, то p1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p2 = 0,10 и для 

выигрыша 50 у.е. – p3 = 0,01. Таким образом: 

X 0 10 50 

P 0,89 0,10 0,01 

Легко проконтролировать:  

Пример 3. Компьютер состоит из трех независимо работающих элементов: системного 

блока, монитора и клавиатуры. При однократном резком повышении напряжения вероят-

ность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить 

закон распределения числа отказавших элементов при скачке напряжения в сети. 

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что 

в n  испытаниях событие А появится ровно k раз: , или: 

X  0    1 …     k … n 

P  qn 
 

…   … pn 

Вернёмся к задаче. 

Возможные значения величины X (число отказов): 

x0 =0 – ни один из элементов не отказал; 

x1 =1 – отказ одного элемента; 

x2 =2 – отказ двух элементов; 

x3 =3 – отказ всех элементов. 

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим 

 , 
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 . 

Контроль: . 

Следовательно, искомый закон распределения: 

  
X 0 1 2 3 

p 0,729 0,243 0,027 0,001 

  

 

2. Функция распределения.  Плотность распределения. 

Функцией распределения случайной величины X Называется функция F(X), Определенная 

на всей числовой оси следующим образом:  F(X)= Р(Х < х), 

Т. е. F(X) есть вероятность того, что случайная величина X Примет значение мень-

шее, чем X. 

Функцию распределения можно представить графически. Для дискретной случайной 

величины график имеет ступенчатый вид. Построим, например, график функции распре-

деления случайной величины, заданной следующим рядом (рис. 1): 

X 0 1 2 

P 0.3 0.5 0.2 

 

 

 
Рис.1. График функции распределения 

 дискретной случайной величины 

Скачки функции происходят в точках, соответствующих возможным значениям случай-

ной величины, и равны вероятностям этих значений. В точках разрыва функция F(X) не-

прерывна слева. 

Задача 1. Дискретная случайная величина X задана законом распределения: 

X 2 5 8 

P 0,6 0,1 0,3 

Найти функцию распределения F(x) и построить ее график. 

Решение. Так как функция распределения, 

 для , то 

при  ; 

при  ; 

при  ; 

при  ; 

Соответствующий график: 
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Задача 2. Непрерывная случайная величина X задана дифференциальной функцией рас-

пределения: . 

Найти вероятность попадания X в интервал 

. 

Решение. Заметим, что это частный случай показательного закона распределения. 

Воспользуемся формулой: . 

. 

 

Задача 3. Случайная величина X  Задана плотностью распределения 

 
Требуется: 

А) найти значение коэффициента А; 

Б) найти функцию распределения; 

В) найти вероятность попадания случайной величины на интервал (0, ). 

Решение: 

 А) Воспользуемся свойством 3: 

 
Отсюда получаем: А=1/2. 

Б) Если , То 

 

Если  то 
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Если , то 

 
Таким образом, 

 
В) По свойству 4: 

 
3.6.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия, связанные теорией случайных величин; 

- усвоили классификацию СВ, алгоритм построения функции распределения ДСВ, нахож-

дения плотности распределения НСВ; 

- выработали навыки по вычислению вероятности попадания СВ в интервал; 

 

3.7  Практическое занятие 10 (ПЗ-10) 

Тема:   Числовые характеристики случайной величины 

 

3.7.1 Задание для работы: 

 

1.  Числовые характеристики ДСВ.  Числовые характеристики НСВ. Свойства чи-

словых характеристик, их интерпретация. 

 

3.7.2  Краткое описание проводимого занятия 

 

 1.  Числовые характеристики ДСВ.  Числовые характеристики НСВ. Свойства чи-

словых характеристик, их интерпретация. 

Пример 1. Найти математическое ожидание дискретной случайной величины, заданной 

рядом распределения: 

X 0 1 2 3 

P 0.2 0.4 0.3 0.1 

Решение. 

=0×0.2 + 1×0.4 + 2×0.3 + 3×0.1=1.3. 

Пример 2. Найти математическое ожидание случайной величины, заданной плотностью 

распределения: 

. 
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Решение.  

Пример 3. Найти дисперсию случайной величины, заданной рядом распределения  

 

 

X 0 1 2 
 

3 

P 0.2 0.4 0.3 
0,1 

 

Решение. Чтобы вычислить дисперсию, необходимо знать математическое ожидание. Для 

данной случайной величины выше было найдено: M=1.3. Вычисляем дисперсию по фор-

муле (3.5): 

 
Пример 4. Случайная величина задана плотностью распределения 

 
Найти дисперсию и среднее квадратическое отклонение. 

Решение. Находим сначала математическое ожидание: 

 
(как интеграл от нечетной функции по симметричному промежутку). 

Теперь вычисляем дисперсию и среднее квадратическое отклонение: 

 

 

 
Пример 5. Непрерывная случайная величина задана на интервале  плотно-

стью распределения , а вне этого интервала . Найти ее числовые 

характеристики. 

Решение. Математическое ожидание: 
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. 

Дисперсия: . 

Среднее квадратическое отклонение:  

 

3.7.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие числовых характеристик СВ, их свойства, интерпретацию; 

- выработали навыки вычисления числовых характеристик СВ. 

 

3.8  Практическое занятие 11-12 (ПЗ-11-12)  

Тема: Некоторые распределения ДСВ 

   

3.8.1 Задание для работы: 

 

1. Биномиальное распределение, его свойства, числовые характеристики. 

2. Распределение Пуассона, его свойства, числовые характеристики. Связь распре-

делений ДСВ с нормальным распределением. 

 

3.8.2  Краткое описание проводимого занятия 

 

1. Биномиальное распределение, его свойства, числовые характеристики. 

1. Математическое ожидание случайной величины через образующую функцию для би-

номиального распределения вычисляем по формуле   

2. Дисперсия  

Имея дисперсию нетрудно установить среднее математическое отклонение  

3. Коэффициент асимметрии А(Х) и эксцесс Е(Х) для биномиального распределения оп-

ределяют по формулам       

 

Задача 1. В партии однотипных деталей стандартные составляют 97%. Наугад из 

партии берут 400 деталей. Определить математическое ожидание, дисперсию и среднее 

квадратическое отклонение М(Х), D(X), S(Х) для дискретной случайной величины Х — по-

явления числа стандартных деталей среди 400 наугад взятых. 

Решение. Целочисленных случайная величина Х имеет биномиальное закон распре-

деления вероятностей, которая может принимать значения Х = k = 0, 1, 2, ..., 

400.Вероятности возможных значений для данной задачи определяются по формуле Бер-

нулли и составляют  где р = 0,97 — вероятность появления 

стандартной детали, q = 1 – p =1 – 0,97 = 0,03 — вероятность появления нестандартной 

детали. Согласно приведенным выше формулам определяем нужные величины: 
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Задача 2. Два ювелирные заводы производят свадебные кольца в объеме 3:7. Пер-

вый завод производит 95% колец без дефекта, второй – 90%. Молодая пара перед свадь-

бой покупает пару колец. Построить закон распределения, вычислить математическое 

ожидание и среднее квадратичное отклонение. 

Решение. Вероятность события А – куплена кольцо оказалась качественной опреде-

лим по формуле полной вероятности    

Случайная величина Х – количество колец надлежащего качества среди купленных 

имеет биномиальное закон распределения с параметрами 

 

Найдем соответствующие вероятности    

    
Запишем таблицу распределения 

 

 
На основе табличных данных вычисляем математическое ожидание 

 
дисперсию 

 

Среднее квадратичное отклонение   

Как можно убедиться из примеров, биномиальний закон распределения простой как 

для понимания так и для вычислений.  

 

2. Распределение Пуассона, его свойства, числовые характеристики. Связь распреде-

лений ДСВ с нормальным распределением. 

 

Дискретная случайная величина Х имеет закон распределения Пуассона, если веро-

ятности ее возможных значений   

вычисляется по формуле Пуассона, где a=np<10. Как правило, Пуассоновское распределе-

ние касается вероятности появления благоприятного события в большом количестве экс-

периментов, если в одном - вероятность успешного завершения стремится к нулю. 

1. Математическое ожидание определяется по формуле    

2. Дисперсия  определяется по формуле    

Среднее квадратическое отклонение  

Следовательно, для пуассоновского закона распределения вероятностей математиче-

ское ожидание и дисперсия равны произведению количества опытов на вероятность бла-

гоприятной события   

На практике, если математическое ожидание и дисперсия близкие по значению то 

принимают гипотезу, что исследуемая величина имеет закон распределения Пуассона. 

3. Асимметрия и эксцесс для пуассоновский закон также уровни и вычисляются по 

формулам    
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Задача 1. Микропроцессор имеет 10000 транзисторов, работающих независимо друг 

от друга. Вероятность того, что транзистор выйдет из строя во время работы прибора, яв-

ляется величиной маловероятной и составляет 0,0007. Определить математическое ожи-

дание М (Х) и среднее квадратическое отклонение S (Х) случайной величины Х — числа 

транзисторов, выйдут из строя во время работы процессора. 

Решение. Задача удовлетворяет всем законам пуассоновский распределения: 

количество испытаний n=10000 велика; 

вероятность р=0,0007 близка к нулю; 

их произведение a=np=7<10. 

На основе данных вычисляем заданные величины 

    
Задача 2. В рыбацком городке 99,99% мужчин хотя бы раз в жизни были на рыбал-

ке. Проводят социологические исследования среди 10000 наугад выбранных мужчин. Оп-

ределить дисперсию D (X) и среднее квадратическое отклонение S (Х) случайной величи-

ны Х — числа мужчин, которые ни разу не были на рыбалке. 

Решение. Легко убедиться, что величина Х имеет пуассоновский закон распределе-

ния. С условия задачи находим    

По формулам находим дисперсию и среднее квадратическое отклонение 

   
Геометрический закон распределения имеет место в таких науках как микробио-

логия, генетика, физика. На практике эксперимент или опыт осуществляют до первого по-

явления успешной события А. Число проведенных попыток будет целочисленной случай-

ной величиной 1,2,.... Вероятность появления события А в каждом опыте не зависит от 

предыдущих и составляет p, q=1-p. Вероятности возможных значений случайной величи-

ны Х определяется зависимостью 

 
Есть во всех предыдущих опытах кроме k-го эксперимент дал плохой результат и 

только в k-му был успешным. Данную формулу вероятностей называют геометрическим 

законом распределения, поскольку правая его часть совпадает с выражением общего эле-

мента геометрической прогрессии. 

 1. Математическое ожидание   

 

2. Дисперсию и среднее квадратическое отклонение по формулам  

 
3. Коэффициент асимметрии и эксцесса для геометрического распределения опреде-

ляют по формуле       

 Пример 1. Игральная кость подбрасывается до первого появления цифры 1. Опре-

делить все числовые характеристики М (Х), D (X), S (Х), A(X), E(X) для случайной вели-

чины Х числа осуществляемых подбрасываний. 

Решение. По условию задачи случайная величина Х является целочисленной с гео-

метрическим закон распределения вероятностей. Вероятность успешного подбрасывания 

величина постоянная и равна единице разделенной на количество граней кубика 
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Имея p,q необходимые числовые характеристики Х находим по приведенным выше 

формулам 

       

    
Пример 2. Охотник-любитель стреляет из ружья по неподвижной мишени. Вероят-

ность попасть в мишень при одном выстреле является величиной постоянной и равна 0,65. 

Стрельба по мишени ведется до первого попадания. 

Определить числовые характеристики М (Х), D (X), S (Х), A(X), E(X) числа израсхо-

дованных охотником патронов. 

Решение. Случайная величина Х подчиняется геометрическому закона распределе-

ния поэтому вероятность попадания в каждой попытке постоянна и составля-

ет p=0,65;q=1-p=0,35. 

По формулам вычисляем математическое ожидание    

Дисперсию    

среднее квадратическое отклонение    

асимметрию    

эксцесс    

Вычисление числовых характеристик для геометрического закона распределения не 

так сложны, поэтому пользуйтесь приведенным формулам в подобных задачах и получай-

те только правильные результаты. 

Гипергеометрический закон распределения вероятностей столь тяжелый при пер-

вом ознакомлении, что лучше всего его объяснять на конкретном примере. 

Пусть задано некоторое множество однотипных элементов, число которых равно N; 

из них K элементов имеют, например, признак А (цвет, стандартность, наполнения), а ос-

тальные N-K элементов - признак В. С этого множества наугад берут n элементов. Слу-

чайная величина X – число элементов с признаком вида А, что случается среди n наугад 

взятых элементов. Тогда X принимает значения k=0,1,2,...,min(n,K) , а вероятность их по-

явления определяется гипергеометрическим законом распределения 

 

 
Числовые характеристики этого закона вычисляются по приведенным ниже форму-

лам: 

1. Математическое ожидание     
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2. Дисперсия и среднее квадратическое отклонение 

 

 

3. Для асимметрии    

и эксцесса    

Рассмотрим несколько примеров на применение приведенных выше формул 

Пример 1. В ящике содержится 10 однотипных деталей, из них 7 стандартных, а ос-

тальные являются бракованными. Наугад из ящика берут m деталей. Построить законы 

распределения целочисленной случайной величины Х — появление числа стандартных 

деталей среди m наугад взятых и вычислить математическое ожидание М(Х), дисперсию 

D (X), и среднее математическое отклонение S(Х), если  m = 3 

Решение. Построим гипергеометрические законы распределения: 

 Имеем следующие начальные условия для случая выбора трех деталей 

n = 3; N=10; K= 7; N-K= 3; k = 0, 1, 2, 3. 

В табличной форме гипергеометрический закон для этих данных имеет вид 

 
или после вычисления сочетаний 

 

 

 

 
в виде таблицы вероятностей 

 
Условие нормирования 
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выполняется, следовательно все верно посчитано. Не ленитесь проверять его, оно намного 

скорее укажет Вам на присутствие ошибки при неправильной правой части. Вычисляем 

числовые характеристики: 

Математическое ожидание 

 
Дисперсию 

 

 

Среднее квадратичное отклонение    

 

3.8.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия, связанные с определением закона распределения СВ; 

- усвоили способы задания СВ, распределенных биномиально, по закону Пуассона, геомет-

рически, гипергеометрически; 

- выработали навыки по вычислению числовых характеристик СВ, распределенных бино-

миально, по закону Пуассона, геометрически, гипергеометрически. 

 

3.9  Практическое занятие 13-14 (ПЗ-13-14)  

Тема: Некоторые распределения НСВ 

 

3.9.1 Задание для работы: 

 

1. Равномерное распределение. Показательное распределение. 

2. Нормальное распределение, его свойства. 

 

3.9.2  Краткое описание проводимого занятия 

 

1. Равномерное распределение. Показательное распределение. 

СВ имеет равномерное распределение, если некотором интервале плотность вероят-

ностей принимает постоянное значение 

 
Функция распределения вероятностей для равномерного закона определяется интег-

рированием 

 

Математическое ожидание в таких случаях определяют зависимости   

дисперсию по формуле   
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и среднее квадратическое отклонение через корень   

Вероятность попадания случайной величины Х в некоторый интервал , содер-

жащийся внутри интервала  определяется по формуле   

Пример 1. Найти математическое ожидание, дисперсию и среднее квадратическое 

отклонение М (Х), D (X), S (Х), Найти математическое ожидание, дисперсию и среднее 

квадратическое отклонение Х имеет равномерный закон распределения и возможные зна-

чения ее значение лежит в диапазоне 1..50: 

. 

Решение. По условию задачи имеем следующие данные n = 50, p = 1/50=0,02. 

Согласно формулам вычисляем математическое ожидание 

 
дисперсия 

 
среднее квадратическое отклонение 

 
Пример 2. Поезда в метро прибывают на станцию каждые 10 минут. Определить ве-

роятность того, что время ожидания состава не будет больше 4 минуты. 

Решение. По условию задачи имеем два интервала 

 
Согласно формуле, искомая вероятность равна доле этих величин 

 
Показательное распределение. 

Показатель Показательный закон распределения 

Определение 

Показательным (экспоненциальным) называется распределение вероятно-

стей непрерывной случайной величины X, которое описывается плотностью, 

имеющей вид 

 
где λ – постоянная положительная величина 

Функция распределения 

 

Вероятностьпопадания в 

интервал 
 

Математическое ожида-

ние 
 

Дисперсия 
 

Среднее квадратическое 

отклонение 
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Пример 1. Показательное распределение задано при x ≥ 0 плотностью f(x) = 5e – 5x. 

Требуется: а) записать выражение для функции распределения; б) найти вероятность того, 

что в результате испытания X попадает в интервал (1;4); в) найти вероятность того, что в 

результате испытания X ≥ 2 ; г) вычислить M(X), D(X), σ(X). 

Решение.  

1. Поскольку по условию задано показательное распределение, то из формулы плот-

ности распределения вероятностей случайной величины X получаем λ = 5. Тогда функция 

распределения будет иметь вид: 

 
2. Вероятность того, что в результате испытания X попадает в интервал (1;4)  

будем находить по формуле:  P(a < X < b) = e−λa − e−λb. 

P(1 < X < 4) = e−5*1 − e−5*4 = e−5 − e−20. 

3. Вероятность того, что в результате испытания X ≥ 2 будем находить по фор 

муле: P(a < X < b) = e−λa − e−λb при a=2, b=∞. 

Р(Х≥2) = P(1< X < 4) = e−λ*2 − e−λ*∞ = e−2λ − e−∞= e−2λ - 0 = e−10 (т.к. предел 

e−х при  

х стремящемся к ∞ равен нулю). 

4. Находим для показательного распределения: 

математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2; 

дисперсию по формуле D(X) = 1/ λ2= 1/25 = 0,04; 

среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2. 

 

Пример 2 . Непрерывная случайная величина X распределена по показательному за-

кону 

 При ;  при . Найти математическое ожидание, сред-

нее квадратическое отклонение и дисперсию X. 

Решение: По условию,  Следовательно, 

, 

 
Пример 3. Время безотказной работы устройства распределено по закону 

   

Найти среднее время безотказной работы устройства, вероятность того, что устрой-

ство не откажет за среднее время безотказной работы. Найти вероятность отказа за вре-

мя t= 100 часов. 

Решение: 

По условию интенсивность отказов m =0,02. Тогда среднее время между двумя отка-

зами, т.е. математическое ожидание М(Х)=1/0,02=50часов. Вероятность безотказной рабо-

ты за этот промежуток времени вычислим по функции надежности: 

 
По функции F(t) вычислим вероятность отказа за время t =100 часов: 

 
 

2. Нормальное распределение, его свойства. 

Дадим понятие нормального закона распределения, функции распределения та-

кого закона, порядка вычисления вероятности попадания случайной величины 

Х в определенный интервал. 
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№ Показатель Нормальный закон распределения Примечание 

1 Определение 

Нормальным называется распределение 

вероятностей непрерывной случайной ве-

личины X, плотность которого имеет вид 
 

 

где mx – математическое ожидание 

случайной величины Х, σx – среднее 

квадратическое отклонение 

2 
Функция распреде-

ления 

 

 

3 
Вероят-

ность попадания в 

интервал (а;b) 
  

- интегральная функция Лапласа 

4 

Вероятность того, 

что абсолютная ве-

личина отклонения 

меньше положи-

тельного числа δ 
 

при mx= 0 

 

 

 Задача. Математическое ожидание нормально распределенной случайной величи-

ны  , а среднее квадратическое отклонение - . Найти вероятность того, 

что в результате испытания X примет значение из интервала  и записать 

закон распределения. 

Решение. Запишем вначале закон распределения. Общая формула имеет 

вид: . 

Подставляя  и , получим: . 

Вероятность того, что X примет значение из интервала  имеет вид: 

, где – 

функция Лапласа. 

Значения этой функции находятся с помощью таблицы. 

В нашем слу-

чае: . 

По таблице находим: , следовательно: 

. 

Задача. Длина X некоторой детали представляет собой случайную величину, рас-

пределенную по нормальному закону распределения, и имеет среднее значение 20 мм и 

среднее квадратическое отклонение – 0,2 мм. 
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Необходимо: 

а) записать выражение плотности распределения; 

б) найти вероятность того, что длина детали будет заключена между 19,7 и 20,3 мм; 

в) найти вероятность того, что величина отклонения не превышает 0,1 мм; 

г) определить, какой процент составляют детали, отклонение которых от среднего 

значения не превышает 0,1 мм; 

д) найти, каким должно быть задано отклонение, чтобы процент деталей, отклонение 

которых от среднего не превышает заданного, повысился до 54%; 

е) найти интервал, симметричный относительно среднего значения, в котором будет нахо-

диться X с вероятностью 0,95. 

Решение. а) Плотность вероятности случайной величины X, распределенной по 

нормальному закону находим  

при условии, что mx=20, σ =0,2. 

б) Для нормального распределения случайной величины вероятность попасть в ин-

тервал (19,7; 20,3) определяется   

Ф((20,3-20)/0,2) – Ф((19,7-20)/0,2) = Ф(0,3/0,2) – Ф(-0,3/0,2) = 2Ф(0,3/0,2) =  

2Ф(1,5) = 2*0,4332 = 0,8664.  

Значение Ф(1,5) = 0,4332 мы нашли в приложениях, в таблице значений интеграль-

ной функции Лапласа Φ(x) ( 

в) Вероятность того, что абсолютная величина отклонения меньше положительного 

числа 0,1 найдем  

Р(|Х-20| < 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383. 

Значение Ф(0,5) = 0,1915 мы нашли в приложениях, в таблице значений интеграль-

ной функции Лапласа Φ(x) 

г) Поскольку вероятность отклонения, меньшего 0,1 мм, равна 0,383, то отсюда сле-

дует, что в среднем 38,3 детали из 100 окажутся с таким отклонением, т.е. 38,3%. 

д) Поскольку процент деталей, отклонение которых от среднего не превышает за-

данного, повысился до 54%, то Р(|Х-20| < δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а 

значит Ф(δ/σ) = 0,27. 

Используя приложение, находим δ/σ = 0,74. Отсюда δ = 0,74*σ =  

0,74*0,2 = 0,148 мм. 

е) Поскольку искомый интервал симметричен относительно среднего значения mx = 

20, то его можно определить как множество значений X, удовлетворяющих неравенству  

20 − δ < X < 20 + δ или |x − 20| < δ . 

По условию вероятность нахождения X в искомом интервале равна 0,95, значит  

P(|x − 20| < δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 

 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475. 

Используя приложение находим δ/σ = 1,96. Отсюда δ = 1,96*σ = 1,96*0,2 = 0,392.  

 

Искомый интервал: (20 – 0,392; 20 + 0,392) или (19,608; 20,392). 
 

Пример: Случайная величина  имеет нормальное распределение с математиче-

ским ожиданием  и средним квадратическим отклонением . Найти вероят-

ность того, что случайная величина  примет значение, принадлежащее интервалу  

Решение. 
Известно, что вероятность того, что нормально распределенная случайная величи-

на  примет значение, принадлежащее интервалу , равна: 
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, 

где  – математическое ожидание,  – среднее квадратическое отклонение. 

По условию . Следовательно, 

 

Ответ:  
 

3.9.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия, связанные с определением закона распределения НСВ; 

- усвоили способы задания СВ, распределенных равномерно, показательно, нормально; 

- выработали навыки по вычислению числовых характеристик СВ, распределенных равно-

мерно, показательно, нормально; 

- усвоили основные свойства СВ, распределенных нормально, свойства кривой Гаусса, 

правило трех сигм. 

 

3.10  Практическое занятие 15-18 (ПЗ-15-18)  

Тема: Случайный вектор. Распределение многомерной СВ. Условные законы распределе-

ния, характеристики. 

 

3.10.1 Задание для работы: 

 

1.Основные понятия многомерного статистического анализа. Условные распреде-

ления многомерной СВ 

2. Числовые характеристики случайного вектора. Условные числовые характери-

стики СВ. 

3.Многомерное нормальное распределение. 

 

3.10.2  Краткое описание проводимого занятия 

 

 

1.Основные понятия многомерного статистического анализа. Условные распределе-

ния многомерной СВ 

Пример 1. Дана двумерная функция распределения: , 

где , . Найти вероятность попадания случайной точки  в пря-

моугольник, ограниченный прямыми , , , . 

Решение.  

. 
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Ответ: . 

Пример 2. Закон распределения двумерного дискретного случайного вектора 

 задан таблицей: 

 

             Y 

       X 

–1 1 

0 0,1 0,06 

1 0,3 0,18 

2 0,2 0,16 

Найти: одномерные законы распределения компонент X и Y; вероятность . 

Составить функцию распределения . 

Решение. 1) Одномерные законы  и  распределения компонент X и Y  

соответственно построены в таблице: 

  

Y 

X 

–1 1 
 

0 0,1 0,06 0,16 

1 0,3 0,18 0,48 

2 0,2 0,16 0,36 

 

0,6 0,4 1 

2) . 

3) Согласно определению функции распределе-

ния . Напомним, что геометри-

чески значение  – это вероятность попадания слу-

чайной точки  в бесконечный квадрант с верши-

ной . Для вершины этого квадранта, согласно условию 

задачи, есть двенадцать областей, образованных тремя вер-

тикальными прямыми , ,  и двумя горизон-

тальными прямыми , . 

На рис.  показан случай, когда вершина  находится 

внутри прямоугольника , . При этом внутри квадранта находится 

только одна точка с координатами , в которой имеется ненулевая вероятность, 

равная 0,1. Функцию распределения  удобно задавать в виде таблицы (ее значе-

ние для случая, когда вершина  квадранта находится внутри прямоугольни-

ка ,  выделено жирным шрифтом): 

   

y 

x 
   

 

0 0 0 

 

0 0,1 0,16 

 

0 0,4 0,64 

 

0 0,6 1 
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Пример 3. Известна функция распределения  двумерного дискретного 

случайного вектора : 

  

 

y 

x 
    

 

0 0 0 0 

 

0 0,5 0,5 0,5 

 

0 0,5 0,75 0,75 

 

0 0,5 0,75 0,875 

 

0 0,5 0,75 1 

Составить функции распределения  и  компонент X и Y, а затем 

построить их законы распределения. 

Решение. Учитывая, что , , получим 

(«проходя» соответственно по последнему столбцу и последней строке таблицы): 

    

Значит, для случайной величины X функция распределения испытывает «скачки» в 

точках , для случайной величины Y – в точках . Поэтому законы 

распределения компонент выглядят следующим образом: 

X 0 1 2 3   Y 1 2 3 

 

0,5 0,25 0,125 0,125   
 

0,5 0,25 0,25 

  

Пример 4. Известна функция плотности двумерного случайного вектора : 

, . 

Составить функцию распределения . 

Решение. По определению функции распределения 

, 

поэтому: 

 

. 

Ответ: . 
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Пример 5 Найти плотность распределения двумерного случайного вектора , 

если известна функция распределения 

 

Решение. Согласно свойству 2  во всех точках непрерывно-

сти функции . Поэтому 

 

Ответ:  

Пример 6 (двумерное равномерное распределение). Плотность  равномер-

ного распределения на области  конечной двумерной площади : 

 

Вероятность  в этом случае оп-

ределяется отношением площадей 

 и S (рис.): 

. 

Замечание. По последней формуле вычисля-

ются так называемые геометрические вероятности. 

Пример 7. Двумерный случайный век-

тор  подчинен закону распределения с 

плотностью 

 

Область D – треугольник, ограниченный прямыми , , . Най-

ти коэффициент а. 

Решение. Согласно условию нормировки . Поскольку только в 

области D подынтегральная функция  отлична от нуля, то имеем уравнение 

, или . 

Тогда 

 



134 

 

. 

Отсюда, решая уравнение , получим . 

Ответ: . 

Пример 8. Известна функция плотности двумерного слу-

чайного вектора  (рис. 2.2.5): 

 

Найти плотности распределения  и  компо-

нент X и Y. 

Решение. Очевидно, что если , то . Пусть , тогда: 

. 

Итак,  

Аналогично  

Ответ:   

  

Пример 9. Закон распределения двумерного дискретного случайного вектора 

 задан таблицей: 

  

Y   

    X 

0 1 2 3 

    1 0,1 0,1 0,1 0,1 

    2 0,05 0,05 0,05 0,05 

    3 0,1 0,1 0,1 0,1 

Определить, зависимы или независимы компоненты X и Y. 

Решение. Составим законы распределения компонент X и Y: 

Y   

    X 

0 1 2 3 
 

    1 0,1 0,1 0,1 0,1 0,4 

    2 0,05 0,05 0,05 0,05 0,2 
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    3 0,1 0,1 0,1 0,1 0,4 

   0,25 0,25 0,25 0,25 1 

Проверим теперь выполнение условия  для всех пар индексов 

, . Очевидно, что это условие выполнено для любых i и j. Значит, 

компоненты X и Y независимы. 

Ответ: компоненты X и Y независимы. 

Замечание. В данном случае независимость компонент X и Y можно было установить, 

внимательно посмотрев на исходную таблицу, задающую закон распределения 

случайного вектора . Из этой таблицы видно, что закон распределения каждой из 

компонент не зависит от того, какое значение приняла другая компонента. 

Пример 10. Система двух непрерывных случайных величин  имеет плотность 

распределения 

 
Найти константу С. Определить, зависимы или независимы X и Y. Составить функцию 

распределения . 

Решение. Из условия нормировки для функции плотности  имеем: 

, 

отсюда . Таким образом, 

 
Найдем функции плотности отдельных компонент: 

, т.е.  

, т.е.  

Очевидно, что равенство  выполняется для всех точек коор-

динатной плоскости. Значит, компоненты X и Y независимы. Найдем функцию распреде-

ления системы . Так как компоненты независимы, зна-

чит, . Найдем вначале  и : 
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Перемножая  и  при «прямоугольнику» и учитывая,  

что , , получим: 

 

 

 

 

Y 

X 
   

 

0 0 0 

 

0 
  

 

0 
 

1 

Условные законы распределения 

  

Если случайные величины, образующие систему, зависимы, то для нахождения закона 

распределения системы недостаточно знать законы распределения отдельных величин, 

входящих в систему. Требуется еще знать так называемый условный закон распределения 

одной из них. 

Определение. Условным законом распределения одной из величин , входящих 

в систему, называется ее закон распределения, вычисленный при условии, что дру-

гая случайная величина приняла определенное значение. 

Начнем с наиболее простого случая. Пусть случайная величина Y является дискрет-

ной. 

Определение. Условной функцией распределения  случайной 

величины X при условии  называется условная вероятность события  при 

условии события , т.е. 

. 

Аналогично определяется условная функция распределения  случайной 

величины Y при условии  (когда случайная величина X является дискретной): 

. 

Замечание 1. Условная функция распределения обладает всеми свойствами, которые 

присущи обычной (безусловной) функции распределения. 

Замечание 2. Если случайная величина X также дискретная, при-

чем , то удобно рассматривать условную вероятность случайной 

величине X принять значение  при условии : 

. 
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Обычно условное распределение  описывают с помощью таблицы. 

Ясно, что элементы второй строки этой таблицы получаются по формулам . 

Аналогично определяется условная вероятность случайной величине Y принять зна-

чение  при условии : 

 

Пример 1. Закон распределения случайного вектора  задан таблицей: 

      Y 

   X 

1 2 

–1 0,3 0,25 

0 0,1 0,05 

1 0,2 0,1 

Описать условные законы распределения: 1) случайной величины X при усло-

вии ; 2) случайной величины Y при условии . 

Решение. Найдем безусловные законы распределения компонент X и Y: 

      Y 

   X 

1 2 
 

–1 0,3 0,25 0,55 

0 0,1 0,05 0,15 

1 0,2 0,1 0,3 

 

0,6 0,4 1 

1) Условные вероятности случайной величине X принять значения  ( ) при 

условии  вычисляются по формулам: 

, 

, 

. 

Тогда условный закон распределения случайной величины X при условии  име-

ет вид: 

X –1 0 1 Контроль: 

 

    

2) Условные вероятности случайной величине Y принять значения  ( ) при 

условии  вычисляются по формулам: 

, 

. 
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Тогда условный закон распределения случайной величины Y при условии 

 имеет вид: 

Y 1 2 Контроль: 

 

   

  

В общем случае условную функцию распределения случайной величины X при усло-

вии  также естественно было бы определить формулой 

. 

Однако это не всегда возможно (например, для непрерывной случайной величи-

ны Y событие  имеет нулевую вероятность). Во избежание этих неприятностей,  

вместо события  рассматривается событие  и D устремляется к 

нулю. Тогда 

. 

Тогда условной функцией распределения  называется предел 

. 

Оказывается, такой предел всегда существует. Аналогично 

 
Если случайная величина Y непрерывна, то условную функцию распределения можно 

определить следующим выражением: 

.  Аналогично  . 

В наиболее важных для приложений случаях вектор  представляет собой дву-

мерную непрерывную случайную величину с совместной плотностью . Тогда 

, . 

Нетрудно видеть, что условная функция распределения  имеет производ-

ную по x, т.е. существует условная плотность распределения случайной величины X при 

условии : 

. 

Аналогично 

. 

Пример 2. Дана функция плотности : 
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и найдены безусловные плотности распределения компонент X и Y: 

    

Найти условные плотности распределения компонент X и Y. 

Решение. Условные плотности распределения компонент X и Y находятся по форму-

лам , . 

Поэтому 

  

Таким образом, случайная величина X при условии  равномерно распределена 

на отрезке , а случайная величина Y при условии  рав-

номерно распределена на отрезке . Условная плот-

ность  не определена при , а условная плотность  не оп-

ределена при . 

Пример 3. Дан двумерный случайный вектор , где X – время появления в ма-

газине первого покупателя в понедельник, а Y – время появления в магазине первого по-

купателя во вторник. Установлено, что , если . Най-

ти: , , , . Установить, зависимы или 

нет случайные величины X и Y. 

Решение. Найдем вначале функцию распределения случайного вектора : 

, ; 

 в остальных случаях. 

Тогда по свойству 4 совместной функции распределения  получим: 
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 при ,  при . 

Отсюда  при ,  при . 

Найдем теперь условные функции распределения компонент: 

 при , 

аналогично  при . 

Получим теперь условные плотности компонент: 

 при , 

 при . 

Поскольку , , 

то . Поэтому случайные величины X и Y независимы. Это озна-

чает, что появление в магазине первого покупателя во вторник не зависит от того, когда в 

магазин пришел первый покупатель в понедельник. 

Ответ: при положительных x и y , 

, , ; случайные величины X и Y независимы. 

Пример 4. Известна плотность совместного распределения непрерывной двумерной 

случайной величины :   . 

Найти: 1) плотности распределения компонент X и Y; 2) условные плотности распре-

деления компонент X и Y. 

Решение. 1) Найдем вначале плотность распределения компоненты X: 

. 

Вынося за знак интеграла множитель , не зависящий от переменной интегриро-

вания y, и дополнив оставшийся показатель степени до полного квадрата, получим: 

. 

Учитывая, что интеграл Пуассона , найдем плотность распределения 

компоненты X: .Аналогично найдем плотность распределения ком-

поненты Y: . 
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2) Найдем условные плотности распределения компонент X и Y. Выполнив элемен-

тарные выкладки, получим: 

,

. 

Ответ: 1) , ; 

2) , . 

 

 

3. Числовые характеристики случайного вектора. Условные числовые характери-

стики СВ. 

 Определение. Начальным моментом порядка  системы двух случайных вели-

чин  называется действительное число , определяемое по формуле: 

, если  – система двух дискретных случайных величин; 

, если  – система двух непрерывных случайных 

величин. 

Определение. Центральным моментом порядка  системы двух случайных ве-

личин  называется действительное число , определяемое по формуле: 

, 

если  – система двух дискретных случайных величин; 

, 

если  – система двух непрерывных случайных величин. 

На практике чаще всего встречаются моменты первого и второго порядков. Очевидно, 

что начальные моменты первого порядка есть не что иное, как математические ожидания 

компонент X и Y: 

, . 

Точка с координатами  на плоскости xOy представляет собой характеристи-

ку положения случайной точки , а ее рассеивание (разброс) происходит во-

круг . 

Центральные моменты первого порядка, очевидно, равны нулю, т.е. 

. 

Имеются три начальных момента второго порядка – ,  и . Причем первые 

два из них есть не что иное, как начальные моменты второго порядка компонент X и Y: 

, . 
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Имеются три центральных момента второго порядка ,  и . Первые два из 

них представляют собой дисперсии компонент X и Y соответственно: 

, . 

Рассмотрим  отдельно. 

Определение. Центральный момент второго порядка  называет-

ся ковариацией случайной величины . 

Для момента  используется обозначение . 

Замечание. По определению ковариации: . 

В механической интерпретации, когда распределение вероятностей на плоско-

сти xOy трактуется как распределение единичной массы на этой плоскости, точ-

ка  есть не что иное, как центр масс с распределения; дисперсии  и 

 – моменты инерции распределения относительно точки  в направлении 

осей Ox и Oy соответственно, а ковариация – это центробежный момент инерции распре-

деления масс. 

Теорема. Если случайные величины X и Y независимы, то . 

Замечание. Как правило,  удобнее вычислять по формуле 

. 

Ковариация  характеризует не только степень зависимости двух случайных ве-

личин , но также их рассеивание вокруг точки . Однако размерность ко-

вариации  равна произведению размерностей случайных величин X и Y. Чтобы полу-

чить безразмерную величину, характеризующую только зависимость, а не разброс, кова-

риацию  делят на произведение : 

. 

Определение. Величина  называется коэффициентом корреляции случайных ве-

личин X и Y. 

Коэффициент корреляции  характеризует степень зависимости случайных вели-

чин X и Y, причем не любой зависимости, а только линейной, проявляющейся в том, что 

при возрастании одной случайной величины другая проявляет тенденцию также возрас-

тать (или убывать). В первом случае  и говорят, что случайные величи-

ны X и Y связаны положительной корреляцией, во втором случае  и говорят, что 

случайные величины X и Y связаны отрицательной корреляцией. Модуль коэффициента 

корреляции случайных величин X и Y характеризует степень тесноты линейной зависи-

мости между ними. Если линейной зависимости нет, то . 

Теорема. Если случайные величины X и Y связывает линейная зависи-

мость , то  при ,  при . 

Пример 1. Найти коэффициент корреляции  между случайными величинами: 

1) X и ; 2) X и . 
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Решение. Согласно теореме 3.5.2: 1) , т.к. , ; 2) , 

т.к. , . 

Ответ: 1) ; 2) . 

Пример 2. Игральная кость размечена таким образом, что сумма очков на противопо-

ложных гранях равна 7 (т.е. 1 и 6, 2 и 5, 3 и 4). Пусть X – число очков на верхней гра-

ни, Y – число очков на нижней грани. Построить совместный закон распределения слу-

чайных величин X и Y, найти коэффициент корреляции между ними. 

Решение. По условию задачи . Поэтому . Следовательно, 

для построения таблицы распределения случайного вектора  остается вычислить 

вероятности: 

, 

. 

Аналогично можно показать, что 

, . 

Тогда закон распределения случайного вектора  задается следующей таблицей: 

  

  

Y 

X 

1 2 3 4 5 6 

1 0 0 0 0 0 
 

2 0 0 0 0 
 

0 

3 0 0 0 
 

0 0 

4 0 0 
 

0 0 0 

5 0 
 

0 0 0 0 

6 
 

0 0 0 0 0 

Поскольку между случайными величинами X и Y имеется линейная связь , 

то . 

Ответ: . 

Теорема. Для любых случайных величин X и Y:  . 

Определение. Случайные величины X и Y называются некоррелированными, ес-

ли  (или ), иначе X и Y называются коррелированными. 

Замечание. Из независимости случайных величин следует их некоррелированность. 

Но из некоррелированности ( ) не вытекает их независимость. Действительно, 

если , то это означает только отсутствие линейной связи между случайными ве-

личинами, однако любой другой вид связи может при этом присутствовать. 

Пример 3. Закон распределения случайного вектора  задан таблицей: 

  

Y 

X 

0 2 5 

1 0,1 0 0,2 

2 0 0,3 0 
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4 0,1 0,3 0 

Выяснить, зависимы или нет случайные величии 

ны X и Y. Найти: . 

Решение. Найдем законы распределения компонент X и Y: 

Y 

X 

0 2 5 
 

1 0,1 0 0,2 0,3 

2 0 0,3 0 0,3 

4 0,1 0,3 0 0,4 

 

0,2 0,6 0,2 � 

Очевидно, что компоненты X и Y являются зависимыми, т.к. 

. 

; ; 

, ; 

, ; 

 

; 

. 

Так как , то это показывает, что между случайными величина-

ми X и Y существует отрицательная линейная зависимость, т.е. при увеличении одной из 

них другая имеет тенденцию уменьшаться. 

Пример 4. Закон распределения случайного вектора  задан таблицей: 

 

  

Y 

X 

1 2 

–1 0,15 0,05 

0 0,3 0,05 

1 0,35 0,1 

Выяснить, являются ли случайные величины X и Y: 1) зависимыми; 

2) коррелированными. 

Решение. Найдем законы распределения компонент X и Y: 

Y 

X 

1 2 
 

–1 0,15 0,05 0,2 

0 0,3 0,05 0,35 

1 0,35 0,1 0,45 

 

0,8 0,2 � 

Очевидно, что компоненты X и Y являются зависимыми, т.к. 

. 

; ; 

, ; 
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, ; 

 

; . 

Этот пример показывает, что случайные величины X и Y могут быть некоррелирован-

ными, но при этом являться зависимыми. 

Пример 5. Двумерный случайный вектор  подчинен закону распределения с 

плотностью 

 

Область D – треугольник, ограниченный прямыми , , . 

Найти: коэффициент а, . Выяснить, зависимы или 

нет случайные величины X и Y. 

Решение. Коэффициент a находится из уравнения 

. 

Опуская промежуточные выкладки (в этом примере будем делать так и в дальней-

шем), получаем . Далее: 

, 

. 

Заметим, что в силу симметрии по переменным x и y, можно не вычислять математи-

ческое ожидание и дисперсию компоненты Y, т.е. , . То-

гда . 

Вычислим ковариацию и коэффициент корреляции: 

 

; . 

Поскольку компоненты X и Y коррелированны, следовательно, они зависимы. 

Ответ: , , 

, , , . Компонен-

ты X и Y зависимы. 

Пример 6. Двумерный случайный вектор  рав-

номерно распределен на множестве случайных точек Q, 

задаваемых неравенством . Выяснить, являют-

ся ли случайные величины X и Y: 1) зависимыми; 

2) коррелированными. 
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Решение. Множество точек Q, задаваемых неравенством , является 

квадратом. Поскольку двумерный случайный вектор  равномерно распределен на 

множестве Q, его плотность имеет вид 

 
Из условия нормировки найдем константу C: 

, 

где  – площадь квадрата Q, равная 2. Отсюда , а значит, 

 
1) Найдем вначале плотность распределения компоненты X. 

Если , то, очевидно,  для всех . 

Если , то 

, 

т.е.  

Аналогично находится плотность распределения ком-

поненты Y: 

 

Равенство  не выполняется 

для точек координатной плоскости, принадлежащих за-

штрихованным областям (рис.), поскольку в этих точках , а 

 и . Суммарная площадь заштрихованных областей равна 2, значит, компонен-

ты X и Y зависимы. 

2) Вычислим математические ожидания компонент X и Y: 

, 

т.к. интеграл от нечетной функции в симметричных пределах равен нулю. Аналогич-

но . 

Определим начальный момент : 

. 

Таким образом, ковариация .  

Значит, компоненты X и Y некоррелированные. 

Ответ: компоненты X и Y зависимы, но некоррелированны. 
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Определение. Условным математическим ожиданием одной из случайных величин, 

входящих в двумерный случайный вектор , называется ее математическое ожида-

ние, вычисленное при условии, что другая случайная величина приняла определенное 

значение. 

Если случайные величины X и Y дискретны, то условные математические ожидания 

вычисляются по формулам: 

, . 

Если случайные величины X и Y непрерывны, то условные математические ожидания 

вычисляются по формулам: 

, . 

Определение. Условное математическое ожидание случайной величины Y при задан-

ном значении , т.е. , называется регрессией Y на x. Условное 

математическое ожидание случайной величины X при заданном значении , 

т.е. , называется регрессией X на y. 

Графики этих зависимостей от x и y называются линиями регрессии Y на x (рис. а) 

и X на y (рис. б) соответственно. 

                  

а                                              б 

Пример 7. Закон распределения случайного вектора  задан таблицей: 

 

Y 

X 

0 2 5 

1 0,1 0 0,2 

2 0 0,3 0 

4 0,1 0,3 0 

Построить регрессии Y на x и X на y. 

Решение. Найдем законы распределения компонент X и Y: 

 

  

Y 

X 

0 2 5 
 

1 0,1 0 0,2 0,3 

2 0 0,3 0 0,3 

4 0,1 0,3 0 0,4 

 

0,2 0,6 0,2 � 

Построим вначале регрессию Y на x. 
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1) , , , 

отсюда . 

2) , , , от-

сюда . 

3) , 

, ,  

отсюда . 

Графическое изображение регрессии Y на x показано на рисунке  

 

Построим теперь регрессию X на y. 

1) , , , от-

сюда . 

2) , , , от-

сюда . 

3) , 

, , отсю-

да . 

Графическое изображение регрессии X на y показано 

на рисунке.  

Для наглядности значения условного математического ожидания на соединены отрез-

ками прямых. 

Замечание 1. Для независимых случайных величин линии регрес-

сии Y на x и X на y параллельны координатным осям, т.к. математическое ожидание каж-

дой из них не зависит от того, какое значение приняла другая случайная величина. Линии 

регрессии могут быть параллельны координатным осям и для зависимых случайных вели-

чин, если только математическое ожидание каждой из них не зависит от того, какое зна-

чение приняла другая случайная величина. 

Замечание 2. По аналогии с условными математическими ожидания-

ми можно рассматривать условные моменты. Например, условные диспер-

сии ,  и т.д. 
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Пример 8. Ранее была дана функция плотности : 

 
и найдены условные плотности распределения компонент X и Y (пример 2.2.21): 

  

Найти регрессии Y на x и X на y, а также условные дисперсии компонент X и Y. 

Решение. Условные математические ожидания вычисляются по форму-

лам: , . Поэтому 

, 

. 

Заметим, что при вычислении условных математических ожиданий можно было вос-

пользоваться тем, что случайная величина X при условии  равномерно распределена 

на отрезке , а случайная величина Y при условии  рав-

номерно распределена на отрезке . 

Действительно, для равномерно распределенной на отрезке  случайной величи-

ны математическое ожидание равно , а дисперсия равна . Отсюда, очевид-

но,  при ,  при . Тогда условные диспер-

сии равны: 

 при , 
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 при . 

Ответ: ,  при ; 

,  при . 

  

4.Многомерное нормальное распределение. 

 

На практике часто встречаются двумерные случайные величины, распределение кото-

рых нормально. 

Определение. Нормальным законом распределения на плоскости называется распре-

деление вероятностей двумерной случайной величины , функция плотности кото-

рой имеет вид 

. 

Итак, нормальный закон на плоскости определяется пятью параметра-

ми: . Смысл этих параметров: математические ожидания и средние 

квадратические отклонения компонент, а также коэффициент корреляции. 

Пример 1. Доказать, что для нормально распределенных компонент двумерной слу-

чайной величины  понятия независимости и некоррелированности равносильны. 

Решение. Действительно, пусть компоненты X и Y некоррелированны ( ), то-

гда плотность  принимает вид: 

. 

Отсюда очевидно, что 

. 

Значит, компоненты X и Y независимы. 

Обратное утверждение также выполняется (из независимости компонент X и Y всегда 

следует их некоррелированность). 

Условные законы распределения случайных величин X и Y: 

, 

. 

Нетрудно видеть, что каждый из условных законов распределения также является 

нормальным с условным математическим ожиданием и условной дисперсией, вычисляе-

мыми по формулам: 
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,     ; 

,     . 

Замечание. Из формул для услов-

ных математических ожиданий видно, 

что для системы нормально распределен-

ных случайных величин X и Y линии регрес-

регрессии Y на x и Xна y представляют собой 

прямые линии, т.е. в данном случае регрес-

сия всегда линейна. 

В геометрической интерпретации гра-

фик  двумерного нормального 

распределения представляет собой холмооб-

разную поверхность, вершина которой нахо-

дится в точке . Аппликата этой 

вершины рав-

на 

 (рис. 2.2.11). Сечения поверхности  плоскостями, параллельными 

плоскости xOy, представляют собой эллипсы. 

Определение. Нормальное распределение называется круговым с центром в точ-

ке , если случайные величины X и Y некоррелированны ( ) 

и . 

Пример 2. Случайная точка  на плоскости xOy распределена по двумерному 

нормальному закону с центром рассеивания , средними квадратическими 

отклонениями ,  и коэффициентом корреляции . Вычислить веро-

ятность попадания случайной точки  в прямоугольник с вершинами 

, , , . 

Решение. Поскольку коэффициент корреляции , то плотность 

 представляется в виде 

. 

С учетом того, что , , , , получим: 

. 

Поэтому , или 

 



152 

 

. 

Ответ: . 

Пример 3. Случайные величины X и Y независимы и распределены по нормальному 

закону. Известно, что , , . Найти радиус R круга с центром в 

точке , вероятность попадания в который случайной точки  равна 0,997. 

Решение. Поскольку случайные величины X и Y независимы, то 

. 

Вероятность  попадания случайной точки  в круг D с центром в точ-

ке  и радиусом R вычисляется следующим образом: 

 

 

. 

Теперь, решая уравнение , получим . От-

сюда . 

Ответ: . 

Пример 4. Заданы следующие характеристики двумерного нормального векто-

ра : , , , , . 1) Записать выражения для 

плотности распределения вероятностей  и условных плотностей компо-

нент , . 2) Составить уравнения регрессий Y на x и X на y. 

3) Найти условные дисперсии компонент X и Y. 

Решение. 1) По определению двумерного нормального вектора: 

. 

С учетом того, что , , , , , выражение 

для  примет вид: 

. 

Условные законы распределения случайных величин X и Y: 

, 
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. 

2) Условные математические ожидания равны: 

, 

. 

Таким образом, уравнение регрессии X на y имеет вид , а уравнение 

регрессии Y на x имеет вид . 

3) Условные дисперсии равны: 

, 

. 

Ответ: 1) , 

, . 

2) Уравнение регрессии X на y: , уравнение регрес-

сии Y на x: . 3) , . 

  

3.10.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия многомерного статистического анализа; 

- усвоили способы задания многомерной СВ, определение общего и частных законов рас-

пределения; 

- выработали навыки по вычислению числовых характеристик МСВ, условных числовых 

характеристик МСВ; 

- усвоили основные свойства МСВ, распределенных нормально. 

 

3.11 Практическое занятие 19 -20 (ПЗ-19-20)  
Тема: Статистическое распределение  

 

3.11.1 Задание для работы: 

 

 

1.Первичная обработка статистических данных. Графическое представление стати-

стических рядов. Эмпирическая функция распределения статистических рядов. 

2. Числовые характеристики статистического ряда, их свойства.  Точечные оценки 

параметров статистического распределения. 

3. Оценки параметров генеральной совокупности. Метод моментов.  Метод макси-

мального правдоподобия. 

4.Метод доверительных интервалов. 
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3.11.2  Краткое описание проводимого занятия 

 

1.Первичная обработка статистических данных. Графическое представление стати-

стических рядов. Эмпирическая функция распределения статистических рядов. 

Пример 1. Имеется распределение 80 предприятий по числу работающих на них 

(чел.): 

 150 250 350 450 550 650 750 

 

1 3 7 30 19 15 5 

Построить полигон распределения частот. 

Решение. Признак Х- число работающих (чел.) на предприятии. В данной задаче 

признак Х является дискретным. Поскольку различных значений признака сравнительно 

немного -k= 7, применять интервальный ряд для представления статистического распре-

деления нецелесообразно (в прикладной статистике в подобных задачах часто используют 

именно интервальный ряд). Ряд распределения - дискретный. Построим полигон распре-

деления частот (рис. 1). 

 

Рис. 1 

Пример 2. Дано распределение 100 рабочих по затратам времени на обработку одной де-

тали (мин): 

xi-1-xi 22-24 24-26 26-28 28-30 30-32 32-34  

 2 12 34 40 10 2 . 

Построить гистограмму частот. 
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Решение. Признак Х - затраты времени на обработку одной детали (мин). Признак Х 

-непрерывный, ряд распределения - интервальный. Построим гистограмму частот (рис. 2), 

предварительно определив (k= 6) и плотность частоты

. 

xi-1-xi 22-24 24-26 26-28 28-30 30-32 32-34 

 

1 6 17 20 5 1 

 

Рис. 2 

Построение интервального вариационного ряда рассмотрим на примере. 

При измерении диаметра валиков после шлифовки получены следующие результа-

ты: 

6,75; 6,77; 6,77; 6,73; 6,76; 6,74; 6,70; 6,75; 6,71; 6,72; 6,77; 6,79; 6,71; 6,78; 

6,73; 6,70; 6,73; 6,77; 6,75; 6,74; 6,71; 6,70; 6,78; 6,76; 6,81; 6,69; 6,80; 6,80; 

6,77; 6,68; 6,74; 6,70; 6,70; 6,74; 6,77; 6,83; 6,76; 6,76; 6,82; 6,77; 6,71; 6,74; 

6,77; 6,75; 6,74; 6,75; 6,77; 6,72; 6,74; 6,80; 6,75; 6,80; 6,72; 6,78; 6,70; 6,75; 

6,78; 6,78; 6,76; 6,77; 6,74; 6,74; 6,77; 6,73; 6,74; 6,77; 6.74; 6,75; 6,74; 6,76; 

6,76; 6,74; 6,74; 6,74; 6,74; 6,76; 6,74; 6,72; 6,80; 6,76; 6,78; 6,73; 6,70; 6,76; 

6,76; 6,77; 6,75; 6,78; 6,72; 6,76; 6,78; 6,68; 6,75; 6,73; 6,82; 6,73; 6,80; 6,81; 

6,71; 6,82; 6,77; 6,80; 6,80; 6,70; 6,70; 6,82; 6,72; 6,69; 6,73; 6,76; 6,74; 6,77; 

6,72; 6,76; 6,78; 6,78; 6,73; 6,76; 6,80; 6,76; 6,72; 6,76; 6,76; 6,70; 6,73; 6,75; 

6,77; 6,77; 6,70; 6,81; 6,74; 6,73; 6,77; 6,74; 6,78; 6,69; 6,74; 6,71; 6,76; 6,76; 

6,77; 6,70; 6,81; 6,74; 6,74; 6,77; 6,75; 6,80; 6,74; 6,76; 6,77; 6,77; 6,81; 6,75; 
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6,78; 6,73; 6,76; 6,76; 6,76; 6,77; 6,76; 6,80; 6,77; 6,74; 6,77; 6,72; 6,75; 6,76; 

6,77; 6,81; 6,76; 6,76; 6,76; 6,80; 6,74; 6,80; 6,74; 6,73; 6,75; 6,77; 6,74; 6,76; 

6,77; 6,77; 6,75; 6,76; 6,74; 6,82; 6,76; 6,73; 6,74; 6,75; 6,76; 6,72; 6,78; 6,72; 

6,76; 6,77; 6,75; 6,78. 

Для построения интервального ряда необходимо определить величину частичных 

интервалов. Считая, что все частичные интервалы имеют одну и ту же длину, для каждого 

интервала следует установить его верхнюю и нижнюю границы, а затем в соответствии с 

полученной упорядоченной совокупностью частичных интервалов сгруппировать резуль-

таты наблюдении. Длину частичного интервала h следует выбрать так, чтобы построен-

ный ряд не был громоздким и в то же время позволял выявить характерные черты измене-

ния значений случайной величины. 

Просматривая результаты наблюдений, находим, что наибольшим значением слу-

чайной величины х наиб является 6,83, а наименьшим  х наим - 6,68. Найдем размах варьиро-

вания R. : 

R=6,83-6,68=0,15. 

Выберем число интервалов. Для того чтобы вариационный ряд не был слишком гро-

моздким, обычно число интервалов берут от 7 до 11. Положим предварительно v=7, тогда 

длина частичного интервала    

За начало первого интервала рекомендуется брать величину   хнач = хнаим - 0,5h. 

В данном случае хнач = 6,67. Конец последнего интервала должен удовлетворять ус-

ловию   

  

 

Промежуточные интервалы получают, прибавляя к концу предыдущего интервала 

длину частичного интервала h (в рассматриваемом случае h=0,02). 

Теперь, просматривая результаты наблюдений, определяем, сколько значений при-

знака попало в каждый конкретный интервал. При этом в интервал включают значения 

случайной величины, большие или равные нижней границе и меньшие верхней границы. 

В таблице частота mi , показывает, в скольких наблюдениях случайная величина 

приняла значения, принадлежащие тому или иному интервалу, причем нижний конец ин-

тервала входит в него, а верхний—нет. Такие частоты обычно называют интервальными, а 

их отношение к общему числу наблюдений—интервальными частостями. 

При вычислении интервальных частостей округление результатов следует проводить 

таким образом, чтобы общая сумма частостей была равна 1: 

 
Для данного примера интервальный вариационный ряд имеет вид: 

 

№ xi - xi+1 mi 
 

mi/h 
/h 

1 6,67-6,69 2 0,01 100 0,5 

2 6,69-6,71 15 0,075 750 3,75 
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3 6,71-6,73 17 0,085 850 4,25 

4 6,73-6,75 44 0,22 2200 11 

5 6,75-6,77 52 0,26 2600 13 

6 6,77-6,79 44 0,22 2200 11 

7 6,79-6,81 14 0,07 700 3,5 

8 6,81-6,83 11 0,055 550 2,75 

9 6,83-6,85 1 0,005 50 0,25 

  
 

200 1     

По данным интервального ряда строят гистограмму частот или гистограмму относи-

тельных частот: 

Ступенчатая фигура, состоящая из прямоугольников, основания которых- частичные 

интервалы, высоты равны отношению частоты к длине частичного интервала( плотность 

частоты) (частости к длине частичного интервала (плотность частости)).Гистограмма час-

тостей имеет вид: 

 

Для гистограммы частот: площадь каждого прямоугольника равна частоте интервала, 

сумма площадей всех прямоугольников равна объему выборки. 

Для гистограммы частостей: площадь каждого прямоугольника равна частости интер-

вала, сумма площадей всех прямоугольников равна 1. 

Пример. Построить эмпирическую функцию по данному распределению выборки: 

xi 2 6 10 

mi 12 18 30 

Объем выборки n = 12+ 18+ 30 =60. Хнаим= 2, значит при Х £ 2, 

 

Х<6 наблюдалось 12 раз, следовательно, при Х< 6 

 . 

Значение Х<10 наблюдалось 12+18= 30 раз, значит при Х<10 

 

Так как хнаиб =10, то при Х ³ 10 
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Искомая эмпирическая функция имеет вид: 

 

График строится так же, как и график интегральной функции распределения. 

 

Если результаты наблюдений представлены в виде интервального вариационного ря-

да, то в качестве х принимают концы частичных интервалов и , пользуясь данным выше 

определением вычисляют значения эмпирической функции.  

Для рассмотренного примера получим таблицу: 

х 6,67 6,69 6,71 6,73 6,75 6,77 6,79 6,81 6,83 6,85 

 

0 0,01 0,085 0,17 0,39 0,65 0,87 0,94 0,995 1 

  

Так как таблица определяет функцию  не полностью, то при изображении графика до-

определяем функцию, соединяя точки графика, соответствующие концам интервалов, от-

резками. График эмпирической функции для интервального вариационного ряда есть не-

прерывная линия. 

 

 

2. Числовые характеристики статистического ряда, их свойства.  Точечные оценки 

параметров статистического распределения. 

Каждой числовой характеристике случайной величины  соответствует ее стати-

стическая аналогия.  

http://sernam.ru/book_tp.php?id=20
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Для основной характеристики положения математического ожидания случай-

ной величины – такой является среднее арифметическое наблюденных значений случай-

ной величины: ,   (1)  где — случайной  величины, наблюденное -м 

опыте,  - число опытов. 

Эту характеристику мы будем в дальнейшем называть статистическим средним слу-

чайной величины. 

Согласно закону больших чисел, при ограниченном увеличении числа опытов стати-

стическое среднее приближается (сходится по вероятности)  математическому ожиданию.  

При ограниченном числе опытов статистическое среднее является случайной вели-

чиной, которая, тем не менее, связана с математическим ожиданием и может дать о нем 

известное представление. 

Подобные статистические аналогии существуют для всех числовых характеристик. 

Условимся в дальнейшем эти статистические аналогии обозначать теми же буквами, что и 

соответствующие числовые характеристики, но и снабжать их значком *. 

Рассмотрим, например, дисперсию случайной величины. Она представляет собой 

математическое ожидание случайной величины : 

.                                                  (2) 

Если в этом выражении заменить математическое ожидание его статистической ана-

логией – средним арифметическим, мы получим статистическую дисперсию случайной 

величины : 

                                                                        (3) 

где  - статистическое среднее. 

Аналогично определяются статистические начальные и центральные моменты лю-

бых порядков: 

     (4),             (5) 

Все эти определения полностью аналогичны данным в главе 5 определениям число-

вых характеристики случайной величины, с той разницей, что в них везде вме-

сто математического ожидания фигурирует среднее арифметическое. При увеличении 

числа наблюдений, очевидно, все статистические характеристики будут сходиться 

http://sernam.ru/book_tp.php?id=21
http://sernam.ru/book_tp.php?id=7
http://sernam.ru/book_tp.php?id=7
http://sernam.ru/book_tp.php?id=66
http://edu.sernam.ru/book_kiber1.php?id=227
http://sernam.ru/book_tp.php?id=21
http://sernam.ru/book_tp.php?id=22
http://sernam.ru/book_tp.php?id=7
http://sernam.ru/book_tp.php?id=21
http://sernam.ru/book_tp.php?id=22
http://sernam.ru/book_tp.php?id=7
http://sernam.ru/book_tp.php?id=21
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по вероятности к соответствующим математическим характеристикам и при достаточ-

ном  могут быть приняты приближенно равными им. 

Нетрудно доказать, что для статистических начальных и центральных моментов 

справедливы те же свойства, которые были введены в главе 5 для математических момен-

тов. В частности, статистический первый центральный момент всегда равен нулю: 

. 

Соотношения между центральными и начальными моментами также сохраняются: 

                                              (7.4.6) 

и т.д. 

При очень большом количестве опытов вычисление характеристик по формулам (1) - 

(5) становится чрезмерно громоздким и можно применить следующий прием: воспользо-

ваться теми же разрядами, на которые был расклассифицирован статистический материал 

для построения статистического ряда или гистограммы, и считать приближенно значе-

ние случайной величины в каждом разряде постоянным и равным среднему значению, ко-

торое выступает в роли «представителя» разряда. Тогда статистические числовые харак-

теристики будут выражаться приближенными формулами: 

,                                                             (7) 

,                                            (8) 

,                                                                         (9) 

,                                                       (10) 

где  — «представитель» -го разряда,  - частота -го разряда,  - число разрядов. 

Точечная оценка математического ожидания 

Пусть  выборка из генеральной совокупности, соответствующей случайной ве-

личине x с неизвестным математическим ожиданием Mx =q  и известной дисперси-

ей  .  

Рассмотрим оценку неизвестного математического ожидания 

. 

Оценка несмещённая, поскольку её математическое ожидание равно Mx =q: 

,  

Оценка состоятельная, поскольку при n- б.б. : 

http://edu.sernam.ru/book_kiber1.php?id=227
http://sernam.ru/book_tp.php?id=31
http://sernam.ru/book_tp.php?id=31
http://sernam.ru/book_tp.php?id=7
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. 

Итак, для оценки неизвестного математического ожидания случайной величины бу-

дем использовать выборочное среднее: . 

Точечная оценка дисперсии 

Для дисперсии  случайной величины  можно предложить следующую оценку: 

, где  — выборочное среднее. 

Доказано, что эта оценка состоятельная, но смещенная. 

В качестве состоятельной несмещенной оценки дисперсии используют величину 

. 

Именно несмещенностью оценки  объясняется ее более частое использование в 

качестве оценки дисперсии. 

3. Оценки параметров генеральной совокупности. Метод моментов.  Метод макси-

мального правдоподобия. 

Задача 1. Путем опроса получены следующие данные (N=80): 

2 4 2 4 1 1 1 2 0 6 1 2 1 2 2 4 1 1 5 1 0 2 4 1 2 2 1 1 1 1 

1 1 1 1 2 1 1 4 1 1 7 4 1 4 2 1 2 1 1 1 4 1 1 4 5 1 4 2 4 5 

1 6 4 1 1 2 4 1 1 1 0 0 4 6 4 7 4 1 1 5 
 

Выполнить задания: 

А) получить дискретный вариационный ряд и статистическое распределение выборки; 

Б) построить полигон частот; 

В) составить ряд распределения относительных частот; 

Г) составить эмпирическую функцию распределения; 

Д) построить график эмпирической функции распределения; 

Е) найти основные числовые характеристики вариационного ряда (по возможности ис-

пользовать упрощающие формулы для их нахождения): 

1) выборочное среднее ; 

2) выборочную дисперсию D(X); 

1) выборочное среднее квадратическое отклонение ; 

4) коэффициент вариации V; 

5) интерпретировать полученные результаты. 

Решение. 

А) Для составления дискретного вариационного ряда отсортируем данные опроса по ве-

личине и расположим их в порядке возрастания: 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 7 7. 

Статистическое распределение выборки представлено в таблице1, в которой первая строка 

– варианты (наблюдаемые значение), вторая строка – Частоты появления этих вариант). 

Таблица1. Варианты и их частоты 

 

Xi 0 1 2 1 4 5 6 7 

Ni 4 11 14 24 16 4 1 2 
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Б) Для построения полигона частот найдем относительные частоты ( , 

где , где M – число различных значений признака X ( ) и в данном приме-

ре M=8), которые будем вычислять с одинаковой точностью. Полигон частот – ломаная 

линия, соединяющая точки с координатами (Рис.1). Расчеты запишем в табл.2. 

Таблица 2. Относительные частоты и накопленные частоты 

 

Xi Ni Относительные частоты  Накопленные частоты 

0 4 0.050 0.050 

1 11 0.161 0.211 

2 14 0.175 0.188 

1 24 0.100 0.688 

4 16 0.200 0.888 

5 4 0.050 0.918 

6 1 0.018 0.975 

7 2 0.025 1.000 

Сумма 80 1 
  

Рис.1. Полигон частот вариационного ряда 

В) Запишем ряд распределения (табл. 1) относительных частот в виде таблицы 1, в кото-

рой первая строка – варианты (изучаемый признак), вторая строка – относительные часто-

ты (Частости). 

Таблица 1. Распределение относительных частот появления признака 

Xi 0 1 2 1 4 5 6 7 

Ni 0.05 0.161 0.175 0.1 0.2 0.05 0.018 0.025 

Г) Эмпирическую функцию распределения найдем, используя накопленные частоты (табл. 

1, столбик 4): 
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Д) Построим график эмпирической функции распределения (рис. 2), используя значения, 

полученные в пункте г). 
 

Рис. 2. График эмпирической функции распределения 

Е) Для вычисления выборочного среднего  и выборочной дисперсии  с использо-

ванием приведенных выше формул, удобно составлять расчетную таблицу 2: 

Таблица.2. Расчетная таблица для вычисления выборочных величин 

Xi Ni Xi×Ni 
 

×Ni 

0 4 0 8.1796 12.7184 

1 11 11 1.4596 44.9748 

2 14 28 0.7196 10.1544 

1 24 72 0.0196 0.4704 

4 16 64 1.2996 20.7916 

5 4 20 4.5796 18.1184 

6 1 18 9.8596 29.5788 

7 2 14 17.1196 14.2792 

Сумма 80 229 
 

191.488 

Используя суммы, полученные в табл. 2, определим искомые величины. 

1) Выборочную среднюю  
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2) Выборочную дисперсию  

1) Выборочное среднее квадратическое отклонение 

 

4) Коэффициент вариации  

5) Интерпретация полученных результатов: 

- величина  характеризует среднее значение признака X; 

- среднее квадратическое отклонение  описывает абсолютный разброс значений 

показателя X относительно среднего значения и в данном случае составля-

ет ; 

- коэффициент вариации V характеризует относительную изменчивость показателя X, то 

есть относительный разброс вокруг его среднего значения , и в данном случае состав-

ляет . 

Ответ:  ; ; ;  

4.Метод доверительных интервалов. 

Задача: Выборочно обследование 30 предприятий машиностроительной промышленности 

по валовой продукции и получены следующие данные, в млн. руб.: 

18,0;  12,0;   11,9;   1,9;   5,5;  14,6;    4,8;   5,6;   4,8;   10,9;   9,7;   7,2;  12,4;   7,6;   

9,7;   11,2;    4,2;    4,9;  9,6;    3,2;     8,6;   4,6;   6,7;   8,4;   6,8;   6,9;  17,9;   9,6;  

14,8;   15,8. 

Составить интервальное распределение выборки с началом  и длиной частичного 

интервала . Построить гистограмму частот .Решение. Для составления интервально-

го распределения составим таблицу, в первой строке которой расположим в порядке воз-

растания интервалы, длина каждого из которых . Во второй строке запишем количе-

ство значений признака в выборке, попавших в этот интервал (т.е. сумму частот вариант, 

попавших в соответствующий интервал): 

 

1-4 4-7 7-10 10-13 13-16 16-19 

 

2 10 8 5 3 2 

Объем выборки n = 2 + 10 + 8 + 5 + 3 + 2 = 30. 
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Для построения гистограммы частот на оси абсцисс откладываем частичные интервалы, 

на каждом из них строим прямоугольники высотой  где  - частота i-го частичного 

интервала, h – шаг (длина интервала), таким образом, гистограмма примет вид: 

Указание. Для построения эмпирической функции распределения и нахождения точеч-

ных оценок ряда необходимо преобразовать его к дискретному виду по формуле   

. 

Получим 

 

2,5 5,5 8,5 11,5 14,5 17,5 

 

2 10 8 5 3 2 

Задача: Из большой партии электроламп случайным образом отобрано 100. Средняя про-

должительность горения ламп в выборке оказалась равной 1000 ч. Найти с надежно-

стью  доверительный интервал для средней продолжительности горения ламп во 

всей партии, если известно, что среднее квадратическое отклонение продолжительности 

горения лампы ч и продолжительность горения ламп распределена по нормально-

му закону. Решение. По условию  Для решения воспользуемся 

формулой 
 

 

По приложению 3 находим t из условия:   

Тогда доверительный интервал:    

 
Задача: По результатам наблюдений была найдена оценка неизвестного математического 

ожидания M случайной величины  если точечная оценка =10.2, а дис-

персия оценки =4. Требуется оценить доверительный интервал для оценки математи-

ческого ожидания по 36-ти наблюдениям с заданной надежностью ¡=0.99. 

Решение. Из (4.1) следует, что . Отсюда получаем, 

что =2.58 и половина искомого интервала . Так 

как , то с вероятностью 0.99 доверительный интервал для оценки ма-

тематического ожидания: . 

Со случаем, когда распределение результатов наблюдений нормально, но их дисперсия 

неизвестна, можно ознакомится в [3, 4, 6]. 
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3.11.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия математической статистики; 

- усвоили алгоритмы первичной обработки статистических данных; 

- выработали навыки по вычислению точечных и интервальных оценок параметров гене-

ральной совокупности; 

- усвоили основные методы исследования параметров генеральной совокупности. 

3.12 Практическое занятие 21 (ПЗ-21)  
Тема: Оценки статистических параметров распределения 

 

3.12.1 Задание для работы: 

 

1. Статистические гипотезы и их виды. Критерии согласия. 

. 

 

 

3.12.2  Краткое описание проводимого занятия 

 

1. Статистические гипотезы и их виды. Критерии согласия. 

Пример. Для подготовки к зачету преподаватель сформулировал 100 вопросов (ге-

неральная совокупность) и считает, что студенту можно поставить «зачтено», если тот 

знает 60 % вопросов (критерий). Преподаватель задает студенту 5 вопросов (выборка из 

генеральной совокупности) и ставит «зачтено», если правильных ответов не меньше трех. 

Гипотеза : «студент курс усвоил», а множество — область принятия этой 

гипотезы. Критической областью является множество — правильных ответов 

меньше трех, в этом случае основная гипотеза отвергается в пользу альтернативной 

 «студент курс не усвоил, знает меньше 60 % вопросов». 

Студент А выучил 70 вопросов из 100, но ответил правильно только на два из пяти, 

предложенных преподавателем, — зачет не сдан. В этом случае преподаватель совершает 

ошибку первого рода. 

Студент Б выучил 50 вопросов из 100, но ему повезло, и он ответил правильно на 3 

вопроса — зачет сдан, но совершена ошибка второго рода. 

Преподаватель может уменьшить вероятность этих ошибок, увеличив количество 

задаваемых на зачете вопросов. 

Алгоритм проверки статистических гипотез сводится к следующему: 

1) сформулировать основную  и альтернативную  гипотезы; 

2) выбрать уровень значимости ; 

3) в соответствии с видом гипотезы  выбрать статистический критерий для ее 

проверки, т. е. случайную величину K, распределение которой известно; 

4) по таблицам распределения случайной величины K найти границу критической 

области  (вид критической области определить по виду альтернативной гипотезы ); 

5) по выборочным данным вычислить наблюдаемое значение критерия  

6) принять статистическое решение: если  попадает в критическую область — 

отклонить гипотезу  в пользу альтернативной ; если  попадает в область до-

пустимых значений, то нет оснований отклонять основную гипотезу. 

 



167 

 

3.12.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия теории проверки статистических гипотез; 

 

3.13 Практическое занятие 22-23 (ПЗ-22-23)  
Тема: Статистические критерии, их виды 

 

3.13.1 Задание для работы: 

 

1. Критерии согласия. Критерии однородности. 

2. Оценка параметров неизвестного распределения. Выравнивание рядов. 

 

 

3.13.2  Краткое описание проводимого занятия 

 

 

1. Критерии согласия. Критерии однородности. 

Одной из важных задач математической статистики является установление теорети-

ческого закона распределения случайной величины, характеризующей изучаемый признак 

по эмпирическому распределению, представляющему вариационный ряд. Предположение 

о виде закона распределения можно сделать по гистограмме или полигону (Рис. 1) 
 

   
А)                                                              В)                                                              С) 

 

Рис.1. Возможные виды гистограмм:  

а) нормального, б) показательного, в) равномерного распределений 
 

Например, по гистограмме (рис. 1, а)) можно сделать предположение о том, что генераль-

ная совокупность распределена по нормальному закону. 

Для проверки гипотез о виде распределения служат специальные критерии — Критерии 

согласия. Они отвечают на вопрос: согласуются ли результаты экспериментов с предпо-

ложением о том, что генеральная совокупность имеет заданное распределение. 

Проверим это предположение с помощью Критерия согласия Пирсона. В этом критерии 

мерой расхождения между гипотетическим (предполагаемым) и эмпирическим распреде-

лением служит статистика   
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Где N — объем выборки;  K — количество интервалов (групп наблюдений); — количе-

ство наблюдений, попавших в J-й интервал;  — вероятность попадания в J-й интервал 

случайной величины, распределенной по гипотетическому закону. 

Если предположение о виде закона распределения справедливо, то статистика Пирсона 

распределена по закону «хи-квадрат» с числом степеней свободы  (R — число 

параметров распределения, оцениваемых по выборке):  

Оцениваются неизвестные параметры с использованием теории точечных оценок, некото-

рые оценки приведены в табл. 1. 

Таблица 1. Оцениваемые параметры и их точечные оценки 
 

Вид распределения Оцениваемые параметры Точечные оценки параметров 

 

 

 

 

 

 

 

 

 

 

Здесь ,   

 

Количество интервалов K рекомендуется рассчитывать по формуле Стердже-

са  где N — объем выборки. Длину I-го интервала принимают рав-

ной  где —наибольшее, а — наименьшее значение в вариацион-

ном ряду. 

Пример 1. Для среднего балла среди 30-ти групп (с точностью до сотых долей балла) по-

лучили выборку  

3.7, 3.85, 3.7, 3.78, 3.6, 4.45, 4.2, 3.87, 3.33, 3.76, 3.75, 4.03, 3.8, 4.75, 3.25, 4.1, 3.55, 3.35, 

3.38, 3.05, 3.56, 4.05, 3.24, 4.08, 3.58, 3.98, 3.4, 3.8, 3.06, 4.38. Проверить гипотезу о нор-

мальном распределении среднего балла на уровне значимости . 

Решение. Сгруппируем эту выборку. Наименьший средний балл равен 3.05, наибольший 

— 4.75. Интервал [3; 4.8] разобьем на 6 частей длиной , применяя формулу 
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Стерджеса ( ). Подсчитаем частоту  (относительную частоту ) для ка-

ждого интервала и получим сгруппированный статистический ряд (табл. 2). 

 

Таблица 2. Статистический ряд 

Интервалы [3;3.3) [3.3;3.6) [3.6;3.9) [3.9;4.2) [4.2;4.5) [4.5;4.8) 

Частоты  4 7 10 5 3 1 

Относительные частоты  
0.133 0.233 0.3 0.167 0.1 0.033 

Сформулируем основную и альтернативную гипотезы. 

 — случайная величина X (средний балл) подчиняется нормальному 

закону с параметрами . Так как истинных значений параметров  мы не знаем, 

возьмем их оценки, рассчитанные по выборке:  

 случайная величина X не подчиняется нормальному закону с данными параметрами. 

Рассчитаем наблюдаемое значение  статистики Пирсона. Эмпирические часто-

ты  уже известны (табл. 2), а для вычисления вероятностей  (в предположении, что 

гипотеза  справедлива) применим уже известную формулу (свойство В): 

И таблицу функции Лапласа. Полученные результаты сведем в таблицу (табл. 3). 

Наблюдаемое значение статистики Пирсона равно  

Определим границу критической области. Так как статистика Пирсона измеряет раз-

ницу между эмпирическим и теоретическим распределениями, то чем больше ее наблю-

даемое значение , тем сильнее довод против основной гипотезы. Поэтому критиче-

ская область для этой статистики всегда правосторонняя:  Её грани-

цу  находим по таблицам распределения «хи-квадрат» и заданным значе-

ниям  (число интервалов),  (параметры  и  оценены по вы-

борке):  

Наблюдаемое значение статистики Пирсона не попадает в критическую об-

ласть:  поэтому нет оснований отвергать основную гипотезу. 

Вывод: на уровне значимости 0.025 справедливо предположение о том, что средний балл 

имеет нормальное распределение 

Таблица 3. Сравнение наблюдаемых и ожидаемых частот 

 

№ 

п/п 

Интервалы группиров-

ки  

Наблюдаемая 

частота  

Вероятность 

попадания в J-й 

интервал 

Ожидаемая час-

тота  

Слагаемые статистики 

Пирсона  
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1. [3; 3.3) 4 0.101 3.032 0.309 

2. [3.3; 3.6) 7 0.225 6.761 0.008 

3. [3.6; 3.9) 10 0.295 8.79 0.166 

4. [3.9; 4.2) 5 0.222 6.665 0.416 

5. [4.2; 4.5) 3 0.098 2.946 0.001 

6. [4.5; 4.8) 1 0.025 0.758 0.077 

 

— 30 0.965 28.95 
 

 

 

Пример 2. Проверить с помощью критерия χ2 при уровне значимости 0,05 гипотезу о том, 

что выборка объема , представленная интервальным вариационным рядом в таблице 

4, извлечена из нормальной генеральной совокупности. 

Таблица 4 

Номер 

интервала I 

Границы 

интервала 

Частота 

 
1 0 – 2 5 

2 2 – 4 11 

3 4 –6 17 

4 6 – 8 10 

5 8 – 10 7 

Решение. 

 1. Сформулируем нулевую и альтернативную гипотезы: H0 – эмпирическое распределе-

ние соответствует нормальному; H1 - эмпирическое распределение не соответствует нор-

мальному. 

Для проверки нулевой гипотезы необходимо рассчитать наблюдаемое значение кри-

терия χ2набл по формуле и сравнить его с критическим значением χ2кр. 

2. Определим параметры предполагаемого (теоретического) нормального закона распре-

деления. 

Найдем середины интервалов  и относительные частоты . 

Получим следующие значения: 

Найдем оценку математического ожидания: 

 

. 

Вычислим оценки дисперсии и стандартного отклонения по формулам: 

 

; 

. 

 

1 3 5 6 7 
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3. Выполним расчет теоретических частот  . 

 и ; 

Для интервала  находим 

 

и ; 

Для интервала (4,6) соответственно: 

 ; 

Для интервала (6,8): 

 

И ; 

Для интервала  вычислим 

; 

. 

4. По формуле (4.8) найдем значение : 

 

. 

5. По таблице квантилей распределения χ2 с числом степеней свобо-

ды  находим, что χ2кр = 6,0 для . 

Поскольку  ( ), то можно считать, что гипотеза о нормаль-

ном распределении генеральной совокупности не противоречит опытным данным. 

 

Пример 3: Используя критерий Пирсона, при уровне значимости a = 0,05 проверить, со-

гласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпи-

рическим распределением выборки объема n = 200. 

 

 

5 7 9 11 13 15 17 19 21 

 

15 26 25 30 26 21 24 20 13 

Решение. 
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1. Вычислим  и выборочное среднее квадратическое отклоне-

ние . 

2. Вычислим теоретические частоты учитывая, что n = 200, h = 2,  = 4,695, по формуле 

. 

  

Составим расчетную таблицу  

 

i 

  

 
 

  

 
 

1 5 -1,62 0,1074 9,1 

2 7 -1,20 0,1942 16,5 

3 9 -0,77 0,2966 25,3 

4 11 -0,35 0,3752 32,0 

5 13 0,08 0,3977 33,9 

6 15 0,51 0,3503 29,8 

7 17 0,93 0,2589 22,0 

8 19 1,36 0,1582 13,5 

9 21 1,78 0,0818 7,0 

        

3. Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из ко-

торой найдем наблюдаемое значение критерия : 

 

i 

 

 

 

 

 

 

 

 
 

1 15 9,1 5,9 34,81 3,8 

2 26 16,5 9,5 90,25 5,5 

3 25 25,3 0,3 0,09 0,0 

4 30 32,0 2,0 4,0 0,1 

5 26 33,9 7,9 62,41 1,8 

6 21 29,8 8,8 77,44 2,6 

7 24 22,0 2,0 4,0 0,2 

8 20 13,5 6,5 42,25 3,1 

9 13 7,0 6,0 36,0 5,1 

Сумма 200    
=22,2 

По таблице критических точек распределения  (приложение 6), по уровню зна-

чимости a = 0,05 и числу степеней свободы k = s – 3 = 9 – 3 = 6 находим критическую точ-
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ку правосторонней критической области  (0,05; 6) = 12,6. 

Так как =22,2 >  = 12,6, гипотезу о нормальном распределении генеральной со-

вокупности отвергаем. Другими словами, эмпирические и теоретические частоты разли-

чаются значимо. 

  

Пример 4: Представлены статистические данные. 

Результаты измерений диаметров n = 200 валков после шлифовки обобщены в табл. (мм):  

Таблица Частотный вариационный ряд диаметров валков 

i 1 2 3 4 5 6 7 8 

xi, мм 6,68 6,69 6,7 6,71 6,72 6,73 6,74 6,75 

ni 2 3 12 6 11 14 30 25 

  

i 9 10 11 12 13 14 15 16 

xi, мм 6,76 6,77 6,78 6,79 6,8 6,81 6,82 6,83 

ni 27 31 14 8 5 6 5 1 

Требуется: 

1) составить дискретный вариационный ряд, при необходимости упорядочив его; 

2) определить основные числовые характеристики ряда; 

3) дать графическое представление ряда в виде полигона (гистограммы) распределения; 

4) построить теоретическую кривую нормального распределения и проверить соответст-

вие эмпирического и теоретического распределений по критерию Пирсона. При проверке 

статистической гипотезы о виде распределения принять уровень значимости a = 0,05 

 

Решение: Основные числовые характеристики данного вариационного ряда найдем по 

определению. Средний диаметр валков равен (мм): 

xср =  = 6,753; исправленная дисперсия (мм2): D =  = 

0,0009166;  

исправленное среднее квадратическое (стандартное) отклонение (мм):s =   = 0,03028. 

  

Рис. Частотное распределение диаметров валков 

Исходное («сырое») частотное распределение вариационного ряда, т.е. соответст-

вие ni(xi), отличается довольное большим разбросом значений ni относительно некоторой 

гипотетической «усредняющей» кривой (рис.). В этом случае предпочтительно построить 

и анализировать интервальный вариационный ряд, объединяя частоты для диаметров, по-

падающих в соответствующие интервалы. 
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Число интервальных групп K определим по формуле Стерджесса: 

K = 1 + log2n = 1 + 3,322lgn, где n = 200 – объем выборки. В нашем случае  

K = 1 + 3,322×lg200 = 1 + 3,322×2,301 = 8,644 » 8. 

Ширина интервала равна (6,83 – 6,68)/8 = 0,01875 » 0,02 мм.  

Интервальный вариационный ряд представлен в табл. 

 

 

Таблица Частотный интервальный вариационный ряд диаметров валков. 

 

k 1 2 3 4 5 6 7 8 

xk, 

мм 

6,68 – 

6,70 

6,70 – 

6,72 

6,72 – 

6,74 

6,74 – 

6,76 

6,76 – 

6,78 

6,78 – 

6,80 

6,80 – 

6,82 

6,82 – 

6,84 

nk 5 18 25 55 58 22 11 6 

Интервальный ряд может быть наглядно представлен в виде гистограммы частотного рас-

пределения. 

 

  

Рис. Частотное распределение диаметров валков. Сплошная линия – сглаживающая нор-

мальная кривая. 

Вид гистограммы позволяет сделать предположение о том, что распределение диа-

метров валков подчиняется нормальному закону, согласно которому теоретические часто-

ты могут быть найдены как 

nk, теор = n×N(a; s; xk)×Dxk, где, в свою очередь, сглаживающая гауссова кривая нормаль-

ного распределения определяется выражением:  N(a; s; xk) = . 

В этих выражениях xk – центры интервалов в частотном интервальном вариационном ря-

де. 

Например, x1 = (6,68 + 6,70)/2 = 6,69. В качестве оценок центра a и параметра s гаус-

совой кривой можно принять: a = xср. 

Из рис. видно, что гауссова кривая нормального распределения в целом соответствует эм-

пирическому интервальному распределению. Однако следует удостовериться в статисти-

ческой значимости этого соответствия. Используем для проверки соответствия эмпириче-

ского распределения эмпирическому критерий согласия Пирсона. Для этого следует вы-

числить эмпирическое значение критерия как сумму   = , 

где nk и nk,теор – эмпирические и теоретические (нормальные) частоты, соответственно. 
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Результаты расчетов удобно представить в табличном виде:  

 

Таблица Вычисления критерия Пирсона 

 

[xk, xk+1), мм 

xk, мм nk nk,теор 

 

6,68 – 6,70 6,69 5 4,00 0,25 

6,70 – 6,72 6,71 18 14,57 0,81 

6,72 – 6,74 6,73 25 34,09 2,42 

6,74 – 6,76 6,75 55 51,15 0,29 

6,76 – 6,78 6,77 58 49,26 1,55 

6,78 – 6,80 6,79 22 30,44 2,34 

6,80 – 6,82 6,81 11 12,07 0,09 

6,82 – 6,84 6,83 6 3,07 2,80 

   c2эмп 10,55 

Критическое значение критерия найдем по таблице Пирсона [2, 3] для уровня значи-

мости a = 0,05 и числа степеней свободы d.f. = K – 1 – r, где K = 8 – число интервалов ин-

тервального вариационного ряда; r = 2 – число параметров теоретического распределения, 

оцененных на основании данных выборки (в данном случае, – параметры a и s). Таким об-

разом, d.f. = 5. Критическое значение критерия Пирсона есть крит(a; d.f.) = 11,1. Так 

как c2эмп < c2крит, заключаем, что согласие между эмпирическим и теоретическим нор-

мальным распределением является статистическим значимым. Иными словами, теорети-

ческое нормальное распределение удовлетворительно описывает эмпирические данные. 

  

Пример5: Коробки с шоколадом упаковываются автоматически. По схеме собственно-

случайной бесповторной выборки взято 130 из 2000 упаковок, содержащихся в партии, и 

получены следующие данные об их весе: 

Вес упаковки (гр.) Менее 975 975-1000 1000-1025 1025-1050 Более 1050 Всего 

Число упаковок 6 38 44 34 8 130 

Требуется используя критерий  Пирсона при уровне значимости a=0,05 проверить 

гипотезу о том, что случайная величина X – вес упаковок – распределена по нормальному 

закону. Построить на одном графике гистограмму эмпирического распределения и соот-

ветствующую нормальную кривую. 

Решение 

1012,5 = 615,3846 

Примечание: 

В принципе в качестве дисперсии нормального закона распределения следует взять 

исправленную выборочную дисперсию. Но т.к. количество наблюдений – 130 достаточно 

велико, то подойдет и «обычная» . 

Таким образом, теоретическое нормальное распределение имеет вид: 

 

подставляем  а = 1012,5     = 615,3846  24,8069 

 
Для расчета вероятностей pi попадания случайной величины в интервал [xi ; xi+1] исполь-

зуем функцию Лапласа: 
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в нашем случае получаем: 

  

  

  

  

 
Примечание: Такие симметричные вероятности получились из-за того, что по нашим на-

чальным условиям выборочная средняя попала точно в середину среднего интервала вы-

борки. 

Составим таблицу: 

 

i 
Интервал 

[xi ; xi+1] 

Эмпирические час-

тоты 

ni 

Вероятности 

pi 

Теоретические час-

тоты 

npi 

 

(ni-

npi)2 
 

1 Менее 975 6 0,0597 7,761 3,101 0,3996 

2 975-1000 38 0,2431 31,603 40,922 1,2949 

3 1000-1025 44 0,3829 49,777 33,374 0,6705 

4 1025-1050 34 0,2431 31,603 5,746 0,1818 

5 Более 

1050 

8 0,0597 7,761 0,057 0,0073 

 

 130 0,9885 128,5  
 

  

Итого, значение статистики . 

Определим количество степеней свободы по формуле: . 

m – число интервалов (m = 5), r– число параметров закона распределения (в нормальном 

распределении r = 2) Т.е. k = 2. 

            Соответствующее критическое значение статистики  

 

Поскольку , гипотеза о нормальном распределении с параметрами  

N(1012,5; 615,3846) согласуется с опытными данными. 



177 

 

Ниже показана гистограмма эмпирического распределения и соответствующая нормаль-

ная кривая. 

 
 

 

 

 

2. Оценка параметров неизвестного распределения. Выравнивание рядов. 

 

Пример. С целью исследования закона распределения ошибки измерения дальности с по-

мощью радиодальномера произведено 400 измерений дальности. Результаты опытов пред-

ставлены в виде статистического ряда: 

 

        

 

 

       

 

     

0,140 
  

Выровнять статистический ряд с помощью закона равномерной плотности. 

Решение. Закон равномерной плотности выражается формулой 

 

и зависит от двух параметров  и . Эти параметры следует выбрать так, чтобы сохра-

нить первые два момента статистического распределения – математическое ожидание 

 и дисперсию .  Имеем выражения математического ожидания и дисперсии для закона 

равномерной плотности: 

 
Для того, чтобы упростить вычисления, связанные с определением статистических момен-

тов, перенесем начало отсчета в точку  и примем за представителя его разряда его 

середину. Ряд распределения имеет вид: 

 

        

http://sernam.ru/book_tp.php?id=31
http://sernam.ru/book_tp.php?id=31
http://sernam.ru/book_tp.php?id=21
http://sernam.ru/book_tp.php?id=21
http://sernam.ru/book_tp.php?id=22
http://sernam.ru/book_tp.php?id=16
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где  - среднее для разряда значение ошибки радиодальномера  при новом начале от-

счета. 

Приближенное значение статистического среднего ошибки  равно: 

 

Второй статистический момент величины  равен: , 

откуда статистическая дисперсия: 

. 

Переходя к прежнему началу отсчета, получим новое ста-

тистическое среднее: 

 в ту же статистическую дисперсию: 

. 

Параметры закона равномерной плотности определяются 

уравнениями:                                                                                                Рис. 1 

 

. 

Решая эти уравнения относительно  и , имеем: , 

откуда 

. 

На рис. 1. показаны гистограмма и выравнивающий ее закон равномерной плотно-

сти . 

 

3.13.3 Результаты и выводы: В результате проведенного занятия студенты: 

- усвоили алгоритмы применения статистических критериев; 

- выработали навыки по применению критерия Пирсона; 

- усвоили основные методы и алгоритмы выравнивания статистических рядов. 

 

3.14 Практическое занятие 24  (ПЗ-24)  

Тема: Выравнивание рядов. 

 

3.14.1 Задание для работы: 

 

1. Виды зависимостей между величинами. 

 

3.14.2  Краткое описание проводимого занятия 

 

1. Виды зависимостей между величинами. 

http://sernam.ru/book_tp.php?id=22
http://sernam.ru/book_tp.php?id=22
http://sernam.ru/book_tp.php?id=31
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Сущность корреляционно-регрессионного анализа и его задачи. Экономические 

явления, будучи весьма разнообразными, характеризуются множеством признаков, отра-

жающих определенные свойства этих процессов и явлений и подверженных взаимообу-

словленным изменениям. В одних случаях зависимость между признаками оказывается 

очень тесной (например, часовая выработка работника и его заработная плата), а в других 

случаях такая связь не выражена вовсе или крайне слаба (например, пол студентов и их 

успеваемость). Чем теснее связь между этими признаками, тем точнее принимаемые ре-

шения. 

Различают два типа зависимостей между явлениями и их признаками: 

 функциональная (детерминированная, причинная) зависимость. Задается в виде 

формулы, которая каждому значению одной переменной ставит в соответствие строго оп-

ределенное значение другой переменной (воздействием случайных факторов при этом 

пренебрегают). Иными словами, функциональная зависимость– это связь, при которой 

каждому значению независимой переменной х соответствует точно определенное значе-

ние зависимой переменной у. В экономике функциональные связи между переменными 

являются исключениями из общего правила; 

 статистическая (стохастическая, недетерминированная) зависимость– это 

связь переменных, на которую накладывается воздействие случайных факторов, т.е. это 

связь, при которой каждому значению независимой переменной х соответствует множест-

во значений зависимой переменной у, причем заранее неизвестно, какое именно значение 

примет у. 

Частным случаем статистической зависимости является корреляционная зависи-

мость. 

Корреляционная зависимость– это связь, при которой каждому значению незави-

симой переменной х соответствует определенное математическое ожидание (среднее зна-

чение) зависимой переменной у. 

Корреляционная зависимость является «неполной» зависимостью, которая проявля-

ется не в каждом отдельном случае, а только в средних величинах при достаточно боль-

шом числе случаев. Например, известно, что повышение квалификации работника ведет к 

росту производительности труда. Это утверждение часто подтверждается на практике, но 

не означает, что у двух и более работников одного разряда / уровня, занятых аналогичным 

процессом, будет одинаковая производительность труда. 

Корреляционная зависимость исследуется с помощью методы корреляционного и 

регрессионного анализа. 

Корреляционно-регрессионный анализ позволяет установить тесноту, направление 

связи и форму этой связи между переменными, т.е. ее аналитическое выражение. 

Основная задача корреляционного анализа состоит в количественном определении 

тесноты связи между двумя признаками при парной связи и между результативными и не-

сколькими факторными признаками при многофакторной связи и статистической оценке 

надежности установленной связи. 

 

 

 

3.15 Практическое занятие 25  (ПЗ-25)  

Тема: Стохастическая зависимость межу величинами.  

 

 

 

3.15.1 Задание для работы: 

 

1. Функция регрессии. Корреляционное отношение.  Коэффициент детерминации.  

Значимость выборочных коэффициентов. 
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3.15.2  Краткое описание проводимого занятия 

 

 

1. Функция регрессии. Корреляционное отношение.  Коэффициент детермина-

ции.  Значимость выборочных коэффициентов. 

Данные наблюдений над двумерной случайной величиной (X, Y) представлены 

в корреляционной таблице. Найти выборочное уравнение прямой регрессии Y на X: 

).xx(ryy
x

y
вx  

            

х 

у 5 6 7 8 9 10 ny 

2 - - - - 6 4 10 

4 - - - 6 6 8 20 

6 - 3 4 14 3 - 24 

8 2 5 18 2 - - 27 

10 - 7 10 2 - - 19 

nx 2 15 32 24 15 12 

10

0 

 

Решение: 

Предварительно вычислим суммы 

.771121015924832715625х

100

1i

i  

 

.6501910278246204102y

100

1i

i  

.6109121015924832715625х 222222
100

1i

2
i

 

.48521910278246204102y 22222
100

1i

2
i

 

.4762)2810776(10)281875625(8

)391484736(6)8106968(4)41069(2yx

100

1i

ii
 

Средние арифметические значения 

.71,7
100

771
х

n

1
х i .5,6

100

650
y

n

1
y i  
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Дисперсии и средние квадратические отклонения 

.6459,171,76109
100

1
)х(х

n

1 222
i

2
x  

.27,65,64852
100

1
)y(y

n

1 222
i

2
у  

.28,16459,1х .5,227,6y  

Найдем корреляционный момент 

.5,25,671,74762
100

1
yxyx

n

1
C iixy  

Находим коэффициент корреляции 

78,0
5,228,1

5,2C
r

yx

xy
в  

Находим уравнение линии эмпирической регрессии 

).xx(ryy
x

y
вx  Или 

).71,7x(
28,1

5,2
78,05,6yx Окончательно 

.25,18x52,1yx  

В системе координат х и у, используя корреляционную таблицу, соответствую-

щими точками изображаем корреляционное поле и наносим прямую выборочной рег-

рессии согласно полученного уравнения. На корреляционном поле цифрами показано 

количество совпадающих точек. 

4 5 6 7 8 9 10 11

2

4

6

8

10

12

 

 

Коэффициент детерминации характеризует долю вариации (дисперсии) результа-

тивного признака y, объясняемую регрессией, в общей вариации (дисперсии) y. 

Коэффициент детерминации рассчитывается для оценки качества подбора уравне-

ния регрессии. Для приемлемых моделей предполагается, что коэффициент детерминации 

x 

y 

6 4 

6 6 8 

3 4   14     3 

7 10     2 

2 5     18        2 

у=-1,52х+18,25 
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должен быть хотя бы не меньше 50%. Модели с коэффициентом детерминации выше 80% 

можно признать достаточно хорошими. Значение коэффициента детерминации R
2
 = 1 оз-

начает функциональную зависимость между переменными. 

3.15.2 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия корреляционно-регрессионного анализа; 

- усвоили формулы для вычисления коэффициента корреляции, корреляционного отноше-

ния, коэффициента детерминации; 

- выработали навыки по интерпретации полученных результатов. 

 

 

3.16 Практическое занятие 26 (ПЗ-26)  
  Тема: Показатели стохастической зависимости.  

 

3.16.1 Задание для работы: 

 

1. Линейная парная регрессия. 

3.16.2  Краткое описание проводимого занятия 

 

1. Линейная парная регрессия. 

Парная линейная регрессия   

Предварительные расчеты: 

; ; ; ; ; 

; . 

Построение таблицы вида 

 x y xy 
  

………… ………. ……… …….. ……… ……… 

Среднее зна-

чение 

     

Формулы для расчетов параметров: 

, . 

При компьютерном подборе использовать встроенную функцию Линейн 

Оценка тесноты связи: 

а) коэффициент корреляции , или ; 

При компьютерном подборе использовать встроенную функцию Коррел 

б) коэффициент эластичности ; 

в) коэффициент детерминации . 

Оценка значимости уравнения регрессии в целом: 

Предварительные расчеты с построением таблицы вида 



183 

 

 x y 
  

 

 

………… ………. ……… …….. ……… ………  

а) F-критерий Фишера при числе степеней свободы и и уровне значимости 

0,05 смотреть в таблице. Расчетное значение критерия: 

. 

Если расчетное значение F- критерия больше табличного, нулевая гипотеза об отсутствии 

значимой связи признаков x и y отклоняется, и делается вывод о существенности этой свя-

зи. 

б) Средняя ошибка аппроксимации 

. 

Оценка значимости параметров регрессии: 

а) Стандартная ошибка параметра a рассчитывается по формуле 

, где . 

б) Стандартная ошибка коэффициента регрессии b рассчитывается по формуле 

. 

в) Стандартная ошибка коэффициента корреляции рассчитывается по формуле 

. 

t-критерий Стъюдента при числе степеней свободы и уровне значимости 0,05 смот-

реть в таблице. 

Фактические значения t-статистики:   , , . 

Если фактическое значение по абсолютной величине превышает табличное, гипотезу о 

несущественности параметра регрессии можно отклонить, параметр признается значи-

мым. 

Связь между F-критерием Фишераи t-критерием  Стъюдента выражается равенством 

. 

Расчет доверительных интервалов для параметров регрессии: 

Доверительный интервал для параметра a определяется как ; 

доверительный интервал для коэффициента регрессии определяется как . 

При компьютерном анализе использовать в ExcelСервис/Анализ данных/Регрессия. 

Интервальный прогноз на основе линейного уравнения регрессии: 

Пусть – прогнозное значение факторного признака; – точечный прогноз результа-

тивного признака. Тогда 

а) средняя ошибка прогноза :    ; 

б) доверительный интервал прогноза     . 
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Задача: 
Имеется связанная выборка из 26 пар значений (хk,yk): 
 

k    1  2  3  4  5  6  7  8  9  10 

xk   
  

25.20000 

  

26.40000 

  

26.00000 

  

25.80000 

  

24.90000 

  

25.70000 

  

25.70000 

  

25.70000 

  

26.10000 

  

25.80000 

yk 
  

30.80000 

  

29.40000 

  

30.20000 

  

30.50000 

  

31.40000 

  

30.30000 

  

30.40000 

  

30.50000 

  

29.90000 

  

30.40000 

 

 

k    11  12  13  14  15  16  17  18  19  20 

xk   
  

25.90000 

  

26.20000 

  

25.60000 

  

25.40000 

  

26.60000 

  

26.20000 

  

26.00000 

  

22.10000 

  

25.90000 

  

25.80000 

yk 
  

30.30000 
  

30.50000 
  

30.60000 
  

31.00000 
  

29.60000 
  

30.40000 
  

30.70000 
  

31.60000 
  

30.50000 
  

30.60000 

 
 

k    21  22  23  24  25  26 

xk     25.90000   26.30000   26.10000   26.00000   26.40000   25.80000 

yk   30.70000   30.10000   30.60000   30.50000   30.70000   30.80000 

 
Требуется вычислить/построить: 

 

- коэффициент корреляции; 

 - проверить гипотезу зависимости случайных величин X и Y, при уровне значимости α = 

0.05; 

 - коэффициенты уравнения линейной регрессии; 

 - диаграмму рассеяния (корреляционное поле) и график линии регрессии; 

 

Коэффициент корреляции — это показатель взаимного вероятностного влияния двух 

случайных величин. Коэффициент корреляции R может принимать значения от -1 до +1. 

Если абсолютное значение находится ближе к 1, то это свидетельство сильной связи меж-

ду величинами, а если ближе к 0 — то, это говорит о слабой связи или ее отсутствии. Если 

абсолютное значение R равно единице, то можно говорить о функциональной связи меж-

ду величинами, то есть одну величину можно выразить через другую посредством мате-

матической функции. 

Вычислить коэффициент корреляции можно по следующим формулам: 

cov( X,Y ) - ковариация случайных величин Х и Y  

 

 

Rx,y  =  
cov( X,Y ) 

 σxσy 
 

     (1 ),    где: 

 

σx
2
  =  

1 

 n 
 

n 

Σ 
k = 

1
 

 

(xk-

Mx)
2
  ,   

σy
2
  =  

1 

 n 
 

n 

Σ 
k = 

1
 

 

(yk-My)
2
     (2 ),    - оценки дисперсий случайных величин 

X и Y соответственно. 

Mx  =  1 

 
n xk  ,   My  =  1 

 
n yk     (3 ),    - оценки математического ожидания случайных 
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n 
 

Σ 
k = 

1
 

 

n 
 

Σ 
k = 

1
 

 

величин X и Y соответственно. 

или по формуле   

Rx,y  =  
Mxy - MxMy 

 SxSy 
 

     ( 4 ),    где: 

Mx  =  
1 

 n 
 

n 

Σ 
k = 1

 
 

xk ,   My  =  
1 

 n 
 

n 

Σ 
k = 1

 
 

yk ,   Mxy  =  
1 

 n 
 

n 

Σ 
k = 1

 
 

xkyk     ( 5 ) 

Sx
2
  =  

1 

 n 
 

n 

Σ 
k = 1

 
 

xk
2
 - Mx

2
 ,   Sy

2
  =  

1 

 n 
 

n 

Σ 
k = 1

 
 

yk
2
 - My

2
     (6 ) 

На практике, для вычисления коэффициента корреляции чаще используется формула 

(4) т.к. она требует меньше вычислений. Однако если предварительно была вычислена ко-

вариация cov(X,Y), то выгоднее использовать формулу ( 1 ), т.к. кроме собственно значе-

ния ковариации можно воспользоваться и результатами промежуточных вычислений. 

 

1.1 Вычислим коэффициент корреляции по формуле (4 ), для этого вычислим значения 

xk
2
, yk

2
 и xkyk и занесем их в таблицу 1. 

Таблица 1 

 

 k  
 xk   yk   хk

2
   yk

2
   хkyk  

1 2 3 4 5 6 

 1   25.2   30.8    635.04000    948.64000    776.16000  

 2   26.4   29.4    696.96000    864.36000    776.16000  

 3   26.0   30.2    676.00000    912.04000    785.20000  

 4   25.8   30.5    665.64000    930.25000    786.90000  

 5   24.9   31.4    620.01000    985.96000    781.86000  

 6   25.7   30.3    660.49000    918.09000    778.71000  

 7   25.7   30.4    660.49000    924.16000    781.28000  

 8   25.7   30.5    660.49000    930.25000    783.85000  

 9   26.1   29.9    681.21000    894.01000    780.39000  

 10   25.8   30.4    665.64000    924.16000    784.32000  

 11   25.9   30.3    670.81000    918.09000    784.77000  

 12   26.2   30.5    686.44000    930.25000    799.10000  

 13   25.6   30.6    655.36000    936.36000    783.36000  

 14   25.4   31    645.16000    961.00000    787.40000  

 15   26.6   29.6    707.56000    876.16000    787.36000  

 16   26.2   30.4    686.44000    924.16000    796.48000  

 17   26   30.7    676.00000    942.49000    798.20000  

 18   22.1   31.6    488.41000    998.56000    698.36000  

 19   25.9   30.5    670.81000    930.25000    789.95000  

 20   25.8   30.6    665.64000    936.36000    789.48000  
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 21   25.9   30.7    670.81000    942.49000    795.13000  

 22   26.3   30.1    691.69000    906.01000    791.63000  

 23   26.1   30.6    681.21000    936.36000    798.66000  

 24   26   30.5    676.00000    930.25000    793.00000  

 25   26.4   30.7    696.96000    942.49000    810.48000  

 26   25.8   30.8    665.64000    948.64000    794.64000  

 

1.2. Вычислим Mx по формуле ( 5 ). 

1.2.1. Сложим последовательно все элементы xk 

x1 + x2 + … + x26 =   25.20000 + 26.40000 + ... + 25.80000 = 669.500000 

1.2.2. Разделим полученную сумму на число элементов 

669.50000 / 26 =  25.75000 

Mx =  25.750000 

1.3. Аналогичным образом вычислим My. 

1.3.1. Сложим последовательно все элементы yk 

y1 + y2 + … + y26 =   30.80000 + 29.40000 + ... + 30.80000 = 793.000000 

1.3.2. Разделим полученную сумму на число элементов выборки  

793.00000 / 26 =  30.50000 

My =  30.500000 

1.4. Аналогичным образом вычислим Mxy. 

1.4.1. Сложим последовательно все элементы 6-го столбца таблицы 1 

776.16000 + 776.16000 + ... + 794.64000 = 20412.830000 

1.4.2. Разделим полученную сумму на число элементов 

20412.83000 / 26 =  785.10885 

Mxy =  785.108846 

1.5. Вычислим значение Sx
2
 по формуле ( 1.6. ). 

1.5.1. Сложим последовательно все элементы 4-го столбца таблицы 1 

635.04000 + 696.96000 + ... + 665.64000 = 17256.910000 

1.5.2. Разделим полученную сумму на число элементов 

17256.91000 / 26 =  663.72731 

1.5.3. Вычтем из последнего числа квадрат величины Mx получим значение для  

Sx
2
 

Sx
2
 =  663.72731 - 25.75000

2
 =  663.72731 - 663.06250 =  0.66481 

1.6. Вычислим значение Sy
2
 по формуле ( 1.6. ). 

1.6.1. Сложим последовательно все элементы 5-го столбца таблицы 1 

948.64000 + 864.36000 + ... + 948.64000 = 24191.840000 

1.6.2. Разделим полученную сумму на число элементов 

24191.84000 / 26 =  930.45538 

1.6.3. Вычтем из последнего числа квадрат величины My получим значение для Sy
2
 

Sy
2
 =  930.45538 - 30.50000

2
 =  930.45538 - 930.25000 =  0.20538 

1.7. Вычислим произведение величин Sx
2
 и Sy

2
. 

Sx
2
Sy

2
 =  0.66481 • 0.20538 =  0.136541 

1.8. Извлечем и последнего числа квадратный корень, получим значение SxSy. 

SxSy =  0.36951 

1.9. Вычислим значение коэффициента корреляции по формуле (1.4.). 

R = ( 785.10885 -  25.75000 • 30.50000) /  0.36951 =  ( 785.10885 -  785.37500) /  0.36951 =  -

0.72028 

ОТВЕТ:      Rx,y  =  -0.720279 
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2. Проверяем значимость коэффициента корреляции (проверяем гипотезу зависимо-

сти). 

Поскольку оценка коэффициента корреляции вычислена на конечной выборке, и по-

этому может отклоняться от своего генерального значения, необходимо проверить значи-

мость коэффициента корреляции. Проверка производится с помощью t-критерия:     

Случайная величина t следует t-распределению Стьюдента и по таблице t-

распределения необходимо найти критическое значение критерия (tкр.α) при заданном 

уровне значимости α. Если вычисленное t по модулю окажется меньше чем tкр.α, то зави-

симости между случайными величинами X и Y нет. В противном случае, эксперименталь-

ные данные не противоречат гипотезе о зависимости случайных величин. 

2.1. Вычислим значение t-критерия)  

2.2. Определим по таблице t-распределения критическое значение параметра tкр.α 

Искомое значение tкр.α располагается на пересечении строки соответствующей числу сте-

пеней свободы и столбца соответствующего заданному уровню значимости α. 

В нашем случае число степеней свободы есть n - 2 = 26 - 2 = 24 и α = 0.05 , что соответст-

вует критическому значению критерия tкр.α  = 2.064  

 

2.2. Сравним абсолютное значение t-критерия и tкр.α 

Абсолютное значение t-критерия не меньше критического t =  5.08680, tкр.α = 2.064, следо-

вательно экспериментальные данные, с вероятностью 0.95 ( 1 - α ), не противоречат 

гипотезе о зависимости случайных величин X и Y.  

3. Вычисляем коэффициенты уравнения линейной регрессии. 

Уравнение линейной регрессии представляет собой уравнение прямой, аппроксимирую-

щей (приблизительно описывающей) зависимость между случайными величинами X и Y. 

Если считать, что величина X свободная, а Y зависимая от Х, то уравнение регрессии за-

пишется следующим образом 

Y = a + b•X       (1 ),    где: 

b =  Rx,y 
σy 

 σx 
 

 =  Rx,y 
Sy 

 Sx 
 

     (2 ), 

a = My - b•Mx     (3 ) 

Рассчитанный по формуле (2 ) коэффициент b называют коэффициентом линейной рег-

рессии. В некоторых источниках a называют постоянным коэффициентом регрессии 

и b соответственно переменным. 

Погрешности предсказания Y по заданному значению X вычисляются по формулам : 

σy/x = σy   √ 1-R
2

x,y 
 

 = Sy   √ 1-R
2

x,y 
 

     (4 )      - абсолютная погрешность, 

δy/x =  
σy/x 

 My 
 

100%     (5 )     - относительная погрешность 

Величину σy/x (формула 4 ) еще называют остаточным средним квадратическим откло-

нением, оно характеризует уход величины Y от линии регрессии, описываемой уравнени-

ем ( 1 ), при фиксированном (заданном) значении X. 

3.1. Вычислим отношение 
Sy

2
 

 Sx
2
 

 

. 

Sy
2
 / Sx

2
  =  0.20538 /  0.66481 =  0.30894 

3.2. Вычислим отношение 
Sy 

 Sx 
 

. 

Извлечем из последнего числа квадратный корень - получим: 

Sy / Sx  =  0.55582 

3.3 Вычислим коэффициент b по формуле (2 ) 

b =  -0.72028 •  0.55582 =  -0.40035 

3.4 Вычислим коэффициент a по формуле (3 ) 
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a =  30.50000 - ( -0.40035 •  25.75000) =  40.80894 

3.5 Оценим погрешности уравнения регрессии. 

3.5.1 Извлечем из Sy
2
 квадратный корень получим: 

Sy =    √ 0.20538 
 

= 0.45319 ; 

3.5.2 Возведем в квадрат Rx,y получим: 

R
2

x,y = -0.72028
2
 = 0.51880 

3.5.3 Вычислим абсолютную погрешность (остаточное среднее квадратическое отклоне-

ние) по формуле (4 ) 

σy/x =  0.45319   √ 1 - 0.51880 
 

= 0.31437 

3.5.4 Вычислим относительную погрешность по формуле (5 ) 

δy/x = ( 0.31437 /  30.50000)100% = 1.03073% 

ОТВЕТ:   Уравнение линейной регрессии имеет вид:     Y = 40.80894 -0.40035 X     (6 ) 

 
  Погрешности уравнения: σy/x =  0.31437 ;     δy/x =  1.03073% 

 

3.17  Практическое занятие 28 (ПЗ-28)  

  Тема: Показатели стохастической зависимости. Линейная парная регрессия  

 

3.17.1 Задание для работы: 

 

1. Коэффициент корреляции, его свойства, значимость. 

 

3.17.2  Краткое описание проводимого занятия 

 

 

1. Коэффициент корреляции, его свойства, значимость 

Выборочным коэффициентом корреляции принято называть отношение выборочного кор-

реляционного момента к произведению выборочных средних квадратических отклонений 

этих величин: 

 

Коэффициент корреляции показывает тесноту и направление связи. 

Свойства выборочного коэффициента корреляции: 

1. значения коэффициента корреляции изменяются на множестве r  [-1;1]; 

2. чем больше абсолютное значение коэффициента корреляции, тем теснее связь между 

изученными признаками; 

3. если коэффициент корреляции равен 0 (k=0), то между изученными признаками нет ли-

нейной корреляционной зависимости, 

если |k|=1, то связь полная; 

если 0,7<|k|<0,99, то связь сильная; 

если 0,3<|k|<0,7, то связь средняя; 

если |k|<0,3, то связь слабая. 
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В случае если r  [-1;0), то связь обратная; 

если r  (0;1] – зависимость прямая. 

Проверка гипотезы для коэффициента корреляции 

Пусть r обозначает выборочный коэффициент корреляции, полученный по извле-

ченным из двумерного нормального распределения пар наблюдений (x1, y1),…,(xn, yn). 

Коэффициент корреляции  в популяции неизвестен, но может быть оценен по вы-

борке с помощью выборочного коэффициента корреляции r: 

(1) 

где оценки среднего равны: 

. 

Проверим значимость коэффициента корреляции. 

Нулевая гипотеза состоит в том, что коэффициент корреляции равен нулю, альтер-

нативная - не равен нулю: 

 

 
Очевидно, достаточно большое по абсолютной величине значение величины r будет 

стремиться опровергнуть нулевую гипотезу. 

Возникает вопрос. 

Насколько большое должно быть абсолютное значение величины r? 

Для того чтобы проверить гипотезу, мы должны знать распределение величины r. 

Собственное распределение величины r довольно сложное, поэтому мы применим 

преобразование: 

(2) 

Итак, выборочное распределение этой статистики есть распределе-

ние Стьюдента с n-2 степенями свободы. 

При заданном уровне значимости (α) определяем критическое значение tкр. 

Принимаем решение об отклонении или не отклонении нулевой гипотезы: 

 

 

- отклоняем H0 

- не отклоняем H0 

3.17.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные термины и формулы, необходимые для построения парной линейной 

регрессии; 

- усвоили формулы для вычисления коэффициента корреляции, его интерпретацию; 

- выработали навыки по проверки значимости выборочных коэффициентов. 

 

 

3.18 Практическое занятие 29-30 (ПЗ-29-30)  

http://www.statistica.ru/theory/raspredelenie-styudenta/
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Тема: Основные понятия теории марковских процессов. Простейший поток. Классифи-

кация марковских процессов 

 

3.18.1 Задание для работы: 

 

1. Основные понятия теории марковских процессов. 

2. Поток СС, простейший поток, его свойства. 

3. Классификация марковских процессов 

 

3.18.2  Краткое описание проводимого занятия 

 

1. Основные понятия теории марковских процессов. 

  

Функция X(t) называется случайной, если ее значение при любом аргумен-

те t является случайной величиной. Случайная функция X(t), аргументом которой являет-

ся время, называется случайным процессом. 

Марковские процессы являются частным видом случайных процессов. Особое место 

марковских процессов обусловлено следующими обстоятельствами: 

∙ эти процессы имеют развитый и проверенный математический аппарат, позволяю-

щий решать многочисленные практические задачи; 

∙ с помощью аппарата марковских процессов можно описать (точно или приближен-

но) поведение систем практически любой сложности. 

Марковский процесс. Случайный процесс, протекающий в какой либо системе S, на-

зывается марковским (или процессом без последействия), если он обладает следующим 

свойством: для любого момента времени t 0 вероятность любого состояния системы в бу-

дущем (при t>t 0) зависит только от ее состояния в настоящем (при t = t 0) и не зависит от 

того, когда и каким образом система S пришла в это состояние. 

 

2. Поток СС, простейший поток, его свойства. 

Задача. Радиоустройство содержит 500 элементов. Вероятность отказа любого из 

них в течение срока службы равна 0,006. Найти вероятность того, что в течение срока 

службы устройства откажут ровно 2 элемента. 

Решение: Число элементов велико (n=500), а вероятность отказа в течение срока 

службы мала (p=0,006), следовательно, искомую вероятность находим по формуле Пу-

ассона: 

 

Найдем    

Задача. Среднее число заказов такси, поступающее на диспетчерский пункт за 1 

минуту равно трем. Найти вероятность того, что за две минуты поступит: а) четыре вы-

зова; б ) менее четырех вызовов; в)не менее четырех вызовов. 

Решение: Из условия задачи известно число вызовов, поступающих за одну ми-

нуту, следовательно, задана интенсивность потока событий. 

Для решения задачи воспользуемся формулой Пуассона для простейшего потока 

событий. 
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 в нашем случае l =3, t=2. 

а) Число вызовов, поступающих за две минуты k=4, тогда искомая вероятность 

равна: 

 

б) Событие «поступило менее четырех вызовов» будет суммой несовместных со-

бытий: «поступило три вызова», «поступило два вызова», «поступил один вызов» и «не 

поступило вызовов». 

По теореме сложения вероятностей несовместных событий имеем: 

 

в) События «поступило менее четырех вызовов» и «поступило не менее четырех 

вызовов» противоположны, поэтому искомая вероятность того, что за две минуты по-

ступит не менее четырех вызовов равна:  

Основная задача теории простейшего потока состоит в определении закона распре-

деления числа событий за период времени t, рассматриваемый в качестве случайной вели-

чины. Это соответствует задачи отыскания функции pk(t). 

Однако сначала определим ее с фиксированным t. Возьмем интервал (0,1) и разобьем 

его произвольно на n равных частей. Длина каждой i-й части равна 1 / n. Так как поток об-

ладает свойством отсутствия последействия, а, следовательно, события и их вероятности 

являются несовместными, то вероятность того, что за весь период t не поступит ни один 

клиент, определяется как 

.     (1) 

Предположим , тогда              ,           (2) 

откуда выразим вероятность того, что за промежуток времени дины 1 / n  не посту-

пит ни один клиент: 

.           (3) 

Если период времени, равный k / n, где k – целое положительное число ( ), 

разбить на k частей, (длина каждой части равна 1/n), то, учитывая (3), получим 

.   (4) 

Пусть    (натуральное число): 
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,          (5) 

и из предположения, что p0(t) является невозрастающей функцией, поскольку, чем больше 

промежуток времени, тем меньше вероятность отсутствия клиентов, имеем 

            .     (6) 

В соответствии с (6)               . (7) 

Так как , то  и . Таким образом,  

Из равенства  следует . Случаи, когда , не рассматриваются, по-

скольку означают достоверное прибытие клиентов и достоверное отсутствие какого бы то 

ни было потока клиентов соответственно в любом промежутке времени. Поэтому для нас 

представляет интерес случай, когда . Исходя из данных жестких ограничений, 

положим  (рис.).  

 Следовательно, для любого стационарного потока 

без последействия функцию p0(t)можно выразить че-

рез :              .            (8) 

 Перейдем к определению функции pk(t) при k>0. 

Разобьем период времени (0,t) на произвольное 

число n>k  равных частей длины .  

Относительно расположения поступления клиентов в 

этих частях возможны две гипотезы: 

H1 –    ни в одном из n промежутков не поступит более одного клиента; 

H2 – хотя бы в одном из n промежутков поступит более одного клиента. 

Тогда вероятность pk(t) равна сумме вероятностей двойного события: 

(9) 

Двойная вероятность P(Hi, k) включает вероятность реализации гипотезы Hi и одно-

временно вероятность того, что за период (0,t) поступает k клиентов. Таким 

образом P(H1, k) – вероятность того, что во всех частях n периода (0,t) не поступит более 

одного клиента, при этом общее количество клиентов за данный период составит k. Сле-

довательно, насчитывается k из n частей, которые содержат по одному поступлению кли-

ента, а в оставшихся (n – k)  временных промежутках клиенты не поступают. 

Чтобы определить вероятность появления по одному клиенту в k из n промежутках 

времени, необходимо воспользоваться биномиальным законом распределения: 

.  (10) 

В силу формулы (10) и однородности данного потока получаем, что при 

  и k=const 

                   (11) 



193 

 

и 

            , (12) 

где       – вероятность того, что за промежуток времени длины  поступит по 

меньшей мере два клиента: 

                      (13) 

            при  ( ).       (14) 

Тогда уравнение (14) примет вид 

    .        (15) 

Подставим (11) и (15) в (10) и упростим его: 

             

             

            (16) 

            . 

Так как для отдельного промежутка времени вероятность появления более одного 

клиента есть , то вероятность того, что по меньшей мере один из nпромежутков со-

держит более одного клиента (то есть выполняется гипотеза H2составит . Очевид-

но 

            .         (17) 

Таким образом, 

.    (18) 

Так как pk(t) не зависит от n, то, исходя из равенства (9), получаем 

            .           (19) 

Вывод: для простейшего потока число поступлений клиентов в промежутке времени 

длины t распределено по закону Пуассона с параметром .  

Различие двух простейших потоков заключается только в разных значениях пара-

метра . 

Пусть w(t) – вероятность того, что за промежуток времени t поступит по меньшей 

мере одна заявка: 
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         ,     (20) 

где        – вероятность поступления по меньшей мере двух заявок за 

промежуток времени t. 

Мы знаем, что для простейшего потока с параметром  

            . (21) 

Отсюда следует, что               .        (22) 

Параметр потока вычисляется по формуле 

            .        (23) 

Подобный предел существует у любого стационарного потока и  является важ-

нейшей характеристикой этого потока. 

Из теории вероятности известно, что математическое ожидание случайной величи-

ны, распределенной по Пуассоновскому закону, равно параметру этого закона, и в нашем 

случае – . Тем не менее, в этом можно убедиться, рассчитав математическое ожидание 

количества заявок, поступающих за промежуток времени t: 

            ,        (24) 

поскольку, из математического анализа известно, что сумма 

            ,       (25) 

является разложением функции  по степеням (k-1). 

Определение. Математическое ожидание числа заявок в единицу времени называет-

ся интенсивностью данного потока. 

Если поток не является стационарным, то рассматривается вероятность . 

Это та же вероятность поступления k заявок за промежуток времени длины , но уже за-

висящая от начального момента t. Тогда по аналогии со стационарным потоком вероят-

ность того, что за интервал  поступит по меньшей мере одна заявка 

            ,        (26) 

Для нестационарного ординарного потока 

              (27) 

(мгновенное значение параметра). 

Пусть  – мгновенная интенсивность в момент времени t, тогда для простейшего 

потока с переменным параметром имеет место . 

Вероятность того, что за промежуток времени t подчиненного распределению B(t), 

поступит k заявок, равна 
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            .         (28) 

 

3. Классификация марковских процессов 

Классификация марковских процессов производится в зависимости от непрерывно-

сти или дискретности множества значений функции X(t) и параметра t. Различают сле-

дующие виды марковских процессов: 

∙ с дискретными состояниями и дискретным временем (цепь Маркова); 

∙ с непрерывными состояниями и дискретным временем (марковские последовательно-

сти); 

∙ с дискретными состояниями и непрерывным временем (непрерывная цепь Маркова); 

∙ с непрерывным состоянием и непрерывным временем. 

Граф состояний. Марковские процессы с дискретными состояниями удобно иллю-

стрировать с помощью графа состояний (рис. 1), где окружностями обозначены состояния 

(вершины графа) S1,S2,… системы S, а стрелками (дуги графа) - возможные переходы из 

состояния в состояние. На графе отмечаются только непосредственные переходы, а не пе-

реходы через другие состояния. Возможные задержки в прежнем состоянии изображают 

«петлей», то есть стрелкой, направленной из данного состояния в него же. Число состоя-

ний системы может быть как конечным, так и бесконечным (но счетным). 

 
Рис. 1. Граф состояний системы S 

Итак, моделирование на основе дискретных марковских процессов. 

Рассмотрим ситуацию, когда моделируемый процесс обладает следующими особен-

ностями. 

Система  имеет  возможных состояний: , , ..., . Вообще говоря, число 

состояний может быть бесконечным. Однако модель, как правило, строится для конечного 

числа состояний. 

Смена состояний происходит, будем считать, мгновенно и в строго определенные 

моменты времени  В дальнейшем будем называть временные точки 

 шагами. 

Известны вероятности перехода  системы за один шаг из состояния  в со-

стояние . 

Цель моделирования: определить вероятности состояний системы после  -го шага. 

Обозначим эти вероятности  (не путать с вероятностями ). 

Если в системе отсутствует последействие, то есть вероятности  не зависят от 

предыстории нахождения системы в состоянии , а определяются только этим состоя-

нием, то описанная ситуация соответствует модели дискретной марковской цепи. 

Марковская цепь называется однородной, если переходные вероятности  от вре-

мени не зависят, то есть от шага к шагу не меняются. В противном случае, то есть если 
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переходные вероятности  зависят от времени, марковская цепь называет-

ся неоднородной. 

Значения  обычно сводятся в матрицу переходных вероятностей: 

 

Значения  могут также указываться на графе состояний системы. На рис. 

2 показан размеченный граф для четырех состояний системы. Обычно вероятности пере-

ходов «в себя» - ,  и т. д. на графе состояний можно не проставлять, так как их 

значения дополняют до 1 сумму переходных вероятностей, указанных на ребрах (стрел-

ках), выходящих из данного состояния. 

Не указываются также нулевые вероятности переходов. Например, на рис. 2. это ве-

роятности ,  и др. 

Математической моделью нахождения вероятностей состоя-

ний однородной марковской цепи является рекуррентная зависимость 

 (1), где  - вероятность  -го состояния системы 

после  -го шага, ;  - вероятность  -го состояния системы по-

сле  -го шага, ;  - число состояний системы;  - переходные ве-

роятности. 

 
 

Рис. 2. Размеченный граф состояний системы 

Для неоднородной марковской цепи вероятности состояний системы находят-

ся по формуле: 

где  - значения переходных вероятностей для  -го 

шага. 

Пример. По группе из четырех объектов производится три последовательных вы-

стрела. Найти вероятности состояний группы объектов после третьего выстрела. 

Матрица переходных вероятностей имеет вид: 

 
Размеченный граф состояний приведен на рис. 3. 

http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=1#image.2.1
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=1#image.2.1
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=1#image.2.2
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Рис. 3. Размеченный граф состояний четырех объектов 

Прежде чем приступить к вычислениям, необходимо ответить на следующие вопро-

сы. 

Является ли рассматриваемый процесс поражения целей марковским? Да, так как 

степень поражения объекта (смена его состояния) не зависит от того - когда и каким обра-

зом объект был приведен в настоящее состояние, а зависит только от его текущего со-

стояния. 

Подходит ли рассматриваемая задача под схему марковской цепи? Да, так как время 

представляет собой дискретные отрезки - время между выстрелами (шаги). 

Процесс однородный или неоднородный? Есть основания полагать, что процесс од-

нородный, так как переходные вероятности не зависят от времени. Кроме этого, мы пола-

гаем, что объекты - неподвижные и во времени обстрела менять свое положение не могут 

(что привело бы к изменениям после каждого выстрела). 

И, наконец, надо правильно определить начальное состояние системы, так как от 

этого могут существенно зависеть результаты моделирования. В нашем случае вполне ес-

тественно считать начальным состояние  - все объекты целы. 

Следовательно, есть все основания для применения ранее введенного рекуррентного 

выражения (1). 

Решение. Так как до первого выстрела все объекты целы, то . 

После первого выстрела все значения вероятностей  соответствуют первой 

строке матрицы переходных вероятностей. Рассчитаем вероятности остальных состояний. 
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Сформулируем методику моделирования по схеме дискретных марковских процес-

сов (марковских цепей). 

Зафиксировать исследуемое свойство системы. 

Определение свойства зависит от цели исследования. Например, если исследуется 

объект с целью получения характеристик надежности, то в качестве свойства следует вы-

брать исправность. Если исследуется загрузка системы, то - занятость. Если, как в приме-

ре, состояния объектов, то - поражен или непоражен. 

Определить конечное число возможных состояний системы и убедиться в правомер-

ности моделирования по схеме дискретных марковских процессов. 

Составить и разметить граф состояний. 

Определить начальное состояние. 

По рекуррентной зависимости (1) определить искомые вероятности. 

В рамках изложенной методики моделирования исчерпывающей характеристикой 

поведения системы является совокупность вероятностей . 

При неоднородном марковском процессе переходная вероятность  представляет 

собой условную вероятность перехода 

, зависящую от  - очередного временного шага. В этом 

случае должны быть указаны более одной матрицы значений  (для некоторых шагов 

матрицы могут быть одинаковыми). 

Например, при нанесении ударов по объектам, которые могут перемещаться (танко-

вая группировка, корабли и т. п.), последние будут принимать меры по рассредоточению 

средств или другому защитному маневру, вплоть до активного противодействия атакую-

щей стороне. Очевидно, все эти меры приведут к уменьшению поражающих возможно-

стей стороны, наносящей удары, т. е. к соответствующему изменению переходных веро-

ятностей. Процесс становится неоднородным. 

Моделирование по схеме непрерывных марковских процессов 

Существует широкий класс систем, которые меняют свои состояния в случайные 

моменты времени . Как и в предыдущем случае, в этих системах рассматривается про-

цесс с дискретными состояниями . Например, переход объекта от ис-

правного состояния к неисправному, соотношение сил сторон в ходе боя и т. п. Оценка 

эффективности таких систем определяется с помощью вероятностей каждого состоя-

ния  на любой момент времени , . 

Чтобы определить вероятности состояния системы  для любого момента вре-

мени  необходимо воспользоваться математическими моделями марковских процессов с 

непрерывным временем (непрерывных марковских процессов). 

При моделировании состояния систем с непрерывными марковскими процессами мы 

уже не можем воспользоваться переходными вероятностями , так 

как вероятность «перескока» системы из одного состояния в другое точно в момент вре-

мени  равна нулю (как вероятность любого отдельного значения непрерывной случай-

ной величины). 

Поэтому вместо переходных вероятностей вводятся в рассмотрение плотности веро-

ятностей переходов :  

где  - вероятность того, что система, находившаяся в момент времени  в 

состоянии  за время  перейдет в состояние . 
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С точностью до бесконечно малых второго порядка из приведенной формулы можно 

представить:  

Непрерывный марковский процесс называется однородным, если плотно-

сти вероятностей переходов  не зависят от времени  (от момента начала промежут-

ка  ). В противном случае непрерывный марковский процесс называет-

ся неоднородным. 

Целью моделирования, как и в случае дискретных процессов, являет-

ся определение вероятностей состояний системы . Эти вероятности находятся ин-

тегрированием системы дифференциальных уравнений Колмогорова. 

Сформулируем методику моделирования по схеме непрерывных марковских про-

цессов. 

Определить состояния системы и плотности вероятностей переходов . 

Составить и разметить граф состояний. 

Составить систему дифференциальных уравнений Колмогорова. Число уравнений в 

системе равно числу состояний. Каждое уравнение формируется следующим образом. 

B левой части уравнения записывается производная вероятности  -го состоя-

нии . 

В правой части записывается алгебраическая сумма произведений 

 и . Число произведений столько, сколько стрелок связано с данным состояни-

ем. Если стрелка графа направлена в данное состояние, то соответствующее произведение 

имеет знак плюс, если из данного состояния - минус. 

Определить начальные условия и решить систему дифференциальных уравнений. 

Пример. Составить систему дифференциальных уравнений Колмогорова для нахо-

ждения вероятностей состояний системы, размеченный граф состояний которой представ-

лен на рис. 4. 

 
 

Рис. 4 Размеченный граф состояний 

Решение 

 

Очевидно, . 

Поэтому любое из первых трех уравнений можно исключить, как линейно зависи-

мое. 

http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.3
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Для решения уравнений Колмогорова необходимо задать начальные условия. Для 

рассмотренного примера, можно задать такие начальные условия: 

, . 

Однородный марковский процесс с непрерывным временем можно трактовать как 

процесс смены состояний под влиянием некоторого потока событий. То есть плот-

ность вероятности перехода можно трактовать как интенсивность потока событий, пере-

водящих систему из -го состояния в  -е. Такими потоками событий являются отказы 

техники, вызовы на телефонной станции, рождение и т. п. 

При исследовании сложных объектов всегда интересует: возможен ли в исследуемой 

системе установившейся (стационарный) режим? То есть, как ведет себя система 

при ? Существуют ли предельные значения ? Как правило, 

именно эти предельные значения интересуют исследователя. 

Ответ на данный вопрос дает теорема Маркова. 

Если для однородного дискретного марковского процесса с конечным или счетным 

числом состояний все , то предельные значения  существуют и их значе-

ния не зависят от выбранного начального состояния системы. 

Применительно к непрерывным марковским процессам теорема Маркова трактуется 

так: если процесс однородный и из каждого состояния возможен переход за конечное 

время в любое другое состояние и число состояний счетно или конечно, то предельные 

значения существуют и их значения не зависят от выбранного начального состоя-

ния. 

Например (рис. 5), в системе А стационарный режим есть, а в системе В стационар-

ного режима нет: если система окажется в состоянии  она не сможет перейти ни в ка-

кое другое состояние. 

 
Рис. 5. Примеры графов состояний систем с различными режимами 

Схема гибели и размножения 

Часто в системах самого различного назначения протекают процессы, которые мож-

но представить в виде модели «гибели и размножения». 

Граф состояний такого процесса показан на рис. 6. 

 
 

Рис. 6. Схема "гибели и размножения" 

Особенностью модели является наличие прямой и обратной связей с каждым сосед-

ним состоянием для всех средних состояний; первое и последнее (крайние) состояния свя-

заны только с одним «соседом» (с последующим и предыдущим состояниями соответст-

венно). 

http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.4
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.5
http://www.intuit.ru/EDI/13_12_15_4/1449958784-19792/tutorial/903/objects/2/files/02_04.gif
http://www.intuit.ru/EDI/13_12_15_4/1449958784-19792/tutorial/903/objects/2/files/02_05.gif
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Название модели – «гибель и размножение» - связано с представлением, что стрелки 

вправо означают переход к состояниям, связанным с ростом номера состояния («рожде-

ние»), а стрелки влево - с убыванием номера состояний («гибель»). 

Очевидно, стационарное состояние в этом процессе существует. Составлять уравне-

ния Колмогорова нет необходимости, так как структура регулярна, необходимые формулы 

приводятся в справочниках, а также в рекомендованной литературе. 

Для приведенных на рис.6 обозначений формулы имеют вид: 

(*) 

Пример. Имеется система из двух одинаковых и работающих параллельно компью-

теров. 

Требуется определить надежностные характеристики этой системы. 

Решение 

В этой системе возможны три состояния: 

 - оба компьютера исправны; 

 - один компьютер исправен, другой ремонтируется; 

 - оба компьютера неисправны и ремонтируются. Будем полагать, что процессы 

отказов и восстановлений - однородные марковские, одновременный выход из строя обо-

их компьютеров, как и одновременное восстановление двух отказавших компьютеров 

практически невозможно. 

Поскольку компьютеры одинаковые, то с точки зрения надежности, неважно, какой 

именно компьютер неисправен в состоянии , важно, что один. 

С учетом сказанного, ситуация моделируется схемой «гибели и размножения» (рис. 

7). 

 
 

Рис. 7 

На рис. 7: 

,  - интенсивности потоков отказов; 

,  - интенсивности потоков восстановлений. 

Пусть среднее время безотказной работы каждого компьютера , а среднее 

время восстановления одного компьютера . 

Тогда интенсивность отказов одного компьютера будет рав-

на , а интенсивность восстановления одного компьютера -

 . 

В состоянии  работают оба компьютера, следовательно: 

 

http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.5
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.6
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.6
http://www.intuit.ru/studies/courses/643/499/lecture/11353?page=2#image.2.6
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В состоянии  работает один компьютер, значит: 

 

В состоянии  восстанавливается один компьютер, тогда: 

 

В состоянии  восстанавливаются оба компьютера: 

 
Используем зависимости (*). Вероятность состояния, когда обе машины исправны: 

 

Вероятность второго состояния  (работает один компьютер): 

 

Аналогично вычисляется и . Хотя найти  можно и так: 

 
Непрерывный марковский процесс полностью определяется значениями плотно-

стей вероятностей переходов , . Ранее был установлен их физический смысл как 

интенсивности потоков событий, переводящих систему из одного состояния в дру-

гое. Поток событий в однородных непрерывных марковских процессах характеризуется 

экспоненциальным законом распределения случайных интервалов времени между собы-

тиями. Такой поток называют простейшим или стационарным пуассоновским. 

 

3.18.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные понятия и теоремы теории марковских процессов, их классификацию; 

- усвоили навыки работы с моделями простейшего потока СС; 

- выработали навыки моделирования по схеме дискретных и непрерывных марковских про-

цессов; 

- усвоили навыки работы по схеме гибели и размножения; 

- выработали навыки определения надежностных характеристик системы, путем обсчета 

соответствующей модели марковских процессов. 

 

 

3.18 Практическое занятие 31-32 (ПЗ-31-32)  

Тема: Основные понятия теории систем массового обслуживания.  СМО с отказами и 

СМО с ожиданием (очередью).  

3.18.1 Задание для работы: 

 

1. Дискретные марковские процессы. Классификация ДМП. Методика моделирова-

ния по схеме дискретных марковских процессов (марковских цепей). 

2. СМО, их классификация, свойства. Многоканальная СМО с неограниченной 

очередью. СМО с ограниченной очередью. СМО с ограниченным временем ожида-

ния 

http://math.semestr.ru/cmo/cmo_otkaz.php
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3.18.2  Краткое описание проводимого занятия 

 

 

1. Дискретные марковские процессы. Классификация ДМП. Методику моделирова-

ния по схеме дискретных марковских процессов (марковских цепей). 

Задача 1. Задана матрица  вероятностей перехода дискретной цепи 

Маркова из i-го состояния в j-ое за один шаг (i, j=1, 2). Распределение вероятностей по со-

стояниям в начальный момент t=0 определяется вектором  =(0,1; 0,9). Найти: 

1. матрицу Р2 перехода цепи из состояния i в состояние j за два шага; 

2. распределение вероятностей по состояниям в момент t=2; 

3. вероятность того, что в момент t=1 состоянием цепи будет А2; 

4. стационарное распределение. 

Решение. Для дискретной цепи Маркова в случае ее однородности справедливо со-

отношение 

                                 (1) 

где Р1 – матрица переходных вероятностей за один шаг; 

Рn -  матрица переходных вероятностей за n шагов; 

1. Найдем матрицу Р2 перехода за два шага

 
Пусть распределение вероятностей по состояниям на S-ом шаге определяется векто-

ром  

.  

Зная матрицу Pn перехода за n шагов, можно определить распределение вероятностей по 

состояниям на (S+n) –ом шаге .                              (2) 

2. Найдем распределение вероятностей по состояниям системы в момент t=2. 

Положим в (5) S=0 иn=2. Тогда . 

Получим . 

3. Найдем распределение вероятностей по состояниям системы в момент t=1. 

Положим в (2) s=0 и n=1, тогда . 

Откуда видно, что вероятность того, что в момент t=1 состоянием цепи бу-

дет А2 ,равна р2(1)=0,69. 

Распределение вероятностей по состояниям называется стационарным, если оно не меня-

ется от шага к шагу, то есть   

Тогда из соотношения (2) при n=1 получим  

или .                      (3) 
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4. Найдем стационарное распределение. Так как =2 имеем =(р1; р2). Запишем 

систему линейных уравнений (3) в координатной форме 

 
 

Последнее условие называется нормировочным. В системе (3) всегда одно уравнение яв-

ляется линейной комбинацией других. Следовательно, его можно вычеркнуть. Решим со-

вместно первое уравнение системы и нормировочное. Имеем 0,6р1=0,3р2, то есть р2=2р1. 

Тогда р1+2 р1=1 или , то есть . Следовательно, . 

 

Ответ:  

1) матрица перехода за два шага для данной цепи Маркова имеет вид ; 

2) распределение вероятностей по состояниям в момент  t=2 равно ; 

3) вероятность того, что в момент t=1 состоянием цепи будет А2 , равна р2(t)=0,69; 

4) стационарное распределение имеет вид  

Задача 2. Задана матрица  интенсивностей переходов непрерыв-

ной цепи Маркова. Составить размеченный граф состояний, соответствующий матрице Λ; 

составить систему дифференциальных уравнений Колмогорова для вероятностей состоя-

ний; найти предельное распределение вероятностей.  

Решение. Однородная цепь Маркова с конечным числом состояний А1, А2,…А

 характеризуется матрицей интенсивностей переходов ,  

где  - интенсивность перехода цепи Маркова из состояния Аi в состоя-

ние Аj;рij(Δt)-вероятность перехода Ai→Aj за интервал времени Δt. 

Переходы системы из состояния в состояние удобно задавать с помощью размечен-

ного графа состояний, на котором отмечаются дуги, соответствующие интенсивно-

стям λij>0. Составим размеченный граф состояний для заданной матрицы интенсивностей 

переходов 

 

Пусть  - вектор вероятно-

стей рj(t),  

j=1, 2,…, , нахождения системы в состоянии Аj  в момент t. 
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Очевидно, что 0≤рj(t)≤1 и . Тогда по правилу дифференцирования век-

торной функции скалярного аргумента получим .  

Рис. 1 

Вероятности рj(t)удовлетворяют системе дифференциальных уравнений Колмогоро-

ва (СДУК), которая в матричной форме имеет вид .     (4) 

Если в начальный момент система находилась в состоянии Аj, то СДУК следует ре-

шать при начальных условиях рi(0)=1,      рj(0)=0,      j≠i,    j=1, 2,…, .                            (5) 

Совокупность СДУК (4) и начальных условий (5) однозначно описывает однород-

ную цепь Маркова с непрерывным временем и конечным числом состояний.  

Составим СДУК для заданной цепи Маркова. Поскольку =3, то j=1, 2, 3. 

Из соотношения (1) получим  

.  

Отсюда будем иметь 

 
Последнее условие называется нормировочным. 

Распределение  вероятностей по состояниям называется стационарным, если оно не 

меняется с течением времени, то есть , где рj=const, j=1,2,…, . 

Отсюда . 

Тогда из СДУК (4) получаем систему для нахождения стационарного распределения 

                        (6) 

Для данной задачи из СДУК будем иметь 

 

Из нормировочного условия получим 3р2+р2+р2=1 или .  

Следовательно, предельное распределение имеет вид . 

Заметим, что этот результат можно получить непосредственно по размеченному графу со-

стояний, если воспользоваться правилом: для стационарного распределения сумма произ-

ведений λjipi, j≠i, для стрелок, выходящих из i-го состояния, равна сумме произведе-
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ний λjipi, j≠i, для стрелок, входящих в i-ое состояние. Действительно, 

 
Очевидно, что полученная система эквивалентна той, которая составлена по СДУК.  

Следовательно, она имеет то же решение. 

Ответ: стационарное распределение имеет вид . 

 

2. СМО, их классификация, свойства.  Многоканальная СМО с неограниченной оче-

редью. СМО с ограниченной очередью. СМО с ограниченным временем ожидания 

Системой массового обслуживания (СМО)называется комплекс взаимосвязанных 

элементов, состоящий из некоторого числа обслуживающих единиц (каналов), в котором 

происходит удовлетворение массовых запросов (требований), поступающих в систему в 

случайные моменты времени. Обслуживание каждой заявки длится в течение некоторого 

случайного времени и зависит от показателей эффективности системы. После того, как 

заявка обслужена, она покидает канал, и система готова к приему очередной заявки. При-

меры СМО - телефонная станция, автостоянка, кассир магазина, служба занятости. 

Основные элементы СМО - источник требований, входящий поток заявок, каналы 

обслуживания, выходящий поток заявок. 

Предметом теории СМО является построение математических моделей (т. е. обра-

зов реального экономического объекта, описанных с помощью уравнений, формул, гра-

фиков, схем и т. д.) для теоретического анализа и практического использования свойств 

СМО. 

Показатели эффективности СМО - характеристики работы системы, описывающие 

ее способность справляться с потоком заявок. Эффективность функционирования СМО 

описывается такими показателями: 

1) Эффективность использования СМО - абсолютная или относительная пропуск-

ные способности системы, среднее число занятых каналов (коэффициент использования 

СМО), средняя продолжительность использования СМО, интенсивность нагрузки канала; 

2) Качество обслуживания заявок - среднее число заявок, обслуженных СМО в еди-

ницу времени, вероятность простоя системы, вероятность отказа в обслуживании, среднёе 

число заявок в очереди, среднее число заявок в системе и др. 

 Поток заявок, поступающих в систему, характеризуется интенсивностью λ, то есть 

частотой появления заявок в системе, или средним числом заявок, поступающих в систе-

му в единицу времени. 

Интенсивность μ потока обслуживаний,- это величина, обратная среднему времени 

обслуживания, или число заявок, обслуженных системой в единицу времени. 

Интенсивность нагрузки канала обслуживания ρ, - это величина, показывающая 

среднее число заявок, поступающее в систему за среднее время обслуживания одной заяв-

ки: (1). При этом его экономический смысл заключается в том, что показатель ρ, -

 это среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу 

времени все поступающие в систему требования. Условие   < 1, (2) 

где п - число каналов обслуживания, означает, что необходимое число каналов об-

служивания должно быть больше ρ. 

Классификация СМО: 

По дисциплине обслуживания: 
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— СМО с отказами, когда заявка, поступившая в систему в момент, когда все кана-

лы заняты, остается необслуженной; 

— СМО с ожиданием (очередью), в которых заявка в случае занятости всех каналов 

становится в очередь и ожидает обслуживания; 

— Системы с ограничением длины очереди; 

— Системы с ограниченным временем ожидания; 

По месту нахождения источника требований: 

— Замкнутые СМО, когда источник требований находится в самой системе; 

— Открытые СМО, когда источник требований находится вне системы; 

По числу обслуживающих каналов: одноканальные; многоканальные. 
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Одноканальная СМО с отказами 

Рассмотрим упорядоченное множество состояний некоторой системы 

S : S0,S1,S2,…,Sk,…; предположим, что все потоки, переводящие систему из состоя-

ния в состояние, - простейшие. Пусть для любого состояния Sk переходы возможны только 

в соседние состояния: либо в Sk-1,либо в Sk +].Граф состояний такой системы изображен на 

рисунке номер 2: 

λ01 λ12 λ23 λk-1,k λk,k+1 λn-1,n 

 .….. …… 

S0 S1 S2 Sk Sn 

…… …… 

λ10 λ21 λ-32 λk,k-1 λk+1,k λn,n-1 

  

Рис. 1: Граф состояний одноканальной СМО с отказами. 

Случайные процессы, происходящие в таких системах, имеют специальное название, 

традиционно происходящее из биологии: схема гибели и размножения (состояние Sk соот-

ветствует некоторой популяции численностью k, смена состояния происходит при рожде-

нии либо гибели одного члена популяции). 

Рассмотрим систему с одним каналом обслуживания, в которую поступает простей-

ший поток заявок с интенсивностью λ. Если в момент поступления очередной заявки ка-

нал занят, то заявка покидает систему необслуженной. Такие системы называют-

ся системами без ожидания, или с отказами в обслуживании. 

Пусть поток обслуживаний имеет интенсивность μ. Граф состояний такой системы 

показан на рисунке 2: 

  λ 

  S0 S1 

μ 

Рис. 2: Система без ожидания. 

  

Система имеет два состояния: 

S0 – канал свободен и готов к приему очередной заявки; 

S1 – канал занят. 

Эти величины можно интерпретировать как вероятности того, что заявка будет 

обслужена либо получит отказ: 

 
Относительная пропускная способность системы, то есть доля всех обслуженных 

заявок из числа всех поступивших в систему, равна вероятности обслуживания: 

 
Абсолютная пропускная способность системы, то есть число обслуженных заявок в 

единицу времени, - это произведение интенсивности потока заявок на долю всех обслу-

женных заявок: 
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Интенсивность μ потока обслуживаний П0б есть производительность канала. Имеет 

место равенство   , где Тоб - среднее время обслуживания одной заявки, относя-

щееся только к обслуженным заявкам, т.е. математическое ожидание М [Т0б] случайной 

величины Т0б. 

Стационарность потока означает, что его вероятностные характеристики не зависят 

от времени. 

Пример. Пусть одноканальная СМО с отказами представляет собой один пост 

ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибыв-

ший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока 

автомобилей  = 1,0 (автомобиль в час). Средняя продолжительность обслуживания - 1,8 

часа. Поток автомобилей и поток обслуживании являются простейшими. 

Требуется определить в установившемся режиме предельные значения: 

- относительной пропускной способности q; 

- абсолютной пропускной способности А; 

- вероятности отказа Pотк ; 

Сравните фактическую пропускную способность СМО с номинальной, которая была 

бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали 

один за другим без перерыва. 

Решение 

1. Определим интенсивность потока обслуживания: 

 . 

2. Вычислим относительную пропускную способность: 

 . 

Величина q означает, что в установившемся режиме система будет обслуживать 

примерно 35% прибывающих на пост ЕО автомобилей. 

3. Абсолютную пропускную способность определим по формуле: 

 . 

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслу-

живания автомобилей в час. 

4. Вероятность отказа: 

 . 

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в 

обслуживании. 

5. Определим номинальную пропускную способность системы: 

 (автомобилей в час). 

Оказывается, что Аном в 1,5 раза  больше, чем фактическая пропускная 

способность, вычисленная с учетом случайного характера потока заявок и времени об-

служивания. 
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Многоканальная СМО с отказами 

Задача исследования таких СМО впервые возникла в области телефонии и была ре-

шена в 1909 г. А.К. Эрлангом. 

Состояния системы занумеруем по числу занятых каналов. Для СМО с отказами это 

означает, что мы нумеруем состояния по числу заявок, находящихся в системе, т.е. под 

обслуживанием, поскольку каждый канал в любой момент времени либо свободен, либо 

обслуживает только одну заявку. Таким образом, СМО может находиться только в одном 

из ледующих п + 1 состояний: 

λ01=λ λ12= λ λk-1,k= λ λk,k+1= λ λn-2,n-1= λ λn-1,k= λ 

           ……. .….. 

S0 S1 Sk Sn-1 Sn 

      ……. ……. 

λ10=μ λ21=2μ λk,k-1=kμ λk+1,k = λn-1,n-2= λn,n-1=nμ 

=(k+1)μ =(n-1) μ 

Рис. 3: функционирование системы S. 

Если СМО находится в состоянии Sk (k=0,1,…,n-1), т. е. когда k каналов заняты об-

служиванием заявок, а остальные n-k каналов свободны, то перескок ее в состояние 

Sk+1происходит при поступлении на вход новой заявки. Таким образом, по стрелкам слева 

направо из любого состояния в соседнее состояние справа систему переводит один и тот 

же входящий поток заявок Пвх с интенсивностью λ. Следовательно, плотность вероятно-

сти перехода λk,k+1 (k = 0, 1, ..., n-1) из любого k-го состояния в (k+1)-е состояние равна λ: 

λ01 = λ12 =…= λn-1,n = λ (15) 

что и проставлено над стрелками, слева направо. 

Т.к. входящий поток Пвх простейший, то он является ординарным, т.е. заявки посту-

пают по одной. Поэтому СМО, меняя свои состояния слева направо, не может переско-

чить через состояние, а переходит только в соседнее справа состояние. По этой причине 

на графе (рис. 3) отсутствуют стрелки, перескакивающие через состояния слева направо. 

Вероятность того, что одновременно, точно в один и тот же момент, освободятся бо-

лее одного канала, пренебрежимо мала, т.е. такие события практически невозможны. По-

этому на графе нет стрелок, «перескакивающих» через состояния справа налево. 

На переход занятого канала в состояние свободного действует простейший поток 

обслуживания Поб с интенсивностью μ. Но тогда переход СМО в целом из состояния Sk (в 

котором k каналов заняты, а n-k свободны) в состояние Sk-1 (в котором по сравнению с 

предыдущим освободился один из k занятых каналов) происходит под воздействием сум-

марного потока обслуживаний П
k

об, представляющего собой результат наложения k пото-

ков обслуживаний Поб, действующих на каждый из k занятых каналов. При этом интен-

сивность суммарного потока равна сумме интенсивностей слагаемых потоков. 

р0,: 

 

или, с учетом формулы       получим формулы Эрланга: 

 
где ρ - показатель нагрузки канала обслуживания. 

Формулы для вероятностей предельных состояний буду иметь вид: 

 ,  , ……. ,  ,  (1) 
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Приведем формулы для расчета основных показателей эффективности работы системы. 

Число каналов, которые необходимо иметь, чтобы система справлялась с потоком 

заявок, определим из условия 

. (2) 

В этом случае выполняется соотношение 

, (3) 

которое означает, что число заявок, поступивших в систему за единицу времени, не пре-

восходит числа заявок, обслуженных системой за это же время. 

Вероятность отказа в обслуживании заявки определим как вероятность того, что 

при поступлении заявки в систему все п ее каналов будут заняты: 

(4) 

Отсюда вероятность обслуживания (а также и относительная пропускная способ-

ность системы) равны вероятности противоположного события: 

(5) 

Абсолютная пропускная способность - число заявок, обслуженных системой в еди-

ницу времени: 

(6) 

Так как каждый канал обслуживает μ заявок в единицу времени, то среднее число за-

нятых каналов можно вычислить: 

(7) 

(8) 

или 

(9) 

Формула Литтла показывает, что среднее время Тсис пребывания заявки в СМО рав-

но среднему числу заявок в системе Nсис, деленному на интенсивность λ входящего пото-

ка заявок, или, другими словами, среднее время Тсис пребывания заявки в СМО прямо 

пропорционально среднему числу заявок в системе Т сис с коэффициентом прямой про-

порциональности, равным обратной величине интенсивности λ входящего потока заявок. 

Среднее время обслуживания каналом одной заявки: 

(10) 

Поток обслуживания Поб каждым каналом будет простейшим с интенсивностью 

(11) 

Где  - среднее время обслуживания одной заявки. 
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Пример: Заявки на телефонные переговоры в переговорный пункт поступают с ин-

тенсивностью 90 заявок в час. Считая среднюю продолжительность разговора равной 3 

минутам, определить оптимальное число телефонных номеров, чтобы 90% всех заявок на 

переговоры были удовлетворены. 

Одноканальная СМО с ожиданием 

Рассмотрим функционирование одноканальной системы S, в которую поступает 

простейший поток требований интенсивностью λ. Интенсивность потока обслуживания 

равна μ. 

По числу заявок, находящихся в системе, обозначим состояния системы: 

S0,S1,S2,…,Sk,…Sn , где Sk – состояние системы, когда в ней находится k заявок (одна об-

служивается, остальные k-1 стоят в очереди). Никаких ограничений на длину очереди нет. 

Примерами таких систем может служить телефон-автомат, кассир в магазине, железнодо-

рожная касса и т.д. Так как поток заявок и обслуживания ординарен, и число состояний 

системы бесконечно, граф состояний такой системы изображается в виде схемы гибели и 

размножения на рис.4: 

λ λ λ λ λ 

         ……. .….. 

S0 S1 S2 Sk 

     μ μ μ 
……….

 μ μ 
……..

 

  

Рис. 4: Одноканальная СМО с ожиданием. 

Интенсивность μ, потока обслуживаний не меняется при переходе из состояния Sk в 

состояние Sk-1 и обратна по величине среднему времени обслуживания заявки: 

(12) 

Финальные вероятности состояний такой системы существуют только в случае, если 

выполнено условие ρ < 1 , так как в этом случае очередь не будет расти до бесконечности. 

Уравнение для нахождения р0 получим аналогично тому как это было сделано для 

одноканальной системы с отказами: 

(13) 

  

С учетом формулы 

, (14) 

получим 

(15) 

где ρ – показатель нагрузки канала обслуживания. 

Так как при ρ < 1 предельные вероятности существуют, то выражении ев скобках 

представляет собой сумму бесконечного числа членов убывающей геометрической про-

грессии, предел которого равен: 

(16) 

откуда 

(17) 

Формула для вероятностей предельных состояний будут иметь вид: 
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 ,  , ……. ,  ,  … (18) 

Предельные вероятности состояний Sk также образуют убывающую геометрическую 

прогрессию, поэтому наиболее высокой будет вероятность р0, то есть вероятность простоя 

системы и готовности принять заявку к обслуживанию. 

Формулы для расчета основных показателей эффективности работы системы. 

Вероятность отказа в обслуживании заявки при условии неограниченности очере-

ди равна нулю, так как все заявки в конце концов будут обслужены. Отсюда вероятность 

обслуживания (а также и относительная пропускная способность системы) равна едини-

це: 

. (190) 

Абсолютная пропускная способность равна интенсивности входящего потока, так 

как обслуживаются все заявки:   (20) 

Среднее время обслуживания каналом одной заявки:   (21) 

Так как вероятность того, что в системе находится k заявок, равна рk, среднее число 

заявок в системе определим как математическое ожидание числа заявок в системе (под 

обслуживанием и в очереди ):      (22) 

  

Подставив в формулу выражение для рk , получим:    (23) 

При ρ < 1 такой ряд сходится, что можно проверить, воспользовавшись каким-либо 

признаком сходимости числовых рядов. 

Заметим, что kρ
k
 - это производная по ρ функции ρ

k
 . 

Применив правило вычисления производной суммы, поменяем местами знак суммы 

и знаки дифференцирования: 

(24) 

Но теперь под знаком суммы находится убывающая геометрическая прогрессия со 

знаменателем, меньшим единицы. Поэтому 

(25) 

Среднее число заявок под обслуживанием Lоб найдем как математическое ожидание 

числа обслуживаемых заявок. Это либо 0 заявок, когда канал свободен, либо 1 заявка, ко-

гда канал занят:     (26) 

Отсюда видно, что среднее число заявок под обслуживанием равно вероятности того, 

что канал занят:    (27) 

Очевидно, среднее число заявок в очереди равно разности между числом заявок в 

системе и числом обслуживаемых заявок:    (28) 

Среднее время пребывания заявки в системе (или в очереди) можно найти 

по формулам Литтла, разделив среднее число заявок в системе (в очереди) на интенсив-

ность потока заявок: 

 (29)              (30) 
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Формулы Литтла основаны на том, что если система справляется с потоком заявок, 

то интенсивности входящего и выходящего потока заявок равны, то есть обслуживаются 

все заявки, поступающие в систему. 

Пример: 

Железнодорожная касса обслуживает по одному человеку. Интенсивность потока 

пассажиров 0,45. Среднее время обслуживания одной заявки 2 минуты. Найти все пре-

дельные характеристики эффективности функционирования одноканальной СМО с ожи-

даниями. 

Фрагмент решения задачи в Mathcad. 

 
 

Одноканальная СМО с ограниченной очередью 

В систему поступает пуассоновский поток требований интенсивностью λ, поток об-

служивания имеет интенсивность μ, максимальное число мест в очереди – т . Если заявка 

поступает в систему, когда все места в очереди заняты, она покидает систему необслу-

женной. 

Финальные вероятности состояний такой системы всегда существуют, так как число 

состояний конечно: 

S0 – система свободна и находится в состоянии простоя; 

S1 – обслуживается одна заявка, канал занят, очереди нет; 

S2 – одна заявка обслуживается, одна в очереди; 

… 

Sm+1- одна заявка обслуживается, т в очереди. 

Граф состояний такой системы показан на рис. 5: 

λ λ λ λ λ 

         ……. 

S0 S1 S2 Sm+1 

     μ μ μ 
……….

 μ μ 

Рис. 5: Одноканальная СМО с ограниченной очередью. 



216 

 

  

В формуле для р0 найдем сумму конечного числа членов геометрической прогрес-

сии: 

(31) 

С учетом формулы для ρ получим выражение: 

(32) 

В скобках находится (m+2) элементов геометрической прогрессии с первым членом 

1 и знаменателем ρ. По формуле суммы (m+2) членов прогрессии: 

(33) 

Отсюда     (34) 

Формулы для вероятностей предельных состояний будут иметь вид: 

 (35) 

Вероятность отказа в обслуживании заявки определим как вероятность того, что 

при поступлении заявки в систему ее канал будет занят и все места в очереди также заня-

ты:     (36) 

Отсюда вероятность обслуживания (а также и относительная пропускная способ-

ность) равны вероятности противоположного события:    

 (37) 

Абсолютная пропускная способность – число заявок, обслуженных системой в еди-

ницу времени:     (38) 

Среднее число заявок под обслуживанием: 

(39) 

Среднее число заявок в очереди: 

(40) 

Среднее число заявок в системе: 

 (41) 

Одноканальную СМО с ограниченной очередью можно рассмотреть в Mathcad. 

Пример: 

На стоянке обслуживается 3 машины с интенсивностью потока 0,5 и средним време-

нем обслуживания 2,5 минуты. Определить все показатели системы. 

  

Фрагмент решения задачи в Mathcad. 
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Многоканальная СМО с неограниченной очередью 

Пусть дана система S, имеющая п каналов обслуживания, на которые поступает про-

стейший поток требований интенсивностью λ. Пусть поток обслуживания также простей-

ший и имеет интенсивность μ. Очередь на обслуживание не ограничена. 

По числу заявок, находящихся в системе, обозначим состояния системы: 

S0,S1,S2,…,Sk,…Sn , где Sk – состояние системы, когда в ней находится k заявок (макси-

мальное число заявок под обслуживанием - n). Граф состояний такой системы изобража-

ется в виде схемы на рис. 6: 

 

 

 

 



218 

 

λ λ λ λ λ λ λ 

           

 ……. ……. 

S0 S1 S2 Sm+1 Sn 

       μ 2μ 3μ 
……….

 kμ (k+1)μ 
…… 

nμ nμ 

  

Рис. 6: Многоканальная СМО с неограниченной очередью. 

 Интенсивность потока обслуживаний меняется в зависимости от состояния систе-

мы: kμ при переходе из состояния Sk в состояние Sk-1 так как может освободиться любой 

из k каналов; после того, как все каналы заняты обслуживанием, интенсивность потока 

обслуживаний остается равной пμ, при поступлении в систему следующих заявок. 

Для нахождения финальных вероятностей состояний получим формулы аналогично 

тому, как это было сделано для одноканальной системы. 

(42) 

Отсюда формулы для финальных вероятностей выражаются через 

 (43) 

Для нахождения р0 получим уравнение: 

(44) 

Для слагаемых в скобках, начиная с (n + 2)-го, можно применить формулу нахожде-

ния суммы бесконечно убывающей геометрической прогрессии с первым членом  и 

знаменателем ρ/n:  (45) 

Окончательно получим формулу Эрланга для нахождения вероятности простоя сис-

темы:    (46) 

Приведем формулы для расчета основных показателей эффективности работы сис-

темы. 

Система будет справляться с потоком заявок, если выполнено условие    , (47) 

которое означает, что число заявок, поступивших в систему за единицу времени, не пре-

восходит числа заявок, обслуженных системой за это же время. При этом вероятность 

отказа в обслуживании равна нулю. 

Отсюда вероятность обслуживания (а также и относительная пропускная способ-

ность системы) равны вероятности противоположного события, то есть единице: 
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(48) 

Абсолютная пропускная способность - число заявок, обслуженных системой в еди-

ницу времени:    (49) 

Если система справляется с потоком заявок, то в стационарном режи-

ме интенсивность выходящего потока равна интенсивности потока поступающих в сис-

тему заявок, так как обслуживаются все заявки:   ν=λ. (50) 

Так как каждый канал обслуживает μ заявок в единицу времени, то среднее число за-

нятых каналов можно вычислить:    (51) 

Среднее время обслуживания каналом одной заявки     . (52) 

Вероятность того, что при поступлении в систему заявка окажется в очереди, равна 

вероятности того, что в системе находится более чем п заявок: 

(53) 

Число заявок, находящихся под обслуживанием, равно числу занятых каналов: 

(54) 

Среднее число заявок в очереди:   (55) 

Тогда среднее число заявок в системе:   (56) 

Среднее время пребывания заявки в системе (в очереди):     (57)      

(58) 

 Многоканаль-

ную СМО с неограни-

ченной очередью 

можно рассмотреть в 

системе Mathcad. 

Пример 1: 

Салон-

парикмахерская имеет 

5 мастеров. В час пик 

интенсивность потока 

клиентов равна 6 че-

ловек. В час. Обслу-

живание одного кли-

ента длится в среднем 

40 минут. Определить 

среднюю длину оче-

реди, считая ее неог-

раниченной. 

 Фрагмент решения задачи в Mathcad. 
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Пример: 

В железнодорожной кассе имеются 2 окна. Время на обслуживания одного пассажи-

ра 0,5 минут. Пассажиры подходят к кассе по 3 человека. Определить все характеристики 

системы. 

Продолжение решения задачи в Mathcad. 
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Многоканальная СМО с ограниченной очередью 

Расчеты основных показателей функционирования системы, имеющей n каналов об-

служивания, с ограничением мест в очереди, проводятся аналогично тем, которые были 

сделаны для системы с неограниченной очередью. Особенностью функционирования сис-

тем с ограничением длины очереди является конечное число состояний системы. 

Пусть на каналы обслуживания поступает простейший поток требований интенсив-

ностью λ.Поток обслуживания, поступающий с одного канала, также простейший и имеет 

интенсивность μ. Число мест в очереди ограничено и равно т. 

По числу заявок, находящихся в системе, обозначим состояния системы: 

S0 - состояние простоя; 

………. 

Sп - состояние системы, когда все каналы заняты обслуживанием; 

Sп+1 - все каналы заняты, одна заявка находится в очереди; 

Sп+т - в очереди т заявок. 

Так как потоки заявок и обслуживания ординарны, граф состояний изображается в 

виде схемы гибели и размножения. Отличие от подобной схемы для неограниченной оче-

реди состоит только в том, что число состояний конечно. Граф состояний такой системы 

изображается в виде схемы на рис.7: 

λ λ λ λ λ λ 

           ……. 

……. 

S0 S1 S2 Sn Sn+m 

      μ 2μ 3μ 
……….

 nμ nμ 
…… 

nμ 

  

Рис. 7: Многоканальная СМО с ограниченной очередью. 
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Составим систему алгебраических уравнений для нахождения финальных вероятно-

стей состояний: 

(59) 

Откуда получим формулы Эрланга для многоканальной системы с ограниченной 

очередью: 

(60) 

Последние т слагаемых в скобках представляют собой сумму т первых членов гео-

метрической прогрессии со знаменателем ρ/n которая равна: 

(61) 

Таким образом, для вычисления р0 получим формулу: 

(62) 

Формулы для вероятностей предельных состояний будут иметь вид: 

 (63) 

Приведем формулы для расчета основных показателей эффективности работы сис-

темы. 

Число каналов, которые необходимо иметь, чтобы система справлялась с потоком 

заявок, определим из условия    (64) 

В этом случае выполняется соотношение ρ < 1. 

Вероятность отказа в обслуживании заявки определим как вероятность того, что 

при поступлении заявки в систему все n каналов будут заняты, и в очереди заняты все m 

мест:    (65) 

Отсюда вероятность обслуживания (а также и относительная пропускная способ-

ность системы) равны вероятности противоположного события: 

(66) 
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Абсолютная пропускная способность - число заявок, обслуженных системой в еди-

ницу времени: 

(67) 

Так как каждый канал обслуживает μ заявок в единицу времени, то среднее число за-

нятых каналов можно вычислить: 

(68) 

Среднее время обслуживания каналом одной заявки: 

(69) 

Среднее число заявок в очереди: 

(70) 

Среднее число заявок под обслуживанием равно среднему числу занятых каналов: 

(71) 

Среднее число заявок в системе (под об-

служиванием и в очереди) равно: 

(72) 

Многоканальную СМО с ограниченной 

очередью можно рассмотреть в Mathcad. 

Пример: 

Площадка АЗС вмещает не более 3-х 

машин одновременно, и если она занята, то 

очередная машина, прибывшая к станции, в 

очередь не становится. Интенсивность потока 

обслуживания λ=0,5 машин в минуту. Интен-

сивность потока обслуживания μ=0,4 машины 

в минуту. Определить все характеристики 

СМО. 

 Фрагмент решения задачи в Mathcad. 
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Продолжение задачи в Mathcad . 

 
Многие экономические задачи связаны с системами массового обслужива-

ния (СМО), т. е. такими системами, в которых, с одной стороны, возникают массовые за-

просы (требования) на выполнение каких-либо услуг, с другой — происходит удовлетво-

рение этих запросов. СМО включает в себя следующие элементы: источник требований, 

входящий поток требований, очередь, обслуживающие устройства (каналы обслужива-

ния), выходящий поток требований. Исследованием таких систем занимается теория мас-

сового обслуживания. 

Методами теории массового обслуживания могут быть решены многие задачи ис-

следования процессов, происходящих в экономике. Так, в организации торговли эти мето-

ды позволяют определить оптимальное количество торговых точек данного профиля, чис-

ленность продавцов, частоту завоза товаров и другие параметры. Другим характерным 

примером систем массового обслуживания могут служить склады или базы снабженческо-

сбытовых организаций, и задача теории массового обслуживания в данном случае сводит-

ся к тому, чтобы установить оптимальное соотношение между числом поступающих на 

базу требований на обслуживание и числом обслуживающих устройств, при котором 

суммарные расходы на обслуживание и убытки от простоя транспорта были бы мини-

мальными. Теория массового обслуживания может найти применение и при расчете пло-

щади складских помещений, при этом складская площадь рассматривается как обслужи-

вающее устройство, а прибытие транспортных средств под выгрузку — как требование. 

Модели теории массового обслуживания применяются также при решении ряда задач ор-

ганизации и нормирования труда, других социально-экономических проблем. 

В работе рассматривались такие СМО, как: 

- Одноканальная СМО с отказами; 

- Многоканальная СМО с отказами; 

- Одноканальная СМО с ожиданием; 

- Одноканальная СМО с ограниченной очередью; 
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- Многоканальная СМО с неограниченной очередью; 

- Многоканальная СМО с ограниченной очередью. 

Предметом теории СМО является построение математических моделей (т. е. обра-

зов реального экономического объекта, описанных с помощью уравнений, формул, гра-

фиков, схем и т. д.) для теоретического анализа и практического использования свойств 

СМО. 

Эффективность функционирования СМО описывается такими показателями: 

1) Эффективность использования СМО; 

2) Качество обслуживания. 

По дисциплине обслуживания: 

— СМО с отказами; 

— СМО с ожиданием (очередью); 

— Системы с ограничением длины очереди; 

— Системы с ограниченным временем ожидания; 

По месту нахождения источника требований: 

— Замкнутые СМО; 

— Открытые СМО; 

По числу обслуживающих каналов: 

— Одноканальные; 

— Многоканальные. 

 

3.19 Практическое занятие 33-34 (ПЗ-33-34)  

Тема: Предельные вероятности состояний. Модели систем массового обслуживания при 

пуассоновских потоках заявок.  

3.19.1 Задание для работы: 

 

1. Правила составления уравнений Колмогорова по размеченному графу состояний 

непрерывной марковской цепи. Теорема Маркова. Модели систем массового об-

служивания при пуассоновских потоках заявок. 

 

 

 

1. Правила составления уравнений Колмогорова по размеченному графу состояний 

непрерывной марковской цепи. Теорема Маркова. Модели систем массового обслу-

живания при пуассоновских потоках заявок. 

 

Уравнения Колмогорова. Предельные вероятности состояний 

Рассмотрим математическое описание марковского процесса с дискретными состоя-

ниями и непрерывным временем на примере случайного процесса из примера 1, граф ко-

торого изображен на рис. 1. Будем полагать, что все переходы системы из состояния 

 в  происходят под воздействием простейших потоков событий с интенсивностя-

ми ; так, переход системы из состояния  в  будет происходить 

под воздействием потока отказов первого узла, а обратный переход из состояния  в 

 — под воздействием потока "окончаний ремонтов" первого узла и т.п. 

Граф состояний системы с проставленными 

у стрелок интенсивностями будем назы-

вать размеченным (см. рис. 1). Рассматриваемая 

система  имеет четыре возможных состоя-

ния: . 
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Вероятностью i-го состояния называется вероятность  того, что в момент  сис-

тема будет находиться в состоянии . Очевидно, что для любого момента  сумма веро-

ятностей всех состояний равна единице: 

 

(*) 

 

 

Рассмотрим систему в момент  и, задав малый промежуток , найдем вероят-

ность  того, что система в момент  будет находиться в состоянии . 

Это достигается разными способами. 

1. Система в момент  с вероятностью  находилась в состоянии , а за вре-

мя  не вышла из него. 

 

 

Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным про-

стейшим потоком с интенсивностью , т.е. с вероятностью, приближенно рав-

ной . А вероятность того, что система не выйдет из состояния , рав-

на . Вероятность того, что система будет находиться в состоянии 

 по первому способу (т.е. того, что находилась в состоянии  и не выйдет из него за вре-

мя ), равна по теореме умножения вероятностей: 

 

 
 

2. Система в момент  с вероятностями  (или ) находилась в состоянии 

 или  и за время  перешла в состояние . 

Потоком интенсивностью  (или  — с- рис. 1) система перейдет в состоя-

ние  с вероятностью, приближенно равной  (или ). Вероятность того, что 

система будет находиться в состоянии  по этому способу, равна 

 (или ). 

Применяя теорему сложения вероятностей, получим 

 

 
откуда 

 
Переходя к пределу при  (приближенные равенства, связанные с примене-

нием формулы (7), перейдут в точные), получим в левой части уравнения производ-

ную  (обозначим ее для простоты ): 

 

 
 

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как 

саму неизвестную функцию, так и ее производную первого порядка. 

Рассуждая аналогично для других состояний системы , можно получить систему 

дифференциальных уравнений Колмогорова для вероятностей состояний: 
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 (**) 

Сформулируем правило составления уравнений Колмогорова. В левой части каждо-

го из них стоит производная вероятности i-го состояния. В правой части — сумма произ-

ведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на 

интенсивности соответствующих потоков событий, минус суммарная интенсивность всех 

потоков, выводящих систему из данного состояния, умноженная на вероятность данного 

(i-го состояния). 

В системе (**) независимых уравнений на единицу меньше общего числа уравнений. 

Поэтому для решения системы необходимо добавить уравнение (*). 

Особенность решения дифференциальных уравнений вообще состоит в том, что тре-

буется задать так называемые начальные условия, т.е. в данном случае вероятности со-

стояний системы в начальный момент . Так, например, систему уравнений (**) есте-

ственно решать при условии, что в начальный момент оба узла исправны и система нахо-

дилась в состоянии  , т.е. при начальных условиях 

 . 

Уравнения Колмогорова дают возможность найти все вероятности состояний 

как функции времени. Особый интерес представляют вероятности системы 

 в предельном стационарном режиме, т.е. при , которые называются предельными 

(или финальными) вероятностями состояний. 

В теории случайных процессов доказывается, что если число состояний системы ко-

нечно и из каждого из них можно (за конечное число шагов) перейти в любое другое со-

стояние, то предельные вероятности существуют. 

Предельная вероятность состояния  имеет четкий смысл: она показывает среднее 

относительное время пребывания системы в этом состоянии. Например, если предельная 

вероятность состояния , т.е. , то это означает, что в среднем половину време-

ни система находится в состоянии . 

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова 

их производные нулевыми значениями, получим систему линейных алгебраических урав-

нений, описывающих стационарный режим. Для системы  с графом состояний, изобра-

женном на рис. 1), такая система уравнений имеет вид: 

 

(***) 

Систему (***) можно составить непосредственно по размеченному графу состояний, 

если руководствоваться правилом, согласно которому слева в уравнениях стоит предель-

ная вероятность данного состояния , умноженная на суммарную интенсивность всех 

потоков, ведущих из данного состояния, а справа — сумма произведений интенсивностей 

всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти по-

токи исходят. 

 

Пример 2. Найти предельные вероятности для системы  из примера 1, граф со-

стояний которой приведен на рис. 1, при 
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Решение. Система алгебраических уравнений, описывающих стационарный режим 

для данной системы, имеет вид (***) или 

 

  (****) 

(Здесь мы вместо одного «лишнего» уравнения системы (***) записали нормировоч-

ное условие (*)). 

Решив систему (****), получим , т.е. в 

предельном, стационарном режиме система  в среднем 40% времени будет находиться в 

состоянии  (оба узла исправны), 20% — в состоянии  (первый узел ремонтируется, 

второй работает), 27% — в состоянии  (второй узел ремонтируется, первый работает) и 

13% времени — в состоянии  (оба узла ремонтируются) 

 

 

 

 

Пример 3. Найти средний чистый доход от эксплуатации в стационарном режиме 

системы  в условиях примеров 1 и 2, если известно, что в единицу времени исправная 

работа первого и второго узлов приносит доход соответственно в 10 и 6 ден.ед., а их ре-

монт требует затрат соответственно в 4 и 2 ден.ед. Оценить экономическую эффектив-

ность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из 

двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в 

единицу времени). 

Решение. Из примера 2 следует, что в среднем первый узел исправно работает долю 

времени, равную , а второй узел —

 . В то же время первый узел находится в ремонте в среднем 

долю времени, равную , а второй узел —

 . Поэтому средний чистый доход  в единицу времени от 

эксплуатации системы, т.е. разность между доходами и затратами, равен 

 ден. ед. 

Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с 

'будет означать увеличение вдвое интенсивностей потока «окончаний ремонтов» каждого 

узла, т.е. теперь     и система линейных алгебраиче-

ских уравнений (***), описывающая стационарный режим системы , вместе с нормиро-

вочным условием (*) примет вид: 

 

 
 

Решив систему, получим . 

Учитывая, что , а 

затраты на ремонт первого и второго узла составляют теперь соответственно 8 и 4 ден.ед., 

вычислим средний чистый доход  в единицу времени: 

 ден.ед. 
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Так как  больше  (примерно на 20%), то экономическая целесообразность ус-

корения ремонтов узлов очевидна. 

 

 

3.19.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили основные термины и формулы, необходимые для работы с марковскими цепями, 

СМО, их классификацию; 

- усвоили методы моделирования по схеме марковских цепей, применение теории СМО к 

решению инженерных задач; 

- выработали навыки по составлению уравнений Колмогорова по размеченному графу не-

прерывной марковской цепи; 

- усвоили основные методы моделирования СМО при пуассоновском потоке заявок. 

 

 


