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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

1.1. Организационно-методические данные дисциплины 
 

№ 

п.п. 
Наименование темы 

Общий объем часов по видам самостоятельной работы  

подготов-

ка курсо-

вого про-

екта (ра-
боты) 

подготовка 

рефера-

та/эссе 

индивиду-

альные 

домашние 

задания 
(ИДЗ) 

самостоя-

тельное 

изучение 

вопросов 
(СИВ) 

подготовка 

к занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1 
Алгебраические структуры 

- - - 
 

- 

 

- 
2 Элементы теории матриц - - - - - 

3 
Элементы теории определи-

телей. 
- - - - 

 

- 

4 
Системы линейных уравне-

ний 
- - - - 

 

2 

5 

Действительное линейное 

арифметическое пространст-

во 

- - - 

 

- 

 

- 

6 

Линейные преобразования 

линейных  пространств, опе-

раторы 

 - - 

 

6 

 

2 

7 

Вектора, их свойства, клас-

сификация, арифметические 

действия. Векторное про-

странство. Линейная зависи-

мость векторов, базис. 

ПДСК. 

- - - 

 

 

 

1 

 

 

 

- 

8 

Скалярное, векторное, сме-

шанное произведение векто-

ров, их свойства и вычисле-

ние, приложения. 

- - - 

 

 

1 

 

 

2 

9 

Алгебраические линии. Пря-

мая на плоскости и в про-

странстве. Метрическая тео-

рия прямых. 

- - - 

 

 

- 

 

 

- 

10 

Плоскость. Способы задания. 

Метрическая теория плоско-

стей. Кривые второго поряд-

ка, их свойства и уравнения.  

- - - 

 

 

2 

 

 

- 

11 
Поверхности вращения. 

- - - 
 

- 

 

- 
Итого в соответствии с РПД - - - 10 6 

 

 

 

 



 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ 

5.2.2 Линейные пространства и операторы линейных пространств 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Линейные пространства 

 

           Пусть V - непустое множество (его элементы будем называть векторами и обозна-

чать ...), в котором установлены правила: 

     1) любым двум элементам соответствует третий элемент назы-

ваемый суммой элементов (внутренняя операция); 

     2) каждому и каждому отвечает определенный элемент (внешняя 

операция). 

     Множество V называется действительным линейным (векторным) пространством, если 

выполняются аксиомы: 

     I.  

     II.  

     III. (нулевой элемент, такой, что ). 

     IV. (элемент, противоположный элементу ), такой, что 

 

     V.  

     VI.  

     VII.  

     VIII.  

     Аналогично определяется комплексное линейное пространство (вместо R рассматрива-

ется C). 

 

     Подпространство линейного пространства 

     Множество называется подпространством линейного пространства V, если: 



     1)  

     2)  

Линейная комбинация векторов 

     Линейной комбинацией векторов называют вектор 

      

где - коэффициенты линейной комбинации. Если 

комбинация называется тривиальной, если - нетривиаль-

ной. 

 

     Линейная зависимость и независимость векторов 

     Система линейно зависима 

что  

     Система линейно независима 

 
 

     Критерий линейной зависимости векторов  

     Для того чтобы векторы (r > 1) были линейно зависимы, необходимо 

и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией ос-

тальных. 

 

     Размерность линейного пространства  

     Линейное пространство V называется n-мерным (имеет размерность n), если в нем: 

     1) существует n линейно независимых векторов; 

     2) любая система n + 1 векторов линейно зависима. 

     Обозначения : n = dim V;.  

 

Линейные операторы.  

Будем говорить, что в n-мерном линейном векторном пространстве задан оператор 

(преобразование , отображение ), если каждому вектору по некоторому правилу 

поставлен в соответствие единственный вектор : 

- образ вектора  

Оператор называется линейным, если для любых векторов и для любого дейст-

вительного числа α выполняется: 

1.  



2.  

Оператор называется тождественным, если для любого вектора его образ совпа-

дает с самим вектором : . 

Оператор называется нулевым, если для любого вектора его образом является нулевой 

вектор: . 

Пусть в пространстве задан базис и задан линейный оператор . Тогда образы 

базисных векторов и их также можно разложить по заданному ба-

зису: 

            –матрица линейного оператора в 

базисе . 

Рассмотрим произвольный вектор пространства : 

 
Его образ , следовательно, его также можно разложить по заданному базису: 

 
Обозначим: 

- матрица-столбец координат , - матрица-столбец координат образа 

 
Тогда, в силу линейности оператора : 

- связь между координатами вектора и его образа. 

Пример: 

Линейный оператор в базисе задан матрицей .  

Найти образ вектора .  

По условию , тогда 

, следовательно,  

Пусть в пространстве задан линейный оператор . Ненулевой вектор называется собствен-

ным вектором линейного оператора , если найдется такое число λ, что 

. 

λ – собственное значение оператора , соответствующее вектору . 

, с другой стороны , поэтому , или . 

Этому матричному уравнению соответствует система линейных однородных уравнений, 

которая всегда имеет нулевое решение. Для существования ненулевого решения необхо-

димо, чтобы определитель матрицы системы был равен нулю , или: 

- это характеристическое уравнение оператора . 



- характеристический многочлен оператора . 

Пример: 

Найти собственные значения и собственные вектора оператора , заданного матрицей 

. 

 

 

 
Квадратичные формы. 

Квадратичной формой от n-переменных называется сумма, каждый член 

которой является либо квадратом одной из переменных, либо произведением двух разных 

переменных, взятых с некоторым коэффициентом:  

, 

где - действительные числа, причем . 

Матрица А, составленная из коэффициентов называется матрицей квадратичной фор-

мы.  
Квадратичную форму можно записать в матричном виде: 

 
Пример: 

Записать квадратичную форму в матричном виде. 

 

Квадратичная форма называется канонической, если все ее коэффициенты : 

 
В этом случае матрица квадратичной формы будет диагональной.  

Можно показать, что любая квадратичная форма с помощью линейного оператора может 

быть приведена к каноническому виду, причем не единственным образом. Полученные 

различными способами канонические виды квадратичной формы обладают рядом общих 

свойств. 

Теорема: (закон инерции квадратичных форм) Число слагаемых с положительными (от-

рицательными) коэффициентами квадратичной формы не зависит от способа приведения 

квадратичной формы к каноническому виду (без доказательства).  

Квадратичная форма называется положительно (отрицательно) определенной, если при 

всех значениях переменных квадратичная форма положительна (отрицательна). 

Существуют критерии установления знакоопределенности квадратичной формы: 

1. Для того чтобы квадратичная форма была положительно (отрицательно) определенной 

необходимо и достаточно, чтобы собственные значения матрицы квадратичной формы 

были положительны (отрицательны). 



2. Для того чтобы квадратичная форма была положительно определенной необходимо и 

достаточно, чтобы все главные миноры (миноры, содержащие главные диагональные эле-

менты) матрицы этой формы были положительны. Для отрицательно определенной квад-

ратичной формы знаки главных миноров чередуются, начиная со знака «минус» для ми-

нора первого порядка. 

Пример: 

 

1.  

 
Следовательно, заданная форма положительно определенная. 

2.  

 
Следовательно, заданная форма положительно определенная. 

 

Матрица перехода от базиса к базису 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Пусть в пространстве  имеется два базиса:  и . 

Первый условимся называть старым базисом, второй – новым. Каждый из векторов но-

вого базиса,  можно линейно выразить через векторы старого базиса:  

 
Новые базисные векторы получаются из старых с помощью матрицы 

 
При этом коэффициенты их разложений по старым базисным векторам образуют столбцы 

этой матрицы. Матрица  называется матрицей перехода от базиса  к ба-

зису . 

Определитель матрицы  не равен нулю, так как в противном случае ее столбцы, а сле-

довательно и векторы , были бы линейно зависимы. 

Обратно, если , то столбцы матрицы линейно независимы, и следовательно 

векторы , получающиеся из базисных векторов  с помощью 

матрицы , линейно независимы и значит образуют некоторый базис. Таким образом, 



матрицей перехода может служить любая квадратная матрица порядка n с отличным от 

нуля определителем. 

Рассмотрим теперь, как связаны между собой координаты одного и того же вектора в ста-

ром и новом базисах. Пусть  в старом базисе и 

 - в новом. Подставляя в последнее равенство вместо 

 их выражение получим, что  

 

        Таким образом, старые координаты вектора  получатся из новых его координат с 

помощью той же матрицы , только коэффициенты соответствующих разложений обра-

зуют строки этой матрицы. 

 

5.2.3.1 Линейная зависимость и независимость векторов 

 

При изучении вопроса необходимо обратить внимание на следующие особенности: 

Элементы пространства называют векторами. 

Система векторов называется линейно зависимой, если найдутся числа 

одновременно не равные нулю  такие что , где  – это вектор с 

нулевыми координатами.  

Сумму   называем линейной комбинацией векторов . 

Пример 1.  В пространстве   рассмотрим систему векторов 

Система  линейно зависима. 

Действительно . 

 Система векторов называется линейно независимой, если из   следует, что 

  

Пример 2.  Система векторов из примера 1 линейно  независима. 

Действительно из   следует, что  .  

Линейная оболочка системы векторов. Подпространство. Базис подпространства  

  

 Пусть   – система векторов из  . Линейной оболочкой 

 системы векторов  называется множество всех 

линейных комбинаций векторов данной системы, т.е 

                   



Свойства линейной оболочки:  Если , то для  

 и  . 

Линейная оболочка обладает свойством замкнутости по отношению к линейным опера-

циям (операции сложения и умножения на число).  

Подмножество пространства , обладающее свойством замкнутости по отношению 

к операциям сложения и умножения на числа,  называется линейным подпространст-

вом пространства . 

    Линейная оболочка  системы векторов  – линей-

ное подпространство пространства . 

   Система векторов    из   называется базисом 

,если  

Любой вектор  можно выразить в виде линейной комбинации базис-

ных векторов:                                        

                         . 

2.  Система векторов     линейно независима. 

Лемма Коэффициенты разложения  вектора  по базису 

  определены однозначно. 

Вектор , составленный из коэффициентов разложения  вектора 

 по базису  называется координатным вектором вектора 

 в базисе   .  

Обозначение  . Данная запись подчеркивает, что координаты векто-

ра зависят от базиса. 

 

Элементарные преобразования системы векторов 

 Пусть  – система   векторов из . Основными   элементарными преобра-

зованиями системы векторов   являются 

1. - добавление к одному из векто-

ров (вектору  ) линейной комбинации остальных. 

2. -  умножение одного из векторов (векто-

ра ) на число  не равное нулю. 

3. перестановка двух векторов (

 ) местами. 

 Системы векторов ,  будем называть эквивалент-

ными (обозначение  ), если существует цепочка элементарных преобразований 

переводящая первую систему во вторую. 

Отметим  свойства введенного понятия эквивалентности векторов  

 (рефлексивность) 



Из  следует, что  (симметричность) 

Если   и   , то  (транзитивность) 

 Теорема. Если система векторов  линейно независима, а 

 ей эквивалентна, то  система   – линейно независи-

ма. 

Доказательство. Очевидно, что теорему достаточно доказать для системы  

 полученной из с помощью одного элементарного 

преобразования.. Предположим что система векторов  линейно неза-

висима.  Тогда  из  вытекает, что  .  Пусть система  

 получена из  с помощью одного элементарного 

преобразования.  Очевидно, что перестановка векторов или умножение одного из векто-

ров на число не равное нулю не меняет линейной независимости системы векторов.  До-

пустим теперь, что  система векторов  получена из системы  

  прибавлением к вектору   линейной комбинации остальных, 

. Нужно установить, что из 

                                               (1) 

вытекает что   

Поскольку  , то  из  (1)  получаем  

                             . (2) 

Т.к. система – линейно независима, то из  (2) следует,  что 

       для   всех  .    

Отсюда получаем    .   Что и требовалось доказать. 

   

Изоморфизм линейных пространств 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

 

Определение 7.13 Линейные пространства над числовым полем P называются изоморф-

ными, если существует взаимно однозначное соответствие между векторами этих про-

странств, сохраняющее операции сложения векторов и умножения на скаляр. 

Для доказательства изоморфизма линейных пространств V и W требуется построить вза-

имно однозначное отображение , обладающее свойствами сохранения опе-

рации: 

1. ,  

2. ,  

Следствие 7.10. При изоморфизме нулевой вектор переходит в нулевой вектор. 

Доказательство. Действительно, . 



Лемма 7.3 Пусть V, W, U линейные пространства над полем P. Пусть W изоморфно V, а V 

изоморфно U, тогда W изоморфно U. 

Доказательство. По условию существуют взаимно однозначные соответствия 

и , обладающие свойствами сохранения операции, то есть 

1. ,  

2. ,  

3. ,  

4. ,  

Отображение , получаемое последовательным применением и , является взаимно 

однозначным соответствием между пространством W и пространством U. Далее, имеем 

1. , где . 

2. , . 

Тем самым изоморфизм установлен. 

Лемма 7.4 Пространство V над числовым полем P размерности n изоморфно арифметиче-

скому пространству . 

Доказательство. Пусть - базис V. Каждому вектору x из V поставим в соответст-

вие его координаты. Данное соответствие является взаимно однозначным (Теорема 7.4) и 

сохраняет операции. Тем самым изоморфизм установлен. 

Лемма 7.5. При изоморфизме базис переходит в базис. 

Доказательство. Пусть - изоморфизм пространства V на W, - базис V. Разло-

жим произвольный вектор x из V по базису . По определению изоморфизма 

, и значит, в силу взаимно однозначности отображения, через систему 

векторов линейно выражается любой вектор пространства W. Методом от 

противного покажем линейную независимость системы векторов . Пусть не 

так, тогда найдутся числа , не все равные нулю, что . Последнее 

равенство, используя свойства изоморфизма, запишем в виде . В силу 

взаимно однозначности изоморфизма выводим , т.е. система векторов 

- линейно зависима. К полученному противоречию с условиями нас привело до-

пущение о линейной зависимости системы векторов . Таким образом, сис-

тема векторов является полной линейно независимой системой, т.е. базисом 

линейного пространства W. 

Теорема 7.10. Линейные пространства V и W над полем P изоморфны тогда и только то-

гда, когда их размерности равны. 

Доказательство. Если размерности пространств V и W совпадают и равны n, то оба про-

странства изоморфны (Лемма 7.4), а, значит и между собой (Лемма 7.3). Обратно, если 

пространства изоморфны, то при изоморфизме базис переходит в базис (Лемма 7.5), и, 

значит, размерности пространств равны. 

Изоморфизм пространств позволяет переносить терминологию, принятую в одном про-

странстве на изоморфные пространства.  

 



 

5.2.3.2 Свойства векторного и смешанного произведения, приложения 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

 

Некоторые приложения векторного произведения  

Установление коллинеарности векторов 

 

 
Нахождение площади параллелограмма и треугольника 

Согласно определению векторного произведения векторов а и b |а хb | = |а| * |b |sing , т. е. 

S пар = |а х b |. И, значит, DS =1/2|а х b |. 

Определение момента силы относительно точки 
Пусть в точке А приложена сила F =АВ и пусть О — некоторая точка пространства (см. 

рис.). 

  

Из физики известно, что моментом си лы F относительно точки О называется вектор М, 

который проходит через точку О и: 

1) перпендикулярен плоскости, проходящей через точки О, А, В; 

2) численно равен произведению силы на плечо 

  

3) образует правую тройку с векторами ОА и A В. 

Стало быть, М=ОА х F . 

Нахождение линейной скорости вращения 
Скорость v точки М твердого тела, вращающегося с угловой скоростью w вокруг непод-

вижной оси, определяется формулой Эйлера v =w хr , где r =ОМ, где О—некоторая непод-

вижная точка оси (см. рис). 

   

 

Некоторые приложения смешанного произведения 

Определение взаимной ориентации векторов в пространстве 

Определение взаимной ориентации векторов а, b и с основано на следующих соображени-

ях. Если abc > 0 , то а , b , с — правая тройка; если abc <0 , то а, b , с - левая тройка. 

Установление компланарности векторов 



Векторы а, b и с компланарны тогда и только тогда, когда их смешанное произведение 

равно нулю 

 

   

Определение объемов параллелепипеда и треугольной пирамиды 

Нетрудно показать, что объем параллелепипеда, построенного на векторах а, b и с вычис-

ляется как V =|аbс|, а объем треугольной пирамиды, построенной на этих же векторах, ра-

вен V =1/6*|abc |. 

 

Деление отрезка в заданном отношении 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Если точка М(x; y) лежит на прямой, проходящей через две данные точки ( , ) и 

( , ), и дано отношение , в котором точка М делит отрезок , то 

координаты точки М определяются по формулам 

, . 

Если точка М является серединой отрезка , то ее координаты определяются по 

формулам 

, . 

 

5.2.4 Поверхности вращения 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Определение. Поверхностью вращения называется поверхность, образованная вращением 

какой-либо плоской линии вокруг прямой, лежащей в плоскости этой линии.  

Для вывода уравнения поверхности вращения необходимо выбрать систему координат. 

Чтобы уравнение поверхности вращения выглядело проще, ось вращения принимают за 

одну из координатных осей.  

 

Пусть в координатной плоскости Oyz задана 

кривая L уравнением F(Y, Z)=0 (рис. 24). Враща-

ем кривую L вокруг оси Oy. Получим некоторую 

поверхность. Пусть M(x, y, z) - произвольная 

точка получившейся поверхности. Тогда 

 

, но т.к. если 

взять точку M1 с отрицательной аппликатой, то  

 

Следовательно, имеем Y = y, и координаты точки M(x, y, z) удовлетво-

ряют уравнению  



(*)  

Уравнение (62) и есть искомое уравнение поверхности вращения.  

Т. о., чтобы получить уравнение поверхности, образованной вращением линии L, лежа-

щей в плоскости Oyz, вокруг оси Oy, нужно в уравнении этой линии заменить z на 

 
Аналогичные правила будут иметь место и по отношению к уравнениям поверхностей, 

полученных вращением плоских линий вокруг других координатных осей.  

Пример 1. Найти уравнение поверхности вращения окружности около 

оси Ох.  

Решение. Согласно уравнению (*), следует в уравнении окружности заменить y на 

. Получим уравнение поверхности вращения т.е. 

получим уравнение сферы с центром в начале координат и радиусом, равным R.  

 

Пример 2. Найти уравнение поверхности вращения гипер-

болы вокруг действительной оси. 

Решение. Вращение происходит вокруг оси Ох, следова-

тельно, уравнение поверхности вращения будет 

. Такая поверхность носит название 

двуполостного гиперболоида вращения .  

 

Пример 3. Найти уравнение поверхности враще-

ния гиперболы вокруг мнимой оси.  

Решение. Вращение происходит вокруг оси Оу, 

следовательно, урав-

нение поверхности 

вращения будет 

Такая поверхность называется однополостным гиперболои-

дом вращения. 

 

Пример 4. Найти уравнение поверхности вращения гипер-

болы вокруг оси Oz.  

Решение. Поверхность , получаемая в результа-

те вращения, называется параболоидом вращения.  

 

 



3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 

3.1 Практическое занятие 1 (ПЗ-1) Алгебраические структуры. 

 

При подготовки к занятию необходимо обратить внимание на: 

- определение понятий бинарного отношения, операции, алгебры, модели, груп-

поида, полугруппы, группы, кольца, поля; 

- построение алгебраических структур и доказательство их принадлежности к тому 

или иному виду; 

- подбор примеров, иллюстрирующий свойства структур. 

 

 

3.2 Практическое занятие 2 (ПЗ-2) Матрицы, операции над ними  

При подготовки к занятию необходимо обратить внимание на:  

- классификацию матриц; 

- условия осуществления операций над матрицами; 

- алгоритм перемножения матриц. 

 

3.3 Практическое занятие 3  (ПЗ-3) Определители и их свойства 

 

При подготовки к занятию необходимо обратить внимание на: 

- свойства определителей; 

- алгоритмы вычисления определителей третьего порядка; 

- применение теоремы Муавра-Лапласа. 

 

3.4 Практическое занятие 4 (ПЗ-4) СЛУ и методы их решения. 

 

При подготовки к занятию необходимо обратить внимание на: 

- условие существования и алгоритм нахождения обратной матрицы 

- классификацию СЛУ по количеству решений; 

- условия и алгоритмы применения метода Крамера и метода обратной матрицы к 

решению определенных СЛУ. 

 

3.5 Практическое занятие 5 (ПЗ-5) СЛОУ и методы их решения 

 

При подготовки к занятию необходимо обратить внимание на: 

- особенности неопределенных систем; 

- структуру решений СЛОУ; 



- алгоритм применения метода Гаусса; 

- понятие фундаментальной системы решений СЛУ и ее применение при нахожде-

нии общего решения. 

3.6 Практическое занятие 6-7 (ПЗ-6-7) Линейные операторы и их свойства 

 

При подготовки к занятию необходимо обратить внимание на: 

- определение понятия линейного оператора, его свойства, матрицу; 

- матрицу перехода от базиса к базису; 

- алгоритм нахождения собственных значений и векторов линейного оператора; 

- диагональную матрицу оператора и ее свойства. 

 

 

3.7 Практическое занятие 8 (ПЗ-8) Вектора, их классификация, действия над 

ними. 

 

При подготовки к занятию необходимо обратить внимание на: 

- различные подходы к определению понятия вектора, векторного пространства; 

- классификацию векторов; 

- алгоритмы выполнения операций над векторами в векторной и координатной 

форме; 

- понятие орта, проекции вектора на вектор; 

- построение системы координат. 

 

3.8 Практическое занятие 9 (ПЗ-9) Векторное пространство. Скалярное и век-

торное произведение векторов. 

 

При подготовки к занятию необходимо обратить внимание на: 

- понятие векторного пространства, линейной зависимости- независимости векто-

ров; 

- свойства системы линейно независимых векторов; 

- определение, вычисление, свойства скалярного и векторного произведения; 

- приложения скалярного и векторного произведения. 

 

3.9 Практическое занятие 10  (ПЗ-10) . Смешанное произведение векторов, ре-

шение комплексных задач. 

 

При подготовки к занятию необходимо обратить внимание на: 

- определение, вычисление, свойства смешанного произведения векторов; 



- признаки коллинеарности, ортогональности, компланарности векторов; 

- алгоритмы вычисления скалярного, векторного, смешанного произведения векто-

ров; 

- применение скалярного, векторного, смешанного произведения векторов к реше-

нию комплексных геометрических задач; 

 

 

3.10 Практическое занятие 11 (ПЗ-11) Способы задания прямой.  

 

При подготовки к занятию необходимо обратить внимание на: 

-  основные способы задания прямой на плоскости; 

- свойства коллинеарных и ортогональных векторов; 

- активизацию геометрических знаний школьного курса. 

 

 

3.11 Практическое занятие 12 (ПЗ-12) Способы задания плоскости. Метриче-

ская теория плоскостей. 

 

При подготовки к занятию необходимо обратить внимание на: 

- основные способы задания плоскости в пространстве; 

- признаки параллельности, перпендикулярности, компланарности векторов; 

- формулы для вычисления расстояния между точками, расстояния между точкой и 

плоскостью. 

 

 

3.12 Практическое занятие 13 (ПЗ-13)  Кривые второго порядка 

 

При подготовки к занятию необходимо обратить внимание на: 

- канонические уравнения кривых второго порядка; 

- алгоритм приведения уравнения алгебраической линии второго порядка к кано-

ническому виду; 

- формулы для нахождения параметров кривых. 

 

3.13 Практическое занятие 14 (ПЗ-14) Поверхности вращения 

 

При подготовки к занятию необходимо обратить внимание на: 

- классификацию поверхностей второго порядка; 

- определение, построение поверхностей вращения; 

- квадратичные формы и алгоритм приведения квадратичной формы к канониче-

скому виду. 


