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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

1.1. Организационно-методические данные дисциплины 
 

№ 

п.п 

Наименование 

темы 

Общий объем часов по видам самостоятельной работы 

подготов-

ка курсо-

вого про-

екта (ра-

боты) 

подготовка 

рефера-

та/эссе 

индивидуаль-

ные домаш-

ние задания 

(ИДЗ) 

самостоя-

тельное 

изучение 

вопросов 

(СИВ) 

подго-

товка к 

занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1 

Тема 1. Комплекс-

ные числа и дейст-
вия с ними. Ком-

плексная плос-

кость.   

× × × 1 1 

2 

Тема 2. Линии и 
области на ком-

плексной плоско-

сти.                                        

× × × - 1 

3 

Тема 3. Определе-

ние ФКП. Одно-

значные и одноли-

стные функции.  
Предел и непре-

рывность. Отобра-

жения с помощью 
непрерывных 

функций. Степен-

ные ряды. Элемен-
тарные ФКП. 

× × × - 2 

4 

Тема 4. Производ-

ная ФКП. Условия 

Коши - Римана, 
аналитические 

функции. Геомет-

рический смысл 
модуля и аргумента 

производной. Эле-

менты теории кон-

формных отобра-
жений. 

× × × 1 2 

5 

Тема 5. Гармони-

ческие функции и 
их связь с аналити-

ческими функция-

ми, сопряжённые 

гармонические 
функции. Восста-

новление аналити-

ческой функции по 
её действительной 

или мнимой части.                                                              

× × × - 2 

6 
Тема 6. Интеграл 

комплекснозначной 
функции вещест-

× × × 1 3 



4 

 

венного аргумента 

по отрезку. Инте-

гралы от ФКП по 
кривой. Теорема 

Коши для одно-

связной области и 

её обобщения. Пер-
вообразная функ-

ция. Интегральная 

формула Коши. 

7 

Тема 7. Нули и 

особые точки ана-

литической функ-

ции. Ряды Тейлора 
и Лорана. 

× × × 2 3 

8 
Тема 8. Вычеты и 

их приложения. 
× × × 1 2 

5 Итого:  22 × × × 6 16 

 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ 

 

2.1 Комплексные числа и действия с ними. Комплексная плоскость.   

Наименование вопроса. Приложения алгебры комплексных чисел в теории электри-

ческих цепей переменного тока: комплексный метод расчёта электрических цепей при ус-

тановившихся режимах синусоидальных токов (1 ч).       

При изучении вопроса необходимо обратить внимание на следующие особен-

ности.  

- Показательная форма записи комплексных чисел. Действия с комплексными числами в 

показательной форме. 

 

- Приложения алгебры комплексных чисел в теории электрических цепей переменного 

тока: комплексный метод расчёта электрических цепей при установившихся режимах си-

нусоидальных токов. 

-Рассмотреть метод комплексных амплитуд.  

 2.2 . Производная ФКП. Условия Коши - Римана, аналитические функции. Гео-

метрический смысл модуля и аргумента производной. Элементы теории конформ-

ных отображений 

Наименование вопроса. Элементы теории конформных отображений.(1 ч).       

При изучении вопроса необходимо обратить внимание на следующие особен-

ности. 
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Назвать важнейшие свойства непрерывных отображений областей: об образе 

области, об образе границы, об образе замкнутой области. Конформные отображения 

                  

2.3 Интеграл комплекснозначной функции вещественного аргумента по отрезку. 

Инте-гралы от ФКП по кривой. Тео-рема Коши для односвязной об-ласти и её обоб-

щения. Перво-образная функция. Интеграль-ная формула Коши. 

Наименование вопроса. Интегралы от ФКП по кривой.  Теорема Коши для одно-

связной области и её обобщения. Первообразная функция. Интегральная формула 

Коши (1 ч). 

При изучении вопроса необходимо обратить внимание на следующие особен-

ности. 

Если функция f(z) – аналитическая в односвязной замкнутой области с кусочно – 

гладкой границей L, 

 

 

       D 

 

                 
            z0 

 

 

 

то справедлива формула Коши: 
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где z0 – любая точка внутри контура L, интегрирование по контуру производится в поло-

жительном направлении (против часовой стрелки). Интеграл в правой части называется 

интегралом Коши. 

Интегральную формулу Коши называют основной формулой теории аналитиче-

ских функций, т.к. многие результаты получены при использовании этой формулы. Фор-

мула выражает фундаментальное свойство аналитической функции: значение функции в 

односвязной ограниченной области выражается через её значения на контуре. 

 

2.4 Нули и особые точки аналитической функции. Ряды Тейлора и Лорана. 

 Наименование вопроса. 1. Нули и особые точки аналитической функции. 2. Ряды Лорана. (2 

ч). 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Функция f(z), аналитическая в круге Rzz 0 , разлагается в сходящийся к ней 

степенной ряд по степеням (z – z0). Коэффициенты ряда вычисляются по формулам: 
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Степенной ряд с коэффициентами такого вида называется рядом Тейлора. 

 

 Рассмотрим теперь функцию f(z), аналитическую в кольце Rzzr 0 . Эта 

функция может быть представлена в виде сходящегося ряда: 

 

n n
n

n

n

n

n

n

n
zz

c
zzczzczf

1 00

00
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n
zt

dttf

i
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 Ряд такого вида называется рядом Лорана. При этом функция f(z) может быть 

представлена в виде суммы: 

1 0

2

0

0121 ;
)(

)(;)()();()()(
n

n

n

n

n

n
zz

c
zfzzczfzfzfzf  

 

 Ряд, определяющий функцию f1(x), называется правильной частью ряда Лорана, а 

ряд, определяющий функцию f2(x), называется главной частью ряда Лорана.  

 

Известная интегральная формула для коэффициентов ряда Лорана на практике не очень 

удобна. Чаще всего для разложения в ряд Лорана используют известные разложения в ряд 

Тейлора, например в геометрический ряд.   

 

2.5 Вычеты и их приложения. 

Наименование вопроса. 1. Вычисление вычетов.2. Применение вычетов к вычислению 

интегралов (1 ч). 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Следует обсудить различные способы вычисления вычетов и приложения вычетов 

к вычислению интегралов. Пусть z0 – изолированная особая точка функция f(z), т.е. пусть 

функция f(z) – аналитическая в некотором круге Rzz 0  из которого исключена точка 

z0. Тогда интеграл  

)()(
2

1

0

zfВычdzzf
i zz
L

=
0

Re ( )
z

sf z  

называется вычетом функции f(z) в точке z0, где L – контур в круге Rzz 0 , ориенти-

рованный против часовой стрелки и содержащей в себе точку z0. Вычет также обозначают 

иногда 
0

Re ( )
z

sf z . 

 Если ;0;)()( 00 Rzzzzczf
k

k

k  есть ряд Лорана функции f в точке 

z0, то 1)(
0

czfВыч
zz

. 

 Таким образом, если известно разложение функции в ряд Лорана, то вычет легко 

может быть найден в случае любой особой точки. 

 

 В частных случаях вычет может быть найден и без разложения в ряд Лорана. 
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 Например, если функция 0)(,
)(

)(
)( 0z

z

z
zf , а )(z  имеет простой нуль при z 

= z0 )0)(,0)(( 00 zz , то z = z0 является простым полюсом функции f(z). Тогда 

можно показать, что вычет находится по формуле 

  

)(

)(

0

0

1
0 z

z
cВыч

zz
.  

 

 Если z = z0 – полюс  порядка m  1, то вычет может быть найден по формуле: 
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2. Применение теоремы Коши о вычетах к вычислению интегралов. 

Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением ко-

нечного числа точек z1, z2, …, zN. Тогда верно равенство: 

 

0)()(
1

zfВычzfВыч
z

N

k
zz k

 

 

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен 

)(2)(
1

zfВычidzzf
N

j
zz

L
j

 

 

3. Вычисление интегралов от вещественных функций.  

 

Теорема. Если функция  аналитическая в замкнутой верхней полуплоскости, за 

исключением конечного числа особых точек, не лежащих на оси ОХ, и  
1( ) ( ),f z o z z , то верна формула  

. 

 

  

3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 

3.1 Практическое занятие № 1(ПЗ-1). Комплексные числа и действия с ними. 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

- поле комплексных чисел, действия с комплексными числами в алгебраической форме. 

 

- геометрическая интерпретация комплексных чисел.  

- модуль и аргумент комплексного числа, тригонометрическая форма записи. 

 

- действия с комплексными  числами в тригонометрической форме. Формула Муавра 

 

f

n

k
z

zfВычidxxf
k1
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3.2 Практическое занятие № 2 (ПЗ-2). Линии и области на комплексной плоскости                      

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Линии на комплексной плоскости 

 

- Области на комплексной плоскости. 

 

3.3 Практическое занятие № 3-4 . Определение ФКП. Однозначные и однолистные функции.  

Предел и непрерывность. Отображения с помощью непрерывных функций. Степенные ряды. Эле-

ментарные ФКП. 

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Определение ФКП. Однозначные и однолистные функции.  

- Предел и непрерывность.  

- Отображения с помощью непрерывных функций.  

- Элементарные ФКП. 

- Вычисление значений ФКП 

 

3.4 Практическое занятие № 5-6. Производная ФКП. Условия Коши-Римана, аналитические 

функции. Геометрический смысл модуля и аргумента производной. Элементы теории конформных 

отображений. 

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Производная ФКП. Условия Коши - Римана, аналитические функции. 

- Геометрический смысл модуля и аргумента производной. 

- Понятие конформного отображения и его свойства.  

- Отображения с помощью аналитических функций. 

 

3.5 Практическое занятие № 7-8. Гармонические функции, сопряжённые гармонические 

функции. Восстановление аналитической функции по её действительной или мнимой час-

ти                      

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Гармонические функции, сопряжённые гармонические функции.  

- Восстановление аналитической функции по её действительной или мнимой части.  
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3.6 Практическое занятие № 9-11.  Интеграл комплекснозначной функции вещественно-

го аргумента по  отрезку. Интегралы от ФКП по кривой. Теорема Коши для односвязной 

области и её обобщения. Первообразная функция. Интегральная формула Коши                     

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

- Интегралы от ФКП по кривой.  

- Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

- Интегральная формула Коши. 

  

3.7 Практическое занятие № 12-14 . Нули и особые точки аналитической функции. Ряды 

Тейлора и Лорана                      

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Нули и особые точки аналитической функции.  

- Ряды Тейлора. Ряды Лорана.  

  

3.8 Практическое занятие № 15-16                       

        При подготовки к занятию необходимо обратить внимание на следующие мо-

менты. 

- Вычет относительно кратного полюса. 

 

- Вычисление вычета с помощью формулы Коши 

 

 

 

 


