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1. КОНСПЕКТ ЛЕКЦИЙ 

1. 1 Лекция №  1   (2 ч). Тема: «Комплексные числа и действия с ними»         

1.1.1 Вопросы лекции: 

1. Комплексные числа и действия с ними. 

2. Комплексная плоскость.   

1.1.2 Краткое содержание вопросов:  

1. Комплексные числа и действия с ними. 

 Комплексным числом, представленным (записанным) в алгебраической форме, на-

зывается выражение вида z x i y , где ,x y R - действительные числа, Rex z - 

действительная часть комплексного числа, Imy z  - мнимая часть (перев. с англ.: real- 

реальный, image- мнимый). Символ i  называется мнимой единицей: 
2 1i .   

Отношение равенства комплексных чисел: два комплексных числа 

1 1 1
z x i y , 

2 2 2z x i y  равны тогда и только тогда, когда равны соответственно 

их действительные и мнимые части: 
1 2 1 2

,x x y y .                                  

 Суммой двух комплексных чисел 1 2,z z  называется число z , равное 

            
1 2 1 1 2 2 1 2 1 2( ) ( )z z z x i y x i y x x i y y . 

 Произведением комплексных чисел 1 2,z z  называется число z ,  равное   

2
1 2 1 1 2 2 1 2 1 2 2 1 1 2( ) ( )z z z x y i x y i x x x y i x y i y y i   

1 2 1 2 1 2 2 1( ) ( )x x y y x y x y i . 

 Для любого комплексного числа z x iy  существует комплексно-сопряжённое 

число z x iy , причём  
2 2z z x y . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относительно действительной оси.  

 Модуль и аргумент комплексного числа, тригонометрическая форма записи. Дейст-

вия с комплексными числами в тригонометрической форме. Формула Муавра. 

 Будем изображать комплексные числа 0z x iy  радиус-векторами точек z  

(Рис. 2). Длина радиус-вектора точки z  называется модулем комплексного числа z  и обо-

значается z : 
2 2z z z x y , 

2

z z z , z z . Здесь z - расстояние от 

начала комплексной плоскости до точки z , 
2 1z z -  расстояние между точками 1z  и 2z . 

Угол , который образует радиус-вектор z  с положительным направлением оси Ox , на-

зывается аргументом комплексного числа z  и обозначается ( )Arg z . Значения ( )Arg z  

находятся неоднозначно, с точностью до слагаемого 2 ,k k Z . Главным значением ар-

гумента arg( )z  комплексного числа z  называется значение Argz из промежутка 

; : ( ) arg( ) 2 , , arg( )Arg z z k k Z z .  

 Пользуясь формулами перехода от декартовых координат к полярным 
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координатам cosx z , siny z , 
y

tg
x

 запишем комплексное число 

z  в виде cos sinz z i . Эта форма записи комплексного числа называется 

тригонометрической(или полярной). Формулы для нахождения главного значения аргу-

мента комплексного  числа: 

                           

, 0;

, 0, 0;

arg( ) , 0, 0;

, 0, 0;
2

, 0, 0.
2

y
arctg x

x

y
arctg x y

x

y
z arctg x y

x

x y

x y

  

Для комплексных чисел 

            
1 1 1 1 2 2 2 2cos sin , cos sinz z i z z i , 

записанных в тригонометрической форме, справедливы следующие правила 

умножения и деления: 

                 
1 2 1 2 1 2 1 2cos( ) sin( )z z z z i , 

                 
11

1 2 1 2 2

2 2

cos( ) sin( ) , 0
zz

i z
z z

. 

В частности, справедлива формула Муавра возведения комплексных чисел в степень 

               cos sin cos sin ,
n nnz z i z n i n n N . 

Комплексные числа 
1 1 1 1cos sinz z i  и 

2 2 2 2cos sinz z i ,  

записанные в тригонометрической форме, равны тогда и только тогда, когда 

          
1 2 1 2, 2 ,z z Arg z Arg z m m - целое. 

С помощью этого понятия равенства комплексных чисел и формулы  

Муавра возведения в степень получают следующую формулу Муавра извле- 

чения корней n ой  степени из комплексных чисел:  

  
2 2

cos sin , 0,1,2,..., 1n n
k k

z z i k n
n n

. 

В общем случае для любого комплексного 0z  существует ровно n  различных значе-

ний 
n z , которые изображаются на комплексной плоскости вершинами правильного n -

угольника, вписанного в окружность радиуса nr z   с центром в нулевой точке(либо 

значения 
n z изображают радиус-векторами).                                                                             

 3. Показательная форма записи комплексных чисел. Действия с комплексными 

числами в показательной форме.  

С помощью формулы Эйлера  

                                             cos sin
i

e i  
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любое комплексное число 0z  можно представить в показательной форме: 

                                                  
i

z z e .   

В показательной форме удобно умножать и делить комплексные числа, возводить в сте-

пень и извлекать корни:  

если 1
1 1

i
z z e , 2

2 2

i
z z e , 

i
z z e , то  

1 2 1 2
1 2 1 2 1 2

( )i i i
z z z e z e z z e , 

1
11 1 1 2

22 2
2

( )
i

z ez z i
e

iz zz e

,  

nn in
z z e  , 

nn in
z z e , 

i
z z e .  

Отметим, что из формулы Эйлера следует: cos sin
i

e i ,  

    cos
2

i ie e
,   sin

2

i ie e

i
. 

 

2. Комплексная плоскость.   

 

Множество всех комплексных чисел замкнуто относительно операций  

сложения и умножения и образует поле, обозначаемое через C . Элементы  z x iy  

поля C  отождествляются с точками ( ; )M x y  плоскости xOy . В этом случае плоскость 

xOy  называют комплексной плоскостью. Комплексные числа можно изображать также 

радиус-векторами точек. Сложение и вычитание комплексных чисел можно геометриче-

ски интерпретировать как сложение и вычитание векторов на комплексной плоскости. 

Для любого комплексного числа z x iy  существует комплексно-сопряжённое 

число z x iy , причём  
2 2z z x y . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относительно действительной оси 

 

1. 2 Лекция №  2   (2 ч). Тема: «Линии и области на комплексной плоскости»                                              

1.2.1 Вопросы лекции: 

1. Линии на комплексной плоскости.  

2. Области на комплексной плоскости. 

1.2.2 Краткое содержание вопросов:  

1. Линии на комплексной плоскости 

Рассмотрим множество D C , состоящее из комплексных чисел. Будем считать, что 

значением z  может быть любое комплексное число из множества D . В этом случае z  

называют комплексным переменным, а множество D -областью изменения z . В алгеб-

раической форме z  имеет вид z x i y . 

 Пусть ( ), ( )t t - действительные непрерывные функции действительного пере-

менного t , t . Система уравнений   
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( ),

( )

x t

y t
  

определяет  на плоскости  xOy  непрерывную линию (параметрическим заданием). Непре-

рывную линию на комплексной плоскости можно задать комплексно-параметрическим 

уравнением 

                             ( ) ( ) ( ),z z t z t i t t . 

Если ( ), ( )t t  непрерывны, имеют непрерывные производные и   

                                
2 2

( ) ( ) 0,t t t , 

то линию называют гладкой. Замкнутую линию, не имеющую точек самопересечения, на-

зывают контуром (замкнутым контуром).  

 Линию на комплексной плоскости можно задать не только комплексно- параметри-

ческим, но и комплексным уравнением. 

                      Простейшие линии на комплексной плоскости 

1. а) Комплексное уравнение окружности с центром в точке 
0z z  радиуса r : 

 
0z z r (Рис. 11); 

    б) комплексно-параметрическое уравнение окружности с центром в точке 
0z z  ра-

диуса r : 
0 (cos sin ), 0 2z z r t i t t (Рис.11); 

 в) комплексное уравнение дуги окружности с центром в точке 
0z z  радиуса r  (Рис. 

12):
0

0

,

;

z z r

arg z z
 

    г) комплексно-параметрическое уравнение дуги окружности с центром в 

точке 
0z z  радиуса r : 

0 (cos sin ),z z r t i t t (рис. 12). 

д) комплексно-параметрическое уравнение окружности в показательной форме с цен-

тром в точке 
0z z  радиуса r : 

0 ,0 2iz z r e t ; 

е) комплексно-параметрическое уравнение дуги окружности в показательной форме с 

центром в точке 0z z  радиуса r : 
0 ,iz z r e t .                           
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2. Комплексно-параметрическое уравнение прямой, проходящей через две заданные точки 

1z  и 
2z : 

1 2 1( ) ,z z z z t t (рис.13). 

     

3. Луч, выходящий из точки 0z  под углом  к оси Ox : arg( )z (рис. 14). 

4. Луч, выходящий из точки 
0z z  под углом  к оси Ox : 

0arg( )z z (рис.15).                         

2. Области на комплексной плоскости 

Простейшие области комплексной плоскости 

1. Открытый круг с центром в точке 
0z z  радиуса r  (окрестность)(Рис. 18): 

0z z r .  

2. Замкнутый круг с центром в точке 
0z z  радиуса r  (Рис. 19): 

0z z r . 

        

3. Внешность круга открытая с центром в точке 0z z  радиуса r : 0z z r (Рис. 20). 

4. Внешность круга замкнутая с центром в точке 0z z  радиуса r : 0z z r (Рис. 21). 
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5. Открытое круговое кольцо с центром в точке 
0z z , ограниченное концентрическими 

окружностями радиусов r  и R , 0 r R  (Рис. 22): 
0r z z R . Кольцо может 

включать часть границы или всю границу. Например, неравенство 
0r z z R  задаёт 

замкнутое кольцо.  

   

6. Замкнутый угол с вершиной в точке 
0z z  (Рис. 23):  

                                    
0arg z z , .  

 Стороны угла, либо некоторые участки сторон, могут не включаться в область. Например, 

0arg z z  задаёт открытый угол. 

7. Открытый круговой сектор с центром в точке 
0z z , ограниченный дугой  окружно-

сти радиуса r  и  лучами 
0arg( )z z , 

0arg( )z z ,  (Рис. 24): 

0 0, argz z r z z .  Круговой сектор может быть замкнутым. 
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8. Сектор кругового кольца с центром в точке 
0z z , ограниченный дугами концентриче-

ских окружностей радиусов r  и R  и лучами 
0arg( )z z , 

0arg( )z z ,  

(Рис. 25): 
0 ,r z z R 0arg z z (открытый).  

Круговой сектор может быть замкнутым. 

     

9. Проколотая окрестность с центром в точке 
0z z  радиуса r  (Рис. 26): 

00 z z r .  

10. Комплексная плоскость с разрезом вдоль отрицательной части действительной оси 

(Рис. 27):                                        arg z .  

       

11. Правая полуплоскость комплексной плоскости (замкнутая) (Рис. 28):  

                                                        Re 0z . 

12. Верхняя полуплоскость комплексной плоскости (замкнутая) (Рис. 29): 

                                                         Im 0z .  

Полуплоскости могут быть открытыми. 
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13. Первая четверть комплексной плоскости  (Рис. 30): Re 0,Im 0z z  (за-мкнутая).  

14. Прямоугольник на комплексной плоскости  (Рис. 31): Rea z b , 

Imc z d , , , , , ,a b c d a b c d R (замкнутый). Прямоугольники  могут быть от-

крытыми. 

   

Линии и области, заданные комплексными уравнениями и неравенствами, проще 

всего строить используя наглядную геометрическую интерпретацию модуля и аргумента 

комплексного числа.  

 

1.3 Лекция № 3 (2 ч). Тема: «Определение ФКП. Однозначные и однолистные 

функции.  Предел и непрерывность. Отображения с помощью непрерывных функций. 

Степенные ряды. Элементарные ФКП» 

1.3.1 Вопросы лекции: 

1. Определение ФКП. Однозначные и однолистные функции.  

2. Предел и непрерывность. 

3. Отображения с помощью непрерывных функций. Степенные ряды. Элементар-

ные ФКП.  

1.3.2 Краткое содержание вопросов:  

 
1. Определение ФКП. Однозначные и однолистные функции.  
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 Пусть D  и G  - комплексные числовые множества (вообще говоря, множества на 

расширенной комплексной плоскостиC ). Функцией ( )w f z  комплексного переменного 

z  называется бинарное отношение f  между множествами D  и G , причём каждое число 

z  множества D  будет являться первым элементом какой-либо упорядоченной пары под-

множества f  декартового произведения D G ( f D G ). Множество D  называется 

областью определения функции, G -областью значений функции, а E f D G -

множеством значений функции. Если каждому значению z D  соответствует лишь одно 

значение w G , то функция называется однозначной, если же некоторым z  соответству-

ет более чем одно значение w , то функция называется многозначной. Только однозначная 

комплексная функция является функцией в общепринятом понимании (отображение). 

Итак, однозначной функцией ( )w f z  комплексного переменного z  называется отобра-

жение f  комплексного числового множества D  в комплексное числовое множество G .  

 Обозначим z x i y  и представим функцию  в алгебраической фор-

ме w u i v , где ,x y -действительные числа.  Тогда в алгебраической форме 

                           ( ) , ,w f z f x i y u x y i v x y .  

Действительная и мнимая части функции комплексного переменного Re ( ) ,f z u x y , 

Im ( ) ,f z v x y  являются действительными функциями двух действительных пере-

менных x  и y . 

 Итак, функция ( )w f z  определяет две действительные функции действительных 

переменных ,u u x y  и ,v v x y . Обратно, задание функций ,u u x y  и 

,v v x y  определяет комплексную функцию комплексного переменного 

( ) , ,w f z u x y i v x y  в алгебраической форме.  

 Для наглядной геометрической иллюстрации функции ( )w f z  значения аргу-

мента z  изображают на комплексной плоскости xOy , которую обозначают ( )z , а  значе-

ния функции w  изображают на комплексной плоскости uOv , которую обозначают ( )w . 

Таким образом, комплексная функция отображает множество точек D  комплексной 

плоскости ( )z , на множество точек E  комплексной плоскости ( )w (рис. 44 ).   
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 Иногда для геометрического представления функций комплексного переменного в 

системе координат Oxy  изображают поверхность модуля или рельеф функции: 

( )f z  . Если ( ) , ,w f z u x y i v x y , то поверхность  

модуля задаётся уравнением 
2 2, ,u x y v x y . На рисунке 45 

представлена поверхность модуля  функции  
2w z : 

22 2 2z z x y . Это пара-

болоид вращения относительно вертикальной оси. 

                     

 В теории функций комплексного переменного биективное отображение ( )w f z  

области D  на область E  принято называть однолистной функцией. Для однолистной 

функции ( )w f z  справедливо следующее утверждение: 

1 2 1 2 1 2, ( ) ( )z z D z z f z f z . 
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 В приложениях важное значение имеет свойство отображений с помощью одно-

значных непрерывных  функций: если однозначная непрерывная в области D  функция 

( )w f z  отображает эту область на множество E , то множество E так же является об-

ластью. Если, сверх того, функция непрерывна в замыкании области D , то f  отображает 

D  на E , т.е. границей образа области D  будет образ границы этой же области: 

                                   E f D f D f D . 

2. Предел и непрерывность. 

 

Определение. Функция ),(),()( yxivyxuzfw  имеет предел в точке z0, рав-

ный числу А = a + ib, если 0)(lim
00

Azf
zz

:      .)(lim
0

Azf
zz

 

Свойства пределов функций комплексного переменного. 

 Для пределов функций комплексного переменного f(z) и g(z) справедливы следую-

щие свойства: 

 1) )(lim)(lim)()(lim
000

zgzfzgzf
zzzzzz

 

 2) )(lim)(lim)()(lim
000

zgzfzgzf
zzzzzz

 

 3) .0)(lim;
)(lim

)(lim

)(

)(
lim

0

0

0

0

zg
zg

zf

zg

zf

zz

zz

zz

zz
 

 Определение. Функция ),(),()( yxivyxuzfw  называется непрерывной в точ-

ке z0, если выполняется равенство 

)()(lim 0
0

zfzf
zz

 

3. Отображения с помощью непрерывных функций. Степенные ряды. Элементар-

ные ФКП. 

 Под элементарными функциями комплексного переменного z x i y  понимают 

обычно функции:  

( )f z a z b - линейная функция ,a b Z ; 

( ) nf z z - степенная функция, n -целое; 

( )
a z b

f z
c z d

-дробно-линейная функция , , ,a b c d Z ; 

1 2

0 1 2( ) ...n n n

nf z a z a z a z a - целая рациональная функция;   
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1 2

0 1 2

1 2

0 1 2

...
( )

...

n n n

n

m m m

m

a z a z a z a
f z

b z b z b z b
-общая рациональная функция;  

1 1
( )

2
f z z

z
-функция Жуковского;  

( ) zf z e -показательная функция;  

( )f z Lnz -логарифмическая функция;  

( ) sinf z z , ( ) cosf z z , 
sin

( )
cos

z
f z tgz

z
, 

cos
( )

sin

z
f z ctgz

z
- тригонометриче-

ские функции;  

( ) sinf z Arc z , ( ) Arccosf z z , ( )f z Arctgz , ( )f z Arcctgz -обратные триго-

нометрические функции;  

гиперболические функции: 
2

z ze e
shz -синус гиперболический,  

2

z ze e
chz -косинус гиперболический, 

shz
thz

chz
-тангенс гиперболический,  

chz
cthz

shz
котангенс гиперболический,  

обратные гиперболические функции.  

Представление основных элементарных функций в алгебраической форме (формулы 

вычисления значений функций) и простейшие свойства функций.  

1. Показательная функция 
ze .  

 1.1. Показательная функция определена на всей комплексной плоскости и её пред-

ставление в алгебраической форме определяется формулой  

               (cos sin ) cos sinz x i y x x xe e e y i y e y e i y ,  

т.е. Re cos , Im sinz x z xe e y e e y .  

 При 0y  для действительных z x  имеем 
z xe e ; при 0x  для чисто мнимых 

z i y  получим формулу Эйлера:  cos sini ye y i y .  

 1.2. , 2 , 0, 1, 2, 3,...z x ze e Arg e y k k . 
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 1.3. Функция 
ze является аналитической на всей комплексной плоскости, при этом 

z ze e .  

 1.4. 

1

1 2 1 2 1 2

2
1 2, ,

z
z z z z z z

z

e
z z e e e e

e
.  

 1.5. Функция 
ze является периодической: число 2 i - основной период, любое чис-

ло 2 ki , где k Z , будет периодом  

2 2 2 2 sin 2z ki z i z i z zz e e e e e cos i e .  

 1.6. Показательная функция 
ze  связана с тригонометрическими функциями тожде-

ством Эйлера:  cos sini ze z i z .  

 1.7. 0zz e .  

 1.8. Отображение, осуществляемое функцией 
zw e , является конформным на 

всей комплексной плоскости. 

Пример 24. Вычислить значение 
ze  при  а) 

2
z i , б) 3

4
z i .  

Решение. Значения функции 
ze  вычисляем по формуле пункта 1.1: 

 (cos sin ) cos sinz x i y x x xe e e y i y e y e i y .  

а) 
2

z i 0,
2

x y  
02 (cos sin )

2 2

i
ze e e i i ;  

б) 3
4

z i 3,
4

x y
3

34 cos sin
4 4

i
ze e e i  

3 32 2 2
1

2 2 2
e i e i .  

2. Логарифмы комплексных чисел. Логарифмическая функция Ln z .  

 Логарифмическая функция определяется как функция, обратная показательной.  

 Определение. Комплексное числа w  называется логарифмом комплексного числа 

z , если 
we z  и обозначается w Lnz .  

Теорема. Для любого комплексного числа 0z  существует логарифм w Lnz . Лога-

рифм нуля в комплексной области не существует (так же как и в действительной об-

ласти). 
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Доказательство. Пусть дано , 0z C z . Покажем существование числа w  такого, что 

we z , т.е. w Lnz . Число w Lnz  представим в алгебраической форме w u i v , 

где u  и v  пока не известны, а число z - в показательной форме: 
i Argzz z e . Тогда ра-

венство  
we z  примет вид 

u i v i Argze z e . Поэтому  

u i v i Argz u i v i Argze z e e e z e   

, ln ,u i v i Argze z e e u z v Argz .  

Поэтому формула вычисления логарифма комплексного числа (представления логарифма 

в алгебраической форме) имеет вид  

                                    lnLnz u i v z i Argz .  

Так как  2 , 0, 1, 2, 3,...Argz argz k k , где arg z - главное значение аргумента 

комплексного числа z , то  

                           ln 2 , 0, 1, 2, 3,...Lnz z i argz ki k  .  

В этих формулах ln z - натуральный логарифм действительного числа 0z . 

Теорема доказана. 

 Если z x i y , то 
2 2z x y  и логарифм комплексного числа z  вычисляет-

ся по формуле  

                
2 2ln 2 , 0, 1, 2, 3,...Lnz x y i argz ki k . 

 Эта формула показывает, что логарифмическая функция комплексного аргумента 

w Lnz  имеет бесконечно много значений (бесконечнозначная). При 0k  выделяют 

ветвь этой функции, называемую главным значением логарифма:  

                                                lnlnz z i argz .  

Пример 25. Вычислить значение Lnz  при  а) z i , б) 1z , в)  1z i .   

Решение. Значения функции Lnz  вычисляем по формуле  

ln 2 , 0, 1, 2, 3,...Lnz z i argz ki k  

а). ln arg 2 ln1 2 2 , 0, 1, 2, 3,...
2 2

Lni i i i ki i ki i ki k   

Главное значение логарифма числа z i  получим из этой формулы при 0k :  

ln arg ln1
2 2

lni i i i i i .  
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б). В комплексной области существуют логарифмы отрицательных чисел. Например, 

1 ln 1 arg 1 2 ln1 2 1 2 , 0, 1, 2,...Ln i ki i ki i k k ;  

при 0k  получим главное значение логарифма числа 1z :  

 1 ln 1 arg 1ln i i . 

в). 1 ln 1 arg 1 2 ln 2 2 , 0, 1, 2, 3,...
4

Ln i i i i ki i ki k ,  

1 ln 2
4

ln i i .  

3.  Тригонометрические функции.  

 3.1. Тригонометрические ФКП  sin z  и cos z  определены на всей комплексной 

плоскости и выражаются через показательную ФКП с помощью тождеств Эйлера:  

cos
2

iz ize e
z ,  sin

2

iz ize e
z

i
.     

Функции tgz  и ctgz  определяются через sin z  и cos z : 
sin

cos

z
tgz

z
, 

cos

sin

z
ctgz

z
. Для 

действительных z x  эти функции совпадают с тригонометрическими функциями веще-

ственного аргумента.  

 3.2. Положив z x i y  в формулах п. 3.1, получим представление sin z  и cos z  

в алгебраической форме: 

cos cos cos ch sin shz x i y x y i x y ,  

sin sin sin ch cos shz x i y x y i x y .  

 3.3. Связь между тригонометрическими и гиперболическими функциями:    

 sin shiz i z , cos hiz c z ,  

sh siniz i z , ch cosiz z .   

 3.4. Функции sin z  и cos z  аналитические на всей плоскости, а tan z  и cot z  - в 

области определения, причём  

sin cosz z ,   cos sinz z ,    
2

1

cos
tgz

z
,   

2

1

sin
ctgz

z
.   

 3.5. Отображения, осуществляемые функциями sin z  и cos z , являются конформ-

ными на всей комплексной плоскости. 

 3.6. Функции sin z  и cos z  являются периодическими: число 2 - основной период, 

любое число 2 k , где k Z , будет периодом.  
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 3.7. В комплексной области для функций sin z  и cos z  нарушаются известные 

свойства  sin 1, cos 1z z , т.е. модули этих функций могут принимать значения, боль-

шие единицы. Например, из формул п. 3.3 следует, что  

cos 1i ch . Поэтому, 

1 1

1

cos 1 1.543
2 2

e
e e ei ch , т.е. cos 1i . Это свойство 

sin z  и cos z   можно увидеть, изобразив в системе координат Oxy  поверхность модуля 

или рельеф функции: sin z  с MathCAD. Так как  

sin sin sin cosz x i y x chy i x shy , то поверхность модуля sin z задаёт-

ся уравнением 
2 2

sin cosx chy x shy  (Рис. 46).  

 

Пример 26. Вычислить значение cos z  при а) z i , б) 
2

z i .  

Решение.  а). Значение cosi  вычисляем по формуле cosiz chz  ( при 1z ):  

cos 1i ch , где 

1 1

1

1 1.543
2 2

e
e e ech .  

б). Значение cos
2

i  вычисляем по формуле  

cos cos cos sinz x i y x chy i x shy   при  0, 1
2

x y : 
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1 1

1

cos cos 0 1 cos0 1 sin0 1 1 1.543
2 2

e
e e ei i ch i sh ch .  

4.  Гиперболические функции.  

c c c cos s sinhz h x i y hx y i hx y ,  

cos sinshz sh x i y shx y i chx y .  

 

1. 4. Лекция № 4 (2 ч). Тема: «Производная ФКП. Условия Коши- Римана, анали-

тические функции. Геометрический смысл модуля и аргумента производной. Элементы 

теории конформных отображений»                                              

1.4.1 Вопросы лекции: 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

2. Геометрический смысл модуля и аргумента производной.  

3. Элементы теории конформных отображений. 

1.4.2 Краткое содержание вопросов:  
 

1. Производная ФКП. Условия Коши- Римана, аналитические функции. 

 Пусть однозначная функция комплексного переменного ( )w f z  определена в 

окрестности конечной точки z  комплексной плоскости. Если точка z z  принадлежит 

этой окрестности, то ( ) ( )w f z z f z  будет приращением функции ( )w f z  

при переходе от точки z  к точке z z . Если существует конечный предел  

                                   
0 0

( ) ( )
lim lim
z z

w f z z f z

z z
,  

то этот предел называется производной функции ( )w f z  в точке z  и обозначается  

                      
0 0

( ) ( )
( ) ( ) lim lim

z z

w f z z f z
w z f z

z z
,  

а сама функция ( )w f z  называется дифференцируемой в точке z . Представим функ-

цию ( )w f z  в алгебраической форме ( ) ( , ) ( , )f z u x y i v x y , где ( , ), ( , )u x y v x y - 

действительные функции двух действительных аргументов ,x y .  

 Необходимые и достаточные условия дифференцируемости функции в конечной 

точке области комплексной плоскости (во внутренней точке области): для того, чтобы 

функция ( ) ( , ) ( , )f z u x y i v x y , определённая в области D  комплексной плоскости, 

была в точке z x i y  этой области дифференцируемой как функция комплексного 

аргумента, необходимо и достаточно, чтобы функции  ( , )u x y  и ( , )v x y  были дифферен-
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цируемы в точке ( , )x y  как функции двух действительных переменных и выполнялись 

условия Коши-Римана (Эйлера-Даламбера)  

                                                    

,

.

u v

x y

u v

y x

                                                (КРЭД)                                                        

При выполнении всех этих условий производная ( )f z  может быть вычислена по одной 

из следующих формул: 

                       ( )
u v u u v u v v

f z i i i i
x x x y y y y x

. 

Достаточные условия дифференцируемости функции в конечной точке области 

комплексной плоскости: для дифференцируемости комплексной функции 

( ) ( , ) ( , )f z u x y i v x y  достаточно, чтобы частные производные  , , ,
u u v v

x y x y
 

существовали, были непрерывными и удовлетворяли условию (КРЭД). 

 Функция называется дифференцируемой в области, если она дифференцируема в 

каждой точке этой области.  

 Функция ( )w f z  однозначная и дифференцируемая в области называется ана-

литической(иначе, голоморфной, регулярной, правильной) в этой области. Функция назы-

вается аналитической  в конечной точке z  , если она является аналитической в некоторой 

окрестности этой точки. Точки плоскости z , в которых функция не является аналитиче-

ской, называются особыми точками этой функции. 

2. Геометрический смысл модуля и аргумента производной. Элементы теории 

конформных отображений. 

Пусть функция zf  дифференцируема в точке 0z  и 00zf . Проведем через 

точку 0z  любую гладкую кривую L. Ее образом также будет какая-то гладкая кривая 

Lf , проходящая через точку 00 zf . 

Пусть α означает угол наклона касательной в точке 0z  к кривой L, а β – угол наклона 

касательной к Lf  в точке 0 . 

 Угол поворота касательной к кривой L при данном отображении будет равен 

0arg f z . 

С учетом того, что результат получился не зависящим от выбора кривой L, можно сде-

лать вывод, что все кривые, проходящие через точку 0z , при данном отображении f по-

ворачиваются на один и тот же угол, равный аргументу производной в данной точке. 

Если теперь рассмотреть две кривые 1L  и 2L , проходящие через точку 0z , и угол меж-

ду ними обозначить через γ, то поскольку обе кривые (точнее, касательные к ним) повора-
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чиваются на одинаковый угол, то угол между образами - 1Lf  и 2Lf  - тоже будет ра-

вен γ. 

 

3. Элементы теории конформных отображений. 

Определение. Отображение, сохраняющее углы между кривыми, проходящими через 

данную точку, называется конформным в этой точке. 

Таким образом, отображение посредством аналитической в области функции f  во всех 

точках 0z , где 00zf , является конформным. 

Итак, 0zf  - это локальный коэффициент растяжения окрестности точки 0z  относи-

тельно 0z  при отображении f . 

 

 1. 5 Лекция № 5 (2 ч). Тема: «Гармонические функции и их связь с аналитически-

ми функциями, сопряжённые гармонические функции. Восстановление аналитической 

функции по её действительной или мнимой части»                                         

1.5.1 Вопросы лекции: 

1. Гармонические функции, сопряжённые гармонические функции. 

2. Восстановление аналитической функции по её действительной или мнимой части.  

1.5.2 Краткое содержание вопросов:  
 

1. Гармонические функции, сопряжённые гармонические функции 

 Пусть однозначная функция ( ) ( , ) ( , )f z u x y i v x y  определена в области D  

Напомним, что для того, чтобы ( , )u x y ( ( , )v x y была действительной(мнимой) частью 

аналитической функции ( )f z  необходимо, а в случае односвязной области D  и доста-

точно, чтобы  функция  ( , )u x y ( ( , )v x y ) имела непрерывные частные производные до 

второго порядка включительно и удовлетворяла дифференциальному уравнению с част-

ными производными  

                                         

2 2

2 2

( , ) ( , )
0

u x y u x y

x y
. 

являются гармоническими функциями. Это дифференциальное уравнение называют урав-

нением Лапласа. Действительную функцию ( , )u x y , имеющую непрерывные частные 

производные до второго порядка включительно и удовлетворяющую равнению Лапласа 

называют гармонической функцией в области D . Уравнение Лапласа записывают в сим-

волической форме  

                                                     0u .  

 Итак, действительная и мнимая части аналитической функции являются гармони-

ческими функциями. Не всякая пара гармонических функций образует аналитическую 
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функцию. Функция ( ) ( , ) ( , )f z u x y i v x y  будет аналитической, если гармонические 

функции ( , )u x y  и ( , )v x y  связаны условиями Коши - Римана.  

 Пару гармонических функций  ( , )u x y  и ( , )v x y , связанных условиями Коши- Ри-

мана, называют сопряжёнными гармоническими функциями. Таким образом, действитель-

ная и мнимая части функции, аналитической в некоторой области, являются в этой облас-

ти сопряжёнными гармоническими функциями. 

 Зная одну из гармонических функций, например действительную (мнимую) часть 

неизвестной аналитической функции, можно восстановить другую, например мнимую ( 

действительную) часть этой аналитической функции. Таким образом аналитическую 

функцию можно восстановить по известной действительной или мнимой части. Как гар-

моническая, так и аналитическая функции восстанавливаются с точностью до постоянного 

слагаемого. При этом функция восстанавливается однозначно, если задано одно  из значе-

ний этой функции. 

2. Восстановление аналитической функции по её действительной или мнимой 

части 

 

 Рассмотрим методы восстановления аналитической функции в односвязной облас-

ти. 

Пример 23. Проверить, является ли функция 
2 2( , ) 2u x y x y x  действительной ча-

стью некоторой аналитической функции ( )f z , и если является, то найти эту аналитиче-

скую функцию, если (0) 0f .  

Решение.  Функцию ( )f z  будем искать в виде ( ) ( , ) ( , )f z u x y i v x y , где  ( , )u x y  

дана в условиях задачи, а ( , )v x y  неизвестна. Функция ( , )u x y определена на всей ком-

плексной плоскости (в односвязной области). Вычисляем  

            

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y
.  

Поэтому она гармоническая и является действительной частью некоторой аналитической 

функции ( )f z  на всей плоскости. Найдём гармоническую функцию ( , )v x y , сопряжён-
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ную с функцией ( , )u x y . Тогда будет восстановлена и функция ( )f z . Существует не-

сколько способов восстановления ( )f z . 

 Первый способ восстановления ( )f z (с помощью неопределённого интеграла от 

функции действительного аргумента).  Из условий Коши- Римана следует, что 

2 ,

2 2.

u v v u
y

x y x y

u v v u u
x

y x y x x

 

Следовательно, функция ( , )v x y  является решением системы дифференциальных уравне-

ний первого порядка с частными производными  

                                         2 , 2 2.
v v

y x
x y

                                              (S)                                                                                                                        

Интегрировать эту систему уравнений можно с помощью неопределённого  интеграла или 

криволинейного.  

  Интегрируя первое уравнение системы (S) по x  (считая y  постоянным), восста-

навливаем функцию ( , )v x y  с точностью до произвольной гладкой (пока неизвестной) 

функции ( )y :  

( , ) 2 ( ), ( , ) 2 ( ),

2 2. 2 2,

v x y y dx y v x y y dx y

v v
x x

y y

 

т.е.  

( , ) 2 ( ),

2 2.

v x y yx y

v
x

y

                                                                                                        

Найденную в первом уравнении этой системы уравнений функцию ( , )v x y  продифферен-

цируем по y  и подставим во второе уравнение системы (исключим из системы уравнений 

v

y
):   
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2 ( ),
( , ) 2 ( ), ( , ) 2 ( ),

2 ( ) 2 2, ( ) 2.
2 2.

v
x y

v x y yx y v x y yx yy

v x y x y
x

y

 

Решим второе уравнение этой системы ( ) 2y  (простейшее обыкновенное дифферен-

циальное уравнение) и найдём функцию ( )y : ( ) 2y y C , где C - произвольная ве-

щественная постоянная. Эту функцию подставим в первое уравнение системы и найдём 

сопряжённую гармоническую функцию  

 ( , ) 2 2v x y xy y C .  

 Аналитическая функция ( )f z  восстановлена нами в виде   

       
2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y C ,  

т.е. 

       
2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y i C .  

Подставляя в эту формулу начальное значение (0) 0f , 0 0, 0z x y , находим 

C : 0 0.i C C  Итак, по действительной части ( , )u x y  найдена функция аналити-

ческая на всей комплексной плоскости 

                           
2 2( ) 2 2 2f z x y x i yx y .  

 Заметим, что ( )f z  можно задать аналитическим выражением, зависящим от z . 

Полагая ,
2 2

z z z z
x y

i
, получим  

2 2

( ) 2 2 1
2 2 2 2 2

z z z z z z z z z z
f z i

i i
 

2 2 22 2 2

4 2

z z z z z z z z z z
z z z z , 

2 22 2
2( ) 2 2

2 2 2 2

z zz z
f z z z z , т.е. 

2( ) 2f z z z .  

 Замечание. Для того, чтобы выразить ( )f z  аналитическим выражением от z , дос-

таточно в формуле ( ) ( , ) ( , )f z u x y i v x y  выполнить формальную замену x z , 

0y . 

 Второй  способ восстановления ( )f z (с помощью криволинейного интеграла). Из 

системы уравнений (S) следует, что полный дифференциал функции ( , )v x y  равен  
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2 2 2 .
v v

dv dx dy y dx x dy
x y

 

  Напомним, что выражение ( , ) ( , )P x y dx Q x y dy  в односвязной области явля-

ется полным дифференциалом (при гладких ( , )P x y  и ( , )Q x y ) тогда и только тогда, ко-

гда выполняется условие  
P Q

y x
. В данном примере для функций ( , ) 2P x y y  и 

( , ) 2 2Q x y x  эти условия выполняются: 2
P

y
, 2

Q

x
.  

 В односвязной области функция ( , )v x y  восстанавливается по своему полному 

дифференциалу с помощью криволинейного интеграла 2- го типа не зависящего от формы 

линии интегрирования 

0

0 0, , 2 2 2

M

M

v x y v x y d d , где  
0 0 0,M x y - фиксированная, а  

,M x y - переменная точки комплексной плоскости, , - переменные интегрирования. 

Линия 
0M M  кусочно-гладкая. Выбрав начальной точку 

0 0 0, (0,0)M x y O , а линию 

интегрирования составленной из отрезков координатных линий OM ON NM , где 

( ,0)N N x , вычислим криволинейный интеграл сведением его к определённым: 

, 0,0 2 2 2 2 2 2

N M

O N

v x y v d d d d .  

В этой формуле первый интеграл равен нулю 

2 2 2 0, 0; 0

N

O

d d d ,  

а второй равен  

0

2 2 2 , 0;0 2 2

yM

N

d d x d y x d  

0
2 2 2 2

y

x xy y . 

Поэтому, , 0,0 2 2v x y v xy y . Учитывая начальное условие (0) 0f , а также 

что (0,0) 0u  и (0) (0,0) (0,0)f u i v , заключаем: (0,0) 0v . Следовательно, 
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, 2 2v x y xy y . Получили такой же результат, как и в первом методе: 

2 2 2( ) 2 2 2 2f z x y x i yx y z z . 

 Третий способ восстановления ( )f z -с помощью первообразной (неопределённого 

интеграла от функции комплексного аргумента). Аналитическая функ-

ция ( ) ( , ) ( , )f z u x y i v x y  является дифференцируемой, причём её производную 

удобно находить по одной из следующих формул 

                           ( )
u u v v

f z i i
x y y x

.  

 Так как по условию дана функция 
2 2( , ) 2u x y x y x , то для нахождения про-

изводной ( )f z  следует взять формулу    

                                 ( ) 2 2 2
u u

f z i x i y
x y

. 

Преобразованием ,
2 2

z z z z
x y

i
 приводим производную к виду  

           ( ) 2 2 2 2 2 2 2 2
2 2

u u z z z z
f z i x i y i z

x y i
. 

Функцию ( )f z  находим по её производной с помощью неопределённого интеграла и 

первообразной:  

                  
2( ) ( ) 2 2 2f z f z dz C z dz C z z C . 

Начальное значение (0) 0f  позволяет найти 0C . Следовательно,   

                                              
2( ) 2f z z z . 

 Ещё один способ восстановления ( )f z  по действительной части ( , )u x y  или мни-

мой части ( , )v x y  основан на применении формул 

0 0
0( ) 2 ;

2 2

z z z z
f z u C

i
,  0 0

0( ) 2 ;
2 2

z z z z
f z i v C

i
, 

0 0( )C f z .  

  

1. 6 Лекция №  6 (2 ч). Тема: «Интеграл комплекснозначной функции веществен-

ного аргумента по отрезку. Интегралы от ФКП по кривой. Теорема Коши для односвязной 

области и её обобщения. Первообразная функция. Интегральная формула Коши»                                   

1.6.1 Вопросы лекции: 

1. Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

2. Интегралы от ФКП по кривой.  



28 

 

3. Теорема Коши для односвязной области и её обобщения.  

4. Первообразная функция.  

5. Интегральная формула Коши. 

1.6.2 Краткое содержание вопросов:  
1. Интеграл комплекснозначной функции вещественного аргумента по отрез-

ку.  
 В этой теме рассматриваются следующие простейшие методы вычисления инте-

грала  функции комплексного аргумента:  

1) выражение значения интеграла ФКП в алгебраической форме через два действительных 

криволинейных интеграла 2-го типа;  

2) сведение вычисления интеграла ФКП по гладкой дуге L  к вычислению интеграла от 

комплекснозначной функции вещественного аргумента t  на отрезке  ; ;  

3) применение аналога формулы Ньютона-Лейбница для аналитической функции, которая 

позволяет вычислить интеграл ФКП, если известна её первообразная.  

 Более глубокое рассмотрение вопросов интегрирования, связанных с интегральной  

теоремой Коши и интегральной формулой Коши, рядами и теорией вычетов осуществля-

ется в следующих темах.  

Интеграл от комплекснозначной функции вещественного аргумента.  

 Рассмотрим комплексную функцию вещественного аргумента t  на отрезке ;a b : 

( ) ( ) ( )w f t u t i v t , где функции ( ), ( )u t v t  непрерывны на этом отрезке.  

 Интеграл функции ( )w f t  на отрезке ;a b  вычисляется по формуле  

                                      ( ) ( ) ( )

b b b

a a a

f t dt u t dt i v t dt . 

2. Интегралы от ФКП по кривой.  

  Рассмотрим  теперь функцию ( ) ( , ) ( , )w f z u x y i v x y  комплексного пере-

менного z x i y  и вычисление интеграла от ФКП  по гладкой дуге L .   

 Первый способ вычисления интеграла ФКП по гладкой дуге.  Интеграл от ФКП 

( )w f z  по гладкой дуге вычисляется по формуле  

    ( ) ( ) ( )
L L L L

f z dz u i v dx i dy u dx v dy i v dx u dy ,  

которая выражает значение интеграла ФКП через два действительных криволинейных ин-

теграла 2-го типа.   
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 Второй способ вычисления интеграла ФКП по гладкой дуге L . Предполагая дугу L  

гладкой, записывают её уравнение в комплексно-параметрической форме:  ( )z z t , 

;t , т.е. ( ) ( )z t i t . Тогда  

( ) ( ) ( ) Re( ) Im( )
L

f z dz f z t z t dt t dt i t dt ,        

где Re( ) Re ( ) ( )t f z t z t , Im( ) Im ( ) ( )t f z t z t . Таким образом, эта  формула 

позволяет свести вычисление интеграла ФКП по гладкой дуге L  к вычислению интеграла 

от комплекснозначной функции вещественного аргумента t   на отрезке  ;  (см. §1).  

3. Теорема Коши для односвязной области и её обобщения.  

4. Первообразная функция. 

 Третий способ вычисления интеграла ФКП по гладкой дуге L . Область D , обла-

дающая свойством: внутренность любой замкнутой непрерывной линии, лежащей в этой 

области, также включается в данную область, называется односвязной областью ком-

плексной плоскости C . Области, не обладающие этим свойством, называются многосвяз-

ными. Ограниченная область комплексной плоскости является n  -связной, если её граница 

состоит из n  попарно непересекающихся замкнутых непрерывных линий.      

                                                                                                                        

 Этот способ вычисления интегралов основан на следующей теореме, вытекающей 

из интегральной теоремы Коши: если функция ( )f z  непрерывно дифференцируема в од-

носвязной области D  (а значит аналитическая в области D ), то в этой области существует 

первообразная ( )F z  для функции ( )f z . Тогда интеграл ( )
L

f z dz  не зависит от формы 

дуги интегрирования L , а зависит от начальной 1z  и конечной 2z  точек дуги L . Для анали-

тической функции справедлив аналог формулы Ньютона-Лейбница, которая позволяет 

вычислить интеграл ФКП, если известна её первообразная ( )F z :  
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2

2

1

1

2 1( ) ( ) ( ) ( ) ( )

z
z

z

L z

f z dz f z dz F z F z F z .     

 

5. Интегральная формула Коши 

Если функция f(z) – аналитическая в односвязной замкнутой области с кусочно – 

гладкой границей L, 

 

 

       D 

 

                 

            z0 

 

 

 

то справедлива формула Коши: 

 

L

dz
zz

zf

i
zf

0

0

)(

2

1
)(  

 

где z0 – любая точка внутри контура L, интегрирование по контуру производится в поло-

жительном направлении (против часовой стрелки). Интеграл в правой части называется 

интегралом Коши. 
 

1. 7 Лекция № 7 (2 ч). Тема: «Нули и особые точки аналитической функции. Ряды 

Тейлора и Лорана»                                            

1.7.1 Вопросы лекции: 

1. Нули и особые точки аналитической функции.  

2. Ряды Тейлора. Ряды Лорана.  

1.7.2 Краткое содержание вопросов:  
 

1. Нули и особые точки аналитической функции 

Пусть функция аналитическая в открытом круге Rzz 00  за исключением 

центральной точки z0. Как правило, в этой точке функция бывает не определена. Тогда 

точка z0 называется изолированной особой точкой функции f. 

 

Рассмотрим следующие частные случаи: 

 1)  Функция f(x) имеет вид: 
0

01 )()()(
k

k

k zzczfzf . Т.к. степенной ряд сходит-

ся во всех точках внутри круга, то его сумма f1(x) определена и непрерывно дифференци-

руема во всех точках круга, а, следовательно, и в центре круга z0. В этом случае говорят, 

что особенность функции f в точке z0 устранима. Для устранения особой точки доста-

точно доопределить функцию в центре круга (f(z0) = c0) и функция будет аналитической 

не только в окрестности центра круга, но и в самом центре.  В этом случае 
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L

dzzf 0)(  для любого контура L, содержащего точку z0 и принадлежащего к кругу 

Rzz 0 . 

 

 2) Функция f(x) имеет вид: 
mk

k

k

m

k
k

k zzc
zz

c
zfzf )(

)(
)()( 0

1 0

1 . 

В этом случае точка z0 называется полюсом функции f(z) порядка (кратности) m. 

При m = 1 точку z0 называют еще простым полюсом. Порядок полюса может быть опре-

делен по формуле: 

0)()(lim 0
0

czfzz m

zz
,  z0 – полюс порядка т. 

 3) Функция f(z) имеет вид )()(
)(

)()( 21

1 00

0 zfzf
zz

c
zzczf

m

k
k

k

k

k

k , где в 

ряду 
1 0

2
)(

)(
k

k

k

zz

c
zf  не равно нулю бесконечное количество коэффициентов с-k. В 

этом случае  говорят, что функция f(z) имеет в точке z0 существенно особую точку. 

 

 

2. Ряды Тейлора. Ряды Лорана  

 

(Пьер Альфонс Лоран (1813 – 1854) – французский математик) 

 

 Функция f(z), аналитическая в круге Rzz 0 , разлагается в сходящийся к ней 

степенной ряд по степеням (z – z0). Коэффициенты ряда вычисляются по формулам: 

 

,...2,1,0;
)(

)(

2

1

!

)(
1

0

0

)(

k
zz

dzzf

ik

zf
c

L

k

k

k
 

 

Степенной ряд с коэффициентами такого вида называется рядом Тейлора. 

 

 Рассмотрим теперь функцию f(z), аналитическую в кольце Rzzr 0 . Эта 

функция может быть представлена в виде сходящегося ряда: 

 

n n
n

n

n

n

n

n

n
zz

c
zzczzczf

1 00

00
)(

)()()( ,  

где ,...2,1,0;
)(

)(

2

1
1

0

n
zt

dttf

i
c

nn  

 

 Ряд такого вида называется рядом Лорана. При этом функция f(z) может быть 

представлена в виде суммы: 

1 0

2

0

0121 ;
)(

)(;)()();()()(
n

n

n

n

n

n
zz

c
zfzzczfzfzfzf  

 

 Ряд, определяющий функцию f1(x), называется правильной частью ряда Лорана, а 

ряд, определяющий функцию f2(x), называется главной частью ряда Лорана.  
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Полученная интегральная формула для коэффициентов ряда на практике не очень 

удобна. Чаще всего для разложения в ряд Лорана используют известные разложения в ряд 

Тейлора. 

 

                                

1. 8 Лекция №  8   (2 ч). Тема: «Вычеты и их приложения»                      

                        1.8.1 Вопросы лекции: 

 1. Вычеты. 

2. Применение теоремы Коши о вычетах к вычислению интегралов. 

3. Вычисление интегралов от вещественных функций 

1.8.2 Краткое содержание вопросов:  

 

1. Вычеты. 

 

Определение. Пусть z0 – изолированная особая точка функция f(z), т.е. пусть 

функция f(z) – аналитическая в некотором круге Rzz 0  из которого исключена точка 

z0. Тогда интеграл  

)()(
2

1

0

zfВычdzzf
i zz
L

=
0

Re ( )
z

sf z  

называется вычетом функции f(z) в точке z0, где L – контур в круге Rzz 0 , ориенти-

рованный против часовой стрелки и содержащей в себе точку z0. Вычет также обозначают 

иногда 
0

Re ( )
z

sf z . 

 Если ;0;)()( 00 Rzzzzczf
k

k

k  есть ряд Лорана функции f в точке 

z0, то 1)(
0

czfВыч
zz

. 

 Таким образом, если известно разложение функции в ряд Лорана, то вычет легко 

может быть найден в случае любой особой точки. 

 

 В частных случаях вычет может быть найден и без разложения в ряд Лорана. 

 

 Например, если функция 0)(,
)(

)(
)( 0z

z

z
zf , а )(z  имеет простой нуль при z 

= z0 )0)(,0)(( 00 zz , то z = z0 является простым полюсом функции f(z). Тогда 

можно показать, что вычет находится по формуле 

  

)(

)(

0

0

1
0 z

z
cВыч

zz
.  

 

 Если z = z0 – полюс  порядка m  1, то вычет может быть найден по формуле: 

 

1

0

1

1

)]()[(
lim

)!1(

1
)(

00
m

mm

zzzz dz

zfzzd

m
czfВыч . 

 

 

2. Применение теоремы Коши о вычетах к вычислению интегралов. 
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Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением ко-

нечного числа точек z1, z2, …, zN. Тогда верно равенство: 

 

0)()(
1

zfВычzfВыч
z

N

k
zz k

 

 

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен 

)(2)(
1

zfВычidzzf
N

j
zz

L
j

 

 

3. Вычисление интегралов от вещественных функций.  

 

Теорема. Если функция f  аналитическая в замкнутой верхней полуплоскости, за 

исключением конечного числа особых точек, не лежащих на оси ОХ, и  
1( ) ( ),f z o z z , то верна формула  

n

k
z

zfВычidxxf
k1

2 . 

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

2.1 Практическое занятие № 1 (2 часа). Тема: «Комплексные числа и действия с ними»                      

2.1.1 Задание для работы: 

1. Поле комплексных чисел, действия с комплексными числами в алгебраической форме. 

Геометрическая интерпретация комплексных чисел.  

2. Модуль и аргумент комплексного числа, тригонометрическая форма записи. Действия с 

комплексными  числами в тригонометрической форме. Формула Муавра 

3.  Показательная форма записи комплексных чисел. Действия с комплексными числами в 

показательной форме. Приложения алгебры комплексных чисел в теории электрических 

цепей переменного тока: комплексный метод расчёта электрических цепей при устано-

вившихся режимах синусоидальных токов. 

 

2.1.2 Краткое описание проводимого занятия: 

1. Поле комплексных чисел, действия с комплексными числами в алгебраической 

форме. Геометрическая интерпретация комплексных чисел.   

1. Вычислить 1 2 1 2,z z z z
, если 1 21 2 , 3 5z i z i

. 

Решение. 1 2 1 2 3 5 1 3 ( 2 5) 4 3z z i i i i ,  

1 2 1 2 (3 5 ) 1 3 ( 2 5) 2 7z z i i i i .  

2. Вычислить 
1 2z z , взяв 1 2,z z  из примера 1. 

Решение. 
2

1 2 1 2 3 5 3 5 6 10 13z z i i i i i i .  
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3. Вычислить (представить в алгебраической форме) 1

2

z

z
, взяв 

1 2,z z  из примера 1.                  

Решение. Умножением числителя и знаменателя дроби на комплексно-сопряжённое к 

знаменателю эту дробь представляют в алгебраической форме.   

21 2 3 51 2 3 5 6 10 7 11 7 111
2 23 5 3 5 3 5 34 34 343 52

z i ii i i i i
i

z i i i
. 

Геометрическая интерпретация комплексных чисел. 

 Для любого комплексного числа z x iy  существует комплексно-сопряжённое 

число z x iy , причём  
2 2z z x y . На плоскости C  комплексно-сопряжённым 

числам соответствуют точки, симметричные относи- 

       

тельно действительной оси (Рис 1, Рис 1
*
).  

Пример 3. Найти комплексное число, сопряжённое к 4 2z i  и изобразить числа  ,z z  

на комплексной плоскости.  

Решение. 4 2z i  ( Рис 1). 

2. Модуль и аргумент комплексного числа, тригонометрическая форма записи. Дей-

ствия с комплексными  числами в тригонометрической форме. Формула Муавра.                    

Модуль и аргумент комплексного числа, тригонометрическая форма записи. 

1. Найти модуль и аргумент комплексного числа, записать число в тригонометрической 

форме. Изобразить число на комплексной плоскости: 
11. 1z i ;   

22. 2z i ;    

33. 1 3z i . Решение. 
2 2

1 1 1 1 11. Re 1, Im 1, 1 1 2x z y z z .  

1
1 1 1 1 1

1

1
, cos sin 2 cos sin

1 4 4 4

y
arctg arctg z z i i

x
, Рис.3). 
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Действия с комплексными  числами в тригонометрической форме. Формула Муавра 

1. Вычислить   1
1 2

2

,
z

z z
z

 в тригонометрической форме:   1 21 , 3z i z i .  

Решение. Запишем комплексные числа в тригонометрической форме. 

2 2 1
1 1 1 1 1 1

1

1
1. Re 1, Im 1, 1 1 2,

1 4

y
x z y z z arctg arctg

x
, 

1 1 1 1cos sin 2 cos sin
4 4

z z i i . 

2 2

2 2 2 2 22. Re 3, Im 1, ( 3) ( 1) 1 3 2x z y z z , 

2
2

2

1 3

3 63

y
arctg arctg arctg

x
, 

2 2 2 2cos sin 2 cos sin
6 6

z z i i . 

Находим произведение и частное чисел:  

1 2 1 2 1 2 1 2cos( ) sin( )z z z z i  

2 2 cos( ) sin( ) 2 2 cos sin
4 6 4 6 12 12

i i . 

Значения cos , in
12 12

s  вычисляем с MathCAD: 

2 6
cos 0.966

12 4 4
, 

6 2
sin 0.259

12 4 4
. 

Поэтому  

1 2

6 2 6 2
2 2 cos sin 2 2

12 12 4 4
z z i i  
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12 2 12 2
2,732 0,732

2 2
i i .  

11
1 2 1 2

2 2

2
cos( ) sin( ) cos( ) sin( )

2 4 6 4 6

zz
i i

z z
  

2 5 5
cos sin

2 12 12
i .  Вновь вычисляем с MathCAD   

2 6
2

4 42 5
cos 0.183

2 12 2
,  

2 6
2

4 42 5
sin 0.683

2 12 2
 и окончательно находим  

1

2

2 5 5
cos sin 0,183 0,683

2 12 12

z
i i

z
.  

2.  Найти все значения корня i .  

Решение. Число z i  представим в тригонометрической форме:  

22Re 0, Im 1 0 1 1,
2

x z y z z ,  

cos sin 1 cos sin
2 2

z z i i .  

По формуле Муавра извлечения корней находим 

2 2
cos sin , 0,1,2,..., 1n n

k k
z z i k n

n n
  

  

2 2
2 21 cos sin , 0,1

2 2

k k
i i k .  

Здесь 1 1-арифметический корень, поэтому i  имеет два значения:  

при 0k   
0

2 22 2cos sin cos sin
2 2 4 4 2 2k

i i i i ;  
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при 1k   
1

2 2
5 52 2cos sin cos sin

2 2 4 4k
i i i  

2 2

2 2
i .  Найденные значения корня i  комплексно-сопряжённые и, так как 

1z i , изображаются на комплексной плоскости концами диаметра единичной ок-

ружности с центром в нулевой точке (Рис. 6):  

  

  

3. Показательная форма записи комплексных чисел. Действия с комплексны-

ми числами в показательной форме. Приложения алгебры комплексных чисел в 

теории электрических цепей переменного тока: комплексный метод расчёта элек-

трических цепей при установившихся режимах синусоидальных токов.                      

          

Показательная форма записи комплексных чисел. Действия с комплексными  

числами в показательной форме. 

1. Записать число в показательной форме: 1 2 31. 1 , 2. 2 , 3. 1 3.z i z i z i   

 Решение. 
1 1 1 11. Re 1, Im 1x z y z , 1

1 1

1

1
2,

1 4

y
z arctg arctg

x
,  

1 1 1 1cos sin 2 cos sin
4 4

z z i i . По формуле Эйлера запишем число в 

показательной форме в виде 1 4
1 1 2

ii
z z e e .   

 2. Вычислить 1
1 2

2

,
z

z z
z

 в показательной форме: 1 21 , 3z i z i .  

2. Решение. Запишем комплексные числа в показательной форме. 
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1 1 1 1 1 1

1
1. Re 1, Im 1, 2,

1 4
x z y z z arctg ,  

1
1 1 1 1 1 1

4cos sin 2 cos sin , 2
4 4

i
i

z z i i z z e e . 

2 2

2 2 2 2 22. Re 3, Im 1, ( 3) ( 1) 1 3 2x z y z z ,  

2
2

2

1 3

3 63

y
arctg arctg arctg

x
, 

2 2 2 2cos sin 2 cos sin
6 6

z z i i , 2
2 2

62
i

i
z z e e . 

Находим произведение и частное чисел:  

 1 2
1 2 1 2

( )
( ) 4 6 122 2 2 2

i i
i

z z z z e e e , 

1
11 1 1 2

22 2
2

5
( )

4 6 122 2( )

2 2

i ii
z ez z i

e e e
iz zz e

.  

Приложения алгебры комплексных чисел в теории электрических цепей  

переменного тока: комплексный метод расчёта электрических цепей  

при установившихся режимах синусоидальных токов. 

 В теоретических основах электротехники рассматриваются методы расчета линей-

ных электрических цепей переменного тока в стационарных режимах, в которых ЭДС, то-

ки и напряжения являются гармоническими функциями времени. Определение токов и 

напряжений в таких цепях связано с нахождением частных решений линейных неодно-

родных обыкновенных дифференциальных уравнений с постоянными коэффициентами, 

составленных на основе законов Кирхгофа.  

 Для вычисления с помощью законов Кирхгофа тока в узлах цепи, напряжения на 

участке цепи необходимо суммировать токи или напряжения и ЭДС, представленные си-

нусоидальными (гармоническими) функциями. Как мы уже видели на предыдущей стра-

нице, эта операция (сложения колебаний) требует трудоёмких и громоздких вычислений, 

т.к. такие функции помимо заданной угловой частоты  определяются ещё двумя вели-

чинами - амплитудой и начальной фазой. Комплексные числа 0z  так же задаются дву-

мя величинами: модулем и аргументом. Это сопоставление позволило создать метод, уп-

ростивший вычисления. 
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 Метод заключается в сопоставлении действительным гармоническим воздействиям 

(гармоническим колебаниям) комплексных воздействий, т.е. в символическом изображе-

нии этих колебаний комплексными числами (комплексными экспонентами) и называется 

комплексным методом или символическим методом, а также методом комплексных ам-

плитуд. Метод был предложен американским инженером Ч. П. Штейнмецем в 1893 г., а в 

России введён академиком В. Ф. Миткевичем.  

 Краткое описание метода комплексных амплитуд. Пусть гармоническое воздейст-

вие, например в виде синусоидально меняющегося тока,  I I t  задаётся формулой  

                                             
0 sinI I t ,  

в которой 
0I  - амплитуда колебаний,  - угловая частота  (скорость изменения аргумен-

та-угла t , 
2

2 f
T

, T - период гармонических колебаний, t  - время, 

1
f

T
 - частота колебаний), а - начальная фаза колебаний;  t  - фаза колебаний. 

Из формул Эйлера  

                              cos sinize z i z , sin
2

iz ize e
z

i
  

следует, что  

             
0 0 0sin Im

2

i t i t
i te e

I I t I I e
i

,  

            
0 0 0cos Re

2

i t i t
i te e

I I t I I e  

т.к.      0 0 0cos sin
i t

I e I t i I t .  

 Комплекснозначная функция 

                                  
0 0 0

i t i i t i tI e I e e I e  

 вещественного аргумента t  является символическим изображением вещественной 

функции 
0 sinI I t  (действительного синусоидального тока) и при заданной 

угловой частоте , так же как и I I t , определяется двумя величинами - амплитудой 

0I  и начальной фазой . Комплексной амплитудой тока I I t  называется комплекс-

ное число   

                                                    
0 0

iI I e .  
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 Вещественную синусоидальную функцию 
0 sinI I t  называют ориги-

налом,  а комплекснозначную функцию  
0 0

i t i tI e I e - её изображением и пишут  

0 0 0sin
i t i tI I t I e I e .  

 Итак, любому действительному гармоническому воздействию  

                   cosx t A t  (или sinx t A t )  

на комплексной плоскости соответствует комплексное воздействие 

 cos sin
i t i i t i tx t A t i t A e A e e A e ,        (A) 

т.е.                  
i tx t A e ,   Re Imi t i tx t A e i A e ,                             (B) 

                 cos ReA t x t ,   sin ImA t x t ,                        (C) 

где комплексное число  cos siniA A e A i  называется комплексной ампли-

тудой воздействия:  ( ) ( ) i tx t x t A e .                                              (D) 

Оригинал: гармоническое воздействие x t  Изображение: комплексное 

 воздействие ( )x t  

cosx t A t  или sinx t A t                 ( ) i tx t A e  

 

Поэтому анализ электрических цепей производят не при гармонических, а при комплекс-

ных воздействиях, соответствие между которыми устанавливается формулами (A)-(D). 

Пример 15. К ветви AB  цепи с последовательно соединёнными участками R , L , C  при-

ложено напряжение 
0 sinU U t . Требуется: 1) составить уравнение Кирхгофа 

для цепи, 2) с помощью комплексных изображений тока в цепи и напряжения перейти к 

алгебраическому уравнению, 3) решив алгебраическое уравнение найти комплексную ам-

плитуду и комплексное изображение тока, 4) найти оригинал- мгновенное значение сину-

соидального гармонического колебания тока в цепи.  

Решение. 1). По  второму закону Кирхгофа (закон Кирхгофа для контуров) сумма напря-

жений во всех ветвях любого замкнутого контура электрической цепи равна сумме ЭДС 

источников энергии, действующих в этом контуре. Если к некоторой ветви AB  цепи с 

последовательно соединёнными активным сопротивлением R , катушкой с индуктивно-

стью L , конденсатором ёмкостью C  приложено напряжение 
0 sinU U t , то 

падение напряжения вдоль всей ветви будет равно сумме напряжений на этих элементах: 

R L CU U U U .  
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 По закону Ома на участке цепи с активным сопротивлением 
RU R I . Напряже-

ние на концах катушки индуктивности 
L

dI
U L

dt
.  Для участка цепи с конденсатором 

известно, что C

q
U

C
, где q - заряд конденсатора, поэтому C

dq
dU

C
. Так как 

dq
I dq I dt

dt
, то 

1
CdU I dt

C
. Интегрируя это равенство почленно по отрез-

ку 0 ; t , получим формулу для 
CU : 

 

0 0

1
( )

t t

CdU I d
C

, т. е. 

0

1
( ) ( ) (0)

t

C CU t I d U
C

,  

 

0

1
( ) (0)

t

CU I d q
C

. 

 Подставляя найденные выражения для 
RU , 

LU ,
CU  в формулу 

 
R L CU U U U , получим следующее уравнение Кирхгофа для цепи с последователь-

ным соединением R , L , C  

                         

0

1
( ) (0)

t
dI

U R I L I d q
dt C

.  

 В этом уравнении неизвестной функцией является мгновенное значение тока ( )I t . 

Так как неизвестная функция ( )I t входит как под знак производной, так и под знак инте-

грала, то уравнение называется интегро-дифференциальным. Решим его методом ком-

плексных амплитуд (символическим методом). 
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 В соответствие с методом комплексных амплитуд ( )U t , ( )I t , 
dI

dt
, 

0

( ) (0)

t

I d q   заменим их комплексными изображениями: 

Оригинал: гармоническое воздействие  Комплексное изображение  

     
0 sinU U t                 

0( ) i tU t U e  

     
0 sinI I t                 

0( ) i tI t I e     

    
dI

dt
                

0

( ) i tdI t
i I e

dt
 

    

0

( ) (0)

t

I d q                 0 i tI
e

i
 

 

 Здесь 
0 0

iU U e , 
0 0

iI I e  -комплексные амплитуды напряжения и тока. В резуль-

тате вместо интегро-дифференциального уравнения Кирхгофа получим алгебраическое 

уравнение относительно 
0( ) i tI t I e  

               0
0 0 0

1i t i t i t i tI
U e R I e L i I e e

C i
.  

 Сократив обе части уравнения на 
i te , получим простейшее линейное алгебраиче-

ское уравнение относительно комплексной амплитуды тока 

0 0

iI I e  

                                0 0

1
I R L i U

i C
, 

из которого находим 
0I : 0

0 1

U
I

R L i
i C

.  

 По комплексной амплитуде тока восстанавливаем оригинал- мгновенное значение 

синусоидального гармонического колебания тока в цепи ( )I t : 

0
0( ) Im ( ) Im Im

1
i t i tU

I t I t I e e

R L i
i C

.  
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2.1.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об основных действия с комплексными числами в алгебраиче-

ской, тригонометрической и показательной форме; 

- приобрели умения и навыки выполнения действия с комплексными числами в ал-

гебраической, тригонометрической и показательной форме. 

 

2.2 Практическое занятие № 2  (2 часа). Тема: «Линии и области на комплексной 

плоскости»                      

2.2.1 Задание для работы: 

1. Линии на комплексной плоскости.  

2. Области на комплексной плоскости. 

 

2.2.2 Краткое описание проводимого занятия: 

1. Линии на комплексной плоскости.  

1.Определить  и изобразить линии на комплексной плоскости, заданные комплексными 

уравнениями:  

                  1. 3z ;             2.  2z i ;             3. 1 2z i ;            4. 1z i z . 

 Решение. 1. z - это расстояние от точки z  до начала координат. Уравнение задаёт мно-

жество точек, удалённых от начала координат на одно и тоже расстояние, равное 3. По-

этому первая линия является окружностью с центром в начале координат и радиусом 3.  

                        2. z i - это расстояние от точки z  до точки 
0z i . Уравнение задаёт 

множество точек z , удалённых от точки 
0z i  на одно и тоже расстояние, равное 2. По-

этому вторая линия является окружностью с центром в точке 
0z i  и радиусом 2. (См. 

рис. 32). 

          

  3. 0 01 ( 1 ) 1z i z i z z z i . Поэтому, 1z i  равно расстоянию 

от точки z  до точки 
0 1z i . Обращаем внимание читателей на то, что смысл рас-

стояния между точками z  и 0z  имеет 0z z , а не 0z z : 0z z - это расстояния 
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между точками z  и 0( )z !  Уравнение задаёт множество точек z , удалённых от точки 

0 1z i   на одно и тоже расстояние, равное 2. Поэтому третья линия является окруж-

ностью с центром в точке 
0 1z i  и радиусом 2. (См. рис. 33).  

2. Области на комплексной плоскости. 

 

1. Определить и изобразить области комплексной плоскости, заданные неравенствами  

                                                   1. 3z ; 2. 2z i ;  3. 1 2z i ;  4. 1z i z . 

Решение. 1.Неравенство задаёт открытый круг с центром в начале координат, радиусом 3. 

                2. Открытый круг с центром в точке 
0z i  и радиусом 2. (Рис. 35). 

           

                            3. Неравенство задаёт внешность круга (замкнутую) с центром в точ-

ке
0 1z i  и радиусом 2. (Рис. 36).  

4. Неравенство задаёт нижнюю полуплоскость (замкну-

тую), границей которой является биссектриса 2-го и 4-

го координатных углов (Рис. 37). Для «пробной точки» 

1z  нижней полуплоскости справедливо данное не-

равенство: 

 1 1z z i z  

1 1 1 2 2i .                         

 

2.2.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об основных видах линий и областей на комплексной плоскости, 

способах их задания, свойствах; 

- приобрели умения и навыки задания, изображения, классификации простейших 

линий и областей на комплексной плоскости.  
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2.3 Практическое занятие № 3 (2 часа). Тема: «Определение ФКП. Однозначные 

и однолистные функции.  Предел и непрерывность. Отображения с помощью непрерыв-

ных функций. Степенные ряды. Элементарные ФКП»  

3.3.1 Задание для работы:  

1. Определение ФКП. Однозначные и однолистные функции.  

2. Предел и непрерывность.  

3. Отображения с помощью непрерывных функций.  

2.3.2 Краткое описание проводимого занятия: 

1. Определение ФКП. Однозначные и однолистные функции.   

1. Функцию 
2w z  представить в алгебраической форме ( ) ( , ) ( , )f z u x y i v x y .  

Решение. Т.к. 
2 2 22w x i y x ixy y , то 

2 2,u x y x y , , 2v x y xy .  

Поэтому 
2 2 2 2w z x y xy i . 

2. Предел и непрерывность.  

1. Исследовать на непрерывность функции: 1). 
2 2z x y , 2). z x iy . 

1) Функция 
2 2 0z x y i  непрерывна на всей комплексной плоскости, так как 

на ней непрерывны 
2 2 , 0.u x y   

2) Функция z x iy  непрерывна на С. 

 

 3. Отображения с помощью непрерывных функций.  

1. Найти образ области при указанном отображении с помощью функции ( )w f z .  

1. Im Re ,
z

z z w
z i

 22. 0 arg ,
2

z w z  
1

3. 2 1,z w
z

.  

1. Найти образы прямых 1,1 yx  при отображении  
2z . 

Решение. Для функции xyiyxiyxz 22222  имеем 

xyyxvyxyxu 2,,, 22
. Образом прямой 1x  является парабола 

,2

1 2

yv

yu
то есть 

4
1

2v
u . Прямая 1y  отображается на параболу 1

4

2v
u .  

 

2.3.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия об ФКП, однозначных, многозначных и однолистных функциях; 

понятия предела и непрерывности ФКП, основные свойства; понятие и основные  свойст-

ва отображений с помощью непрерывных ФКП; 

- приобрели умения и навыки алгебраического представления ФКП, простейших 

вычислениях пределов и исследовании на непрерывность ФКП, выполнения простейших  

отображений с помощью непрерывных ФКП; 
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2.4 Практическое занятие № 4 (2 часа). Тема: «Производная ФКП. Условия Ко-

ши-Римана, аналитические функции. Геометрический смысл модуля и аргумента произ-

водной. Элементы теории конформных отображений»                      

 2.4.1 Задание для работы: 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

2. Геометрический смысл модуля и аргумента производной. 

2.4.2 Краткое описание проводимого занятия: 

1. Производная ФКП. Условия Коши - Римана, аналитические функции. 

1. Выяснить, в каких точках комплексной плоскости дифференцируемы функции и вы-

числить производные в этих точках. В каких точках плоскости функции аналитические? 

                    1. ( ) cos sinx xf z e y i e y ;       2. 
2

( )f z z ;      3. ( )f z z .  

Решение. 1. Функция определена на всей комплексной плоскости. В представлении в ал-

гебраической форме ( ) ( , ) ( , )f z u x y i v x y  данной функции действительные функ-

ции ( , )u x y  и ( , )v x y  равны  

                       ( , ) cosxu x y e y ,          ( , ) sinxv x y e y . 

Частные производные существуют и непрерывны на всей плоскости xOy : 

          cosxu
e y

x
,  sinxu

e y
y

,  sinxv
e y

x
,  cosxv

e y
y

  

и выполняются условия (КРЭД). По достаточному признаку дифференцируемости данная 

функция дифференцируемая, а значит и аналитическая, на всей комплексной плоскости. 

Производная может быть найдена по формуле  

 ( ) cos sinx xu v
f z i e y i e y

x x
. 

Замечание. Видно, что  ( ) ( ) , 0 1f z f z f для всех точек комплексной плоскости. 

В действительной области подобным свойством обладает только одна функция: 

( ) xf x e . Поэтому функцию  

                                  ( ) cos sinx xf z e y i e y  

называют комплексной показательной функцией(экспонентой) и обозначают  
ze  или 

exp z : 

                                       cos sinz x xe e y i e y . 
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                  2. 
2 2 2 2 2( ) ( ) , , , , 0f z z f z x y u x y x y v x y . Вычисляем 

производные  
( , )

2
u x y

x
x

,  
( , )

2
u x y

y
y

,   
( , )

0
v x y

x
,   

( , )
0

v x y

y
. Условия  

(КРЭД)    

                                            

2 0,

2 0

u v
x

x y

u v
y

y x

                                                 

выполняются лишь в точке 0z . Функция дифференцируема только в одной точке 

0z , но не является аналитической ни в одной точке плоскости, производная в точке 

0z  ( при 0z 0, 0x y ) вычисляется по формуле 

                           
(0;0) (0;0)

(0) 2 0 0 0
u v

f i i
x x

. 

                3. Функция не дифференцируема и не является аналитической ни в одной точке 

плоскости. Действительно, ( )f z z x i y , ,u x y x , ,v x y y . Вычисляем 

производные ( , ) 1xu x y , ( , ) 0yu x y , ( , ) 0xv x y , ( , ) 1yv x y . Условия (КРЭД) не 

выполняются ни водной точке комплексной плоскости: 

 

1 1,

0 0.

u v

x y

u v

y x

            

Следовательно, функция не дифференцируема ни в одной точке плоскости, не является 

аналитической. 

2. Геометрический смысл модуля и аргумента производной. 

1. Пример. Найдем коэффициент растяжения и угол поворота при отображении 
2zzf  

в точке iz 10 . 

Решение. Так как zzf 2 , то iif 121 . Но 2222 i , а 
4

12arg i , т.е. 

угол поворота равен 
4

, а коэффициент растяжения равен 22 . 

2.4.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия дифференцируемой ФКП, условия дифференцируемости; гео-

метрический смысл модуля и аргумента производной; 

- приобрели умения и навыки проверки ФКП на дифференцируемость и вычисле-

ния производных. 
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2.5 Практическое занятие № 5 (2 часа). Тема: «Гармонические функции, сопря-

жённые гармонические функции. Восстановление аналитической функции по её действи-

тельной или мнимой части»                      

2.5.1 Задание для работы: 

1. Гармонические функции, сопряжённые гармонические функции.  

2. Восстановление аналитической функции по её действительной или мнимой части.  

2.5.2 Краткое описание проводимого занятия: 

1. Гармонические функции, сопряжённые гармонические функции. 

1. Проверить, является ли функция 
2 2( , ) 2u x y x y x  гармонической.  

Решение. Функция ( , )u x y определена на всей комплексной плоскости (в односвязной об-

ласти). Вычисляем  

       

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y
.  

Поэтому она гармоническая 

2. Восстановление аналитической функции по её действительной или мнимой части.  

1. Проверить, является ли функция 
2 2( , ) 2u x y x y x  действительной частью неко-

торой аналитической функции ( )f z , и если является, то найти эту аналитическую функ-

цию, если (0) 0f .  

Решение.  Функцию ( )f z  будем искать в виде ( ) ( , ) ( , )f z u x y i v x y , где  ( , )u x y  

дана в условиях задачи, а ( , )v x y  неизвестна. Функция ( , )u x y определена на всей ком-

плексной плоскости (в односвязной области). Вычисляем  

       

2 2 2

2 2
2 2, 2 , 2, 0, 2

u u u u u
x y

x y x x y y
. 

Видно, что функция ( , )u x y  имеет непрерывные частные производные до второго поряд-

ка включительно, удовлетворяет уравнению Лапласа 

                                                  

2 2

2 2
0

u u

x y
.  
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Поэтому она гармоническая и является действительной частью некоторой аналитической 

функции ( )f z  на всей плоскости. Найдём гармоническую функцию ( , )v x y , сопряжён-

ную с функцией ( , )u x y . Тогда будет восстановлена и функция ( )f z . Существует не-

сколько способов восстановления ( )f z . 

 Первый способ восстановления ( )f z (с помощью неопределённого интеграла от 

функции действительного аргумента).  Из условий Коши- Римана следует, что 

2 ,

2 2.

u v v u
y

x y x y

u v v u u
x

y x y x x

 

Следовательно, функция ( , )v x y  является решением системы дифференциальных уравне-

ний первого порядка с частными производными  

                                         2 , 2 2.
v v

y x
x y

                                              (S)                                                                                                                        

Интегрировать эту систему уравнений можно с помощью неопределённого  интеграла или 

криволинейного.  

  Интегрируя первое уравнение системы (S) по x  (считая y  постоянным), восста-

навливаем функцию ( , )v x y  с точностью до произвольной гладкой (пока неизвестной) 

функции ( )y :  

( , ) 2 ( ), ( , ) 2 ( ),

2 2. 2 2,

v x y y dx y v x y y dx y

v v
x x

y y

 

т.е.  

( , ) 2 ( ),

2 2.

v x y yx y

v
x

y

                                                                                                        

Найденную в первом уравнении этой системы уравнений функцию ( , )v x y  продифферен-

цируем по y  и подставим во второе уравнение системы (исключим из системы уравнений 

v

y
):   
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2 ( ),
( , ) 2 ( ), ( , ) 2 ( ),

2 ( ) 2 2, ( ) 2.
2 2.

v
x y

v x y yx y v x y yx yy

v x y x y
x

y

 

Решим второе уравнение этой системы ( ) 2y  (простейшее обыкновенное дифферен-

циальное уравнение) и найдём функцию ( )y : ( ) 2y y C , где C - произвольная ве-

щественная постоянная. Эту функцию подставим в первое уравнение системы и найдём 

сопряжённую гармоническую функцию  ( , ) 2 2v x y xy y C .  

 Аналитическая функция ( )f z  восстановлена нами в виде   

       
2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y C , т.е. 

       
2 2( ) ( , ) ( , ) 2 2 2f z u x y i v x y x y x i yx y i C .  

Подставляя в эту формулу начальное значение (0) 0f , 0 0, 0z x y , находим 

C : 0 0.i C C  Итак, по действительной части ( , )u x y  найдена функция аналити-

ческая на всей комплексной плоскости 

                           
2 2( ) 2 2 2f z x y x i yx y .  

 Заметим, что ( )f z  можно задать аналитическим выражением, зависящим от z . 

Полагая ,
2 2

z z z z
x y

i
, получим  

2 2

( ) 2 2 1
2 2 2 2 2

z z z z z z z z z z
f z i

i i
 

2 2 22 2 2

4 2

z z z z z z z z z z
z z z z , 

2 22 2
2( ) 2 2

2 2 2 2

z zz z
f z z z z , т.е. 

2( ) 2f z z z .  

 Замечание. Для того, чтобы выразить ( )f z  аналитическим выражением от z , дос-

таточно в формуле ( ) ( , ) ( , )f z u x y i v x y  выполнить формальную замену x z , 

0y . 

2.5.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия гармонической и сопряжённых гармонических функций; методы восста-

новления аналитической функции по её действительной или мнимой части; 

- приобрели умения и навыки выявления гармонических и сопряжённых гармонических 

функций, восстановления аналитической функции по её действительной или мнимой час-

ти. 
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2.6 Практическое занятие №  6 (2 часа). Тема: «Интеграл комплекснозначной функ-

ции вещественного аргумента по  отрезку. Интегралы от ФКП по кривой. Теорема Коши 

для односвязной области и её обобщения. Первообразная функция. Интегральная формула 

Коши»                      

2.6.1 Задание для работы: 

1. Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

2. Интегралы от ФКП по кривой.  

3. Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

4. Интегральная формула Коши. 

2.6.2 Краткое описание проводимого занятия: 

1. Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

 Рассмотрим комплексную функцию вещественного аргумента t  на отрезке ;a b : 

( ) ( ) ( )w f t u t i v t , где функции ( ), ( )u t v t  непрерывны на этом отрезке. Интеграл 

функции ( )w f t  на отрезке ;a b  вычисляется по формуле  

                                      ( ) ( ) ( )

b b b

a a a

f t dt u t dt i v t dt . 

Пример. Вычислить интеграл 

2

0

i te dt . 

Решение. Представим функцию ( ) i tf t e  в алгебраической форме с помощью формулы 

Эйлера: cos sini te t i t . Тогда  

2 2 2

2 2
0 0

0 0 0

cos sin sin cosi te dt t dt i t dt t i t  

sin sin 0 cos cos0 1
2 2

i i .   

2. Интегралы от ФКП по кривой.  

 Рассмотрим  теперь функцию ( ) ( , ) ( , )w f z u x y i v x y  комплексного пере-

менного z x i y  и вычисление интеграла от ФКП  по гладкой дуге L .  Первый способ 

вычисления интеграла ФКП по гладкой дуге.  Интеграл от ФКП ( )w f z  по гладкой дуге 

вычисляется по формуле  
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    ( ) ( ) ( )
L L L L

f z dz u i v dx i dy u dx v dy i v dx u dy ,  

которая выражает значение интеграла ФКП через два действительных криволинейных ин-

теграла 2-го типа.   

Пример 28. Вычислить интеграл 
26 2

L

z z i dz  по линии L , соеди-няющей точки 

1 0z  и 
2 1z i , 1) по отрезку прямой, 2) по дуге параболы 

2y x , 3) по ломаной  OAB  

(Рис. 47 ). Убедиться в том, что интеграл не зависит от формы линии интегрирования и 

указать достаточное условие независимости.   

Решение. Представим функцию 
2( ) 6 2f z z z i  в алгебраической форме:  

222 2 2( ) 6 2 6 2 6 2 2f z z z i x iy x iy i x y ixy x iy i  

                

2 2 2 26 6 12 2 2 6 6 2 12 2 1x y ixy x iy i x y x i xy y ,  

                     
2 2( , ) 6 6 2u x y x y x ,   ( , ) 12 2 1v x y xy y . 

 Поэтому  

26 2 ( ) ( )
L L L L

z z i dz u i v dx i dy u dx v dy i v dx u dy  

2 26 6 2 12 2 1
L

x y x dx xy y dy                                                        

2 212 2 1 6 6 2
L

i xy y dx x y x dy .                                                              
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1) Вдоль отрезка OB  прямой (Рис. 47 ) , , 0 1y x dy dx x  

1 1

2 2 2

0 0

6 2 1 12 12 4 1
L

z z i dz x dx i x x dx    

1 1
3 3 2

0 0
4 4 2 1 4 4 2 1 3x x i x x x i i  .                                       

2) Вдоль дуги OB  параболы (Рис. 47 )
2 , 2 , 0 1y x dy xdx x  

2 2 26 2 6 6 2 12 2 1
L L

z z i dz x y x dx xy y dy     

2 212 2 1 6 6 2
L

i xy y dx x y x dy    

1 1

2 3 4 3 2 5

0 0

6 4 30 24 6 12 1x x x dx i x x x dx        

1 1
3 4 5 4 3 6

0 0
2 6 6 2 2 2 1 6 6 2 2 1 3x x x i x x x x i i         

3) Вдоль ломаной OAB   (Рис. 47 )   

 
2 2 26 2 6 2 6 2

L OA AB

z z i dz z z i dz z z i dz     

 
2 26 6 2 12 2 1

OA

x y x dx xy y dy                                                

2 212 2 1 6 6 2
OA

i xy y dx x y x dy                                                

2 26 6 2 12 2 1
AB

x y x dx xy y dy                                      

2 212 2 1 6 6 2
AB

i xy y dx x y x dy .                      

Вдоль отрезка OA  действительной оси (Рис. 47)  0, 0, 0 1y dy x  ; вдоль  

отрезка AB  вертикальной прямой  1, 0, 0 1x dx y ,  поэтому    

1 1 1

2 2

0 0 0

6 2 6 2 12 2 1
L

z z i dz x x dx i dx y y dy             

1
1 1 112 3 2 2 3

00 0 0
0

4 6 2 5 4 2i y dy x x i x y y i y y       

2 1 5 1 4 2 1 4 2 3i i i i i .     
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 Отметим, что интеграл  
26 2

L

z z i dz  по трём различным  линиям L , со-

единяющим точки 
1 0z  и 

2 1z i , имеет одно и то же значение 3 i , т.е. не зави-

сит от формы дуги интегрирования. Этим свойством обладает не всякая интегрируемая 

функция. Известно следующее условие независимости интеграла от формы линии интег-

рирования- следствие из интегральной теоремы Коши: если функция аналитическая в 

односвязной области и  
1L , 

2L - линии, лежащие в этой области и имеющие общие концы, 

то интегралы по этим линиям равны. В этом примере функция
2( ) 6 2f z z z i  яв-

ляется аналитической на всей комплексной плоскости и интеграл этой функции не зависит 

от формы дуги интегрирования.   

3. Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

 Этот способ вычисления интегралов основан на следующей теореме, вытекающей 

из интегральной теоремы Коши: если функция ( )f z  непрерывно дифференцируема в од-

носвязной области D  (а значит аналитическая в области D ), то в этой области существует 

первообразная ( )F z  для функции ( )f z . Тогда интеграл ( )
L

f z dz  не зависит от формы 

дуги интегрирования L , а зависит от начальной 1z  и конечной 2z  точек дуги L . Для анали-

тической функции справедлив аналог формулы Ньютона-Лейбница, которая позволяет 

вычислить интеграл ФКП, если известна её первообразная ( )F z :  

                             
2

2

1

1

2 1( ) ( ) ( ) ( ) ( )

z
z

z

L z

f z dz f z dz F z F z F z .            

Пример. Убедиться в том, что интеграл 
26 2

L

z z i dz  по линии L , соединяющей 

точки 1 0z  и 2 1z i  не зависит от формы линии интегрирования и вычислить его 

третьим способом.   

Решение. В этом примере функция 
2( ) 6 2f z z z i  является аналитической на всей 

комплексной плоскости и интеграл этой функции не зависит от формы дуги интегрирова-

ния. Её первообразная равна 
3 2( ) 2F z z z i z . Тогда по формуле Ньютона-Лейбница   

 
2

1

1 3 22 3 2

0
6 2 2 2 1 1 1 3

z i

z
L

z z i dz z z i z i i i i i .   

4. Интегральная формула Коши.  



55 

 

Теорема. Если функция f аналитическая в замкнутой односвязной области D , ограни-

ченной контуром , а z - любая внутренняя точка этой области, то  

                                             d
z

f

i
zf

2

1
. 

Пример. Вычислить  1)
2

1

z

z i

e
dz

z i
;  2) 

2

1

z

z i

e
dz

z i
 

  

Решение.  1).
2

2

1

2 2

z
i

z i

e
dz i e

z i
;   2).

2

1

0

z

z i

e
dz

z i
 . 

2.6.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятие интеграла ФКП, способы вычисления интегралов; интегральную теорему 

Коши и формулу Коши, их применение к вычислению интегралов; 

- приобрели умения и навыки вычисления интегралов, применения  интегральной теоремы 

Коши и формулы Коши. 

 

2.7 Практическое занятие № 7 (2 часа). Тема: «Нули и особые точки аналитиче-

ской функции. Ряды Тейлора и Лорана. Вычеты и их приложения»                                       

         2.7.1 Задание для работы: 

1. Нули и особые точки аналитической функции.  

2. Ряды Тейлора. Ряды Лорана.  

3. Вычет относительно кратного полюса. 

4. Вычисление вычета с помощью формулы Коши.  

 

2.7.2 Краткое описание проводимого занятия: 

1.  Нули и особые точки аналитической функции.  

Задание 1. Для функции zf  найти изолированные особые точки, провести их классифи-

кацию, вычислить вычеты относительно найденных точек.  

a) 
zz

e
zf

z 21

3
; 

б) 
2

6cos1

z

z
zf ; 

в) 
iz

izzf
2

1
sin

3
. 

Решение. 

а). Особой точкой функции является точка 00z . Чтобы определить вид особой 

точки разложим функцию в ряд Лорана по степеням z : 



56 

 

  
ь

...
!

...
!4!3

1

!1

1

2

5

2
...

!
...

!4!3

1

!2

1

!1

121
...

!
...

!4!3

1

!2

1

!1

11

211
...

!
...

!2!1
1

21

част правильнаячасть главная

3

2

3

23

3

23

33

2

3

n

zz

zz

zn

zz

zzzzn

zz

zzz

zzzn

zzz

zz

e
zf

n

nn

nz

 

Главная часть ряда Лорана содержит конечное число слагаемых, значит 00z  - полюс. 

Порядок высшей отрицательной степени 2n  определяет порядок полюса. Следова-

тельно, 00z  - полюс кратности 2. Вычет найдем, используя формулу 1

0

Re Czfs
zz

, 

тогда 
2

5
Re

0

zfs
z

. 

б). Особой точкой функции является точка 00z . Чтобы определить вид особой точки 

используем признак поведения функции в особой точке. 

18
3sin2

lim
6cos1

lim
2

2

020 z

z

z

z

zz
, значит 00z  устранимая точка и, следовательно 

0Re
0

zfs
z

. 

в). Особой точкой функции является точка iz0 . Чтобы определить вид особой точки 

используем разложение функции в ряд Лорана по степеням iz : 

....
2!12

1
1...

2!5

1

!32

1

2
...

2!12

1
1

...
2!5

1

2!3

1

2

1

2

1
sin

часть главная

2212253

2

12

53

33

  
nn

n

n

n

izniz

iz

izn

iziziz
iz

iz
izzf

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит iz0  - суще-

ственно особая точка. Тогда 0Re 1Czfs
iz

, т.к. коэффициент при 
iz

1
 равен нулю. 

2. Ряды Тейлора. Ряды Лорана. 

Задание. Найти все лорановские разложения данной функции zf  по степеням 0zz . 

Указать главную и правильную части ряда. 

а) 
2

12
)(

2 zz

z
zf , 00z ; 

б) 
)2)(1(

12
)(

zz

z
zf , 10z . 
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Решение. а) Функция 
2

12
)(

2 zz

z
zf  имеет две особые точки 11z  и 22z . Отметим 

их на плоскости Z, проведем 2 окружности с центром в точке 00z , проходящие соответ-

ственно через точки 11z  и 22z .  Следовательно, имеется три области, в каждой из 

которых функция )(zf  является аналитической: 

1) 1z ; 

2) кольцо 21 z ; 

3) область 2z , являющаяся внешностью кру-

га 2z . 

 

Найдем ряды Лорана для функции )(zf  в каж-

дой из этих областей, используя формулу  

......1
1

1
)1( 321 ntttt

t
t  (1) 

справедливую при 1t .  Представим функцию )(zf  в виде суммы элементарных дробей: 

2

1

1

1

2

12
2 zzzz

z
. 

1) Рассмотрим круг 1z . Запишем элементарные дроби 
1

1

z
 и 

2

1

z
 в виде 

t1

1
, 

где 1t  при 1z . Представим функцию )(zf  следующим образом: 

2
1

1

2

1

1

1
)(

zz
zf . Теперь к таким дробям применима формула (1). 

Так как в рассматриваемой области 1z , то в силу формулы (1) 

......1
1

1 32 nzzzz
z

. Так как 1z  и тем более 1
2

z
 (если 1z , то тем бо-

лее 2z ), значит, в силу формулы (1) ...
2

)1(...
842

1

2
1

1 32

n

n
n zzzz

z
. 

Следовательно, 

...
2

)1(...
16842

1
......1

2
1

1

2

1

1

1
1

32
32

n

n
nn zzzz

zzzz
zz

=

...
2

12
...

16

15

8

7

4

3

2

1
1

1
32 n

n

n

zzzz =
0

1
00

1

1

2
)1(

2

12

n
n

n
n

n

nn

n
n

n z
zz  

0
1

)1
2

)1(
(

n

n

n

n

z  

Полученное разложение содержит только правильную часть ряда Лорана. 
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2) Рассмотрим кольцо 21 z . В этой области запишем рассматриваемую функ-

цию в виде 

2
1

1

2

1

1
1

11
)(

z

z

z
zf . В знаменателях дробей мы записали выражения вида 

t1 , где 1t . 

Так как 1z , то 1
1

z
 и в силу формулы (1) ...

1
...

111
1

1
1

1
32 nzzzz

z

. Так 

как 2z , то, как и в предыдущем случае, ...
2

)1(...
842

1

2
1

1 32

n

n
n zzzz

z
. 

Следовательно, 

2
1

1

2

1

1
1

11

z

z

z
= ...

2

)1(
...

16

1

8

1

4

1

2

1
...

1
...

111
1

32

32

n

n

n

n
zzzz

zzzz
=

1 0
12

)1(
1

n n
n

n
n

n

z

z
. 

Полученное разложение содержит и правильную, и главную часть ряда Лорана. 

3) Рассмотрим область 2z . В этой области 1
1

z
, поэтому в силу формулы (1) 

...
1

...
111

1
1

1

1
32 nzzzz

z

.  В рассматриваемой области 1
2

z
, значит 1

2

z
 и 

поэтому  ...
2

)1(...
842

1
2

1

1
32 n

n
n

zzzz

z

. 

Функцию )(zf  представим в виде 

z

z

z

z
zf

2
1

11

1
1

11
)( . В силу полученных разложе-

ний имеет место равенство 

...
2

)1(..
842

1...
1

...
111

1
1

)(
3232 n

n
n

n zzzzzzzzz
zf =

1 1

1
1 2

)1(
1

n n
n

n
n

n zz 1

11 2)1(1

n
n

nn

z
. 

Полученное разложение содержит только главную часть ряда Лорана. 

б) Функция )(zf  имеет 2 особые точки 11z  и 22z , отметим их на плоскости Z. 

Точка 11z  совпадает с точкой 10z . Проводим окружность с центром в точке 10z , 

проходящую через точку 22z .  

Следовательно существуют две области, в каждой из которых функция )(zf  являет-

ся аналитической: 

1) кольцо 311 z  

2) кольцо 31z  

Найдем ряды Лорана для функции )(zf  в каж-

дой из этих областей, используя формулу (1). Пред-
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ставим функция )(zf  в виде суммы элементарных дробей: 

2

1

1

1

2

12
2 zzzz

z
 

1) Требуется получить разложение функции )(zf  по степеням z–1 в области 

311 z . Первая дробь уже представляет собой степень 1z . Для того, чтобы вторую 

дробь представить в искомом виде, сделаем замену tz 1 , тогда 1tz  и 
3

1

2

1

tz
. 

Дробь 
3

1

t
 разложим по степеням t  как в предыдущем примере. При 30 t  восполь-

зуемся представлением: 

0
1

32

3

)1(
...

3
)1(...

2793
1

3

1

3
1

1

3

1

3

1

n
n

nn

n

n
n ttttt

tt
; 

Сделаем обратную замену. Получим, что при 310 z  функция )(zf  представи-

ма в виде 

0
12 3

)1(
)1(

1
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3

1
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Полученное разложение содержит правильную и главную часть ряда Лорана. 

2) Аналогично, сделав замену tz 1 , получаем представление дроби 
3

1

t
 в облас-

ти 3t   
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Сделав обратную замену, получаем, что при 31z  функция )(zf  представима в 

виде: 
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В первом случае главная часть ряда Лорана содержит только одно слагаемое, во вто-

ром случае ряд Лорана состоит только из одной главной части. 

2.7.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия нулей и особых точек аналитической функции, ряда Тейлора и ряда Ло-

рана; 

- приобрели умения и навыки отыскания нулей и особых точек аналитической функции, 

разложения аналитических функций в ряд Тейлора и ряд Лорана. 

 

2.2.2 Краткое описание проводимого занятия: 

1. Вычет относительно кратного полюса. 

 

Задание. Определить вид особых точек функции  и найти в них вычеты: 

а) 
3

sin
( )

1

z
f z

z z
; б) 

2 2

cos
( )

z z
f z

z
. 
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Решение. а). Функция 
3

sin
( )

1

z
f z

z z
 имеет внутри контура интегрирования две особые 

точки 0z  и 1z . Определим вид особых точек и найдем в них вычеты.    

1
1

sin
lim

30 zz

z

z
, следовательно 0Re

0

zfs
z

.     

31 1

sin
lim

zz

z

z
, следовательно 1z  - полюс. 

Так как 11
1

sin
lim

3

31
z

zz

z

z
, то 1z  - полюс  порядка 3n . 

2113

3

2

2
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sincos
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d
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3

2
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2

1

sin2cos2sin
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1sincos2cossincos
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1

z

zzzzz

z

zzzzzzzzz

zz

2

1cos21sin
. 

б). Функция 
2 2

cos
( )

z z
f z

z
 имеет внутри контура интегрирования две особые точки 

z  и z .  Так как z  и z  - полюсы первого порядка, то для вычисления 

вычетов применим формулу 
0

0

0

Re
z

z
zfs

zz

, где zzz cos , 22zz ,  

zz 2 . 

2

1

2

cos
Re

zz z

zz
zfs ,  

2

1

2

cos
Re

zz z

zz
zfs  

  

2. Вычисление вычета с помощью формулы Коши.  

 

Если функция f аналитическая в замкнутой односвязной области D , ограниченной 

контуром , а 
0z - любая внутренняя точка этой области, то по формуле Коши  

0

0

1 ( )
( )

2
L

f
f z d

i z
. 

          

Функция    

0

( )f z

z z
  имеет единственную изолированную особую точку 

0z  внутри  . По 

определению вычета   

0
0 0

1 ( ) ( )

2 z z
L

f z f z
dz Выч

i z z z z
.  

Сравнивая два последних интегральных равенства заключаем: 
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0

0 0

0

( )
( ), ( ) 0

z z

f z
Выч f z f z

z z
. 

Пример. Вычислить 
2

z

z i

e
Выч

z i
.    

Решение.     
2

2 cos sin
2 2

z
i

z i

e
Выч e i i

z i
   

 

2.7.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили вычисление вычетов относительно полюса и вычисление вычетов с помощью 

формулы Коши; 

- приобрели умения и навыки вычисление вычетов относительно полюса и с помощью 

формулы Коши. 

 


