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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

1.1.  Организационно-методические данные дисциплины 
 

№ 
п.п

. 

Наименование темы 

Общий объем часов по видам самостоятельной работы 

(из табл. 5.1 РПД) 

Проме-

жуточная 
аттеста-

ция 

подготовка 

реферата/ 

эссе 

индивиду-

альные до-
машние за-

дания (ИДЗ) 

самостоя-
тельное 

изучение 

вопросов 

(СИВ) 

подго-

товка к 
занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1 

Тема 1 

Комплексные числа и дей-

ствия с ними. Комплексная 
плоскость.   

× × × 2 4 

2 

Тема 3 

Определение ФКП. Одно-
значные и однолистные 

функции.  Предел и непре-

рывность. Отображения с 

помощью непрерывных 
функций. Степенные ряды. 

Элементарные ФКП. 

× × × 6 4 

3 

Тема 4 
Производная ФКП. Усло-

вия Коши - Римана, анали-

тические функции. Гео-

метрический смысл модуля 
и аргумента производной. 

Элементы теории кон-

формных отображений. 

× × × 8 4 

4 

Тема 6 

Интеграл комплекснознач-

ной функции вещественно-

го аргумента по отрезку. 
Интегралы от ФКП по кри-

вой. Теорема Коши для 

односвязной области и её 
обобщения. Первообразная 

функция. Интегральная 

формула Коши. 

× × × 8 4 

5 

Тема 7 
Нули и особые точки ана-

литической функции. Ряды 

Тейлора и Лорана. 

× × × 8 4 

6 
Тема 8 

Вычеты и их приложения. 
× × × 8 2 

7 Итого:  76 6 × × 40 30 

 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ  
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2.1 Наименование вопроса. Приложения алгебры комплексных чисел в теории 

электрических цепей переменного тока: комплексный метод расчёта электрических цепей 

при установившихся режимах синусоидальных токов (2 ч).  

При изучении вопроса необходимо обратить внимание на следующие особенно-

сти. 

- Рассмотреть метод комплексных амплитуд и примеры.  

 

2.2 Наименование вопроса. Элементарные ФКП. (6 ч).  

При изучении вопроса необходимо обратить внимание на следующие особенно-

сти. 

- Рассмотреть основные элементарные функции, их свойства, вычисление.  

 

2.3  Наименование вопроса. Элементы теории конформных отображений. (8 ч).  

При изучении вопроса необходимо обратить внимание на следующие особенно-

сти. 

- Рассмотреть конформные отображения с помощью дробно-линейной и других элемен-

тарных функций.  

2.4 Наименование вопроса. Интегралы от ФКП по кривой.  Теорема Коши для одно-

связной области и её обобщения. Первообразная функция. Интегральная формула Коши (8 

ч). 

При изучении вопроса необходимо обратить внимание на следующие особенно-

сти. 

Если функция f(z) – аналитическая в односвязной замкнутой области с кусочно-

гладкой границей L, 
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то справедлива формула Коши: 
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где z0 – любая точка внутри контура L, интегрирование по контуру производится в поло-

жительном направлении (против часовой стрелки). Интеграл в правой части называется 

интегралом Коши. 
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Интегральную формулу Коши называют основной формулой теории аналитиче-

ских функций, т.к. многие результаты получены при использовании этой формулы. Фор-

мула выражает фундаментальное свойство аналитической функции: значение функции в 

односвязной ограниченной области выражается через её значения на контуре. 

 

2.5 Наименование вопроса. Нули и особые точки аналитической функции. Ря-

ды Тейлора и Лорана  (2 ч) 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Функция f(z), аналитическая в круге Rzz 0 , разлагается в сходящийся к ней 

степенной ряд по степеням (z – z0). Коэффициенты ряда вычисляются по формулам: 
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Степенной ряд с коэффициентами такого вида называется рядом Тейлора. 

 

 Рассмотрим теперь функцию f(z), аналитическую в кольце Rzzr 0 . Эта 

функция может быть представлена в виде сходящегося ряда: 
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 Ряд такого вида называется рядом Лорана. При этом функция f(z) может быть 

представлена в виде суммы: 
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 Ряд, определяющий функцию f1(x), называется правильной частью ряда Лорана, а 

ряд, определяющий функцию f2(x), называется главной частью ряда Лорана.  

 

Известная интегральная формула для коэффициентов ряда Лорана на практике не очень 

удобна. Чаще всего для разложения в ряд Лорана используют известные разложения в ряд 

Тейлора, например в геометрический ряд.   

 

2.6 Наименование вопроса. Понятие вычета. Вычет относительно простого 

полюса. Вычет относительно кратного полюса. Вычисление вычета с помощью фор-

мулы Коши. Применение теоремы Коши о вычетах к вычислению интегралов. Вы-

числение интегралов от вещественных функций (8 ч) 

 

При изучении вопроса необходимо обратить внимание на следующие особенности. 

Следует обсудить различные способы вычисления вычетов и приложения вычетов 

к вычислению интегралов. Пусть z0 – изолированная особая точка функция f(z), т.е. пусть 
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функция f(z) – аналитическая в некотором круге Rzz 0  из которого исключена точка 

z0. Тогда интеграл  

)()(
2

1

0

zfВычdzzf
i zz
L

=
0

Re ( )
z

sf z  

называется вычетом функции f(z) в точке z0, где L – контур в круге Rzz 0 , ориенти-

рованный против часовой стрелки и содержащей в себе точку z0. Вычет также обозначают 

иногда 
0

Re ( )
z

sf z . 

 Если ;0;)()( 00 Rzzzzczf
k

k

k  есть ряд Лорана функции f в точке 

z0, то 1)(
0

czfВыч
zz

. 

 Таким образом, если известно разложение функции в ряд Лорана, то вычет легко 

может быть найден в случае любой особой точки. 

 

 В частных случаях вычет может быть найден и без разложения в ряд Лорана. 

 

 Например, если функция 0)(,
)(

)(
)( 0z

z

z
zf , а )(z  имеет простой нуль при z 

= z0 )0)(,0)(( 00 zz , то z = z0 является простым полюсом функции f(z). Тогда 

можно показать, что вычет находится по формуле 
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 Если z = z0 – полюс  порядка m  1, то вычет может быть найден по формуле: 
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2. Применение теоремы Коши о вычетах к вычислению интегралов. 

Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением ко-

нечного числа точек z1, z2, …, zN. Тогда верно равенство: 
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А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен 
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3. Вычисление интегралов от вещественных функций.  

 

Теорема. Если функция f  аналитическая в замкнутой верхней полуплоскости, за 

исключением конечного числа особых точек, не лежащих на оси ОХ, и  
1( ) ( ),f z o z z , то верна формула  
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3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 

3.1 Практическое занятие № 1(ПЗ-1). Комплексные числа и действия с ними. 

При подготовки к занятию необходимо обратить внимание на следующие момен-

ты 

- Поле комплексных чисел, действия с комплексными числами в алгебраической форме. - 

- Геометрическая интерпретация комплексных чисел.  

- Модуль и аргумент комплексного числа, тригонометрическая форма записи.  

- Действия с комплексными  числами в тригонометрической форме.  

- Формула Муавра 

- Показательная форма записи комплексных чисел.  

- Действия с комплексными числами в показательной форме.  

- Приложения алгебры комплексных чисел в теории электрических цепей переменного 

тока: комплексный метод расчёта электрических цепей при установившихся режимах си-

нусоидальных токов. 

 

3.2 Практическое занятие №2 (ПЗ-2). Линии и области на комплексной плоскости                      

        При подготовки к занятию необходимо обратить внимание на следующие 

моменты 

- Непрерывную линию на комплексной плоскости можно задать комплексно-

параметрическим уравнением, комплексным уравнением. Линии и области, заданные ком-

плексными уравнениями и неравенствами, проще всего строить используя наглядную 

геометрическую интерпретацию модуля и аргумента комплексного числа.  

 

3.3 Практическое занятие №3 (ПЗ-3). Определение ФКП. Однозначные и одноли-

стные функции.  Предел и непрерывность. Отображения с помощью непрерывных функ-

ций. Степенные ряды. Элементарные ФКП.                  

        При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

- Определение ФКП. Однозначные и однолистные функции.  

 

- Предел и непрерывность.  

 

- Отображения с помощью непрерывных функций.  

 

3.4 Практическое занятие №4 (ПЗ-4). Производная ФКП. Условия Коши-Римана, 

аналитические функции. Геометрический смысл модуля и аргумента производной. Эле-

менты теории конформных отображений.                      
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        При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

- Понятие производной ФКП. Условия Коши - Римана, аналитические функции. Рассмот-

реть критерий дифференцируемости и достаточные условия дифференцируемости. 

- Геометрический смысл модуля и аргумента производной. 

 

3.5 Практическое занятие №5 (ПЗ-5). Гармонические функции, сопряжённые 

гармонические функции. Восстановление аналитической функции по её действительной 

или мнимой части                      

        При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

- Гармонические функции, сопряжённые гармонические функции.  

- Восстановление аналитической функции по её действительной или мнимой части.  

 

3.6 Практическое занятие №6 (ПЗ-6).  Интеграл комплекснозначной функции ве-

щественного аргумента по  отрезку. Интегралы от ФКП по кривой. Теорема Коши для од-

носвязной области и её обобщения. Первообразная функция. Интегральная формула Коши                     

        При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

- Интеграл комплекснозначной функции вещественного аргумента по отрезку.  

- Интегралы от ФКП по кривой.  

- Теорема Коши для односвязной области и её обобщения. Первообразная функция.  

- Интегральная формула Коши. 

  

3.7 Практическое занятие №7 (ПЗ-7). Нули и особые точки аналитической функ-

ции. Ряды Тейлора и Лорана. Вычеты и их приложения.                      

        При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

- Нули и особые точки аналитической функции, классификацию особых изолированных 

точек аналитической функции.  

- Ряды Тейлора. Понятие о ряде Лорана, области сходимости ряда Лорана.   

  

 


