ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Факультет среднего профессионального образования

ПЦК гуманитарных и естественнонаучных дисциплин

Оценочные материалы для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине ОПЦ.09 Основы аэродинамики и динамики полета

Специальность 25.02.08 Эксплуатация беспилотных авиационных систем

РАЗРАБОТЧИК:

Тарасова Сария Валейевна

Форма проведения промежуточной аттестации: экзамен в виде тестирования

Формируемая	Освоенные знания, умения	Показатель
компетенция		оценки
		результата
ОК 07. Содействовать	должен знать:	Правильность
сохранению окружающей	– основы аэродинамики беспилотных	выбора;
среды,	воздушных судов, их центровку и этапы	обоснованность
ресурсосбережению,	полета;	
применять знания об	 летно-технические характеристики 	
изменении климата,	беспилотных воздушных судов, основные	
принципы бережливого	конструкции беспилотных ВС (планер,	
производства, эффективно	системы управления, энергетические	
действовать в	системы, топливные системы);	
чрезвычайных ситуациях	 классификацию авиадвигателей и 	
	принципы работы, компоновку	
	различных типов беспилотных	
	воздушных судов	
	должен уметь:	
	 – определять статические и 	
	динамические нагрузки на элементы	
	конструкций беспилотных воздушных	
	судов	

- 1. Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействия между газом и движущимися в нем телами называют:
- +а) аэродинамика
- б) гидродинамика
- в) термодинамика
- 2. Раздел прикладной аэродинамики и динамики полета, который изучает вопросы, связанные с особенностями летной эксплуатации, устойчивости, управляемости и техники пилотирования конкретного типа летательного аппарата называют:
- а) экспериментальная аэродинамика
- б) теоретическая аэродинамика
- + в) практическая аэродинамика
- 3. Нормальная составляющая силы, действующая на единичную площадку:
- + а) давление
- б) вес
- в) масса
- 4. Давление, которое существует в данной точке, движущейся со скоростью потока воздуха, называется:
- а) динамическим
- + б) статическим
- в) инерционным
- 5. Величина, количественно характеризующая тепловое состояние тела, называется:
- + а) температура

- б) вес
- в) масса
- 6. Внутреннее трение, возникающее в соседних слоях газа или жидкости при их относительном перемещении, называется:
- + а) вязкость
- б) тягучесть
- в) клейкость
- 7. Установите соотношение между понятиями и их описанием:

А) Газовая динамика	1) Изучает законы движения газа, скорость которого в 5 раз и		
	более превышает скорость звука		
Б) Гипераэродинамика	2) Изучает законы движения газа со скоростью близкой к		
	скорости звука, когда проявляется сжимаемость воздуха		
В) Магнитоаэродинамика	3) Изучает законы движения газа при очень больших,		
	гиперзвуковых скоростях, когда он ионизируется и становится		
	плазмой		

8. Установите соотношение между понятиями и их описанием:

А) Теоретическая	1) Изучает общие закономерности движения воздуха и	
аэродинамика	взаимодействие воздуха с обтекаемыми телами на основе	
	теоретических исследований	
Б) Экспериментальная	2) Изучает общие закономерности движения воздуха и	
аэродинамика	взаимодействие воздуха с обтекаемыми телами путем	
	постановки опытов в аэродинамических лабораториях или	
	путем испытаний летательных аппаратов непосредственно в	
	воздухе	
В) Прикладная	3) Используя материалы теоретического и экспериментального	
аэродинамика	направлений аэродинамики, разрабатывает теорию полета и	
	создает методы аэродинамического расчета, конструирования	
	и летных испытаний летательных аппаратов	

Ответ: А-1, Б-2, В-3

9. Условия воздуха, принятые в стандартной атмосфере в зоне нулевой высоты (средний
уровень моря) с параметрами p_0 =101325,0 Па; B_0 =760 мм.рт.ст.; T_0 =288,15 K; t_0 =+15°C;
ρ ₀ =1,225 кг/м3 называют
Ответ: нормальными атмосферными условиями
10. Течение воздуха, в каждой точке которого (в данной системе координат)
газодинамические переменные не изменяются называют
Ответ: установившимся течением воздуха
11. Обобщенное наименование механических и термодинамических переменных,
определяющих движение и состояние газа в поле течения, называют
Ответ: газодинамические переменные

12. Невязкий, нетеплопроводный газ, при движении которого возникают только нормальные напряжения, называется
Ответ: идеальный газ
13. Уравнение, определяющее постоянство массового расхода воздуха, записывающееся в виде $\rho_1 S_1 V_1 = \rho_2 S_2 V_2$ называется
Ответ: уравнение неразрывности струйки
14. Произведение SV, равное объему газа, прошедшего через данное сечение за единицу времени, называется
15. Способность газа производить работу вследствие своего движения Ответ: кинетическая энергия газа
16. Способность газа производить работу под действием силы давления Ответ: потенциальная энергия давления газа
17. Способность совершать механическую работу при изменении температуры, которое возможно при теплообмене с внешней средой или за счет изменения объема (плотности) газа Ответ: внутренняя энергия газа
18. Техническое устройство, предназначенное для создания искусственного воздушного потока с необходимыми диапазонами скоростей
19. Слой, в каждом сечении которого газодинамические параметры соответственно одинаковы или отличаются пренебрежительно мало Ответ: потенциальный слой воздуха
20. Тонкий слой по сравнению с характерным линейным размером тела слой воздуха, прилегающий к твердой поверхности, в котором изменение газодинамических переменных в нормальном к стенке направлении значительно больше, чем в касательном Ответ: пограничный слой воздуха
21. Профиль крыльев или тел вращения, у которых их максимальная толщина значительно смещена назад по хорде
Ответ: ламинизированный профиль
22. Совместное действие сопротивления трения и сопротивления давления называется Ответ: профильное сопротивление тела
23. Угол атаки, при котором подъемная сила равна нулю
24. Угол атаки, при котором коэффициент аэродинамической подъемной силы достигает максимального значения Ответ: критический угол атаки
25. График, выражающий зависимость между коэффициентом аэродинамической подъемной силы и коэффициентом лобового сопротивления крыла

Формируемая	Освоенные знания, умения	Показатель
компетенция		оценки
		результата
ПК 1.1. Организовывать	должен знать:	Правильность
и осуществлять	– основы аэродинамики беспилотных	выбора;
предварительную и	воздушных судов, их центровку и этапы	обоснованность
предполетную	полета;	
подготовку беспилотных	 летно-технические характеристики 	
воздушных судов	беспилотных воздушных судов, основные	
самолетного типа	конструкции беспилотных ВС (планер,	
	системы управления, энергетические	
	системы, топливные системы);	
	 классификацию авиадвигателей и 	
	принципы работы, компоновку различных	
	типов беспилотных воздушных судов	
	должен уметь:	
	– определять статические и динамические	
	нагрузки на элементы конструкций	
	беспилотных воздушных судов	

- 1. Способность воздуха изменять свой объем и плотность при изменении давления и температуры, называется:
- а) нагреваемость
- б) расширяемость
- + в) сжимаемость
- 2. Условная атмосфера, состояние которой соответствует среднегодовым значениям параметров воздуха по высоте в средних широтах, называется:
- + а) стандартная атмосфера
- б) нормальная атмосфера
- в) идеальная атмосфера
- 3. Направленное течение массы воздуха это:
- а) воздушная масса
- + б) воздушный поток
- в) воздушная плотность
- 4. Часть воздушного потока, которая образована линиями тока, проходящими через все точки произвольно замкнутого контура, называют:
- а) струйка напряжения
- б) струйка сопротивления
- + в) струйка тока
- 5. Техническое решение, представляющее собой сужающийся канал и предназначенный для увеличения скорости потока воздуха:
- + а) коллектор
- б) эмиттер
- в) диффузор

- 6. Техническое решение, представляющее собой расширяющийся канал и предназначенный для плавного торможения и увеличения давления потока воздуха:
- а) коллектор
- б) эмиттер
- + в) диффузор
- 7. Техническое решение, применяемое для определения разности между полным и статическим давлением в потоке, т.е. на определении скоростного напора:
- + а) пневмометр
- б) манометр
- в) динамометр
- 8. Видимая картина обтекания тел воздушным потоком:
- а) гидродинамический спектр
- + б) аэродинамический спектр
- в) видимый спектр
- 9. Поток, в котором струйки не деформированы присутствующим в нем телом:
- + а) невозмущенный поток
- б) возмущенный поток
- в) ламинарный поток
- 10. Установите соотношение между учеными и их вкладом в развитие аэродинамики:

А) М.В. Ломоносов	1) Создал математические методы решения зада	१प	
	гидродинамики		
Б) Л. Эйлер	2) Впервые ввел всеобщий закон сохранения вещества и		
	высказал идею о законе сохранения энергии, положив тем		
	самым начало развитию механики		
В) Д. Бернулли	3) Установил связь между высотой, давлением и скоростью в		
	потоке идеальной жидкости		

11. Установите соотношение между учеными и их вкладом в развитие аэродинамики:

А) К.Э. Циалковский	1) Предложил схему самолета-моноплана, изобрел дирижабль с		
	металлической оболочкой, построил аэродинамическую трубу		
Б) Н.Е. Жуковский	2) Основоположник современной теоретической и		
	экспериментальной аэродинамики и динамики полета		
В) С.А. Чаплыгин	3) Создал общий метод нахождения сил давления на крыло		
	самолета при вариативном его движении		

Ответ: А-1, Б-2, В-3

12. Установите соотношение между понятием и определением сил, действующих на плоскую пластину в потоке воздуха:

А) Аэродинамическая сила	1) Сила, направленная параллельно потоку воздуха		
Б) Подъемная сила	2) Сила, направленная перпендикулярно потоку		
	воздуха		

В) Сила лобового сопротивления	3) Сила, возникающая вследствие разности давлений под пластиной и над пластиной и трения в приграничном слое
Ответ: А-3, Б-2, В-1	
	о раз при данном угле атаки аэродинамическая подъемная вого сопротивленияамолета
	предназначенные для увеличения коэффициента крыла на больших углах атаки
15. Закрылок, при отклонении кот профилированная щель Ответ: щелевой закрылок	горого между ним и крылом образуется сужающаяся
	екоторым углом вниз из узкой профилированной щели, крыла
17. Техническое решение, преобразращающегося тела Ответ: поршневой двигатель	азующее энергию топлива в механическую энергию
	мый во вращение двигателем и предназначенный для мой для продвижения самолета
19. Основная рабочая часть винта, со Ответ: лопасть винта	оздающая тягу при его вращении
20. Угол между результирующей ско Ответ: угол притекания струи	ростью и плоскостью вращения винта называют
21. Мощность, необходимая для прес Ответ: мощность, потребная для враг	одоления момента сопротивления вращению винта щения винта
22. Часть затрачиваемой на вращение Ответ: тяговая мощность винта	е винта мощности, идущей на продвижение самолета
23. Зависимость тяговой мощности в неизменной частоте вращения винта Ответ: характеристикой силовой уста	инта от скорости полета при неизменной высоте полета и называютановки по мощности
	теризуемая отношением тяговой мощности винта к ие винта – это гвия винта
25. Тяга, развиваемая винтом при даг Ответ: располагаемая тяга силовой у	нном положении рычага управления двигателем – это становки

26. При изменении угла установки лопастей изменяется геометрический шаг винта, поэтому поворот лопастей на меньший угол установки называют Ответ: перевод винта на малый шаг
27. Раздел механики, в котором изучается движение самолета в атмосфере – это Ответ: динамика полета самолета
28. Хорда условного прямоугольного крыла, имеющего одинаковые с исходным крылом площадь, а также величину, направление и точку приложения результирующей аэродинамической силы на равных углах атаки — это
29. Положение центра масс самолета относительно передней кромки средней аэродинамической хорды, выраженное в процентах длины средней аэродинамической хорды Ответ: центровка самолета
30. Такое состояние самолета, при котором силы и моменты, действующие на него, взаимно уравновешены – это
31. Такое состояние самолета, при котором силы, действующие в плоскости симметрии самолета XOY, взаимно уравновешены и сумма моментов этих сил относительно поперечной оси OZ равна нулю Ответ: продольное равновесие самолета
32. Несовпадение направления оси винта с центром масс самолета — это
33. Процесс уравновешивания моментов, действующих на самолет – это Ответ: балансировка самолета
34. Такое состояние самолета, когда силы, действующие в плоскости YOX, взаимно уравновешены и сумма моментов этих сил относительно продольной оси ОX равна нулю Ответ: поперечное равновесие самолета
35. Момент, стремящийся вращать двигатель, а вместе с ним и самолет в сторону, противоположную вращению винта — это

Формируемая	Освоенные знания, умения	Показатель
компетенция		оценки
		результата
ПК 1.3. Осуществлять	должен знать:	Правильность
взаимодействие со	– основы аэродинамики беспилотных	выбора;
службами организации и	воздушных судов, их центровку и этапы	обоснованность
управления воздушным	полета;	
движением при	 летно-технические характеристики 	
организации и	беспилотных воздушных судов, основные	
выполнении полетов и	конструкции беспилотных ВС (планер,	

авиационных работ	системы управления, энергетические	
беспилотными	системы, топливные системы);	
воздушными судами	 классификацию авиадвигателей и 	
самолетного типа	принципы работы, компоновку различных	
	типов беспилотных воздушных судов	
	должен уметь:	
	– определять статические и динамические	
	нагрузки на элементы конструкций	
	беспилотных воздушных судов	

- 1. Поток, в котором линии тока деформированы присутствующим в нем телом:
- а) невозмущенный поток
- + б) возмущенный поток
- в) ламинарный поток
- 2. Течение, в котором частицы воздуха движутся упорядоченно по слоям:
- а) постоянное течение
- б) турбулентное течение
- + в) ламинарное течение
- 3. Течение, в котором частицы воздуха движутся сложным неупорядоченным образом:
- а) ламинарное течение
- + б) турбулентное течение
- в) постоянное течение
- 4. Техническое решение, предназначенное для создания аэродинамической подъемной силы и обеспечения поперечной устойчивости самолета:
- + а) крыло
- б) хвост
- в) кабина
- 6. Местное сечение крыла плоскостью, параллельной плоскости симметрии самолета:
- + а) профиль
- б) анфас
- в) хорда
- 6. Изменение формы и относительного положения профилей крыла вдоль размаха:
- а) градиент
- б) струйка
- + в) крутка
- 7. Установите соотношение между названием винтов и способами закрепления лопастей во втулке винта:

А) Винты неизменяемого шага	1) Винты, лопасти которых могут быть установлены на				
	земле под необходимым углом установки, но во время				
	работы не могут поворачиваться вокруг своих осей				
Б) Винты фиксированного шага	2) Винты, лопасти которых не могут поворачиваться				
	вокруг своих осей				
В) Винты изменяемого шага	3) Винты, лопасти которых во время работы могут				
	автоматически или с помощью ручного управления				

поворачиваться вокруг своих осей, устанавливаясь под
необходимым углом установки

8. Установите соотношение между режимом работы винта и его описанием:

А) Режим работы на месте	1) Режим, при котором скорость полета равна нулю			
Б) Параллельный режим	2) Режим, при котором при наличии скорости полета винт			
	создает положительную тягу			
В) Режим авторотации	3) Режим, при котором сила сопротивления вращению			
	лопасти винта обращается в ноль			

Ответ: А-1, Б-2, В-3
9. Такое состояние самолета, когда силы, действующие в плоскости XOZ, взаимно уравновешены и сумма моментов этих сил относительно нормальной оси ОУ равна нулю Ответ: путевое равновесие самолета
10. Такое состояние самолета, когда силы, действующие на него в плоскостях XOZ и YOZ соответственно взаимно уравновешены и суммы моментов этих сил относительно продольной ОХ и нормальной ОУ осей равны нулю
11. Режим полета самолета при нулевых возмущениях – это
12. Способность самолета самостоятельно (без вмешательства пилота в управление) сохранять заданный опорный режим полета при воздействии на него каких-либо кратковременных и ограниченных по величине возмущений – это Ответ: устойчивость самолета
13. Моменты, возникающие при нарушении равновесия самолета и стремящиеся вернуть его к исходному режиму равновесия – это Ответ: стабилизирующие моменты
14. Моменты, возникающие при нарушении равновесия самолета и стремящиеся еще дальше увести самолет от исходного равновесия – этоОтвет: дестабилизирующие моменты
15. Способность самолета самостоятельно (без вмешательства пилота в управление) сохранятни исходную перегрузку при воздействии на него каких-либо кратковременных и ограниченных по величине возмущений – это

Ответ: продольная устойчивость самолета по перегрузке

16. Способность самолета самостоятельно (без вмешательства пилота в управление) сохранять исходную скорость полета при воздействии на него каких-либо кратковременных и ограниченных по величине возмущений – это

Ответ: продольная устойчивость самолета по скорости

17. Способность самолета самостоятельно (без вмешательства пилота в управление) сохранять исходный режим путевого равновесия при воздействии на него каких-либо кратковременных и ограниченных по величине возмущений — это
18. Способность самолета самостоятельно (без вмешательства пилота в управление) сохранять в полете исходное боковое равновесие при воздействии на него каких-либо кратковременных и ограниченных по величине возмущений — это
19. Способность самолета изменять параметры опорного режима полета при отклонении управляющих органов – это Ответ: управляемость самолета
20. Способность самолета изменять параметры продольного движения при отклонении руля высоты и управляющих органов – это
21. Способность самолета изменять параметры бокового движения при отклонении элеронов – это
Ответ: поперечная управляемость самолета
22. Способность самолета изменять параметры бокового движения при отклонении руля направления – это
23. Способность самолета изменять параметры бокового движения при раздельном или одновременном отклонении элеронов и руля направления – это Ответ: боковая управляемость самолета
24. Вспомогательная рулевая поверхность, расположенная в задней части руля и соединенная жесткой тягой с неподвижной частью крыла — это
25. Режим полета, для которого основные кинематические параметры движения постоянны или меняются достаточно медленно — это

Формируемая	Освоенные знания, умения	Показатель
компетенция		оценки
		результата
ПК 1.6. Выполнять	должен знать:	Правильность
требования воздушного	 – основы аэродинамики беспилотных 	выбора;
законодательства	воздушных судов, их центровку и этапы	обоснованность
Российской Федерации, а	полета;	
также руководств	 летно-технические характеристики 	
(инструкций) по	беспилотных воздушных судов, основные	
эксплуатации	конструкции беспилотных ВС (планер,	
беспилотных воздушных	системы управления, энергетические	
судов самолетного типа	системы, топливные системы);	

и руководящих	 – классификацию авиадвигателей и 	
отраслевых документов	принципы работы, компоновку различных	
	типов беспилотных воздушных судов	
	должен уметь:	
	– определять статические и динамические	
	нагрузки на элементы конструкций	
	беспилотных воздушных судов	

- 1. Угол между плоскостью симметрии самолета и направлением скорости набегающего потока воздуха:
- а) угол сдвига
- б) угол атаки
- + в) угол скольжения
- 2. Угол, заключенный между хордой данного профиля и направлением скорости набегающего потока воздуха:
- а) угол скольжения
- + б) угол атаки
- в) угол сдвига
- 3. Плоские или слегка искривленные конструктивные элементы, расположенные вдоль размаха крыла и выдвигаемые через щели в его обшивке:
- + а) интерцепторы
- б) квадрицепторы
- в) квазицепторы
- 4. Расстояние, на которое продвинулся бы винт за один оборот, двигаясь вдоль своей оси в неподатливой среде, подобно движению обычного винта в гайке:
- + а) шаг винта
- б) ход винта
- в) радиус винта
- 5. Расстояние, которое винт фактически проходит в воздухе за один оборот:
- а) шаг винта
- +б) поступь винта
- в) радиус винта
- 6. Винт изменяемого шага, лопасти которого могут устанавливаться в положение по потоку воздуха с минимальным лобовым сопротивлением:
- + а) флюгерный винт
- б) реверсивный винт
- в) соосный винт
- 7. Винт изменяемого шага, лопасти которого могут устанавливаться в такое положение, когда при затрате мощности двигателя на его вращение создается отрицательная тяга:
- а) флюгерный винт
- + б) реверсивный винт
- в) соосный винт
- 8. Винт, состоящий из двух одиночных винтов, расположенных непосредственно друг за другом на соосных валах, вращающихся в противоположных направлениях:

- а) флюгерный винт
- б) реверсивный винт
- + в) соосный винт
- 9. Атмосферным давлением называют давление, вызываемое:
- а) ударами хаотически движущихся молекул
- + б) массой вышележащих слоёв воздуха и ударами хаотически движущихся молекул
- в) массой вышележащих слоёв воздуха
- 10. Установите соотношение между системами координат и их определениями:

А) Связанная система координат	1) Используется для определения аэродинамических			
	сил			
Б) Скоростная система координат	2) Используется для определения положения самолета			
	относительно нормальной системы координат			
В) Траекторная система координат	3) Используется при анализе движения самолета			
	относительно Земли			

11. Установите соотношение между видом равновесия самолета и его определением:

А) Устойчивое равновесие	1) Состояние, когда после прекращения действия				
	возмущения самолет самостоятельно стремится вернуться к				
	исходному равновесию				
Б) Неустойчивое равновесие	2) Состояние, когда после прекращения действия				
	возмущения самолет стремиться дальше отойти от				
	исходного равновесия				
В) Нейтральное равновесие	3) Состояние, когда после прекращения действия				
	возмущения самолет не стремиться вернуться к исходному				
	равновесию или отойти от него				

Ответ: А-1, Б-2, В-3

12. Установите соотношение между видами аэродинамических компенсаций и действиями, которые их реализуют:

А) Осевая компенсация	1) Ось руля располагают вблизи носка руля			
Б) Роговая компенсация	2) Приводит к изменению распределения компенсирующей			
	площади			
В) Внутренняя компенсация	3) Ось вращения руля располагают ближе к его центру			
	давления			

Ответ: А-3, Б-2, В-1

13. Пр	оямолинейное двих	жение самолета в	з горизонтальной	плоскости с	постоянной	скоростью
- это						
	V	V				

Ответ: установившийся горизонтальный полет самолета

14. Скорость, необходимая для создания подъемной силы самолета, равной его силе тяжести при данном угле атаки – это ______

Ответ: потребная скорость горизонтального полета

15. Скорость полета, соответствующая показаниям прибора, не имеющего погрешностей при оговоренных условиях – это
Ответ: индикаторная скорость полета
16. Тяга, необходимая для уравновешивания силы лобового сопротивления при данном угле атаки – это
Ответ: потребная тяга горизонтального полета
17. Мощность, необходимая для обеспечения установившегося горизонтального полета самолета при данном угле атаки – это
Ответ: потребная мощность горизонтального полета
18. Скорость, при которой разрешается осуществлять простейшие эволюции в горизонтальной плоскости – это
Ответ: эволютивная скорость полета
19. Путь, пройденный самолетом вдоль земной поверхности от момента взлета до посадки – это
Ответ: дальность полета
20. Общее время пребывания самолета в воздухе – это
21. Дальность полета при полной заправке топливом и полной выработке его расходуемого запаса к моменту приземления, рассчитанная для стандартных условий без ветра — это Ответ: техническая дальность полета
22. Максимальная дальность полета, при которой для полета в стандартных условиях без ветра при посадке на аэродроме остается запас топлива, равный аэронавигационному запасу — это _ Ответ: практическая дальность полета
23. Прямолинейное движение самолета по восходящей траектории с постоянной скоростью – это
Ответ: установившийся подъем самолета
24. Скорость, необходимая для создания аэродинамической подъемной силы, уравновешивающей составляющую силы тяжести самолета, направленную перпендикулярно траектории подъема – это Ответ: потребная скорость подъема
25 . Тяга, необходимая для уравновешивания силы лобового сопротивления самолета и составляющей его силы тяжести, направленной параллельно траектории подъема при данном угле атаки – это
Ответ: потребная тяга подъема
26. Угол, заключенный между траекторией подъема самолета и горизонтальной плоскостью – это
Ответ: угол подъема
27. Мощность, необходимая для осуществления установившегося подъема самолета при данном угле атаки – это

Ответ: потребная мощность подъема
28. Высота, которую набирает самолет за единицу времени – это
29. График изменения времени подъема от высоты полета – это
30. Снижение самолета при нулевой тяге воздушного винта – это
31. Движение самолета по нисходящей прямолинейной траектории с постоянной скоростью при нулевой тяге винта — это
32. Расстояние, проходимое самолетом относительно земли за время планирования с данной высоты – это
Ответ: дальность планирования
33. Планирование самолета на углах атаки, близких к критическому – это Ответ: парашютирование самолета
34. Разворот самолета в горизонтальной плоскости на 360° – это
35. Пространственный маневр, при котором движение самолета происходит по винтовой траектории – это Ответ: спираль самолета