ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Факультет среднего профессионального образования

Оценочные материалы для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине

ПМ. 04. Эксплуатация и техническое обслуживание функционального оборудования, полезной нагрузки беспилотного воздушного судна, систем передачи и обработки информации, иных электронных и цифровых систем, а также систем крепления внешних грузов

МДК.04.01 Электронные системы функциональной полезной нагрузки беспилотного воздушного судна и систем крепления внешних грузов

Специальность 25.02.08 Эксплуатация беспилотных авиационных систем

РАЗРАБОТЧИК:

Попов Игорь Васильевич

Форма проведения промежуточной аттестации: экзамен по модулю проводится в письменной форме по экзаменационным билетам.

Экзаменационный билет состоит из 2 частей и включает в себя теоретическую и практическую часть. Теоретическая часть - включает тесты и задания, направленные на оценку полученных знаний по профессиональному модулю. Практическая часть - содержит задачу, решение которой является подтверждением сформированных умений, знаний, практического опыта, освоенных общих и профессиональных компетенций.

Каждый вариант экзаменационного билета содержит 30 заданий, из которых 7 тестовых заданий и 23 открытых вопроса и 1 задача.

Формируемая	Освоенные знания, умения	Показатель оценки
компетенция		результата
ПК 4.1 Осуществлять техническую эксплуатацию функционального оборудования, систем регистрации полетных данных, сбора и передачи информации	иметь практический опыт: - использования бортовых систем регистрации полетных данных, сбора и передачи информации, а также системы крепления внешних грузов; уметь: - использовать системы крепления внешнего груза для осуществления доставки с помощью беспилотных авиационных систем с использованием дистанционно пилотируемого воздушного судна и автоматического управления посредством посадки, спуска и сброса; знать:	Правильность выбора; точность; обоснованность
	- правила технической эксплуатации, регламенты и технологии обслуживания	
	систем функциональной полезной нагрузки	
	беспилотного воздушного судна	

- 1. Гиростабилизатор
- а) гиростабилизированная платформа из 1, 2 или 3 гироскопов
- б) платформа для размещения приборов
- в) устройство измерения координат БПЛА
- +г) гироскопическое устройство, предназначенное для стабилизации отдельных объектов или приборов, а также для определения угловых отклонений объектов.
- 2. Система глобального позиционирования:
- +a) GPS- система глобального позиционирования,
- б) Спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение во всемирной системе координат WGS 84
- в) Система ориентации
- г) Система измерения координат
- 3. Система стереозрения
- +а) Картина, использующий два отдельных изображения, позволяющих достичь стереоэффект
- б) Чтобы создать стереоизображение в программе трёхмерного моделирования,
- в) система измерения дальности
- г) система локализации с помощью светового луча

- 4. Трансмиссометр это
- +А) Измеритель дальности видимости
- Б Измеритель дальности
- В Измеритель скорости
- Г) Измеритель давления
- 5. Как называется элементы и подсистемы БАС, предназначенные для обеспечения эксплуатации БАС в соответствии с функциональным назначением, расширения функциональных возможностей БАС по назначению, не входящие в перечень основных подсистем БАС и устанавливаемые (подвешиваемые) на ЛА/БВС по мере необходимости?

Ответ: полезная нагрузка

6. Как называется подсистема БВС, включающая источник энергии, элемент, преобразующий энергию в работу (двигатель), необходимую для работы элемента, обеспечивающего движение БВС в пространстве (движитель) за счет создания силы тяги?

Ответ: Силовая установка

7. Как называется система, позволяющая, в зависимости от условий и целевой функции, изменять в заданном направлении свою структурно функциональную организацию?

Ответ: Динамическая система

8. Как называется любой аппарат, поддерживаемый в атмосфере за счет его взаимодействия с воздухом, исключая взаимодействие с воздухом, отраженным от земной поверхности.

Ответ: Воздушное судно

9. Какая система в БПЛА выполняет функцию оценки положения и параметров движения в пространстве?

Ответ: автопилот

- 10. Какому диапазону относиться диапазон излучения электромагнитных волн от 0.78 до 1000 мкм. Ответ: инфракрасному (ИК) диапазону
- 11. Высокотехнологичная топографо-геодезическая методика сбора геопространственных данных по рельефу и наземным объектам, а также картографирования местности в трёхмерном режиме с летательного аппарата с применением скоростной сканирующей системы высокой точности, определяющей координаты и точки лазерных отражений и фильтров наземных объектов по определённым заданным характеристикам.

Ответ: Воздушное лазерное сканирование (ВЛС)

12. Тяжелые БПЛА

Ответ: БПЛА для перевозки тяжелых грузов

13. Общее время с момента получения команды о готовности к полету при установлении связи с дистанционно пилотируемым воздушным судном с целью выполнения полета до момента окончательной остановки беспилотного воздушного судна и отключения связи по завершении полета.

Ответ: Полетное время

14. Летательный аппарат, поддерживаемый в атмосфере за счёт взаимодействия с воздухом, отличного от взаимодействия с воздухом, отражённым от поверхности земли или воды:

Ответ: Воздушное судно

15. Призвана обеспечивать организационную поддержку качества лётной работы путём соответствующей организации и планирования полётов, лётно-методической работы с экипажами ВС, контроля лётной деятельности, обучения лётного состава:

Ответ: Система организации лётной работы

еть практический опыт:	
еть практипеский опыт.	
ств практический опыт.	Правильность выбора;
спользования бортовых систем регистрации	точность;
петных данных, сбора и передачи	обоснованность
формации, а также системы крепления	
ешних грузов;	
еть:	
использовать бортовые системы	
тистрации полетных данных, сбора и	
редачи информации, включая системы фото-	
видеосъемки, а также иные системы	
ниторинга земной поверхности и	
вдушного пространства;	
ить:	
тав, функции и возможности использования	
	петных данных, сбора и передачи формации, а также системы крепления ещних грузов; еть: использовать бортовые системы истрации полетных данных, сбора и ведачи информации, включая системы фотовидеосъемки, а также иные системы ниторинга земной поверхности и душного пространства; ть:

- 1. Методы измерения лазерных сканеров?
- а) Импульсный метод
- б) Фазовый метод
- в) Оптической триангуляции
- +г) Все перечисленные правильные
- 2. Где расположены датчики, отвечающие за определение положения коптера в пространстве?
- а) В регуляторе оборотов
- б) В плате распределения питания
- +в) В полетном контроллере
- г) В пульте радиоуправления
- 3. К чему ведет увеличение диаметра пропеллера?
- а) Уменьшению расхода заряда аккумулятора
- +б) Увеличению подъемной силы
- в) Ускорению набора скорости вращения
- г) Замедлению набора скорости вращения
- 4. Дайте определение рабочей области (РО) РНС?
- +а) Часть ВП, в пределах которого с гарантированной вероятностью обеспечивается контроль пути с точностью не хуже допустимой.
- б) Часть ВП, пределы которого определены максимальной дальностью работы радионавигационного средства.
- в) Часть ВП, пределы которого определены шириной воздушной трассы при полете от или на радионавигационное средство.

- г) Часть ВП, в пределах которого обеспечивается надежный прием радионавигационного сигнала.
- 5. Лицо, владеющее беспилотным воздушным судном на законном основании и использующее или планирующее использовать его для полетов.

Ответ: Эксплуатант

6. Высота, установленная для точного захода на посадку, на которой должен быть начат маневр ухода на второй круг в случае, если до достижения этой высоты командиром ВС не был установлен необходимый визуальный контакт с ориентирами для продолжения захода на посадку или положение ВС в пространстве, или параметры его движения не обеспечивают безопасности посадки:

Ответ: Высота принятия решения

7. Высота, установленная для неточного захода на посадку, ниже которой снижение не может производиться без необходимого визуального контакта с ориентирами.

Ответ: Минимальная высота снижения

8. Расстояние по вертикали между земной (водной) поверхностью и нижней границей самого низкого слоя облаков:

Ответ: Высота нижней границы облаков

9. Максимальное расстояние, с которого видны и опознаются объекты:

Ответ: Дальность видимости

10. Максимальное расстояние, в пределах которого пилот воздушного судна, находящегося на осевой линии взлетно-посадочной полосы, может видеть маркировку ее покрытия или световые ориентиры:

Ответ: Дальность видимости на взлётно-посадочной полосе

11. Видимость из кабины воздушного судна в полёте:

Ответ: Полетная вилимость

12. Горизонтальная видимость, определяемая метеорологической службой с помощью технических средств или визуально по ориентирам видимости:

Ответ: Метеорологическая видимость

13. Точка, определяющая местоположение аэродрома в выбранной системе координат:

Ответ: Контрольная точка аэродрома

14. Извещение, содержащее информацию о введении в действие, состоянии или изменении любого аэронавигационного оборудования, обслуживания и правил или информацию об опасности, своевременное предупреждение о которых имеет важное значение для персонала, связанного с выполнением полётов, а также иную аэронавигационную информацию:

Ответ: NOTAM

15. План, составленный эксплуатантом для безопасного выполнения полёта с учётом лётнотехнических характеристик ВС, эксплуатационных ограничений и ожидаемых условий на заданном маршруте и на соответствующих аэродромах:

Ответ: Рабочий план полёта

Формируемая	Освоенные знания, умения	Показатель оценки
компетенция		результата
ПК 4.3 Осуществлять	иметь практический опыт:	Правильность выбора;
ведение	- ведения эксплуатационно-технической	точность;
эксплуатационно-	документации, разработки инструкций и	обоснованность
технической	другой технической документации;	
документации	уметь:	
	- вести эксплуатационно-техническую	
	документацию, разрабатывать инструкции и	
	другую техническую документацию;	
	знать:	
	- методику ведения эксплуатационно-	
	технической документации;	

- 1. В каких случаях публикуется MCG на схемах SID?
- а) Всегда, когда он больше 3,3%, вместе с высотой, после набора которой не требуется градиент более 3,3%.
- б) Всегда когда он больше 2,5%, вместе с высотой, после набора которой не требуется градиент более 2,5%.
- в) Всегда когда он больше 4гр, вместе с высотой, после набора которой не требуется градиент более 4гр.
- +г) Всегда когда он меньше 3,3%, иногда публикуется высота, после набора которой требуется градиент более 3,3%.
- 2. Взлёт при нормальной работе всех двигателей и систем самолёта, влияющих на взлётные характеристики:
- +а) нормальный взлёт
- б) прерванный взлёт
- в) продолженный взлёт
- г) завершенный взлёт
- 3. Взлёт, протекающий как нормальный до отказа двигателя или систем самолёта, влияющих на взлётные характеристики, после чего начинается прекращение взлёта с последующим торможением самолёта до полной его остановки:
- а) нормальный взлёт
- +б) прерванный взлёт
- в) продолженный взлёт
- г) завершенный взлёт
- 4. Легкие БПЛА среднего радиуса действия:
- +а) 50-100 кг.
- б) 5-50 кг.
- в) до 5 кг.
- г) 10-300 кг

5. Канал передачи и получения данных между дистанционно пилотируемым воздушным судном и станцией внешнего пилота для управления полетом и контроля его параметров

Ответ: Линия управления и контроля

6. Канал обмена голосовыми данными и/или текстовой информацией между членами внешнего экипажа, службами управления воздушным движением, другими пользователями воздушного пространства и иными заинтересованными лицами.

Ответ: Линия связи

7. Часть воздушного пространства установленных размеров, предназначенная для организации и выполнения полётов.

Ответ: Район аэродрома

8. Проекция программной траектории на вертикальную плоскость, проведенную через развернутый маршрут полета в прямую линию.

Ответ: Профиль полёта

9. Проекция траектории полета самолета на поверхность Земли.

Ответ: Линия пути самолёта

10. Что называется скорость полета ВС относительно воздушной среды?

Ответ: Воздушная скорость

11. Расстояние в пространстве от линии на земной поверхности до ВС.

Ответ: высота полёта

12. Что за условный ветер, направление которого совпадает с линией пути, а скорость его такова, что он создает такую же путевую скорость, что и реальный ветер в данном районе полетов.

Ответ: Эквивалентный ветер

13. Эксплуатация беспилотного воздушного судна за пределами прямой видимости.

Ответ: BVLOS

14. Лицо, прошедшее специальную подготовку по данному типу беспилотного воздушного судна, на которое эксплуатантом конкретного воздушного судна возложены функциональные обязанности, связанные с выполнением полета данного воздушного судна.

Ответ: оператор БПЛА

15. Член внешнего экипажа, осуществляющий визуальное наблюдение за беспилотным воздушным судном и окружающим его воздушным пространством для оказания помощи внешнему пилоту в безопасном выполнении полета.

Ответ: Наблюдатель

Формируемая	Освоенные знания, умения	Показатель оценки
компетенция		результата
ПК 4.4 Осуществлять	иметь практический опыт:	Правильность выбора;
обработку данных,	- технического обслуживании оборудования,	точность;
полученных от	подключения приборов, регистрации	обоснованность

функционального	необходимых характеристик и параметров,				
оборудования, систем	обработки полученных результатов;				
регистрации полетной	уметь:	уметь:			
информации, с целью	- осуществлять наладку, настройку,				
соблюдения требований	регулировку и проверку оборудования и				
воздушного	систем в лабораторных условиях и на				
законодательства в	беспилотном воздушном судне;				
области обеспечения	знать:				
безопасности полетов	- методы обработки полученной полетной				
	информации, возможных неисправностей				
	оборудования, способы их обнаружения и				
	устранения.				

- 1. Что детализируют навигационные спецификации в концепции PBN?
- +а) Требования: к точности, целостности, эксплуатац. готовности, непрерывности; к летному экипажу; к навигационным датчикам.
- б) Требования: к точности и надежности наземных навигационных систем дальнего действия (GNSS, GPS, GLONAS).
- в) Требования: к точности и надежности наземных навигац. систем ближнего действия (NDB, VOR, VOR/DME); к

летному экипажу.

- г) Требования: к точности наземных навигационных систем ближнего и дальнего действия; к лицам, осуществляющим УВД
- 2. Какие подсистемы включает в себя радиокомпасная и радиомаячная УРНС соответственно?
- +a) Наземная-ОПРС, NDB, ШВРС; бортовая-АРК(ADF).

Наземная - PM VOR; бортовая - система КУРС-МП.

б) Наземная - РМ VOR; бортовая - система КУРС-МП.

Наземная-ОПРС, NDB, ШВРС; бортовая-АРК(ADF).

- в) Наземная-DF; бортовая-связная радиостанция. Наземная PM VOR, NDB; бортовая система КУРС-МП.
- г) Наземная-РМ DME; бортовая-АРК(DF). Наземная РМ

VOR/DME; бортовая - БРЛС.

- 3. Дайте определение магнитного пеленга самолета (МПС)?
- а) Угол в гориз. плоскости между север.направлением магнит. меридиана, проходящ. через РНС и ортодромическим направлением на ВС.
- +б) Угол в гориз. плоскости между север.направлением магнит. меридиана, проходящ.через самолет и ортодромич.направлением на РНС.
- в) Угол в гориз. плоскости между продол.осью ВС и ортодромич. направлением на р/ст. Отсчит. от прод. оси ВС вправо от

0гр до 360гр.

- г) Угол в гориз.плоскости между север.направлением истинного меридиана, проходящ.через РНС и ортодромич.направлением на ВС.
- 4. Какой вид геометрического места точек ВС при наличии дальности до 3-х ИСЗ?
- +а) Две точки местоположения ВС, одна из которых является действительной.
- б) Круг с пересечением в двух точках.
- в) Одна точка в которой действительно находится ВС.
- г) Окружность, образованная пересечением двух сфер.

5. Беспилотное воздушное судно с четырьмя несущими винтами, вращающимися попарно в противоположных друг другу направлениях.

Ответ: Квадрокоптер

6. Беспилотное дистанционно пилотируемое воздушное судно с взлетной массой менее 30 кг.

Ответ: малой тяжести

7. Средство, используемое для обеспечения взлета беспилотных ВС, не предназначенных для выполнения традиционного взлета с разбегом.

Ответ: Пусковая установка

8. Точка поверхности в воздушном пространстве, в которой необходимо начать выполнение маневра для гарантированного исключения последующего пересечения траекторией движения воздушного судна границы области безопасности.

Ответ: Порог безопасности

9. Прибор, предназначенный для определения направления истинной вертикали места (направления силы земного притяжения в данной точке земной поверхности) или плоскости горизонта, а также измерения углов наклона объекта относительно этой плоскости. Используется для выдачи углов крена и тангажа в системы управления самолётом, а также

как измерительный прибор дистанционного авиагоризонта.

Ответ: Гировертикаль

10. Средне-тяжелые БПЛА.

Ответ: класс беспилотных летательных аппаратов (БПЛА) с взлётной массой от 300 до 500 кг и дальностью действия от 70 до 300 км

11. Рабочее место в составе наземной станции управления, с которого внешний пилот управляет полетом и функциональными системами беспилотного воздушного судна.

Ответ: Станция внешнего пилота

12. Сектор обзора впереди по направлению полета воздушного судна, контролируемый для предупреждения столкновений с другими воздушными судами.

Ответ: Область наблюдения

13. Зона воздушного пространства, в которой предполагается использовать беспилотное ВС, определенная координатными точками на поверхности земли или воды и соответствующими высотами полета.

Ответ: Рабочая область

14. Высота изменение температуры на 1 градус.

Ответ: инверсия температуры

15. Если на шкале давлений барометрического высотомера установлено давление 760 мм рт.ст., то он измеряет высоту относительно среднего уровня моря.

Ответ: относительно уровня моря в стандартной атмосфере

Формируемая	Освоенные знания, умения	Показатель ог	ценки
компетенция		результата	

ПК 4.5 Осуществлять	иметь практический опыт:	Правильность выбора;
обработку информации,	- наладки, настройки, регулировки и проверки	точность;
полученной от систем	оборудования и систем в лабораторных	обоснованность
фото- и видеосъемки,	условиях и на беспилотном воздушном судне;	
систем	уметь:	
специализированного	- использовать бортовые системы регистрации	
навесного оборудования,	полетных данных, сбора и передачи	
системы мониторинга	информации, включая системы фото- и	
земной поверхности и	видеосъемки, а также иные системы	
воздушного	мониторинга земной поверхности и	
пространства,	воздушного пространства;	
систематизировать	знать:	
полученные данные и	- состав, функции и возможности	
организовывать их	использования информационных и	
хранение	телекоммуникационных технологий для сбора	
	и передачи информации;	

- 1. В каких единицах измеряется давление в системе СИ?
- $+a) \Pi a/m2$
- б) На/м2
- в) Кг/м2
- г) мм.рт.ст
- 2. Приближенные формулы для определения Uэ.
- а)Uэ=W-Vтаs; Uэ~U*cosУB, где УВ=б+-180-МПУ.
- +б)Uэ=Vтаs-W; Uэ~U*sinУB, где УВ=б+180-МПУ.
- в)Uэ=Vтаs-Vias; Uэ~U*sinУB, где УВ=б-180+МПУ.
- г)Uэ \sim U*sin альфа; Uэ=U*sinYB, где YB=6+-180-МПY.
- 3. Как называется всемирная геодезическая система?
- а) Принятая к внедрению ICAO в январе 1998 г. всемирная геодезическая система WGS-84.
- +б) Всемирная планетарная система WGS-98, принятая к внедрению ICAO в январе 1998 г.
- в) Геодезическая система GPS-84, принятая к внедрению исключительно для систем GNSS.
- г) Геодезическая система VGC-84, используется для определения местоположения объектов в космическом пространстве.
- 4. Что называется прокладкой пути и какие применяются виды прокладки пути?
- а) Это метод графического построения пройденного ВС пути. Полная, штилевая и обратная прокладка пути.
- б) Это метод графического построения траектории полета ВС. Прямая и обратная прокладка пути.
- +в) Это метод граф. построения траектории полета ВС. Полная (с учетом ветра) и штилевая (без учета ветра) прокладка пути.
- Γ) Это метод построения траектории полета BC в верт.плоскости. Полная, частичная и штилевая прокладка пути.
- 5. Что называется сферической широтой?

Ответ: Сферическая широта

6. Как называется система, позволяющая, в зависимости от условий и целевой функции, изменять в заданном направлении свою структурно функциональную организацию?

Ответ: Динамическая система

7. Расстояние по вертикали между земной (водной) поверхностью и нижней границей самого низкого слоя облаков:

Ответ: Высота нижней границы облаков

8. Максимальное расстояние, с которого видны и опознаются объекты:

Ответ: Видимость (дальность видимости)

- 9. Максимальное расстояние, в пределах которого пилот воздушного судна, находящегося на осевой линии взлетно-посадочной полосы, может видеть маркировку ее покрытия или световые ориентиры: Ответ: Дальность видимости на взлётно-посадочной полосе
- 10. Видимость из кабины воздушного судна в полёте:

Ответ: видимость полётная

11. Горизонтальная видимость, определяемая метеорологической службой с помощью технических средств или визуально по ориентирам видимости:

Ответ: Метеорологическая видимость

12. Точка, определяющая местоположение аэродрома в выбранной системе координат:

Ответ: Контрольная точка аэродрома

13. Извещение, содержащее информацию о введении в действие, состоянии или изменении любого аэронавигационного оборудования, обслуживания и правил или информацию об опасности, своевременное предупреждение о которых имеет важное значение для персонала, связанного с выполнением полётов, а также иную аэронавигационную информацию:

Ответ: NOTAM

14. План, составленный эксплуатантом для безопасного выполнения полёта с учётом лётнотехнических характеристик ВС, эксплуатационных ограничений и ожидаемых условий на заданном маршруте и на соответствующих аэродромах.

Ответ: Рабочий план полёта

15. Как называется любой аппарат, поддерживаемый в атмосфере за счет его взаимодействия с воздухом, исключая взаимодействие с воздухом, отраженным от земной поверхности.

Ответ: Воздушное судно

Формируемая	Освоенные знания, умения	Показатель оценки
компетенция		результата
ОК 04 Эффективно	уметь:	Правильность выбора;
взаимодействовать и	- вести эксплуатационно-техническую	точность;
работать в коллективе и	документацию, разрабатывать инструкции и	обоснованность
команде	другую техническую документацию;	
	знать:	
	- общие сведения об обслуживаемых	
	беспилотных воздушных судах.	

- 1. Что называется линией пути (ЛП) и какие они бывают?
- +а) Проекция на земную поверхность траектории движения ВС в пространстве; Линия заданного пути (ЛЗП) и линия фактического пути (ЛФП).
- б) Проекция на плоскость экватора траектории движение ВС в пространстве; Линия заданного пути (ЛЗП) и линия равных пеленгов (ЛРП).
- в) Линия сечения Земли плоскостью, проходящей через оба полюса; Линия заданного пути и линия равных пеленгов.
- Γ) Проекция на плоскость экватора траектории движение BC в пространстве; Ортодромия (ЛЗП) и локсодромия (ЛФП).
- 2. Основной задачей аэродинамики является
- +а) выбор рациональной внешней формы ЛА с целью получения заданных летнотехнических характеристик
- б) определение аэродинамических нагрузок и тепловых потоков, действующих на поверхность ЛА
- в) обеспечение устойчивых режимов полета ЛА
- г) обеспечение безаварийных режимов полета ЛА
- 3. Аэродинамика это
- +а) наука об общих законах движения газа (преимущественно воздуха), а также о взаимодействии газа с движущимися в нем телами.
- б) Наука о свойствах газов
- в) Наука об управлении ЛА
- г) Наука о движении ЛА
- 4. Рассчитайте L_T (поясное время), если U_{TC} =22ч 30мин, N=5?
- а) 3ч 30 мин следующей даты (суток).
- б) 3ч 30мин текущей даты (суток).
- +в) 17ч 30мин текущей даты (суток).
- г) 17ч 30мин следующей даты (суток).
- 5. Как называется элементы и подсистемы БАС, предназначенные для обеспечения эксплуатации БАС в соответствии с функциональным назначением, расширения функциональных возможностей БАС по назначению, не входящие в перечень основных подсистем БАС и устанавливаемые (подвешиваемые) на ЛА/БВС по мере необходимости?

Ответ: Полезная нагрузка

6. Как называется подсистема БВС, включающая источник энергии, элемент, преобразующий энергию в работу (двигатель), необходимую для работы элемента, обеспечивающего движение БВС в пространстве (движитель) за счет создания силы тяги?

Ответ: Силовая установка

7. Как называется система, позволяющая, в зависимости от условий и целевой функции, изменять в заданном направлении свою структурно функциональную организацию?

Ответ: Динамическая система

8. Как называется любой аппарат, поддерживаемый в атмосфере за счет его взаимодействия с воздухом, исключая взаимодействие с воздухом, отраженным от земной поверхности.

Ответ: Воздушное судно

9. Какая система в БПЛА выполняет функцию оценки положения и параметров движения в пространстве?

Ответ: автопилот

- 10. Какому диапазону относиться диапазон излучения электромагнитных волн от 0.78 до 1000 мкм. Ответ: инфракрасному (ИК) диапазону
- 11. Высокотехнологичная топографогеодезическая методика сбора геопространственных данных по рельефу и наземным объектам, а также картографирования местности в трёхмерном режиме с летательного аппарата с применением скоростной сканирующей систе мы высокой точности, определяющей координаты и точки лазерных отражений и фильтров наземных объектов по определённым заданным характеристикам.

Ответ: Воздушное лазерное сканирование

12. Тяжелые БПЛА

Ответ: для транспортировки тяжелых грузов

13. Общее время с момента получения команды о готовности к полету при установлении связи с дистанционно пилотируемым воздушным судном с целью выполнения полета до момента окончательной остановки беспилотного воздушного судна и отключения связи по завершении полета.

Ответ: Полетное время

14. Летательный аппарат, поддерживаемый в атмосфере за счёт взаимодействия с воздухом, отличного от взаимодействия с воздухом, отражённым от поверхности земли или воды:

Ответ: Воздушное судно

15. Призвана обеспечивать организационную поддержку качества лётной работы путём соответствующей организации и планирования полётов, лётно-методической работы с экипажами ВС, контроля лётной деятельности, обучения лётного состава.

Ответ: Система организации лётной работы

Решите задачу:

В настоящее время роль беспилотных летательных аппаратов и самолетов в жизни человечества велика. Для оценки эффективности профиля крыла подобных аппаратов применяют аэродинамические трубы, в которых крыло определенного профиля и размера испытывают и получают значение подъемной силы и оказываемое сопротивление. Эти характеристики зависят от угла между хордой крыла и направлением потока воздуха, называемым углом атаки (рисунок 2).

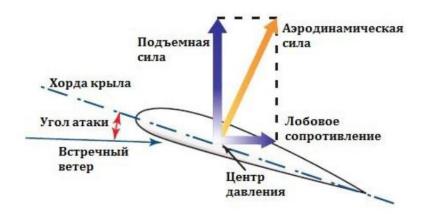


Рисунок 2 – Расчетная схема

Для сравнения характеристик крыла на разных углах атаки используется определение – аэродинамическое качество крыла. Оно рассчитывается как:

$$k=\frac{C_y}{C_x},$$

где C_y – коэффициент подъемной силы крыла;

С_х – коэффициент подъемной силы крыла;

k — аэродинамическое качество крыла.

 C_y , C_x – аэродинамические коэффициенты. Они используются для определения подъемной силы и лобового сопротивления:

$$F_x = 0.5 \cdot C_x \rho V^2 S;$$

$$F_{\nu} = 0.5 \cdot C_{\nu} \rho V^2 S,$$

где F_x — сила лобового сопротивления, Н

 F_y – подъемная сила, Н

 ρ — плотность воздуха на высоте, кг/м³

V – скорость воздуха, м/с

S – площадь крыла, м²

В одном из экспериментов продували прямоугольное крыло с размерами с длиной 2 м и шириной 0,6 м, скорость воздуха была V = 33 м/с, плотность воздуха $\rho = 1,205\,\mathrm{kr/m^3}$, В зависимости от углов в эксперименте измеряли подъемную силу и силу лобового сопротивления. Результаты представлены в таблице 1.

Fx, H	Fy, H	Угол атаки
24	79	0
26	220	2
33	349	4
46	459	6
65	535	8
79	566	10
102	551	12
126	539	14
150	535	16
181	538	18
209	546	20
241	569	22
271	597	24

Таблица 1 – Результаты экспериментов

Требуется определить угол, при котором крыло будет максимально эффективно (достигнуто максимальное качество). Построить график зависимости k (градусы).

Решение

1. Рассчитаем площадь крыла

$$S=0.6*2=1.2 \text{ m}^2$$

2. Из выражений

$$F_x = 0.5 \cdot C_x \rho V^2 S$$

$$F_y = 0.5 \cdot C_y \rho V^2 S$$

определим коэффициенты подъемной силы крыла

$$C_y = \frac{2F_y}{\rho V^2 S}$$

$$C_x = \frac{2F_x}{\rho V^2 S}$$

Данные расчета занесем в таблицу 2.

Таблица 2 – Результаты расчетов

Cx,	Cy,	Угол атаки
0,031	0,1	0
0,0324	0,28	2
0,042	0,443	4
0,059	0,5826	6
0,083	0,679	8
0,1	0,719	10
0,13	0,7	12
0,16	0,684	14
0,19	0,68	16
0,23	0,683	18
0,266	0,694	20
0,306	0,723	22
0,344	0,745	24

Рассчитаем \boldsymbol{k} для каждого угла атаки по формуле

$$k = \frac{C_y}{C_x}.$$

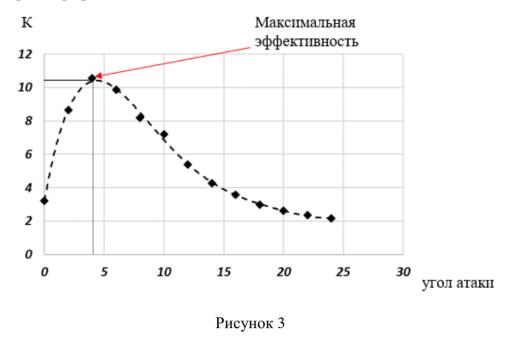

Данные расчета занесем в таблицу 3.

Таблица 3 – Результаты расчетов

k	Угол атаки
3,225806	0
8,641975	2
10,54762	4
9,874576	6
8,180723	8
7,19	10
5,384615	12
4,275	14
3,578947	16

Как видно из таблицы 3 максимально эффективным крыло будет на угле в 4 градуса.

Построим график зависимости k (рисунок 3).

Решите задачу 2

При проведении испытаний беспилотный летательный аппарат совершает 2 типа полета

- 1) полет из пункта A в пункт Б длиной L при безветренной погоде туда и обратноспостоянной скоростью v_1 ;
- 2) полет из пункта A в пункт Бспостоянной скоростью v_1 ветер дул попутно, а из пункта B в пункт A ветер дул против движения беспилотного летательного аппарата.

Как измениться время полета беспилотного летательного аппарата при постоянной скорости ветрау₂. Подтвердите ответ формулами.

Решение:

1. Время, затраченное беспилотным летательным аппаратом из пункта A в пункт Б при безветренной погоде туда и обратно

$$t_1 = \frac{2L}{v_1}.$$

2. Время, затраченное беспилотным летательным аппаратом из пункта A в пункт Б при попутном ветре

$$t_{21} = \frac{L}{\mathbf{v}_1 + \mathbf{v}_2}.$$

3. Время, затраченное беспилотным летательным аппаратом из пункта Б в пункт A при встречном ветре

$$t_{22} = \frac{L}{\mathbf{v_1} - \mathbf{v_2}}$$

4. Общее время при втором типе полета

$$t_2 = \frac{L}{v_1 + v_2} + \frac{L}{v_1 - v_2} = \frac{2Lv_1}{v_1^2 - v_2^2}$$

5. Сравним t_1 с t_2

$$\frac{2L}{v_1} < \frac{2Lv_1}{v_1^2 - v_2^2}$$

$$\frac{\frac{2L}{v_1}}{\frac{2LV_1}{v_1^2-v_2^2}} = 1 - \left(\frac{v_2}{v_1}\right)^2.$$

Время полета при безветренной погоде меньше, чем время полета при ветреной погоде. Соответственно время полета беспилотного летательного аппарата по 2 типу полета увеличится.