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1. КОНСПЕКТ ЛЕКЦИЙ 

1. 1 Лекция №1 (2 часа). 

Тема: «Основные операции алгебры высказываний. Формулы алгебры высказываний»                                   

1.1.1 Вопросы лекции: 

1. Основные понятия алгебры высказываний. 

2. Основные операции алгебры высказываний. 
 

1.1.2 Краткое содержание вопросов:  

1. Основные понятия алгебры высказываний. 

2. Основные операции алгебры высказываний. 

Основные операции алгебры высказываний. Таблицы истинности. 

Рассмотрим логические операторы. 

1) Оператор, соответствующий союзу "и", называется конъюнкцией. Высказывание А&В 

истинно тогда и только тогда, когда истинны оба высказывания А и В (табл. 1). 

Таблица 1 

А В А& В 

И И И 

И Л Л 

Л И Л 

Л Л Л 

2) Оператор, соответствующий частице "не", называется отрицание (табл.2.) 

Таблица 2 

А А 

И Л 

Л И 

Эта операция одноместна  в том смысле, что из одного данного простого высказывания 

строится новое высказывание А. 

3) Операция, соответствующая союзу "или", называется дизъюнкцией (табл.3). 

Таблица 3 

А В А V В 

И И И 

И Л И 

Л И И 

Л Л Л 

Абсолютная истинность АВ означает, что в каждой ситуации, хотя бы одно из высказы-

ваний - истинно. 

4) Операция, соответствующая обороту "если...,  то...", называется импликацией. А называ-

ется посылкой импликации, В  еѐ заключением (табл.4). 

Таблица 4 

А В А  В 

И И И 

И Л Л 

Л И И 

Л Л И 

В случае импликации несоответствие между обычным пониманием истинности и идеа-

лизированной точкой зрения алгебры высказываний еще заметнее, чем для других логиче-

ских операций. Главное отличие в том, что при учете смыслового содержания высказыва-

ний оборот "если..., то..." подразумевает причинную связь между посылкой и заключени-

ем. С точки же зрения алгебры высказываний истинность импликации в некоторой ситуа-

ции означает лишь, что если в этой ситуации истинна посылка, то истинно заключение.  
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В результате истинными могут оказаться импликации "если в доме пять этажей, то в квар-

тире № 3 живет Иванов", "если в Воронеже идет дождь, то книга серого цвета". 

5) Операция, соответствующая оборотам типа "тогда и только тогда", "для того чтобы...", 

"необходимо и достаточно", называется эквивалентностью (табл.5). К эквивалентности в 

той же мере относится замечание о том, что еѐ использование в алгебре высказываний не 

учитывает смыслового содержания высказываний. 

Таблица 5 

A B A  B 

И И И 

И Л Л 

Л И Л 

Л Л И 

Таким образом, имеется некоторое количество логических операций, позволяющих полу-

чать из простых высказываний сложные. При этом вместо простых высказываний можно 

брать сложные, уже построенные. Т.е. появляется возможность применять многоступен-

чатые конструкции, многократно используя введенные логические операции.  

 

  

1. 2 Лекция №2 (2 часа). 

Тема: «Булевы функции. Элементарные булевы функции. Представление 

булевых функций формулами»                              
1.3.1 Вопросы лекции: 

1. Булевы функции. Элементарные булевы функции.  

2. Представление булевых функций формулами 

 

1.3.2 Краткое содержание вопросов:  
1. Булевы функции. Элементарные булевы функции.  

2. Представление булевых функций формулами 

 

1. Булевы функции. Элементарные булевы функции.  

Булевы функции, булевы константы. Булевыми функциями (или функциями ал-

гебры логики или истинностными функциями) называются функции, значения ко-

торых равны 0 или 1 и аргументы которых  принимают только два значения 0 и 1. 

Булевы функции могут быть заданы специальными таблицами истинности или аналитиче-

ски в виде специальных высказывательных форм, называемых иногда булевыми формами. 

Выражения, содержащие одну или несколько переменных (аргументов), соединенных 

знаками логических операций, называются логическим формами. Высказывания, не со-

держащие ни одной переменной, называются константами. В логике, в отличие от ариф-

метики, только две константы 0 - false и 1- true. 

Напомним, что форма называется числовой, если при допустимом значении своих 

аргументов, она обозначает число (является числом). Булева форма является частным слу-

чаем числовой формы. Т.о. при помощи суперпозиции, исходя из логических операций 

над логическими переменными, можно строить сложные составные высказывания и затем 

вычислять их. Такого рода составные высказывания являются частным случаем так назы-

ваемых булевых функций, которые являются предметом изучения математической логики. 

Обобщая все сказанное, можно дать определение булевых функций: 

Булевыми функциями, называются предикаты, все аргументы которых опре-

делены на множестве {0, 1}, интерпретируемые как {ложь, истина}. 

Можно сказать, что понятие булевой функции является частным случаем понятия 

предиката. Отличие состоит лишь в том, что у булевой функции четко фиксирована как 

область определения {0, 1}, так и область значений функции {0, 1}, в то время как у пре-
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диката четко фиксирована только одна область значений {0, 1}, в то время как область 

определения задана произвольным множеством. 

В свою очередь понятие предиката является частным случаем понятия функции, 

отличие состоит в том, что у предиката четко фиксирована область значений {0, 1}, а у 

функции это может быть вся числовая ось. 

 

2. Представление булевых функций формулами.  

 Булевы функции и формулы. ФАЛ называются также булевыми функциями, дво-

ичными функциями или переключательными функциями. Аргументы булевой функции яв-

ляются булевыми переменными. Булеву функцию можно задать таблицей истинности. 

Утверждение Для булевой функции от n аргументов существует 2
n
 различных наборов 

аргументов. 

Булева функция  f(x1, x2, …, xn) называется полностью определенной, если ее значе-

ния определены на всех  2
n
 наборах переменных. В противном случае функция  частично 

определенная.  

Функция ),,,,,,( n1ii1i1 xxxxxf  
 существенно зависит от переменной xi, 

(или переменная xi – существенная), если  такой набор значений x1, x2, …, xn 

),...,,,,...,( n1ii1i1  
, что 

),,,,,,(),,,,,,( n1i1i1n1i1i1 1f0f     . В противном случае перемен-

ная xi – несущественная (фиктивная).  

 

 

 

 

 

 

Пусть две булевы функ- ции заданы таблицей истинно-

сти. Для них переменная x1 существенная, а x2 – несущественна. По определению булевы 

функции равны, если одна из другой получается введением или удалением несуществен-

ных переменных. 

Одна и та же функция может иметь множество реализаций формулами над данным 

базисом (т.е. множеством логических операций). Формулы, реализующие одну и ту же 

функцию, называются равносильными (т.е. на всех наборах переменных их значение ис-

тинности совпадает). Отношение равносильности формул является отношением эквива-

лентности.  

Формулы алгебры логики, при образовании которых используются только опера-

ции отрицания, конъюнкции и дизъюнкции, называются булевыми формулами.  

Для любой формулы алгебры логики существует равносильная ей булева формула. 

Способы представления булевых функций. Нормальные формы 

Табличный способ определения истинности сложного выражения имеет ограничен-

ное применение, т.к. с увеличением числа логических переменных число вариантов стано-

вится слишком большим. Тогда может быть использован способ приведения формул к 

нормальной форме.  

Аналитическое выражение функции (или формула) находится в нормальной форме, 

если в ней отсутствуют знаки эквивалентности, импликации, двойного отрицания, а знаки 

отрицания находятся только при переменных.  

x1 x2 f1 f2 

0 0 0 1 

0 1 0 1 

1 0 1 0 

1 1 1 0 
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Элементарной дизъюнкцией (произведением) называется дизъюнкция (произведение) 

переменных или их отрицаний, в котором каждая переменная встречается только один 

раз.  

ДНФ – это дизъюнкция элементарных произведений. КНФ – это произведение эле-

ментарных дизъюнкций. Как ДНФ, так и КНФ функции не единственна. Обычно предпо-

лагают, что входящие в ДНФ (КНФ) элементарные конъюнкции (дизъюнкции) попарно 

различны.  

ДНФ (КНФ) называется совершенной, если каждая переменная формулы входит в 

каждую элементарную конъюнкцию (дизъюнкцию) ровно один раз.  

СДНФ (СКНФ) функции единственна. 

 

Элементарные дизъюнкции:  xy,  z. Элемент. конъюнкции:  xyz,   x.

 f(x,y,z) = xyz xy – ДНФ ; f(x,y,z) = (x y)z – КНФ. 

Введем обозначения: 










0x

1x
x






,

,
 

О разложении булевой функции по k переменным (знак  ). 

 

 

 

 n=3, k=2. 

Доказательство: 

Выберем какой-либо набор значений для переменных x1, …, xn. Пусть это будет 1, …, n.. 

Заметим, что 










ii

ii

i
0

1
i




 

,

,
 (1

1
=1, 0

0
=1, 1

0
=¬1=0, 0

1
=0) 

Подставим в правую часть формулировки теоремы вместо x1, …, xn набор 1, …, n. Полу-

чим ),...,,,...,,(...
),...,(

n1kk21k21 fV k21

k1

 


 . Поскольку коэффи-

циент перед функцией равен 1 только при равных значениях i и i, в разложении оста-

нется только один член: ),...,,,...,(... n1kk1k1 fk1  

 , и i=i, т.е. 

),...,,,...,( n1kk1f   . Получена левая часть формулы теоремы 4.6. Поскольку 

набор был выбран произвольно, получаем, что утверждение верно  набора  x1, …, xn. ■ 

Следствие 1:  Разложение Шеннона  

),...,,(),...,,(),...,,( n21n21n21 xx1fxxx0fxxxxf   

Следствие 2: При k=n получаем: 
n21

n21
1f

n1 xxxVxxf


...),...,(


 , т.е. выби-

раем те слагаемые, на которых функция равна 1. Полученная формула представляет собой 

СДНФ. 

Построение совершенных нормальных форм 

Построение СДНФ 
1. Построение по ТИ. 

Найти строки в ТИ, где f = 1. 

1 2

1

1 1 2 1 2 1
,...,

( ,..., ) ... ( , ,..., , ,..., )k

k

n k k k nf x x V x x x f x x
 

 
    
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1)  найденному набору  1, …, n. поставить в соответствие произведение 

n21 xxx ~...~~  , где 










0еслиx

1еслиx
x

ii

ii

i




,

,
~  

2) Составить дизъюнкцию из произведений п.2. 

2. Получение из ДНФ. 

Если некоторое произведение ДНФ не содержит какой-либо переменной, то необходимо 

помножить это произведение на дизъюнкцию этой переменной и ее отрицания и приме-

нить дистрибутивный закон. 

Построение СКНФ 

1. Построение по ТИ. 

Найти строки в ТИ, где f = 0. 

1)  найденному набору  1, …, n. поставить в соответствие дизъюнкцию 

n21 xxx ~...~~  , где 










1еслиx

0еслиx
x

ii

ii

i




,

,
~  

2) Составить произведение дизъюнкций из п.2. 

2. Получение из КНФ. 

Если некоторая элементарная дизъюнкция КНФ не содержит какой-либо переменной, то 

необходимо дизъюнктивно добавить в нее произведение этой переменной и ее отрицания 

и применить дистрибутивный закон.  

1. 3 Лекция №3 (2 часа). 

Тема: «Алгебра Буля. Минимизация булевых функций в классе ДНФ»                      
         1.2.1 Вопросы лекции: 

1. Алгебра Буля.  

2. Минимизация булевых функций в классе ДНФ. 

1.3.2 Краткое содержание вопросов:  
1. Алгебра Буля.  

2. Минимизация булевых функций в классе ДНФ. 

Формула АВ. Равносильные формулы. Основные равносильности. 

Равносильные преобразования формул. 

Алфавитом  алгебры высказываний называется множество  элементы, которого назы-

ваются буквами.  

Алфавит (язык исчисления высказываний) состоит из переменных высказываний А, В, 

С,...; знаков логических связок &, , ,    и скобок (,). 

Конечные последовательности букв алфавита называются словами в этом алфавите. 

Некоторые слова в алфавите являются формулами алгебры высказываний. 

Формулами  называют логические операции, которые получаются комбинированием 

конечного числа введенных операций. Для всякой формулы можно построить истинност-

ную таблицу, последовательно используя истинностные таблицы основных операций. 

Строгое определение формулы алгебры высказываний дается по индукции: 

Формулы: а) переменное высказывание  есть формула; 

б) если   и    формулы, то            & , , , тоже формулы; 

в) других формул нет. 

. 

Минимизация булевых функций в классе ДНФ 
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1. Основные понятия. 

2. Минимизация булевых функций в классе ДНФ. 

1. Понятие минимальной ДНФ, импликанты формулы, простой импликанты, со-

кращѐнной ДНФ, тупиковой ДНФ. 

2. Методы отыскания сокращѐнной ДНФ. Метод  Квайна получения  минимальной 

ДНФ из сокращѐнной, другие методы. 

Минимальная ДНФ – это такая ДНФ функции, которая содержит наименьшее коли-

чество вхождений переменных по сравнению с остальными.  

Элементарная конъюнкция называется импликантой функции ),,( n1 xxf  , если 

она равна 0 на тех наборах, на которых f обращается в 0. Простой импликантой называет-

ся импликанта, в которой отбрасывание любой буквы ведет к получению элементарной 

конъюнкции, которая не является импликантой (т.е. никакая часть простой импликанты 

сама импликантой не является). Каждая импликанта соответствует покрытию на карте 

Карно, а простая импликанта – покрытию наибольшей размерности. 

1) 
32132121321 xxxxxxxxxxxf ),,( . 

321 xxx  – импликан-

та, причем простая; 
321 xxx  – импликанта, но не простая, т.к. удаление x3 снова дает 

импликанту 
21 xx  (которая является простой). 

2) Найдем импликанты и простые импликанты для функции 
2121 xxxxf ),( . 

Всего имеется 8 элементарных конъюнкций с переменными x1, x2. Приведем их таблицы 

истинности. 

Из таблицы истинности заключаем, что 
21 xx , 

21 xx , x1x2, 1x , x2  являются имплан-

тами функции f.  Из них простыми являются 
1x и  x2. 

Дизъюнкция всех простых импликантов функции называется сокращенной ДНФ. Со-

кращенная ДНФ функции единственна.  

Сокращенная ДНФ может содержать лишние импликанты, удаление которых не ме-

няет значения функции.  

Если из сокращенной ДНФ удалить все лишние дизъюнктивные члены, и удаление лю-

бого из оставшихся приведет к изменению значения функции, то такая форма называется 

тупиковой ДНФ. Та из всех тупиковых ДНФ, которая имеет наименьшее число вхождений 

переменных, является минимальной ДНФ. 

Процесс нахождения минимальной ДНФ из СДНФ можно разбить на следующие эта-

пы:  

1) нахождение сокращенной ДНФ (она единственна);  

2) нахождение всех тупиковых ДНФ (их м.б. несколько);  

3) выбор из всех тупиковых минимальной ДНФ (их тоже м.б. несколько). 

Известны аналитические и графические способы построения минимальной ДНФ. 

Графический способ использует представление на картах Карно.                       

 

1. 4 Лекция № 4 (2 часа). 

Тема: «Полиномы Жегалкина. Представление булевых функций полиномами Жегалкин»                             
1.4.1 Вопросы лекции: 

x1 x2 x1x2 21 xx  
21 xx  21 xx  x1x2 

1x  
2x  x1 x2 

0 0 1 1 0 0 0 1 1 0 0 

0 1 1 0 1 0 0 1 0 0 1 

1 0 0 0 0 1 0 0 1 1 0 

1 1 1 0 0 0 1 0 0 1 1 
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1. Полиномы Жегалкина.  

2. Представление булевых функций полиномами Жегалкина. 

 

1.4.2 Краткое содержание вопросов:  
 

1. Полиномы Жегалкина.  

2. Представление булевых функций полиномами Жегалкина. 

 

Полиномы Жегалкина, представление булевых функций полиномами  Жегал-

кина. 

 Алгебра Жегалкина. Булевы функции с операциями умножения и сложения по мо-

дулю 2 образуют алгебру Жегалкина. 

Аксиомы алгебры Жегалкина: 

1. Операции с константами: A1  A; A0  0; A  0  A. 

2. Идемпотентность: AA  A; A  A  0. 

3. Коммутативность: AB  BA; A  B  B  A.  

4. Ассоциативность: (A  B)  C  A (B  C); (AB)C  A(BC). 

5. Дистрибутивность: A(B  C)  AB  AC. 

Представление булевых функций полиномами Жегалкина 

Можно перейти от алгебры Буля к алгебре Жегалкина, используя следующие соот-

ношения: A  1 A;   AB=A  B  AB. 

И наоборот, от алгебры Жегалкина к алгебре Буля:   A  B =AB AB 

Перейти к выражению булевой алгебры: (x  1)y (x  1) = xy x = xyx  xxy = 

(x y)x  0 =xy. 

 

 

1. 5 Лекция № 5 (2 часа). 

Тема: «Полные системы булевых функций, критерий полноты»                      
                         

1.5.1 Вопросы лекции: 

1. Полные системы булевых функций. 

2. Критерий полноты. 

 

1.5.2 Краткое содержание вопросов:  

1. Полные системы булевых функций. 

2. Критерий полноты. 

Критерии полноты Поста-Яблонского 
 

Теорема о функциональной полноте была сформулирована в 1921 г. американским 

ученым Эмилем Постом и доказана советским ученым Яблонским С.В. 

Система  булевых функций {fi }является полной тогда и только тогда, когда вы-

полняются 5 условий: в этой системе существует функция fi   не сохраняющая константу 

нуль; существует функция fi , не сохраняющая константу 1;существует нелинейная функ-

ция; существует не самодвойственная функция; существует функция, не являющаяся мо-

нотонной.  

Построим все булевы функции от двух переменных (табл.). 

 

X1 X2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
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0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Индекс i функциональной переменной if  15,1i   равен десятичному эквиваленту этой 

функции, читаемому сверху вниз. 

0)X,X(f 210   - константа 0 

21211 X&X)X,X(f   - конъюнкция 

212121212 XXXXXX)X,X(f   - левая коимпликация (читается ―неправда, что 

если X1 то X2», префикс ко – от латинского conversus - обратный  

1213 X)X,X(f   

212121214 XXXXXX)X,X(f   - правая коимпликация 

2215 X)X,X(f   

21216 XX)X,X(f   - сложение по модулю 2 (неравнозначность) 

21217 XX)X,X(f   - дизъюнкция 

2121218 XXXX)X,X(f   - стрелка Пирса, функция Вебба 

21219 XX)X,X(f   - эквивалентность 

22110 X)X,X(f   - отрицание X2 

21122111 XXXX)X,X(f   - правая импликация («если X1 то X2») 

12112 X)X,X(f   - отрицание X1 («если X1 то X2») 

21222113 XXXX)X,X(f  - левая импликация 

21212114 X/XXX)X,X(f   - штрих Шеффера 

1)X,X(f 2115    

«к- значная логика» 
                         
1. Понятие к-значной логики.  

2. Функции к-значной логики 

 

Двузначная логика допускает обобщение на k - значный случай. При этом хотя в  

k - значных логиках сохраняются многие результаты и свойства двузначной логики, ряд 

фактов принципиально отличаются от соответствующих результатов алгебры логики. 

Многие решѐнные задачи двузначной логики не имеют исчерпывающего решения в k - 

значных логиках, а иные и вовсе не решены. 

Функция 
1 2( , ,..., )nf x x x  называется функцией k - значной логики, если еѐ аргу-

менты определены на множестве  0,1,2,..., 1k  , состоящим из  k  элементов, а сама 

функция принимает значения из того же множества. 

Множество всех функций k - значной логики обозначается через 
kP . Функция  

1 2( , ,..., )nf x x x  задана, если задана еѐ таблица истинности. При 3k   таблица истинно-

сти имеет вид 
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Так как количество  k - значных наборов длины n  равно 
nk , то число функций от n  пе-

ременных в  k - значной логике равно 
nkk . Например, если функций двух переменных в 

2P  всего 16, то в 
3P их уже 19683. Таким образом в 

kP возрастают трудности по сравне-

нию с 
2P  даже с возможностью перебора функций.  

 

 

1. 6 Лекция №6 (2 часа). 

Тема: «Логика предикатов»                      
                         

1.6.1 Вопросы лекции: 

1. Предикаты и их свойства. Логические операции над предикатами. 

2.Кванторные операции. Логика предикатов. 

 

1.6.2 Краткое содержание вопросов:  
1. Предикаты и их свойства. Логические операции над предикатами. 

2.Кванторные операции. Логика предикатов. 
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Логика высказываний описывает многие важные логические законы и позволяет 

решать многие проблемы, однако во многих случаях средства логики высказываний ока-

зываются недостаточными.  

1. Предикаты и кванторы 

Предикатом P(x
1
,...x

n
) называется функция P:MnB, где M – произвольное множе-

ство, а B  двоичное множество {0,1}. M  называется предметной областью предиката, а 

x
1
,...x

n
  предметными переменными. Для любых M и n существует взаимно-однозначное 

соответствие между n-местными отношениями и n-местными предикатами на M: 

а) каждому n-местному отношению R соответствует предикат Р, такой, что P(a
1
,...a

n
)=1 , 

если и только если (a
1
,...a

n
) R 

б) всякий предикат P(x
1
,...x

n
) определяет отношение R,  такое, что (a

1
,...a

n
) R, если и 

только если P(a
1
,...a

n
)=1 . 

При этом R задает область истинности предиката Р. Константы 0 и 1 называют нульмест-

ными предикатами. 

Например:  "прямая проходит через точки А и В"  трехместный предикат, у ко-

торого предметными областями двух переменных (А и В) являются множества точек, а 

третьей - множество прямых. 

 "если тетрадь лежит в папке, а папка  в портфеле, то тетрадь лежит в портфеле"  

это трехместный тождественно истинный предикат. 

Поскольку предикаты принимают два значения и интерпретируются как высказы-

вания, из них можно образовывать выражения алгебры высказываний, т.е. формулы. Эле-

ментарные формулы можно связывать операциями алгебры высказываний ,,,, со-

храняя за операциями те определения, которые давались в алгебре высказываний. 

Кванторы 

Кроме операций алгебры высказываний употребляют еще две операции, которые 

относятся уже не к одной фиксированной ситуации, а ко всему множеству ситуаций. 

Пусть Р(х)  предикат, определенный на М. Высказывание "для всех х из М  Р(х) истин-

но" обозначается xP(x). Знак  называется квантором общности. Высказывание "суще-

ствует такой Х из М, что Р истинно" обозначается xP(x). Знак  называется квантором 

существования. 

Переход от Р к xP(x) или xP(x) называется связыванием переменной х, или наве-

шиванием квантора на переменную х. Предметную переменную, не связанную никаким 

квантором, называют свободной переменной. Смысл связанных и свободных переменных 

в предикатных выражениях различен. Свободная переменная  это обычная переменная, 

которая может принимать значения из М; Р  переменное высказывание, зависящее от х. 

Выражение x P(x) не зависит от переменной х и при фиксированных Р и М имеет вполне 

определенное значение. Это, в частности, означает, что переименование связанной пере-

менной не меняет истинности выражения. 

Переменные, являющиеся по существу связанными, встречаются не только в логи-

ке. В выражениях f x
x

( )



1

10

 или f x dx
a

b

( )z  переменная х связана, при фиксированной f пер-

вое выражение становится равно определенному числу, а второе становится функцией а и 

b. 
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Навешивать кванторы можно и на многоместные предикаты и вообще на любые 

логические выражения, которые при этом заключаются в скобки. Навешивание квантора 

на многоместный предикат уменьшает в нем число свободных переменных. 

2. Логика предикатов. 

Применение логики предикатов для записи математических определений, 

утверждений. 

Строгое определение формулы логики предикатов дается по индукции: 

1. Все отдельно взятые предикаты, в которых все места замещены предметными перемен-

ным или предметными постоянными из соответствующих предметных областей являются 

формулами. При этом все входящие в предикат предметные переменные считаются сво-

бодными. 

2. Если F  формула логики предикатов, содержащая свободную переменную х, то xF и 

xF  также формулы, в которых х связанная переменная, а все остальные переменные те 

же и того же характера, что и в F. 

3. Если F  формула, то и F  формула, все переменные которой те же и того же харак-

тера что и в F. 

  Если F и J формулы, причем нет такой переменной, которая в одну из них входит 

свободно, а в другую связанно, то FJ, FJ, FJ ,FJ  формулы, причем в них входят все 

переменные из формул F и J и все  вхождения те же и того же характера, что и в F и J. 

4. Каждая формула получается за конечное число шагов из элементарных формул  п.1 при 

помощи операций п.п. 2 и 3. 

Предикаты F и J называются равными, если их значения совпадают при всех значе-

ниях входящих в них переменных. 

Множество истинных формул логики предикатов входит в любую теорию. В ис-

следовании этого множества возникает две проблемы: 1  получение истинных формул; 2 

 проверка формулы на истинность. Прямой перебор всех значений невозможен, т.к. 

предметные и предикатные переменные имеют в большинстве случаев бесконечные обла-

сти определения. 

Часто используют метод интерпретаций: когда в формулу, требующую доказатель-

ства подставляют константы. Подстановка констант позволяет интерпретировать форму-

лу, как осмысленное утверждение об элементах конкретного множества М. Этот метод 

удобен для доказательства выполнимости формул или их неэквивалентности. 

Свойства кванторов 

         
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x A x B x xA x yB y
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 (2.22) 

    

   

    

    

x yA x y y xA x y

x yA x y y xA x y

, ,

, ,

  (2.23) 

По аналогии с двойственностью конъюнкции и дизъюнкции имеет место двой-

ственность между кванторами 
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   

   

  

  

xA x x A x

xA x x A x
 (2.24) 

Эти равносильности и закон двойственности позволяют преобразовать любую формулу 

логики предикатов в равносильную формулу, в которой символ отрицания стоит только 

над элементарными предикатами. Получающуюся в результате формулу называют почти 

нормальной формой исходной формулы. 

Формулы, содержащие кванторы как по предметным, так и по предикатным пере-

менным, используют для характеристики какого-либо множества предметных областей с 

фиксированными индивидуальными предикатами на них. Система таких формул называ-

ется системой аксиом, а удовлетворяющие этим аксиомам множества с индивидуальными 

предикатами  интерпретациями системы аксиом. 

 

 

1. 7 Лекция №7 (2 часа). 

Тема: «Основные подходы к формализации понятия алгоритма. Машина Тьюринга. 

Принцип Тьюринга - Поста»                      
                         

1.7.1 Вопросы лекции: 

1. Основные подходы к формализации понятия алгоритма.  

2. Машина Тьюринга. Принцип Тьюринга - Поста. 
 

1.7.2 Краткое содержание вопросов:  
1. Основные подходы к формализации понятия алгоритма.  

2. Машина Тьюринга. Принцип Тьюринга - Поста. 

 

Формализация понятия алгоритма. Универсальные  модели алгоритмов. 

Интуитивное понятие алгоритма обладает целым рядом недостатков. Очевидно, что 

такие понятия, использованные при описании общих свойств алгоритмов, как элементар-

ность шагов, сами нуждаются в уточнении. Очевидно, что их словесные определения бу-

дут содержать новые понятия, которые снова потребуют уточнения и т.д. Начиная с 30-х 

годов, было предложено несколько уточнений понятия алгоритма. Считается, что все они 

достаточно полно отражают основные черты интуитивного понятия алгоритма. Действи-

тельно, все формальные определения алгоритма в некотором смысле эквивалентны друг 

другу.  Поэтому в теории алгоритмов применяется другой подход: выбирается конечный 

набор исходных объектов, которые объявляются элементарными и конечный набор спо-

собов построения их них новых объектов. Этот метод был уже использован в теории мно-

жеств и получил название конструктивного подхода. 

Алгоритмические модели, которые претендуют на право считаться формализацией 

понятия «алгоритм», должны быть универсальными, т.е. допускать описание любых алго-

ритмов. 

Можно выделить три основных типа универсальных алгоритмических моделей, раз-

личающихся исходными эвристическими соображениями относительно того, что такое 

алгоритм. Первый тип связывает понятие алгоритма с наиболее традиционными понятия-

ми математики – вычислениями и числовыми функциями. Наиболее развитая и изученная 

модель этого типа – рекурсивные функции – является исторически первой формализацией 

понятия алгоритма. 
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Второй тип модели связан с развитием вычислительной техники и основан на пред-

ставлении об алгоритме как о некотором детерминированном устройстве, способном вы-

полнять в каждый отдельный дискретный момент времени весьма примитивные операции. 

Такое представление не оставляет сомнений в однозначности алгоритма и элементарности 

его шагов. Кроме того, эвристика этой модели близка к ЭВМ и, следовательно, к инже-

нерной интуиции. Основной теоретической моделью этого типа является созданная в 30-х 

годах концепция машины Тьюринга. Именно машина Тьюринга явилась моделью совре-

менной ЭВМ и способствовала развитию современной вычислительной техники. 

Наконец, третий тип алгоритмических моделей – это преобразование слов в произ-

вольных алфавитах, в которых элементарными операциями являются подстановки, т.е. 

замены части слова (подслова) другим словом. Преимущества этого типа моделей заклю-

чаются в максимальной абстрактности и возможности применить понятие алгоритма к 

объектам произвольной, не обязательно числовой природы. Примерами моделей этого ти-

па являются канонические системы Поста и нормальные алгоритмы Маркова. При этом 

общность формализации в конкретной модели не теряется и доказывается сводимость од-

них моделей к другим, т.е. показывается, что всякий алгоритм, описанный средствами од-

ной модели, может быть описан средствами другой. 

Благодаря взаимной сводимости моделей в общей теории алгоритмов удалось выра-

ботать инвариантную по отношению к моделям систему понятий, позволяющую говорить 

о свойствах алгоритмов независимо от того, какая формализация алгоритма выбрана. Эта 

система понятий основана на понятии вычислимой функции, т.е. функции, для вычисле-

ния которой существует алгоритм. 

МАШИНА ТЬЮРИНГА. 

       Введение. История вопроса. 

В 1935 г. возникло такое положение: свойства, обнаруженные у некоторого точно 

определенного класса вычислимых теоретико-числовых функций, изучавшихся Чѐрчем и 

Клини в 1932—1935 гг. и названных " -определимыми функциями", упорно подсказыва-

ли мысль, что этот класс, может быть, охватывает все функции, которые в соответствии с 

нашим интуитивным представлением можно рассматривать как вычислимые. При этих 

обстоятельствах Чѐрч выдвинул тезис (опубликован в 1936 г.), что все функции, которые 

интуитивно мы можем рассматривать как вычислимые, или, говоря его словами, как «эф-

фективно вычислимые», являются  -определимыми, или, эквивалентным образом, об-

щерекурсивными.  

Несколько позже, но независимо появилась статья Тьюринга (1936), в которой был 

введен еще один точно определенный класс интуитивно вычислимых функций, которые 

мы будем называть «функциями, вычислимыми по Тьюрингу», и относительно этого 

класса было высказано такое же утверждение; это утверждение мы называем тезисом 

Тьюринга. Вскоре Тьюрингом [1937] было показано, что его вычислимые функции — это 

то же самое, что  -определимые функции, и, следовательно, то же самое, что и общере-

курсивные функции. Поэтому тезисы Тьюринга и Чѐрча эквивалентны. Мы будем обычно 

ссылаться на оба эти тезиса как на тезис Чѐрча, а в связи с тем  его вариантом, в котором 

идет речь о «машинах Тьюринга»,— как на тезис Чѐрча — Тьюринга. В 1936 г. Пост неза-

висимо от Тьюринга опубликовал в довольно сжатом изложении формулировку, в основе 

ту же, что у Тьюринга. В 1943 г., основываясь на своей неопубликованной работе 1920— 

1922 гг., он опубликовал третий эквивалент аналогичного тезиса. Еще одну эквивалент-

ную формулировку дает теория алгоритмов Маркова [1951г]. 
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Область использования машины Тьюринга 

Понятие машины Тьюринга возникает в результате прямой попытки разложить интуи-

тивно известные нам вычислительные процедуры на элементарные операции: Тьюринг 

привел ряд доводов в пользу того, что повторения его элементарных операций было бы 

достаточно для проведения любого возможного вычисления. Поэтому машина Тьюринга 

(МТ) используется: 

1) если требуется доказать возможность алгоритмической реализации вычислитель-

ной функции;  

2) если требуется оценить вычислительную сложность или трудоемкость решения 

задачи по данному алгоритму, т.е. время выполнения алгоритма. 

Для этого мы моделируем работу произвольного алгоритма в терминах рассматривае-

мой задачи. Затем определяется класс машин-вычислителей, которые могут решить дан-

ную задачу – формально описываются правила работы машины, исходные данные, огра-

ничения и т.д. (поскольку в определении задачи ничего не говорится о программах так та-

ковых в привычном для нас понимании, то алгоритмическая разрешимость или неразре-

шимость, сводится к проблеме остановки произвольного алгоритма решения задачи). В 

качестве машины-вычислителя выберем машину Тьюринга, поскольку ранее было показа-

но, что всякая вычислимая функция реализуема на МТ и сведем решение данной задачи к 

существующим группам задач, для которых известно, что они решаются на МТ.  

Принцип работы машины Тьюринга. 

Какая именно команда программы будет выполняться в данный момент, опре-

деляется двумя параметрами: читаемым головкой символом и состоянием маши-

ны. 

Результатами выполнения команды являются: новый символ записанный на ленту в 

ту ячейку, напротив которой находится в данный момент головка; перемещение голов-

ки на одну позицию (ячейку) вправо или влево вдоль ленты; переход машины в новое 

состояние. В частных случаях новый символ может быть равен старому, перемещение 

может отсутствовать, состояние может остаться прежним. 

Формат команды имеет следующий вид: 

a q b r D, 

где а — читаемый символ; q — текущее состояние; b — символ записываемый в обозре-

ваемую ячейку ленты вместо символа а; r — новое состояние; D — направление движе-

ния головки машины относительно ленты. 

Символы выбираются из конечного алфавита А = {а1, . . . , a1}. 

В дальнейшем будем использовать трехсимвольный алфавит {е 0, 1}, причем е будет 

означать «пустой (empty)» символ — отсутствие информации в ячейке, а с помощью ну-

ля и единицы будут кодироваться все данные. Иногда используют двухсимвольный 

алфавит А = {е, 1}. В этом случае числа кодируются только единицами: нуль кодирует-

ся одной единицей, число один кодируется двумя единицами, а число х кодируется х + 1 

единицами Это — единичная система счисления. Однако она плоха с точки зрения 

сложности задач (см. гл. 5). 

Множество состояний обозначим Q= { q1, . . . , qk}. Направление движения D выби-

рается из множества {L, R, S}   где L — движение влево, R — движение вправо, S — 

отсутствие движения. 

Таким образом, команда  1 q3 0 q6 L означает: если, находясь в состоянии q3, машина 

Тьюринга обозревает ячейку ленты в которой записана 1, то машина должна записать в 
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эту ячейку 0, произвести сдвиг головки относительно ленты влево на одну ячейку и 

перейти в состояние q6. 

Это описание действия, соответствующего команде говорит о том, что команда 

может рассматриваться как отображение пар (a, q) в тройки (b, r, D), т. е. отображе-

ние 

AxQ=> AxQx {L, R, S}. 

Данное отображение является частичным, так как не для любой пары-аргумента 

существует тройка-результат. Но для произвольной пары существует не более од-

ной тройки, т. е. отображение не является многозначным. 

Все действия производятся в дискретном времени. Иначе говоря, можно рассматри-

вать целочисленные моменты времени t = = 0, 1, 2, 3, . . .  Любое изменение происходит 

мгновенно в момент t = i и ничего не меняется между двумя соседними моментами време-

ни. 

Работает машина Тьюринга следующим образом. Стартовая конфигурация: на ленте 

находятся исходные данные — строка символов в алфавите А, состояние внутренней па-

мяти соответствует некоторому оговоренному (всегда одному и тому же) начальному 

состоянию, например, q1. При этом головка машины обозревает некоторую ячейку лен-

ты с записанным там символом а. Нормальным считается начальное положение головки 

напротив самого левого непустого символа, т. е. не совпадающего с е. 

Момент старта рассматривается как нулевой момент времени. В момент старта вы-

полняется первая команда, это единственная команда, начинающаяся с пары (a, q1). В 

результате выполнения команды машина перейдет в новое состояние, и головка машины 

прочтет новый символ с ленты. Эта пара (новый символ, новое состояние) станет 

начальной частью следующей команды и т. д. Машина будет продолжать работать в 

дискретном времени, шаг за шагом переходя из состояния в состояние, и постепенно из-

меняя содержимое ленты. Наконец, для некоторой пары (a, q) не окажется команды в 

программе. Такая ситуация считается завершающей. Машина прекращает функциониро-

вание. Оставшаяся запись на ленте считается записью результата. 

Таким образом, машина Тьюринга реализует вычисление некоторой функции — 

отображения исходной строки символов в результирующую строку. 

Существует несколько способов представления программы машины Тьюринга (мно-

жества команд). Два наиболее употребительных: 

1) двумерная таблица (рис. 1.2); 

2) диаграмма (нагруженный псевдограф). 

В двумерной таблице строки помечаются различными символами алфавита, а столб-

цы — именами различных состояний машины, т. е. таблица имеет размер Ik. Каждой ко-

манде программы 

Состояние 

Символ 
q1 … q … qk 

a1      

…      

   brD   

…      

a1      

 

Рис. 1.2. Табличная форма программы машины Тьюринга 

 

соответствует единственная клетка в таблице. Она определяется для команды a q b r D  

следующим образом: в клетку, находящуюся на пересечении строки, помеченной сим-
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волом я, и столбца помеченного состоянием q. вписывается тройка b r D. 

 Для некоторых пар (а, q) в программе нет команд, следовательно, соответствующие 

клетки таблицы остаются пустыми. При достижении в процессе работы пустой клетки 

машина Тьюринга останавливается. 

В качестве простого примера приведем программу вычисления функции S(x) = x 

+ 1, т. е. увеличение аргумента на единицу (рис. 1.3). Используем алфавит A = {e, 0, 

1}, причем x будем кодировать последовательностью нулей и единиц так. как это 

принято при двоичном кодировании целых неотрицательных чисел. 

предположим также, что в момент старта головка машины Тьюринга находится напро-

тив крайней левой ячейки с символом 1.  

 

 

 

 
q1 q2 q3 q4 

0 0q1R 1q3L 0q3L  

1 1q1R 0q2L 1q3L  

e eq2L 1q4S eq4R  

Р и с. 1.3. Программа машины Тьюринга для вычисления функции S(x)=x+1 

Первая выполняемая команда —1q11q1R оставляет 1 в ячейке ленты, оставляет 

неизменным состояние q1 и производит сдвиг головки вправо по ленте. В новой читае-

мой ячейке может оказаться любой из трех символов алфавита. Если это 0 или 1, то про-

изводится дальнейшее движение вправо до окончания кода числа х. Если же встретится 

символ е, то это будет означать, что код числа закончился и головка находится справа 

от младшей цифры кода числа. После этого, собственно, и начинается процесс при-

бавления единицы. Если младшая цифра — 0 то достаточно заменить се на 1 (команда 0 

q2 1 q3 L) и начать обратное движение к исходной позиции. Если младшая цифра — 1  то 

результатом в данной ячейке будет 0 (сложение по mod 2), и единица перейдет в следу-

ющий по старшинству разряд (влево). Процесс распространения переноса может закон-

читься где-то внутри кода числа и тогда необходимо осуществить «прокрутку» ленты 

так, чтобы машина остановилась на крайней левой единице кода результата (x+1) 

Второй пример - программа вычисления функции Z(x) = 0(x) = 0, превраща-

ющей запись любого аргумента. x в запись нуля (рис. 1.4). Эта программа стирает с 

ленты код x, т. е. запол 

 q1 q2 

0 eq1R   

1 eq1R   

е 0q2R   

P 11 с. 1.4. Программа машины Тьюринга для вычисления функции 0(x) = 0 

няет клетки символом е и перед остановкой записывает в текущую клетку 0. 

Более длинная программа получается для вычисления функции I
n
m (x1,x2, … , xn) выбираю-

щей m-й аргумент из последовательности п аргументов, 1  m  n, I
n

m (х1, х2, ... ,xn)=xm (рис. 

1.5). 

Представление последовательности п аргументов зададим на ленте в виде записанных 

один за другим через разделитель — пустую клетку е — двоичных кодов хi. Программа, 

написанная для конкретного значения т, действует следующим образом. Сначала стирается 

(заменяется на е ...е) первый аргумент, затем стирается второй, ..., стирается (т - 1)-й; затем 
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подтверждается т-й аргумент; затем стираются оставшиеся аргументы. 

 q1 q2 
… qm-1 qm qm+1 

… qn qn+1 

0 eq1R eq2R … eqm-1R 0qmR eqm+1R  eqnR  

1 eq1R eq2R … eqm-1R 1qmR eqm+1R  eqnR  

е eq2R eq3R … eqmR eqm+1R eqm+2R  eqn+1R  

Рис. 1.5. Программа машины Тьюринга для вычисления функции 

I
n

m(x1, x2, … , xn) 

Другой способ представления программы машины Тьюринга — диаграмма (граф). 

Диаграмма представляет собой геометрический объект, состоящий из вершин (обозна-

чаемых точками или окружностями) и дуг (рисуемых в виде направленных отрезков прямой 

со стрелкой на одном из концов или в виде отрезков не самопересекающихся кривых). 

Каждой вершине приписывается состояние машины Тьюринга: таким образом вершин в 

диаграмме ровно столько, сколько имеется состояний. Дуге, соединяющей две вершины qi и 

qj, приписывается некоторый символ а алфавита А и двойка b D так, что запись a qi b qj D об-

разует команду программы машины Тьюринга. 

Дуга (стрелка) символизирует переход из состояния qi в состояние qj при условии, что го-

ловка читает символ а. Одновременно с этим символ а заменяется на символ b и совершается 

движение D.  

Программа вычисления Z(x) = О может быть изображена диаграммой, изображенной на 

рис. 1.7. 

Алан Тьюринг сформулировал тезис, связывающий понятие алгоритма и машины: «Для 

всякого (неформального) алгоритма может быть построен Тьюрингов алгоритм (программа 

машины Тьюринга), дающий при одинаковых исходных данных тот же результат». 

Это недоказуемое математическими методами утверждение играет важную роль при 

проектировании программного обеспечения, особенно на начальных этапах проектирова-

ния. Первоначальная постановка задачи зачастую является словесной, неформальной. Если 

ее решение удается описать в виде конечной последовательности шагов, каждый из кото-

рых достаточно прост, то в соответствии с Тезисом Тьюринга это означает, что может 

быть написана программа на каком-либо алгоритмическом языке, решающая поставлен-

ную задачу.  

 

1. 8 Лекция №8 (2 часа). 

Тема: «Рекурсивный алгоритм, нормальные алгоритмы Маркова. Понятие эффективности и 

сложности алгоритмов»                      
                         

1.8.1 Вопросы лекции: 

1. Рекурсивные функции. 

2. Рекурсивный алгоритм. 

3.нормальные алгоритмы Маркова.  
4.Понятие эффективности и сложности алгоритмов 

1.8.2 Краткое содержание вопросов:  

1. Рекурсивные функции. 

2. Рекурсивный алгоритм. 

 

Рекурсивные функции. 

Всякий алгоритм однозначно ставит в соответствие исходным данным (в случае если 

определен на них) определенный результат. Поэтому с каждым алгоритмом однозначно 

связана функция, которую он вычисляет. Исследование этих вопросов привело к созданию 
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в 30-х годах прошлого века теории рекурсивных функций. В этой теории, как и вообще в 

теории алгоритмов принят конструктивный, финитный подход, основной чертой которого 

является то, что все множество исследуемых объектов (в данном случае функций) строит-

ся из конечного числа исходных объектов – базиса – с помощью простых операций, эф-

фективная вычислимость которых достаточна очевидна. Операции над функциями будем 

называть операторами. 

Будем рассматривать только числовые функции, т.е. функции, аргументы и значения 

которых принадлежат множеству натуральных чисел N (в теории рекурсивных функций 

полагают N=0, 1, 2, …). Иначе говоря, числовой n-местной функцией  nxxxf ,,, 21   

называется функция, определенная на некотором подмножестве 
nNN   с натуральными 

значениями. Если область определения совпадает с множеством 
nN , т.е. NNf: n  , то 

говорят, что функция f всюду определенная, в противном случае – частично определенная. 

Например:   yxyxf ,  – всюду определенная двуместная функция. 

  yxyxf , – частично определенная функция (она определена при x  y). 

Рекурсивным определением функции принято называть такое  определение, при 

котором значения функции для данных аргументов определяются значениями функции 

для более простых аргументов (уже вычисленных) или значениями более простых 

функций. 

Простейшим примером рекурсивного определения являются числа Фибоначчи, 

представляющие собой последовательность чисел   nf , удовлетворяющих условиям 

         12,11,10  nfnfnfff , 

1) 0(x)=0 – нуль-функция. 

2) S(x)=x+1– функция следования. 

3)   mnm xxxxI ,,, 21  , где nm ,,1  – проектирующая функция. 

Оператор суперпозиции. Суперпозиция является мощным средством получения 

новых функций из уже имеющихся. Напомним, что суперпозицией называется лю-

бая подстановка функций в функции. Оператором суперпозиции n

mP  называется 

подстановка в функцию от m переменных m функций от n одних и тех же перемен-

ных. Например, для функций  

      nmnm xxxgxxxgxxxh ,,,,,,,,,,,, 2121121   

1 gОператор примитивной рекурсии. Оператор примитивной рекурсии nR  определя-

ет  1n  -местную функцию f через n-местную функцию g и  2n  -местную 

функцию h следующим образом: 

1. Функции  x0 ,  xS  и  xI n

m  для всех натуральных n, m, где m  n, являются прими-

тивно рекурсивными. 

2. Если g1(x1, x2, …, xn), …, gm(x1, x2, …, xn), h(x1, x2, …, xn) примитивно рекурсивные, 

то  m

n

m g,,gh,P 1  – примитивно-рекурсивные функции для любых натуральных n, 

m. 
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3. Если  nxxg ,,11   и  zyxxh n ,,,,1   – примитивно рекурсивные функции, то 

 hgRn ,  – примитивно-рекурсивная функция. 

4. Других примитивно-рекурсивных функций нет. 

1. Сложение   yxyxf  ,  примитивно-рекурсивно: 

2. Умножение   yxyxf  ,  примитивно-рекурсивно: 

Возведение в степень   yxyx,f exp  примитивно-рекурсивно 

 

Нормальные алгоритмы Маркова. 

Третий тип алгоритмических моделей – это преобразование слов в произвольных 

алфавитах, в которых элементарными операциями являются подстановки, т.е. замены ча-

сти слова (подслова) другим словом. Преимущества этого типа моделей заключаются в 

максимальной абстрактности и возможности применить понятие алгоритма к объектам 

произвольной, не обязательно числовой природы. Примерами моделей этого типа являют-

ся канонические системы Поста и нормальные алгоритмы Маркова. При этом общность 

формализации в конкретной модели не теряется и доказывается сводимость одних моде-

лей к другим, т.е. показывается, что всякий алгоритм, описанный средствами одной моде-

ли, может быть описан средствами другой. 

Тезисы об «универсальности» алгоритмов: тезис Чѐрча, тезис Тьюринга, принцип 

нормализации Маркова. Эквивалентность различных теорий алгоритмов. Алгорит-

мические проблемы. 

Тьюрингом [1937] было показано, что его вычислимые функции — это то же самое, 

что  -определимые функции, и, следовательно, то же самое, что и общерекурсивные 

функции. Поэтому тезисы Тьюринга и Чѐрча эквивалентны. Мы будем обычно ссылаться 

на оба эти тезиса как на тезис Чѐрча, а в связи с тем  его вариантом, в котором идет речь о 

«машинах Тьюринга»,— как на тезис Чѐрча — Тьюринга. В 1936 г. Пост независимо от 

Тьюринга опубликовал в довольно сжатом изложении формулировку, в основе ту же, что 

у Тьюринга. В 1943 г., основываясь на своей неопубликованной работе 1920— 1922 гг., он 

опубликовал третий эквивалент аналогичного тезиса. Еще одну эквивалентную формули-

ровку дает теория алгоритмов Маркова [1951г]. 

Благодаря взаимной сводимости моделей в общей теории алгоритмов удалось выра-

ботать инвариантную по отношению к моделям систему понятий, позволяющую говорить 

о свойствах алгоритмов независимо от того, какая формализация алгоритма выбрана. Эта 

система понятий основана на понятии вычислимой функции, т.е. функции, для вычисле-

ния которой существует алгоритм. 

Меры сложности алгоритмов. Классы задач P и NP. 

Основы анализа алгоритмов 

 Одну и ту же задачу могут решать много алгоритмов. Эффективность работы каж-

дого из них описывается разнообразными характеристиками. 

 При анализе алгоритма определяется количество "времени", необходимое для его 

выполнения. Это не реальное число секунд или других промежутков времени, а приблизи-

тельное число операций, выполняемых алгоритмом. Число операций и измеряет относи-

тельное время выполнения алгоритма. Таким образом, иногда мы будем называть "време-
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нем" вычислительную сложность алгоритма. Фактически количество секунд, требуемое 

для выполнения алгоритма на компьютере непригодно для анализа, поскольку нас интере-

сует только относительная эффективность алгоритма, решающего конкретную задачу. 

Действительно алгоритм не становится лучше, если его перенести на более быстрый ком-

пьютер, или хуже, если его исполнять на более медленном компьютере. 

 Во-вторых, фактическое количество операций алгоритма на тех или иных вводи-

мых данных не предоставляет большого интереса и мало его характеризует. Вместо этого 

важной характеристикой является зависимость числа операций конкретного алгоритма от 

размера входных данных. Мы можем сравнить два алгоритма по скорости роста числа 

операций от роста входных данных. Именно скорость роста играет ключевую роль. 

 При анализе алгоритмов учитывается сложность алгоритмов по времени, однако 

нужно учитывать и то, сколько памяти нужно тому или иному алгоритму. На ранних эта-

пах развития компьютеров этот анализ носил принципиальный характер. Нередко прихо-

дилось выбирать более медленный алгоритм, если он требовал меньше памяти. Разработ-

чики современных программ не ощущают потребность в экономии памяти, в результате 

чего компьютер морально устаревает задолго до их физической негодности. 

 Скоростью роста алгоритма называется скорость роста числа операций при возрас-

тании объѐма входных данных. Нас интересует только общий характер поведения алго-

ритма, а не подробности этого поведения. Подводя итоги, при анализе алгоритмов нас бу-

дет интересовать скорее класс скорости роста, к которому относится алгоритм, нежели 

точное количество выполняемых им операций аддитивного и мультипликативного типа. 

 Некоторые часто встречающиеся классы функций приведены в таблице. В этой 

таблице приведены значения функций из данного класса на широком диапазоне значений 

аргумента. Видно, что при небольших размерах входных данных значения функций отли-

чаются незначительно, однако при росте этих размеров разница существенно возрастает. 

Во-вторых, быстродействующие функции доминируют над функциями с более медлен-

ным ростом. Поэтому если мы обнаружим, что сложность алгоритма представляет собой 

сумму двух или нескольких таких функций, то будем часто отбрасывать все функции 

кроме тех, которые растут быстрее всего. Если, например, установлено, что алгоритму 

нужно x
3
-30x операций, то будем считать, что сложность алгоритма растѐт как x

3
. Причи-

на этого в том, что уже при 100 входных данных разница между x
3
 и x

3 
-30x составляет 

лишь 0,3%. 

 Таблица классов роста функций 

n log2n n
2 

n
3 

2
n
 n! 

1 

2 

5 

10 

15 

20 

30 

0 

1 

2.3 

3.3 

3.9 

4.3 

4.9 

1 

4 

25 

100 

225 

400 

900 

1 

8 

125 

1000 

3375 

8000 

27000 

2 

4 

32 

1024 

32768 

1048576 

1073741824 

1 

2 

120 

362880 

-------- 

-------- 

-------- 

 

 Скорость роста сложности алгоритма играет важную роль, скорость роста опреде-

ляется старшим, доминирующим членом формулы. Отбросив все младшие члены, мы по-

лучаем то, что называется порядком функции или алгоритма, скоростью роста сложности 

которого она является. Алгоритмы можно сгруппировать по скорости роста их сложно-

стей. Мы вводим три категории: алгоритмы, сложность которых растѐт по крайней мере 

так же быстро, как данная функция (класс Ω(f) - читается Омега большое), алгоритмы, 

сложность которых растѐт с той же скоростью(класс О(f) - читается О большое) и алго-

ритмы, сложность которых растѐт медленнее, чем эта функция (класс θ(f) - читается Тета 

большое). 
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 Мы занимаемся эффективностью алгоритмов, поэтому класс Ω(f) не будет пред-

ставлять для нас большого интереса: например в Ω(n
2
) входят все функции, растущие 

быстрее, чем n
2
. 

 Класс О(f) состоит из функций, растущих не быстрее f. Функция f образует верх-

нюю границу для класса О(f). Проверить принадлежит ли данная функция классу О(f) 

можно двумя способами: 

 1. С формальной точки зрения функция g принадлежит классу O(f), если g(n)

cf(n) для всех n, больших некоторого n0, и для некоторой положительной константы с. 

 2. g принадлежит O(f), если lim(g(n)/f(n)) = c (n->  ) для некоторой константы с. 

 По правилу Лопиталя можно заменить предел самих функций пределом их произ-

водных. 

 Через θ (f) мы обозначаем класс функций, растущих с той же скоростью, что и f. С 

формальной точки зрения этот класс представляет пересечение двух предыдущих классов 

θ(f)= Ω(f)O(f). При сравнении алгоритмов нас будут интересовать такие, которые реша-

ют задачу быстрее, поэтому класс θ(f) нам не очень интересен. 

 Алгоритмы полиномиальной сложности (класс Р), Алгоритмы недетерми-

нированной полиномиальной сложности (класс NP задач),  

 

1. 9 Лекция № 9 (2 часа). 

Тема: «Исчисление высказываний и предикатов. Математические (формальные аксиоматические)  

теории первого порядка»                      
                         

1.9.1 Вопросы лекции: 

1. Формальные системы.  

2. Исчисление высказываний. 
 

1.9.2 Краткое содержание вопросов:  

1. Формальные системы.  

2. Исчисление высказываний. 

Исчисление высказываний 

Формальная теория или исчисление строится следующим образом: 

- Определяется множество формул, или правильно построенных выражений, образующее 

язык теории. Это множество задается конструктивными средствами (как правило, индук-

тивным определением) и, следовательно, оно перечислимо, обычно оно и разрешимо. 

- Выделяется подмножество формул, называемых аксиомами теории,  

- Задаются правила вывода теории. Правило вывода  R F F Gn1,..., ,  это вычислимое 

отношение на множестве формул. Формулы 1F Fn,...,  называются посылками правила 

R, а G  его следствием или заключением. 

Выводом формулы В из формул 1A An,...,  называется последовательность фор-

мул 1F Fm,...,  такая, что BFm  , а любая Fi есть либо аксиома, либо одна из исходных 

формул 1A An,..., , либо непосредственно выводима из 1 1F F i,...,   по одному из пра-

вил вывода. В выводима из 1A An,..., , если существует вывод В из 1A An,..., . Этот 

факт обозначается 1A A Bn,...,  . 1A An,...,  называются гипотезами или посылками 

вывода. 

Доказательством формулы В в теории Т называется вывод В из пустого множества 

формул, т.е. вывод, в котором в качестве исходных формул используются только аксиомы. 

Формула В, для которой существует доказательство, называется формулой, доказуемой в 

теории Т или теоремой теории  Т. Факт доказуемости формулы В обозначается  B . 
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Очевидно, что присоединение формул к гипотезам не нарушает выводимости. Поэтому, 

если  B (В – доказуема), то A B  (то есть В  доказуема и с некоторой формулой А).  

Особое внимание уделяется тождественно-истинным высказываниям, поскольку они 

должны включаться в любую теорию в качестве общелогических законов. Их порождение 

и является задачей исчисления высказываний. 

  

Тавтологии 

Интерпретацией формулы А алгебры высказываний называется всякий набор ис-

тинностных значений атомов, входящих в формулу А. Таблица, содержащая всевозмож-

ные интерпретации формулы и соответствующие этим интерпретациям значения форму-

лы, называется истинностной таблицей. 

Пусть F
1 

и F
2
 - две формулы алгебры высказываний, а А

1
, А

2
,... А

n
 - набор простых 

высказываний, входящих, по крайней мере, в одну из формул F
1
, F

2
. Формулы называются 

равносильными, если при всех значениях истинности А
1
, А

2
,... А

n
, значения истинности F

1 

и F
2
 совпадают.  Очевидно, что равносильные формулы имеют одинаковые истинностные 

таблицы, и, наоборот, если истинностные таблицы формул совпадают, то они равносиль-

ны. Отношение равносильности формул является отношением эквивалентности:  

1. АА для любой  формулы А. 

2. Если АВ, то ВА для любых формул А и В. 

3. Если АВ и ВС, то АС для любых формул А, В, С. 

Поэтому множество всех формул разбивается на классы эквивалентности – классы равно-

сильных формул. Все формулы из одного класса характеризуются одной истинностной 

таблицей. 

В каждой своей интерпретации формула принимает одно из двух истинностных значе-

ний: И или Л.  Иначе говоря, она задает функцию вида В
nВ. Функция вида В

nВ назы-

вается n–местной истинностной функцией или функцией алгебры высказываний. Две рав-

носильные формулы определяют одну и ту же истинностную функцию. 

Исходя из данного набора n атомов, можно составить счетное множество формул. Од-

нако все эти формулы описывают лишь конечное множество истинностных функций. 

Число n –местных истинностных функций равно 
n22 . 

Для некоторых классов формул применяют специальные названия: 

Формула А называется общезначимой (тождественно истинной, тавтологией), если во 

всех своих интерпретациях она принимает значение И. 

Формула А называется невыполнимой (тождественно ложной, противоречием), если во 

всех своих интерпретациях она принимает значение Л. 

Формула А называется нейтральной, если она не является ни общезначимой, ни невы-

полнимой. 

Формула А называется выполнимой, если она общезначимая или нейтральная. 

Формула А называется необщезначимой, если она невыполнимая или нейтральная. 

Если АВ является тавтологией, то говорят, что А логически влечет В, или, что В явля-

ется логическим следствием А. Если АВ есть тавтология, то говорят, что А и В логически 

эквивалентны. Истинностные таблицы дают эффективную процедуру для решения вопро-

са о том, является ли данная формула тавтологией. 

Имеют место следующие свойства общезначимых формул: 

1. Если Е общезначимая формула, содержащая атомы А1,..., Аn, то формула Е , получа-

ющаяся из Е одновременной подстановкой формул F1,..., Fn вместо атомов А1,..., Аn со-

ответственно, также общезначимая. 
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2. Если A и BA , то B . 

3. E тогда и только тогда, когда E – противоречие. 

Правила следования 

Правила следования являются логической основой содержательных дедуктивных рас-

суждений. Они позволяют судить о правомерности некоторых следований, исходя из пра-

вомерности других следований: 

1. Введение импликации – если  BA,  , то BA . В практике доказательства 

обычно к тем предложениям, которые уже доказаны (множество Г), добавляется предло-

жение А и, исходя из Г и А, выводится В. После чего говорят "теорема доказана", т.е. до-

казана АВ. За этим оборотом скрывается неявное прменение данного правила – переход 

от следования BA,   к следованию BA . 

2. Удаление дизъюнкции – если CA,   и CB,  , то CBA,  .  

3. Введение отрицания – если  BA,   и  BA,  , то A . Это правило явля-

ется основой косвенного доказательства – доказательства методом от противного. 

4. Удаление импликации – если A  и BA , то B  – modus ponens. 

5. Введение конъюнкции – если A  и B , то BA . 

6. Первое удаление конъюнкции – если  BA , то A . 

7. Второе удаление конъюнкции – если BA , то B . 

8. Первое введение дизъюнкции – если A , то BA . 

9. Второе введение дизъюнкции – если B , то BA . 

10. Удаление двойного отрицания – если A , то A . 

11. Слабое удаление отрицания – если A  и A , то B . 

12. Введение эквивалентности – если BA  и AB , то BA . 

13. Первое удаление эквивалентности – если BA , то BA . 

14. Второе удаление эквивалентности – если BA , то AB . 

15. Удаление отрицания конъюнкции – если  BA , то BA  . 

16. Удаление отрицания дизъюнкции – если  BA , то BA  . 

17. Удаление отрицания импликации – если  BA , то BA  . 

18. Удаление отрицания эквивалентности – если  BA , то 

   BABA  . 

19. Силлогизм – если BA  и CB , то  CA . 

20. Контрапозиция – если BA , то AB  . 

21. Modus tollens – если B  и BA ,то A . 

22. Дизъюнктивный силлогизм – если BA и A , то B . 

23. Соединение посылок – если  CBA  , то  CBA  . 

24. Разъединение посылок – если CBA  , то  CBA  . 

25. Перемена посылок – если  CBA  , то  CAB  . 

26. Конструктивная дилемма – если BA , DC , CA , то 

DB . 

27. Деструктивная дилемма – если BA , DC , DB  ,  то 

CA  . 

 

Система аксиом для исчисления высказываний 

Аксиомы: используют две системы аксиом, одна использует все логические связки 

I1. A(BA) 
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I2. (AB)(A(BC))(AC) 

I3. (A&B)A 

I4. (A&B)B 

I5. A(B(A&B)) 

I6. A(AB) 

I7. B(AB) 

I8. (AC)((BC)((AB)C)) 

I9. (AB)((AB)A) 

I10. AA 

Другая система аксиом использует только две связки  и . При этом сокращается ал-

фавит исчисления и соответственно определение формулы. В результате система аксиом 

становится компактнее: 

II1. A(BA) 

II2. (A(BC))((AB)(AC)) 

II3. (AB)((AB)A) 

Эти две системы равносильны в том смысле, что порождают одно и то же множество 

формул. Это утверждение нуждается в доказательстве, которое заключается в том, что по-

казывается выводимость всех аксиом II из аксиом I, и наоборот, с учетом того, что  и & 

рассматриваются в II не как связки, а как сокращения для некоторых его формул: АВ за-

меняет АВ, А&B заменяет (АВ). Возможны и другие системы аксиом, равносиль-

ные приведенным. 

Правила вывода: правило подстановки  Если    выводимая формула, содержащая А, 

то выводима формула   B , получающаяся из заменой всех вхождений  А на произволь-

ную формулу B  
 
 





A

B
. 

Правило заключения Если   и   выводимые формулы, то выводима   

 
 



,
. 

В этом описании исчисления высказываний аксиомы являются формулами исчисления. 

Формулы использующиеся в правилах вывода это схемы формул или метаформулы. 

Например: 1) Формула AA выводима из II . 

 Подставим в II2 АА вместо В и А вместо С 

(A((AA)A))((A(AA))(AA). 

 Подставим в II1 AA вместо B:  A((AA)A). 

 По правилу заключения из шагов 1 и 2 следует (A(AA))(AA). 

 Подставим в II1 А вместо В:  A(AA). 

 По правилу заключения из шагов 3 и 4 следует AA. 
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То есть  A A . 

2) A B A  . 

Пусть А - выводима, тогда из А и II1 по правилу заключения получаем 

 A A B A

B A

,  


, что и доказывает искомую выводимость. 

Всякую доказанную выводимость вида , где Г - список формул, - формула, 

можно рассматривать как правило вывода 



, которое можно присоединить к уже имею-

щимся. 

Полученную  выводимость A B A   вместе с правилом подстановки можно 

рассматривать как правило 


 
, если   выводима, то выводима и , где   

любая формула. 

3) A B B C A C  ,  .   B C A B C   по новому правилу 


 
. 

 Из A(BC) и II2 по правилу заключения следует (AB)(AC), следовательно 

   B C A B A C    . 

 Из (AB) и (AB)(AC) по правилу заключения следует AC, учитывая 2., полу-

чим искомую выводимость. 

При переходе от первого шага ко второму неявно использовалось следующее свойство 

выводимости: если  (Г  список формул), а  , то  . Это свойство 

следует из определения выводимости. 

Непротиворечивость теории исчисления высказываний 

Выше были введены понятия "доказательство"  и "вывод", и на их основе – свой-

ство доказуемости формул и отношение выводимости между формулами. применение 

этих понятий непосредственно на основе их определений связано со значительными труд-

ностями. 

Рассмотрим свойства доказуемости и выводимости. 

МТ1. а) n,i,AA,...,A in 11  . Другими словами, из данного множества посылок выво-

дима каждая из посылок этого множества. 

б) Если knn BA,...,A,...,BA,...,A  111  и CB,...,B k 1 , то CA,...,A n 1 . Другими 

словами, если из данного множества выводима каждая из формул некоторого другого 

множества, а из этого другого множества посылок выводима некоторая формула С, то она 

выводима и из первоначального множества посылок. 

В алгебре высказываний были введены два важнейших понятия – общезначимости и ло-

гического следования. В исчислении высказываний (в форме теории L) подобную роль 

играют понятия доказуемости и выводимости: 

(1) BA  означает, что формула BA  общезначима, т.е., что при всех наборах 

значений атомов, входящих хотя бы в одну из формул А или В, формула BA  прини-

мает только значение И. 
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(2) BA  означает, что из формулы А следует формула В, т.е., что при всех наборах зна-

чений атомов, входящих хотя бы в одну из формул А или В, при которых формула А имеет 

значение И, формула В также имеет значение И. 

(3) BA означает, что формула BA  доказуема, т.е., что существует конечная 

последовательность формул, заканчивающаяся формулой BA , причем каждая форму-

ла этой последовательности либо аксиома, либо получена из некоторых двух предше-

ствующих формул последовательности по правилу МР. 

(4) BA означает, что из формулы А выводима формула В, т.е. существует конечная 

последовательность формул, заканчивающаяся формулой В, причем каждая из формул 

этой последовательности либо формула А, либо аксиома, либо получена из некоторых 

двух предшествующих формул по правилу МР. 

Эти понятия связаны между собой. Так предложением 1а) б) установлена связь между 

общезначимостью и следованием: BA  тогда и только тогда, когда BA .  

Следующие утверждения устанавливают связь между доказуемостью и выводимостью, 

между общезначимостью и доказуемостью. 

МТ2. Пусть Г – любое множество формул. Тогда: а) если BA , то BA,  . В 

частности,  б) если BA , то BA . 

МТ3. Теорема дедукции. Пусть Г – любое множество формул. Тогда: а) если ,  , 

то  . В частности, б) если  , то  . 

Например: В качестве первого применения теоремы дедукции покажем, что II3 выво-

дима из I. 

 Подставим в I9  A вместо А  (AB)(( AB)A). 

 Двойное применение правила заключения дает AB, ABA. 

 Из I10 по правилу заключения следует, что AA, то по транзитивности выводи-

мости AB, ABA. 

 Переставим гипотезы (из определения выводимости следует, что их порядок не имеет 

значения) AB, AB A. 

 Применяя дважды к шагу 4 теорему дедукции получим II3 (AB)(( AB)A). 

Распространенным методом математических доказательств является метод доказатель-

ства от противного: ―Если   ,   и  , , то ‖. 

Действительно, по теореме дедукции, если   ,   и  , , то      

и   .Из этих импликаций и аксиомы I9 двойным применением правила 

заключения получаем  . 

Обобщая результаты МТ2 и МТ3 можно утверждать, что BA  тогда и только то-

гда, когда BA . Тем самым установлена связь между доказуемостью и выводимостью. 

Формальная аксиоматическая теория называется непротиворечивой, если ни для какой 

формулы А  формулы А и А не являются обе доказуемыми в ней. Формальная аксиома-

тическая теория называется противоречивой, если  существует формула А, для которой 

одновременно А и А доказуемы в этой теории. 

МТ4. Если E , то E  для любой формулы Е. 

Следствие. Теория исчисления высказываний непротиворечива. 
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Полнота теории исчисления высказываний 

Логически непротиворечивое исчисление называется полным относительно об-

щезначимости, если в нем доказуема всякая общезначимая формула. 

МТ6. В исчислении высказываний, если E , то E  для любой формулы Е. 

Следствие. Теория исчисления высказывания полна относительно общезначимости.  

 

Разрешимость теории исчисления высказываний 

Известны такие классы вопросов (общие вопросы), что на любой вопрос из данного 

класса можно найти ответ с помощью единого метода, причем метод применим к любому 

вопросу рассматриваемого класса и в результате его использования будет непременно по-

лучен определенный ответ: "да" или "нет". Метод позволяющий ответить "да" или "нет" 

на любой частный вопрос общего вопроса, называется разрешающей процедурой или раз-

решающим алгоритмом для этого класса вопросов, а проблема отыскания алгоритма 

называется проблемой разрешения для общего вопроса. Не для любого класса вопросов 

имеются разрешающие алгоритмы. Например, не существует разрешающего алгоритма 

для класса вопросов: "Имеет ли произвольное диофантово уравнение  F(x1 ,…,xn )=0, где F 

– многочлен с целыми коэффициентами, решения в целых числах?" Проблема существо-

вания такого алгоритма известна как десятая проблема Гильберта, ее алгоритмическая не-

разрешимость установлена в 1970 г. советским математиком Ю. В. Матиясевичем. 

Проблемы разрешения можно ставить и в формальных аксиоматических теориях: 

1. Является ли данное слово алфавита  теории формулой? 

2. Является ли данная конечная последовательность формул доказательством? 

3. Доказуема ли данная формула? 

Проблемы разрешения для первых двух классов  в любой формальной аксиомати-

ческой теории решаются положительно – разрешающие алгоритмы вытекают непосред-

ственно из определений формулы и доказательства. В соответствии с этими алгоритмами 

можно всегда за конечное число шагов установить, явялется ли данное слово формулой и 

является ли данная конечная последовательность доказательством. 

Проблема разрешения для третьего класса вопросов если и существует, то не выте-

кает непосредственно из определения. Хотя именно она представляет наибольший инте-

рес, так как доказуемые формулы логической теории выражают законы логики. 

Формальная аксиоматическая теория называется разрешимой, если проблема раз-

решения этой теории решается положительно, т.е. если существует алгоритм, позволяю-

щий за конечное число шагов относительно любой формулы языка теории установить, до-

казуема ли в данной теории эта формула или нет. 

Следствие из МТ4 и МТ6. Теория исчисления высказываний разрешима. 

 

Принципы построения формальных теорий. Аксиоматические системы, фор-

мальный вывод. 

 Формальные системы - это системы операций над объектами, понимаемыми как 

последовательность символов (т.е. как слова в фиксированных алфавитах), сами операции 

также являются операциями над символами. Термин "формальный" подчѐркивает, что 

объекты и операции над ними рассматриваются чисто формально, без каких бы то ни бы-

ло содержательных интерпретаций символов. Предполагается, что между символами не 

существует никаких связей и отношений, кроме тех, которые явно описаны средствами 

самой формальной системы. 

 Исторически теория формальных систем, так же как и теория алгоритмов, возникла 

в рамкам оснований математики при исследовании строения аксиоматических теорий и 

методов доказательства в таких теориях. Всякая точная теория определяется, во-первых, 

языком, т.е. некоторым множеством высказываний, имеющих смысл с точки зрения этой 

теории, и, во-вторых, совокупностью теорем - подмножеством языка, состоящим из вы-

сказываний, истинных в данной теории. 
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 В математике с античных времѐн существовал образец систематического построе-

ния теории - геометрия Евклида, в которой все исходные предпосылки сформированы яв-

но, в виде аксиом, а теоремы выводятся из этих аксиом с помощью цепочек логических 

рассуждений, называемых доказательствами. Однако, до середины 19 века математиче-

ские теории, как правило, не считали нужным явно выделять все исходные принципы, 

критерии же строгости доказательств и очевидности утверждений в разные времена были 

различными и явно не формулировались. Время от времени это приводило к необходимо-

сти пересмотра основ той или иной теорий. Известно, например, что основания диффе-

ренциального и интегрального счисления, разработанных в 18 век Ньютоном и Лейбни-

цем, в 19 века подверглись серьѐзному пересмотру. Математический анализ в его совре-

менном виде опирается на работы Коши, Больцано и Вейерштрасса по теории пределов. 

 В конце 19 века такой пересмотр затронул общие принципы доказательств в мате-

матических теориях. Это привело к созданию новой отрасли математики - оснований ма-

тематики, предметом которой и стало построение теорий, чтобы в них не возникало про-

тиворечий. Одной из фундаментальных идей, на которые опираются исследования по ос-

нованию математики, является идея формализации теорий, т.е. последовательного прове-

дения аксиоматического метода построения теорий.  

При этом не допускается пользоваться какими-либо предположениями об объектах 

теории, кроме тех, которые выражены явно в виде аксиом; аксиомы рассматриваются как 

формальные последовательности символов ( выражения), а методы доказательств— как 

методы получения одних выражении из других с помощью операций над символами. Та-

кой подход гарантирует четкость исходных утверждений и однозначность выводов, одна-

ко может создаться впечатление, что осмысленность и истинность в формализованной 

теории не играют никакой роли. Внешне это так, однако, в действительности и аксиомы и 

правила вывода стремятся выбирать таким образом, чтобы построенной с их помощью 

формальной теории можно было придать содержательный смысл. 

Более конкретно формальная система (или исчисление) строится следующим обра-

зом. 

1. Определяется некоторое счетное множество символов, т.е. множество, элементы 

которого могут быть взаимно однозначно сопоставлены элементам натурального ряда 

1,2,...N, которые называется термами. Имеется другое конечное множество символов, 

элементы которого называются связками или операциями. Наконец, существует конечное 

множество вспомогательных символов. Конечные последовательности символов называ-

ются выражениями данной системы. 

2. Определяется  множество формул, или правильно построенных выражений, обра-

зующее язык теории. Это множество задается конструктивными средствами (как правило, 

индуктивным определением) и, следовательно, перечислимо. Обычно оно и разрешимо. 

Для правильно построенных формул (ППФ) задаются правила их конструирования, т.е. 

определяется эффективная процедура, с помощью которой по данному выражению выяс-

няется, является ли формула правильно построенной в данной  формальной системе (ФС) 

или нет. Формула, для которой существует такая процедура, называется разрешимой в 

данной ФС, в противном случае неразрешимой. Иначе говоря, для неразрешимых формул 

нельзя построить алгоритм выяснения свойства формулы быть теоремой, для этого тре-

буются  все новые и новые озарения (изобретательства), не поддающиеся формализации.  

3. Выделяется подмножество формул, называемых аксиомами ФС. Так же как и для 

ППФ для аксиом должна иметься процедура, позволяющая определить, является ли  ППФ 

аксиомой или нет. Подмножество может быть и бесконечным, во всяком случае, оно 

должно быть разрешимо.  

4.  Задается конечное множество R1, R,2,..,Rk  отношений между ППФ, называемых 

правилами вывода. Должна иметься эффективная процедура, позволяющая для произ-

вольной конечной последовательности ППФ решить, может ли каждый член этой после-

довательности быть выведен с помощью конечного числа правил вывода. Правило вывода 
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R(F1, ..., Fn, G) —это вычислимое отношение на множестве формул. Если формулы F1, ..., 

Fn, G находятся в отношении R, то формула G называется непосредственно выводимой из 

F1, ..., Fn по правилу R. Часто правило R(F1, ..., Fn, G) записывается в виде (F1, ..., Fn)/G. 

Формулы F1, ..., Fn называются посылками правила R, a G—его следствием или за-

ключением. Примеры аксиом и правил вывода будут приведены несколько позднее. 

Выводом формулы В из формул A1, ..., An называется последовательность формул F1, 

..., Fm, такая, что Fm = B, а любая Fi(i = 1,...,m) есть либо аксиома, либо одна из исходных 

формул A1, ..., An, либо непосредственно выводима из формул F1, ..., Fi-1 (или какого-то их 

подмножества) по одному из правил вывода. Если существует вывод В из A1, ..., An, то го-

ворят, что В выводима из A1, ..., An. Этот факт обозначается так: A1,...,An├ В. Формулы A1, 

..., An называются гипотезами или посылками вывода. Переход в выводе от Fi-1 к Fi назы-

вается i-м шагом вывода. 

Доказательством формулы В в теории Т называется вывод В из пустого множества 

формул, т. е. вывод, в котором в качестве исходных формул используются только аксио-

мы. Формула В, для которой существует доказательство, называется формулой, доказуе-

мой в теории Т, или теоремой теории Т; факт доказуемости В обозначается ├ В. 

Очевидно, что присоединение формул к гипотезам не нарушает выводимости. По-

этому если ├В, то А├В, и если A1, ..., An ├ В, то  A1, ..., An, An+1 ├ В  для любых A и An+1. 

Порядок гипотез в списке несуществен. 

Например, если удалось построить вывод В из A1, ..., An, то элементы последователь-

ности ППФ A1, ..., An называются посылками вывода (или гипотезами). Сокращенно вывод  

В из  A1, ..., An записывается в виде  A1, ..., An ├ В, или если Г= A1,.., An то Г├ В. Напом-

ним, что вывод ППФ без использования посылок есть доказательство ППФ В, а сама В – 

теорема, и это записывается ├ В. 

 

4.3. Формальные теории. Основные понятия и определения 

 

Исторически понятие формальной теории было разработано в период интенсивных 

исследований в области оснований математики для формализации собственно логики и 

теории доказательства. Сейчас этот аппарат широко используется при создании специаль-

ных исчислений для решения конкретных прикладных задач.  

Выводимость 

Пусть F1, ..., Fn, G - формулы теории Т, то есть F1, ..., Fn, G  являются ППФ. Если суще-

ствует такое правило вывода R , что (F1, ..., Fn, G)  R, то говорят, что формула G непо-

средственно выводима из формул F1, ..., Fn по правилу вывода R. Обычно этот факт запи-

сывают следующим образом: 

 R
G

FF n,...,1
,  где формулы F1, ..., Fn называются посылками, а формула G – заключе-

нием. 

 

Замечание. Обозначение правила вывода справа от черты, разделяющей посылки и 

заключение, часто опускают, если оно ясно из контекста. 

Если в теории Т существует вывод формулы G из формул F1, ..., Fn, то это записыва-

ют следующим образом:  

F1, ..., Fn├ Т G, где формулы F1, ..., Fn называются гипотезами вывода. Если теория Т 

подразумевается, то ее значение обычно опускают.  

Если ├ Т G, то формула G называется теоремой теории Т (то есть теорема – это фор-

мула, выводимая только из аксиом, без гипотез). 

Если Г├ Т G, то Г, ├ Т G, где Г и  - любые множества формул (то есть при добав-

лении лишних гипотез выводимость сохраняется). 

Правила вывода делятся на прямые и непрямые. Прямые правила вывода – это пра-

вила непосредственного перехода от одних формул к другим, т.е. переход от посылки к 
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заключению. Им сопоставляются определенные шаги формального вывода. Непрямые 

правила вывода суть правила перехода от одних формальным выводам к другим. Таким 

правилам соответствуют мета утверждения о преобразованиях одних формальных выво-

дов в другие. 

Еще одним интересным способом рассуждения, который может быть оформлен в ви-

де непрямого производного правила, является метод доказательства от противного. Суть 

его сводится к следующему. Пусть нам надо доказать вывод формулы А из посылок Г. То-

гда применяют следующий формальный прием: отрицание формулы А добавляют к мно-

жеству формул Г и пытаются получить из посылок А, Г противоречие. Если такое про-

тиворечие получено, то это означает, что можно построить вывод А из Г 

Синтаксис: Синтаксисом называется набор правил конструирования ППФ. 

Семантика: Семантикой называется набор правил интерпретации формул. 

Интерпретация: Интерпретацией  называется приписывание формуле одного из 

двух значений истинности: 1 (истинно) или 0 (ложно).  

Композиционность семантики заключается в том, что приписываемое значение ис-

тинности некоторой формулы зависит от значений истинности составляющих высказыва-

ний и структуры формулы. 

Общезначимость и непротиворечивость  

Формула называется общезначимой (или тавтологией), если она истинна в любой 

интерпретации. Формула называется противоречивой, если она ложна в любой интерпре-

тации. Выполнимой называется формула, для которой существует хотя бы одна интерпре-

тация, для которой она истинна. 

Формула G называется логическим следствием множества формул , если G выпол-

няется в любой модели . 

Фундаментальная проблема логики, называемая проблемой дедукции, состоит в том, 

чтобы определить, является ли формула G логическим следствием множества формул Г. 

Само слово дедукция (лат. deductio – выведение) определяется как логическое умозаклю-

чение от общих суждений к частным или другим общим суждениям. Если логическим 

следствием из множества формул Г  является  формула А, имеющая значение истинности 

Л (ложь или 0), то говорят, что формула А невыполнима. Именно в этом и состоит прин-

цип дедукции: формула А является логическим следствием множества формул Г тогда и 

только тогда, когда Г А невыполнимо. 

Полнота, независимость и разрешимость 

Пусть множество M является моделью формальной теории Т. Формальная теория Т 

называется полной (или адекватной), если каждому истинному высказыванию M соответ-

ствует теорема теории Т. 

Если для множества (алгебраической системы) M существует формальная полная не-

противоречивая теория Т, то M называется аксиоматизируемым (или формализуемым) 

множеством. 

Система аксиом (или аксиоматизация) формально непротиворечивой теории Т назы-

вается независимой, если никакая из аксиом не выводима из остальных по правилам выво-

да теории Т. 

Еще одна важная характеристика формальной теории – это ее разрешимость. Фор-

мальная теория Т называется разрешимой, если существует алгоритм, который для любой 

формулы языка определяет, является она теоремой в Т или нет. 

Например, исчисление высказываний разрешимо, а исчисление предикатов неразре-

шимо. Разрешающий алгоритм для формулы F Исчисления высказываний заключается в 

вычислении значений F на всех наборах значений ее переменных. Ввиду полноты исчис-

ления высказываний F является его теоремой, если и только если она истинна на всех 

наборах. 

Исчисление предикатов неразрешимо. Несмотря на полноту исчисления предикатов, 

разрешающий алгоритм, связанный с вычислением значений истинности предикатных 
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формул, построить не удается из-за бесконечности предметной области, которая приводит 

в общем случае к бесконечным таблицам истинности. 

Метатеория формальных систем. 
При изучении формальных теорий мы имеем дело с двумя типами высказываний. 

Во-первых, с высказываниями самой теории (теоремами), которые рассматриваются как 

чисто формальные объекты, определенные ранее, а во-вторых, с высказываниями о теории 

(о свойствах ее теорем, доказательств и т.д.), которые формулируются на языке, внешнем 

по отношению к теории, - метаязыке и называются метатеоремами. Различие между тео-

ремами и метатеоремами не всегда будет проводиться явно, но его обязательно надо иметь 

в виду. 

Интерпретацией формальной теории Т в область интерпретации M называется 

функция       I :   M, которая каждой формуле формальной теории Т однозначно сопо-

ставляет некоторое содержательное высказывание относительно объектов множества (ал-

гебраической системы) M. Это высказывание может быть истинным или ложным (или не 

иметь истинностного значения). Если соответствующее высказывание является истинным, 

то говорят, что формула выполняется в М. 

Интерпретация I называется моделью множества формул , если все формулы 

этого множества выполняются в интерпретации I. Интерпретация I называется моде-

лью формальной теории Т, если все теоремы этой теории выполняются в интерпретации I 

(то есть все выводимые формулы оказываются истинными в данной интерпретации). 

Непротиворечивость. Напомним, что формула называется противоречивой, если она лож-

на в любой интерпретации. Такое определение противоречивой формулы является семан-

тическим, т.е. связывающим непротиворечивость с истинностью. Исходя из него, можно 

сформулировать понятие семантически непротиворечивой теории:  

Формальная теория Т называется семантически непротиворечивой, если ни од-

на ее теорема не является противоречием. Таким образом, формальная теория пригодна 

для описания тех множеств (алгебраических систем), которые являются ее моделями. Мо-

дель для формальной теории Т существует тогда и только тогда, когда Т семантически не-

противоречива. 

Формальная теория Т называется формально  непротиворечивой, если в ней не явля-

ются выводимыми одновременно формулы F и F. Теория Т формально непротиворечива 

тогда и только тогда, когда она семантически непротиворечива. 

С помощью введенных понятий  можно сформулировать следующий тезис, что тео-

рия Т пригодна для описания тех множеств, которые являются ее моделями. Модель для 

теории Т существует тогда и только тогда, когда Т семантически непротиворечива. Чисто 

логические теории – исчисление высказываний и исчисление предикатов пригодны для 

описания любых множеств, что соответствует общенаучному принципу универсальности 

законов логики. Лейбниц формулировал его как выполнимость логических законов во 

всех  «мыслимых мирах». Аналогом этого критерия, сформулированным в терминах са-

мих формальных теорий  без привлечения семантических понятий, является  формальная 

или дедуктивная непротиворечивость. 

 

 

 

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ  

ЛАБОРАТОРНЫХ РАБОТ 

Лабораторные работы не предусмотрены рабочим учебным планом 

 

 

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 
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3.1 Практическое занятие №ПЗ-1 (2 часа). 

Тема: «Основные операции алгебры высказываний». 

1. Основные понятия алгебры высказываний. 

2. Основные операции алгебры высказываний».  

 

3.1.1 Задание для работы: 

1. Основные понятия алгебры высказываний. 

2. Основные операции алгебры высказываний 

3.1.2 Краткое описание проводимого занятия: 
1. Основные понятия алгебры высказываний. 

2. Основные операции алгебры высказываний 

1. Составим таблицу истинности для формулы AB  : 

 

B  A  B  A  B A  

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 1 0 0 1 

 

2. Проверим эквивалентность формул BA  и BA  , составив для них таблицы 

истинности. 

A  B  BA
 

B
 

BA
 

BA
 

0 0 0 1 0 1 

0 1 1 0 0 1 

1 0 1 1 1 0 

1 1 1 0 0 1 

 

Формулы не эквивалентны, так как 3-й и 6-й столбцы таблицы не совпадают. 

3. 1 1 1  равно-... 

ОТВЕТ:1 

4. 1 0 1 0    равно 

+а) 0 

б) 1  

в) -1 

г)  i 

д) е  

5.Значение y, при котором выполняется равенство  1 1 0y   , равно-… 

ОТВЕТ:0 

6.  ( , ) 1f x y x y   . Тогда (1,1)f  равно 

+а) 1 

б) 0 

в) 11  

г) 100 

д) 10 

 

3.1.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили основных понятия и операции алгебры высказываний; 

- приобрели умения и навыки выполнения операций алгебры высказываний. 



36 

 

3.2 Практическое занятие №ПЗ-2 (2 часа). 

Тема: «Формулы алгебры высказываний. Основные равносильности. Равносильные пре-

образования формул». 

  

3.2.1 Задание для работы: 

1.Формулы алгебры высказываний.  

2.Основные равносильности.  

3.Равносильные преобразования формул.  

 

3.2.2 Краткое описание проводимого занятия: 
1.Формулы алгебры высказываний.  

2.Основные равносильности.  

3.Равносильные преобразования формул 

 

3.2.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия формулы алгебры высказываний; равносильностей и равносильных пре-

образований; 

- приобрели умения и навыки равносильных преобразований. 

 

 

3.3 Практическое занятие №ПЗ-3 (2 часа). 

Тема: «Булевы функции. Элементарные булевы функции. Представление булевых функ-

ций»                      
         

3.3.1 Задание для работы: 

1. Булевы функции. Элементарные булевы функции.  

2. Представление булевых функций формулами 

3.3.2 Краткое описание проводимого занятия: 
1. Булевы функции. Элементарные булевы функции.  

2. Представление булевых функций формулами 

1. Булевы функции. Элементарные булевы функции.  

1.Составим таблицу истинности для формулы AB  : 

 

B  A  B  A  B A  

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 1 0 0 1 

 

2. Проверим эквивалентность формул BA  и BA , составив для них таблицы ис-

тинности. 

A  B  BA
 

B
 

BA
 

BA
 

0 0 0 1 0 1 

0 1 1 0 0 1 

1 0 1 1 1 0 

1 1 1 0 0 1 

 

Формулы не эквивалентны, так как 3-й и 6-й столбцы таблицы не совпадают. 
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2. Представление булевых функций формулами.  

1. Задание. Записать ДНФ и КНФ формулы. 

 

Решение. Элементарные дизъюнкции:  xy,  z. Элемент. конъюнкции:  xyz,   x. f(x,y,z) 

= xyz xy – ДНФ ; f(x,y,z) = (x y)z – КНФ. 

2. Для упрощения формулы  используем правило исключения импликации:

A A A A1 2 1 2   . 

            ( ) ( ) ( ) ( )A A A A A A A A A A A A1 2 2 1 1 2 2 1 1 2 2 1  

         ( ) ( )A A A A A A A A A1 2 2 1 2 1 1 2 11 . 

3.  Используя законы логики приведем  формулу  ( )A B C   к виду, содержащему 

только  дизъюнкции элементарных конъюнкций. Полученная формула и будет искомой 

ДНФ: ( ) ( ) ( ) ( ) ( )A B C A B C A B C A C B C             

Для построения СДНФ составим таблицу истинности для данной формулы: 

A B C AB (AB)C ( )A B C   

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 0 0 0 1 

0 1 1 0 1 0 

1 0 0 0 0 1 

1 0 1 0 1 0 

1 1 0 1 1 0 

1 1 1 1 1 0 

Помечаем те строки таблицы, в которых формула (последний столбец) принимает значе-

ние ―1‖. Для каждой такой строки выпишем формулу, истинную на наборе переменных 

A,B,C данной строки: строка 1 – A B C  ; строка 3 – A B C  ; строка 5 – 

A B C  . Дизъюнкция этих трех формул будет принимать значение ―1‖ только на 

наборах переменных в строках 1, 3, 5, а следовательно и будет искомой совершенной ди-

зьюнктивной нормальной формой (СДНФ): 

( ) ( ) ( )A B C A B C A B C         

4. Задание. Найти СДНФ и СКНФ двумя способами.  

Решение.  

 

 

 

 

 

 

 

 

 

 

1) Получим СДНФ и СКНФ по ТИ: 

 
СКНФzyxzyxzyxzyxf

СДНФxyzzxyzyxzyxzyxzyxf





))()((),,(

,),,(
 

2) Получим СДНФ и СКНФ из ДНФ и КНФ:  

x y z f 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 
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5. СДНФ функции f(1, 1, 0)=f(0,1,1)=f(0,0,1)=1 равна    

+а) xyz xyz x yz   

б)   xyz xyz xy z xyz x yz     

в) x yz xy z xyz    

г) xyz xyz x yz   

д)   xx z xyz x yz          

6. СКНФ функции f(1, 1, 0)=f(0,1,1)=f(0,0,1)=0 равна 

+а) ( ) ( ) ( )x y z x y z x y z         

б)   ( ) ( ) ( ) ( )x y z x y z x y z x y z            

в) x yz xy z xyz                                                                                                

г) ( ) ( ) ( )x y z x y z x y z         

д)   xx z xyz x yz          

3.3.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия о булевых функциях, представлении булевых функций формулами; 

- приобрели умения и навыки решать задачи, связанные с булевыми функциями, представ-

лением булевых функций формулами. 

 

3.4 Практическое занятие №ПЗ-4 (2 часа). 

Тема: «Алгебра Буля. Модели алгебры Буля»                      
         

3.4.1 Задание для работы: 

1. Алгебра Буля. 

2. Модели алгебры Буля. 

 

3.4.2 Краткое описание проводимого занятия: 
1. Формулы алгебры высказываний.  

2. Модели алгебры Буля. 

 

1. Упростить  1 2 2 1( ) ( )A A A A     

Для упрощения формулы  используем правило исключения импликации:

A A A A1 2 1 2   . 

            ( ) ( ) ( ) ( )A A A A A A A A A A A A1 2 2 1 1 2 2 1 1 2 2 1  

         ( ) ( )A A A A A A A A A1 2 2 1 2 1 1 2 11 . 

2. Используя законы логики приведем  формулу  ( )A B C   к виду, содержащему 

только  дизъюнкции элементарных конъюнкций. Полученная формула и будет искомой 

ДНФ: 

( ) ( ) ( ) ( ) ( )A B C A B C A B C A C B C             

3. Формула ( )x x y   равносильна  

+а)  x 

б) y  

))()()((

))()()()()((

))()(())()((),,(

)()(),,(

zyxzyxzyxzyx

zyxzyxzyxzyxzyxzyx

zyxxzyyxzzyxzyzxyxzyxg

yzxyzxzxyxyzyyzxzzxyzxxyzyxg








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в) y  

г) 1 

д) x y  

4. Формула x x y   равносильна  

+а)  x 

б) y  

в) y  

г) 1 

д) x y  

5. Формула 1x  равносильна  

+а) 1  

б) 0  

в) x   

г) x 

д) x y  

6. Формула 1x y   равносильна  

+а) 1  

б) 0  

в) x   

г) x y  

д) x y  

7. Составим функцию проводимости для схемы:  

 )(),,( cacbaf .][)(])[( cabcaccabcaccacba   

Полученной формуле соответствует схема:    

 

 

 
 

3.4.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия формулы алгебры высказываний, модели алгебры Буля; 

 

3.5 Практическое занятие №ПЗ-5  (2 часа). 

Тема: «Техническая интерпретация алгебры Буля. Булевы функции и математические мо-

дели дискретных устройств для переработки информации»                      
         

3.5.1 Задание для работы: 

1. Техническая интерпретация алгебры Буля. 

2. Булевы функции и математические модели дискретных устройств для переработки ин-

формации. 

 

3.5.2 Краткое описание проводимого занятия: 
1. Техническая интерпретация алгебры Буля. 

2. Булевы функции и математические модели дискретных устройств для переработки ин-

формации. 

 

1. Составим функцию проводимости для схемы:  

 )(),,( cacbaf .][)(])[( cabcaccabcaccacba   

Полученной формуле соответствует схема:    

 

a  

c  

a  
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2. Раздел дискретной математики, изучающий модели преобразователей дискретной 

информации, называется теорией  

+а) автоматов  

б) вероятностей 

в) множеств 

г) функций  

д) поля 

3. Конечный автомат это математическая модель дискретного устройства по пере-

работке   

+а) информации  

б) вероятности 

в) алгебры 

г) формул 

д) поля 

3.5.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия о технической интерпретации алгебры Буля и роли булевых функций 

при математическом моделировании дискретных устройств для переработки информации. 

 

 

3.6 Практическое занятие №ПЗ-6 (2 часа). 

Тема: «Двойственность. Проблема разрешимости»                      
         

3.6.1 Задание для работы: 

1. Двойственность.  

2. Проблема разрешимости 

3.6.2 Краткое описание проводимого занятия: 
1. Двойственность.  

2. Проблема разрешимости 

Принцип двойственности 

Пусть f(x1, x2, …, xn ) – булева функция. Двойственной к ней называется функция  f
*
(x1, x2, 

…, xn )  f (x1,x2, …,xn ). Из определения видно, что двойственность инволютивна:  f
**

=f.  

Если двойственная функция f* совпадает с исходной функцией f, то такая функция f  

называется самодвойственной.  

(0)* 01; (x)*= ¬(x)  x  Функция, тождественно равная своему аргументу, является 

самодвойственной. 

Принцип двойственности для булевых функций 

Двойственная к булевой функции может быть получена заменой констант 0 на 1, 1 

на 0, дизъюнкции на конъюнкцию, конъюнкции на дизъюнкцию и сохранением струк-

туры формулы (т.е. соответствующего исходному порядка действий). 

 

 

 

 

 

x y f=xy x y f* 

0 0 0 1 1 1 

0 1 1 1 0 0 

1 0 1 0 1 0 

1 1 1 0 0 0 

c  
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(xy  z)* (xy)z.,(xy)*xy  в таблице истинности значения функции и перемен-

ных меняются на противоположные   

 

1. В алгебре логики свойство  «Если формулы равносильны, то двойственные фор 

мулы  тоже равносильны» называется законом 

+а)  двойственности     

б) противоречия 

в) отрицания 

г) де Моргана 

д) идемпотентности 

2. Функция  
*( , ) ( , )f x y f x y  по отношению к ( , )f x y  называется    

+а) двойственной 

б) булевой 

в) дискретной   

г) ограниченной 

д) целевой 

3. Если  
*( , ) ( , )f x y f x y , то функция ( , )f x y  называется    

+а) самодвойственной 

б) целочисленной 

в) дискретной   

г) ограниченной 

д) целевой 

4. Формула, принимающая значение 1 при каком-то наборе входящих в неѐ пере-

менных, называется  

+а) выполнимой 

б) тождественно истинной 

в) тождественно ложной  

г) опровержимой 

д) характеристической 

5. Формула, принимающая значение 0 при каком-то наборе входящих в неѐ пере-

менных, называется  

+а) опровержимой 

б) тождественно истинной 

в) тождественно ложной  

г) выполнимой 

д) характеристической 

6. Формулу, принимающую значение 1 при всех значениях входящих в неѐ пере-

менных, называют  

+а) тавтологией 

б) тождественно ложной  

в) выполнимой   

г) опровержимой 

д) логической 

7. Тождественно ложная формула называется  

+а) противоречивой  

б) тавтологией 

в) выполнимой   

г) опровержимой 

д) логической 

8. Формула x y z   является   

+а) выполнимой  



42 

 

б) тавтологией 

в) противоречивой   

г) нечѐткой 

д) интегральной 

9. Формула x y z   является   

+а) опровержимой  

б) тавтологией 

в) противоречивой   

г) нечѐткой 

д) интегральной 

3.6.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия двойственности, проблемы разрешимости; 

 

3.7 Практическое занятие №ПЗ -7 (2 часа). 

Тема: «Полиномы Жегалкина. Представление булевых функций полиномами Жегалкина»                      
         

3.7.1 Задание для работы: 

1. Полиномы Жегалкина.  

2. Представление булевых функций полиномами Жегалкина. 

 

3.7.2 Краткое описание проводимого занятия: 
1. Полиномы Жегалкина.  

2. Представление булевых функций полиномами Жегалкина. 

 

1. Полиномы Жегалкина. Представление булевых функций полиномами Жегалкина. 
 

1. Представить полиномом Жегалкина функцию x1x2            

 Способ 1. (Метод неопределенных коэффициентов). 

Составляем таблицу истинности для функции x1x2 

x1 x2 x1x2 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Записываем полином Жегалкина с неизвестными коэффициентами a0, a1, a2, a12 для функ-

ции от двух переменных: x1x2 = a0 a1 x1 a2 x2 a12 x1 x2. 

Подставляя в это разложение значения x1 и x2  из таблицы, определяем неизвестные коэф-

фициенты: 

Подставляя x1=0, x2=0,  получаем:  1= a0; 

   x1=0, x2=1 —   0=1 a2    a2=1; 

   x1=1, x2=0 —   0=1 a1    a1=1; 

   x1=1, x2=1—    1=1 a12    a12=0. 

Полином Жегалкина имеет вид: x1~x2 = 1 x1  x2. 

Способ 2. (Эквивалентные преобразования). 

Сначала запишем СДНФ 21

2121

21

1),(),(
/\





xx
f 

 эквивалентности: 

 212121 xxxxxx {т.к. x y x y xy     } =    x x x x x x x x1 2 1 2 1 2 1 2  

{поскольку x x x x1 2 1 2 0 }   x x x x1 2 1 2  {далее, x x 1 , поэтому } 

2121 )1)(1( xxxx          1 11 2 1 2 1 2 1 2x x x x x x x x  
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6. Формула xy x y   равносильна  

+а)  x y  

б) y 

в) x   

г) x y  

д) 0  

3.7.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия о полиномах Жегалкина и представлении булевых функций полинома-

ми Жегалкина; 

- приобрели умения и навыки решать задачи, связанные с полиномами Жегалкина, пред-

ставлением булевых функций полиномами Жегалкина. 

 

 

3.8 Практическое занятие №ПЗ-8  (2 часа). 

Тема: «Минимизация булевых функций в классе ДНФ»                      
          

3.8.1 Задание для работы: 

1. Основные понятия. 

2. Минимизация булевых функций в классе ДНФ. 

 

3.8.2 Краткое описание проводимого занятия: 
1. Основные понятия. 

2. Минимизация булевых функций в классе ДНФ.  

 

1) 32132121321 xxxxxxxxxxxf ),,( . 321 xxx  – импликанта,  

причем простая; 321 xxx  – импликанта, но не простая, т.к. удаление x3 снова дает им-

пликанту 21 xx  (которая является простой). 

 

2) Найдем импликанты и простые импликанты для функции 2121 xxxxf ),( . 

Всего имеется 8 элементарных конъюнкций с переменными x1, x2. Приведем их таблицы 

истинности. 

Из таблицы истинности заключаем, что 21 xx , 21 xx , x1x2, 1x , x2  являются импли-

кантами функции f.  Из них простыми являются 1x и  x2. 

3.8.3 Результаты и выводы: В результате проведенного занятия студенты: 

- освоили понятия о булевых функциях, минимизации булевых функций; 

- приобрели умения и навыки решать задачи, связанные с булевыми функциями, минимиза-

цией булевых функций. 

 

 

3.9 Практическое занятие №ПЗ-9 (2 часа). 

x1 x2 x1x2 
21 xx  21 xx  21 xx  x1x2 

1x  2x  x1 x2 

0 0 1 1 0 0 0 1 1 0 0 

0 1 1 0 1 0 0 1 0 0 1 

1 0 0 0 0 1 0 0 1 1 0 

1 1 1 0 0 0 1 0 0 1 1 
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0    0 0

0    1 1

1    1 0

1    0 1

Тема: «Полнота и замкнутость систем булевых функций. Классы Поста»                      
         

3..1 Задание для работы: 

1. Полнота и замкнутость систем булевых функций.  

2. Классы Поста. 

 

3.9.2 Краткое описание проводимого занятия: 
1. Полнота и замкнутость систем булевых функций.  

2. Классы Поста. 

 

Полнота системы логических функций. Базис. При использовании аналитических 

форм представления логических функции широко используется принцип суперпозиции, 

заключающийся в замене одних аргументов данной функции другими. Например, если 

аргументы функции Z = Z(X, Y) являются в свою очередь функциями других аргументов 

X = Х(a, b) и Y = Y(c, d), то можно записать Z = Z(a, b, c, d). 

Система S логических функций f0, f1, f2, … , fk называется функционально полной, если 

любую функцию алгебры логики можно представить в аналитической форме через эти 

функции. Как известно, любое сложное высказывание можно представить в виде выраже-

ния, в которое входят простые высказывания (переменные хi), операции дизъюнкции, 

конъюнкции, отрицания и, быть может, скобки (,). Рассмотрим, каким свойствам должны 

удовлетворять операции, с помощью которых можно выражать любое сложное высказы-

вание. 

Система S называется полной в Pk, если любая функция f, fPk представима в 

виде суперпозиции этой системы, и минимальным базисом, если теряется полнота S 

при удалении хотя бы одной функции, где Pk – k-значная логика. 

В общем случае для установления полноты системы S булевых функций использу-

ется критерий полноты Поста-Яблонского. 

Дадим предварительно классификацию булевых функций. 

Все булевы функции подразделяются на следующие типы: 

1. Функция, сохраняющая константу нуль. (Если функция на "0" наборе аргументов равна 

0, то она называется сохраняющей константу нуль. 0)0,...,0,0(f  ). 

2. Функция, сохраняющая константу 1. (Если функция на "1" наборе аргументов равна 1, 

то она называется сохраняющей константу "1". 1)1,...,1,1(f  ). 

3. Самодвойственные функции.  

Два набора аргументов называются противоположными, если значения всех аргу-

ментов у них противоположны. 

Функция называется самодвойственной, если на каждой паре противоположных 

наборов аргументов она принимает противоположные значения. 

4. Монотонная функция  

Набор аргументов является возрастающим, если он является старшим, хотя бы в 

одном из разрядов. Функция называется монотонной, если. она возрастает при, любом 

возрастании значений аргументов. 

Пример: 01 – старший   11 - старший   00 - младший  10 - младший ;

  

1011 – старший, 0011 – младший; 01  и  10- несравнимый набор. 

5. Линейная функция 

Функция называется линейной, если она может быть представлена многочленом 

первой степени, т.о.  

czbyaxdf  ;a,b,c,d- могут принимать только два значения 0 и 1.  mod 2,  

таблица сложения по  модулю 2. 
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 - знак сложения по модулю  2.  ax≡a/\x. 

 

Определим теперь пять классов булевых функций: 

1. Классом P0 булевых функций )X,...,X,X(f n21i сохраняющих константу 0, называется 

множество функций вида }0)0,...,0,0(f/()X,...,X,X(f{ in21i   

2. Классом P1 булевых функций )X,...,X,X(f n21i сохраняющих константу 1, называется 

множество функций вида }1)1,...,1,1(f/)X,...,X,X(f{ in21i  . 

3. Классом L линейных булевых функций )X,...,X,X(f n21i  называется множество функ-

ций вида   ii0n21in21i XCC)X,...,X,X(f/)X,...,X,X(f , где С0, Сi = (0,1);  - знак 

операции «сложение по модулю 2»; 1  0 = 1, 0  1 = 1, 1  1 = 0. 

15121096530 f,f,f,f,f,f,f,f - линейные функции. 

4. Классом S самодвойственных булевых функций )X,...,X,X(f n21i  называется множе-

ство булевых функций вида  )X,...,X,X(f)X,...,X,X(f/)X,...,X,X(f n21n21in21i  . 

Функция самодвойственная, если на любой паре противоположных наборов функция при-

нимает противоположные значения. 

121053 f,f,f,f  - самодвойственные функции 

5. Классом  M  монотонных булевых функций )X,...,X,X(f n21i называется множество бу-

левых функций вида: 

)},...,,(f),...,,(f

)n,1i,(),...,,(),...,,/()X,...,X,X(f{

n21

*

n

*

2

*

1

i

*

in21

*

n

*

2

*

1n211




 

1. Проверить самодвойственность функции.  

Сначала преобразуем исходную формулу: 312131213121 )()( xxxxxxxxxxxx 

 x x x1 2 3( ) ; f x x x x x x( , , ) ( )1 2 3 1 2 3  .  )()(),,( 321321321 xxxxxxxxxf

321 xxx  . Пусть x1 0   x2 0   x3 1 , тогда f x x x( , , )1 2 3 0 ,   f x x x( , , )1 2 3 1 , 

поэтому ),,(),,( 321321 xxxfxxxf  , следовательно функция f  несамодвойственна. 

  2. Проверить монотонность.  

Функция )1011(f  немонотонная, т.к. ( ) ( )00 01 , но )1,0()0,0( ff  . 

3. Система всех булевых функций обозначается    

+а) 2P     

б) 0P   

в) 1P    

г) S   

д) L                           
            

  

4. Собственным функционально замкнутым классом Поста из  2P  является класс 

функций   

+а) сохраняющих нуль    

б) частично-рекурсивных  

в) эффективно вычислимых   

г) элементарных булевых  
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д) проводимости  

5. Булевы функции со свойством (0,0,...,0) 0f   составляют собственный функ-

ционально замкнутый класс Поста из  2P , называемый классом функций   

+а) сохраняющих нуль    

б) сохраняющих единицу  

в) самодвойственных   

г) рекурсивных  

д) монотонных  

6. Собственный функционально замкнутый класс Поста функций из 2P , сохраняю-

щих нуль,  обозначается    

+а) 0P    

б) M  

в) 1P    

г) S   

д) L  

7. Булева функция 1 2 1 1 2 2 0( , ,..., ) ...n n nf x x x a x a x a x a      называется   

+а) линейной    

б) вычислимой  

в) самодвойственной   

г) рекурсивной  

д) монотонной  

8. Булевы функции со свойством 1 2 1 1 2 2 0( , ,..., ) ...n n nf x x x a x a x a x a      со-

ставляют собственный функционально замкнутый класс Поста из  2P , называемый клас-

сом функций   

+а) линейных    

б) булевых  

в) элементарных   

г) рекурсивных  

д) монотонных  

9. Собственный функционально замкнутый класс Поста линейных функций из 2P   

обозначается    

+а) L   

б) M  

в) 1P    

г) S   

д) 0P  

3.9.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия полноты и замкнутости систем булевых функции, классов Поста; 

приобрели умения и навыки выявлять принадлежность функций классам Поста. 

 

 

3.10 Практическое занятие № ПЗ-10 (2 часа). 

Тема: «Полные системы булевых функций, критерий полноты. К – значные логики»                      
         

3.10.1 Задание для работы: 

1. Полные системы булевых функций. 
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2. Критерий полноты. 

 

3.10.2 Краткое описание проводимого занятия: 
1. Полные системы булевых функций. 

2. Критерий полноты. 

Теорема «Для того, чтобы система булевых функций  1 2, ,..., mf f f  была полной, 

необходимо и достаточно, чтобы она целиком не содержалась ни в одном из пяти замкну-

тых классов 0 1, , , ,P P S L M » называется теоремой 

+а) Поста    

б) Чѐрча  

в) Тьюринга   

г) Маркова  

д) Буля                          
            

 

1. Проверить полноту системы },,{ 21121 xxxxx  .  

Для доказательства полноты системы  },,{ 21121 xxxxx  необходимо проверить, что 

система содержит функцию не сохраняющую 0, функцию  не сохраняющую 1, немоно-

тонную функцию, несамодвойственную функцию и нелинейную функцию. Докажем пол-

ноту системы    x x x x x1 2 1 1 2~ , , . Обозначим f x x x x1 1 2 1 2( , ) ~  и выпишем 

ее таблицу истинности 

x1  x2  x x1 2~  

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Функция f1 не сохраняет 0. Выясним, является ли f1 самодвойственной. 

 

x1  x2  x x1 2~  f x x1 1 2( , )  

1 1 1 0 

1 0 0 1 

0 1 0 1 

0 0 1 0 

Т.к. f x x f x x1 1 2 1 1 2( , ) ( , ) , то f1 несамодвойственна. 

Функция f x x2 ( )   немонотонная, и не сохраняет 1. Найдем полином Жегалкина 

для f x x x x3 1 2 1 2( , )     = a a x a x a x x0 1 1 2 2 12 1 2    

x1  x2  x1  x2  x x1 2  

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 1 0 0 1 

a0 1 ;   0 1 12 2   a a ;    1 1 01 1   a a ;    1 1 1 112 12    a a ; 

Функция f x x x x x x x3 1 2 1 2 2 1 21( , )       нелинейная. Согласно теореме о 

полноте  – полная система.  

 



48 

 

1. Понятие к-значной логики. 

2. Функции к-значной логики. 

Двузначная логика допускает обобщение на k - значный случай. При этом хотя в  

k - значных логиках сохраняются многие результаты и свойства двузначной логики, ряд 

фактов принципиально отличаются от соответствующих результатов алгебры логики. 

Многие решѐнные задачи двузначной логики не имеют исчерпывающего решения в k - 

значных логиках, а иные и вовсе не решены. 

Функция 1 2( , ,..., )nf x x x  называется функцией k - значной логики, если еѐ аргу-

менты определены на множестве  0,1,2,..., 1k  , состоящим из  k  элементов, а сама 

функция принимает значения из того же множества. 

Множество всех функций k - значной логики обозначается через kP . Функция  

1 2( , ,..., )nf x x x  задана, если задана еѐ таблица истинности. При 3k   таблица истинности 

имеет вид 

 
 

Так как количество  k - значных наборов длины n  равно 
nk , то число функций от n  

переменных в  k - значной логике равно 
nkk . Например, если функций двух переменных 

в 2P  всего 16, то в 3P их уже 19683. Таким образом в kP возрастают трудности по сравне-

нию с 2P  даже с возможностью перебора функций.  

  

 Задание. Рассмотреть примеры функций из kP , которые можно считать эле-

ментарными. Построить таблицы истинности при 3k  . 

 

Задание 1. Функция, называемая отрицанием Поста  ( 1)modx x k  . При 3k   таблица 

истинности имеет вид 
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Задание 2. Функция, называемая отрицанием Лукасевичаа  1x Nx k x    . При 3k   

таблица истинности имеет вид 

 

Задание 3. Функции, называемые а) первым обобщением конъюнкции 1 2min( , )x x ; 

б) вторым обобщением конъюнкции 1 2( )modx x k . 

 При 3k   таблицы истинности имеют вид 

 

 
 

Задание 3. Функции, называемые обобщением дизъюнкции  

1 2max( , )x x ,       1 2( )modx x k . 

 При 3k   таблицы истинности имеют вид 
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3.10.3 Результаты и выводы: в результате проведенного занятия студенты: 

- познакомились с понятием к-значной логики и функции к-значной логики. 

3.10.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия о полных системах булевых функций, критерии полноты.; 

- приобрели умения и навыки решать задачи, связанные с полными системами булевых 

функций, критерием полноты. 

 

 

3.11 Практическое занятие №ПЗ-11 (2 часа). 

Тема: «Компьютерные технологии решения задач алгебры высказываний»                      

         

3.11.1 Задание для работы: 

1 Компьютерные технологии решения задач алгебры высказываний  

 

3.11.2 Краткое описание проводимого занятия: 

 

 

3.12 Практическое занятие №ПЗ-12 (2 часа). 

Тема: «Логика предикатов»                      
         

3.12.1 Задание для работы: 

1. Предикаты и их свойства. Логические операции над предикатами. 

2.Кванторные операции. Логика предикатов. 

 

3.12.2 Краткое описание проводимого занятия: 

1. Предикаты и их свойства. Логические операции над предикатами. 

2.Кванторные операции. Логика предикатов. 

Логика высказываний описывает многие важные логические законы и позволяет 

решать многие проблемы, однако во многих случаях средства логики высказываний ока-

зываются недостаточными.  

1. Предикаты и кванторы 

Предикатом P(x
1
,...x

n
) называется функция P:MnB, где M – произвольное множе-

ство, а B  двоичное множество {0,1}. M  называется предметной областью предиката, а 

x
1
,...x

n
  предметными переменными. Для любых M и n существует взаимно-однозначное 

соответствие между n-местными отношениями и n-местными предикатами на M: 

а) каждому n-местному отношению R соответствует предикат Р, такой, что P(a
1
,...a

n
)=1 , 

если и только если (a
1
,...a

n
) R 

б) всякий предикат P(x
1
,...x

n
) определяет отношение R,  такое, что (a

1
,...a

n
) R, если и 

только если P(a
1
,...a

n
)=1 . 

При этом R задает область истинности предиката Р. Константы 0 и 1 называют нульмест-

ными предикатами. 

Поскольку предикаты принимают два значения и интерпретируются как высказы-

вания, из них можно образовывать выражения алгебры высказываний, т.е. формулы. Эле-

ментарные формулы можно связывать операциями алгебры высказываний ,,,, со-

храняя за операциями те определения, которые давались в алгебре высказываний. 
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Кванторы 

Кроме операций алгебры высказываний употребляют еще две операции, которые 

относятся уже не к одной фиксированной ситуации, а ко всему множеству ситуаций. 

Пусть Р(х)  предикат, определенный на М. Высказывание "для всех х из М  Р(х) истин-

но" обозначается xP(x). Знак  называется квантором общности. Высказывание "суще-

ствует такой Х из М, что Р истинно" обозначается xP(x). Знак  называется квантором 

существования. 

Переход от Р к xP(x) или xP(x) называется связыванием переменной х, или наве-

шиванием квантора на переменную х. Предметную переменную, не связанную никаким 

квантором, называют свободной переменной. Смысл связанных и свободных переменных 

в предикатных выражениях различен. Свободная переменная  это обычная переменная, 

которая может принимать значения из М; Р  переменное высказывание, зависящее от х. 

Выражение x P(x) не зависит от переменной х и при фиксированных Р и М имеет вполне 

определенное значение. Это, в частности, означает, что переименование связанной пере-

менной не меняет истинности выражения. 

Переменные, являющиеся по существу связанными, встречаются не только в логи-

ке. В выражениях f x
x

( )



1

10

 или f x dx
a

b

( )z  переменная х связана, при фиксированной f пер-

вое выражение становится равно определенному числу, а второе становится функцией а и 

b. 

Навешивать кванторы можно и на многоместные предикаты и вообще на любые 

логические выражения, которые при этом заключаются в скобки. Навешивание квантора 

на многоместный предикат уменьшает в нем число свободных переменных. 

Предикаты F и J называются равными, если их значения совпадают при всех значе-

ниях входящих в них переменных. 

Множество истинных формул логики предикатов входит в любую теорию. В ис-

следовании этого множества возникает две проблемы: 1  получение истинных формул; 2 

 проверка формулы на истинность. Прямой перебор всех значений невозможен, т.к. 

предметные и предикатные переменные имеют в большинстве случаев бесконечные обла-

сти определения. 

Часто используют метод интерпретаций: когда в формулу, требующую доказатель-

ства подставляют константы. Подстановка констант позволяет интерпретировать форму-

лу, как осмысленное утверждение об элементах конкретного множества М. Этот метод 

удобен для доказательства выполнимости формул или их неэквивалентности. 

Свойства кванторов 

         

        

   

     

x A x B x xA x yB y

x A x B x xA x yB y

& &  (2.21) 

 

    

    

    

    

    

  

    

  

x A x B xA x B

x A x B xA x B

x A x B xA x B

x A x B xA x B

& &

& &

 (2.22) 

    

   

    

    

x yA x y y xA x y

x yA x y y xA x y

, ,

, ,

  (2.23) 



52 

 

По аналогии с двойственностью конъюнкции и дизъюнкции имеет место двой-

ственность между кванторами 

 
   

   

  

  

xA x x A x

xA x x A x
 (2.24) 

Эти равносильности и закон двойственности позволяют преобразовать любую формулу 

логики предикатов в равносильную формулу, в которой символ отрицания стоит только 

над элементарными предикатами. Получающуюся в результате формулу называют почти 

нормальной формой исходной формулы. 

1. На множестве   1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число. 

Тогда мощность области истинности предиката равна-…    

ОТВЕТ:4 

2. На множестве   1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число. 

Тогда  (1)P  равно-…   

ОТВЕТ:0 

3. На множестве   1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число. 

Тогда  (2)P  равно-…   

ОТВЕТ:1 

4. На множестве   1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число. 

Тогда  (4)P  равно-…   

ОТВЕТ:0 

5. На множестве   1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число;

( )x Dq P x   высказывание. Тогда q  равно-…   

ОТВЕТ:0 

6. На множестве  1,2,3,4,5,6,7D   задан предикат ( ) :P x x простое число; 

( )x Dp P x    высказывание. Тогда p  равно-…   

ОТВЕТ:1 

7. Задан предикат ( ) :P x  множество x таких, что 3 2x x  . Тогда область ис-

тинности предиката pI  равна  

+а) [1; 2] 

б) (1; 2) 

в) [1; 2)   

г) (1;2] 

д) [2; )  

3.12.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия предиката, логические операции над предикатами, кванторные опера-

ции, элементы логики предикатов; 

- приобрели умения и навыки решать задачи с элементами логики предикатов. 

 

 

3.13 Практическое занятие №ПЗ-13 (2 часа). 

Тема: «Основные подходы к формализации понятия алгоритма. Машина Тьюринга»                      
         

3.131 Задание для работы: 
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1. Основные подходы к формализации понятия алгоритма.  

2. Машина Тьюринга. Принцип Тьюринга - Поста 

3.13.2 Краткое описание проводимого занятия: 
1. Основные подходы к формализации понятия алгоритма.  

2. Машина Тьюринга. Принцип Тьюринга - Поста. 

1.   

  
0

1 0 1

1

1 1

a

q Нq Пq
     

 

Из любой начальной конфигурации(УУ обозревает не пустой символ) эта машина 

Тьюринга переводит слово 11 в слово-...(Отв.: 111) 

2. В команде a3q2→a0Лq0 следующее состояние машины Тьюринга  

+а) 
0q  

б) 
2q  

в) 
1q  

г)  
0a   

д) 
2q        

3.  Одной из моделей (формализаций) алгоритма является  

+а) машина Тьюринга  

б) задача линейного программирования  

в) эйлеровы графы  

г) алгебра множеств  

д) алгебра логики  

4.По команде a3q2→a0Лq0 состояние машины меняется    

+а) с q2 на q0 

б) с q0 на q2 

в) с a3 на q2 

г) с a3 на a0 

д) с a0 на a3 

5.По команде a3q2→a0Лq0 машина меняет в ячейке символ внешнего алфавита     

+а) с a3 на a0 

б) с a0 на a3 

в) с a0 на q2 

г) с q2 на q1 

д) с q1 на q2 

6.Состояние машины перед исполнением команды a3q2→a0Лq0 это 

+а) q2 

б) q1 

в) q0 

г) a1 

д) a2 

7.В конфигурации   
0 0

1

3 1 5a a

q
 обозревается символ-... 

ОТВЕТ:5 

3.13.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия об основных подходах к формализации понятия алгоритма, понятие 

машины Тьюринга;  

- приобрели умения и навыки алгоритмизации простейших задач. 
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3.14 Практическое занятие №ПЗ-14 (2 часа). 

Тема: «Рекурсивные функции (Рекурсивный алгоритм)»                      
         

3.14.1 Задание для работы: 

1. Рекурсивные функции. 

2. Рекурсивный алгоритм 

 

3.14.2 Краткое описание проводимого занятия: 
1. Рекурсивные функции. 

2. Рекурсивный алгоритм 

 

1. Пусть заданы число a  и функция ( , )x y . Функцию ( )f y , определѐнную системой 

равенств  
 

(0)

( 1) , ( )

f a

f y y f y




 
, называют полученной по схеме … 

(Отв. примитивной рекурсии) 

2. 10. Пусть заданы число 2a   и функция ( , ) 3x y y   . Функция ( )f y  получена по 

схеме примитивной рекурсии: 
 

(0)

( 1) , ( )

f a

f y y f y




 
. Тогда (1)f  равно-… 

ОТВЕТ:5 

3. Одна из моделей (формализаций) алгоритма это  

+а) рекурсивный алгоритм  

б) логика предикатов  

в) алгебра множеств  

г) алгоритм Краскала 

д) булевы функции  

4.Теория рекурсивных функций это модель (формализация)  

+а) алгоритма  

б) алгебры логики  

в) алгебры множеств  

г) теории групп 

д) линейной алгебры  

5.Гипотеза «Числовая функция тогда и только тогда алгоритмически вычислима,  когда 

она частично рекурсивна» называется тезисом(принципом) 

+а) Чѐрча 

б) Маркова 

в) Тьюринга  

г) Миля 

д) Мура 

6.Исходная простейшая функция ( ) 1x x    в классе рекурсивных функций называется 

оператором 

+а) следования 

б) аннулирования 

в) Чѐрча 

г) проектирования 

д) суперпозиции 

7.Исходная простейшая функция ( ) 0O x   в классе рекурсивных функций называется 

оператором 



55 

 

+а) аннулирования 

б) следования 

в) Лапласа 

г) проектирования 

д) суперпозиции 

8. Пусть заданы число 2a   и функция ( , ) 3x y y   . Функция ( )f y  получена по 

схеме примитивной рекурсии: 
 

(0)

( 1) , ( )

f a

f y y f y




 
. Тогда (3)f  равно 

+а) 11  

б) 8 

в) 5 

г) 3 

д) 7  

9. 1a  , ( , ) 2x y y  , 0,1,2,3,...y  , функция ( )f y  получена по схеме примитивной 

рекурсии 
 

(0)

( 1) , ( )

f a

f y y f y




 
. Алгоритм вычисляет функцию ( )f y     

+а) 2y
 

б)  3
y

  

в) -2y 

г) 1-2y 

д)  2
y

  

10. 1a  , ( , ) ( 1)x y x y   , 0,1,2,3,...y  , функция ( )f y  получена по схеме прими-

тивной рекурсии 
 

(0)

( 1) , ( )

f a

f y y f y




 
. Алгоритм вычисляет функцию ( )f y     

+а) y! 

б) (x + 1)y 

в) (x+1)
y 

г) y
x+1 

д) 2
y 

11. Алгоритм (0, )f x x , ( 1, ) ( , ) 1f y x f y x   , 0,1,2,3,...y  , вычисляет функцию 

( , )f y x     
 

+а) y + x 

б) y+1 

в) y-1 

г) 0 

д) y 

3.14.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятие о  рекурсивном алгоритме; 

- приобрели умения и навыки алгоритмизации простейших задач. 

 

 

3.1516 Практическое занятие № ПЗ-15-16 (2 часа). 

Тема: «Нормальные алгоритмы Маркова». «Понятие эффективности и сложности алго-

ритмов»                              
3.15-16.1 Задание для работы: 
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Нормальные алгоритмы Маркова. Понятие эффективности и сложности алгоритмов. 

1. Нормальные алгоритмы Маркова.  

2. Понятие эффективности и сложности алгоритмов.  

 

3.15-16.2 Краткое описание проводимого занятия: 
1. Нормальные алгоритмы Маркова.  

2. Понятие эффективности и сложности алгоритмов. 

Третий тип алгоритмических моделей – это преобразование слов в произвольных 

алфавитах, в которых элементарными операциями являются подстановки, т.е. замены ча-

сти слова (подслова) другим словом. Преимущества этого типа моделей заключаются в 

максимальной абстрактности и возможности применить понятие алгоритма к объектам 

произвольной, не обязательно числовой природы. Примерами моделей этого типа являют-

ся канонические системы Поста и нормальные алгоритмы Маркова. При этом общность 

формализации в конкретной модели не теряется и доказывается сводимость одних моде-

лей к другим, т.е. показывается, что всякий алгоритм, описанный средствами одной моде-

ли, может быть описан средствами другой. 

Тезисы об «универсальности» алгоритмов: тезис Чѐрча, тезис Тьюринга, принцип 

нормализации Маркова. Эквивалентность различных теорий алгоритмов. Алгорит-

мические проблемы. 

Тьюрингом [1937] было показано, что его вычислимые функции — это то же самое, 

что  -определимые функции, и, следовательно, то же самое, что и общерекурсивные 

функции. Поэтому тезисы Тьюринга и Чѐрча эквивалентны. Мы будем обычно ссылаться 

на оба эти тезиса как на тезис Чѐрча, а в связи с тем  его вариантом, в котором идет речь о 

«машинах Тьюринга»,— как на тезис Чѐрча — Тьюринга. В 1936 г. Пост независимо от 

Тьюринга опубликовал в довольно сжатом изложении формулировку, в основе ту же, что 

у Тьюринга. В 1943 г., основываясь на своей неопубликованной работе 1920— 1922 гг., он 

опубликовал третий эквивалент аналогичного тезиса. Еще одну эквивалентную формули-

ровку дает теория алгоритмов Маркова [1951г]. 

Благодаря взаимной сводимости моделей в общей теории алгоритмов удалось выра-

ботать инвариантную по отношению к моделям систему понятий, позволяющую говорить 

о свойствах алгоритмов независимо от того, какая формализация алгоритма выбрана. Эта 

система понятий основана на понятии вычислимой функции, т.е. функции, для вычисле-

ния которой существует алгоритм. 

1. Одна из моделей(формализаций) алгоритма это  

+а) нормальный алгоритм  

б) логика предикатов  

в) линейная алгебра  

г) алгебра множеств 

д) булевы функции  

2. Гипотеза «Для нахождения значений функции, заданной в некотором алфавите, тогда и 

только тогда существует некоторый алгоритм, когда функция нормально вычислима» 

называется тезисом (принципом) 

+а) Маркова  

б) Чѐрча  

в) Тьюринга  

г) Краскала 

д) Мура 
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3. Задан нормальный алгоритм Маркова: алфавит  1,A    и схема подстановок 1) 

1 1 ,  2) 1 1  , 3) 1 1 . Алгоритм перерабатывает слово 1111+11+111 в слово 

+а) 111111111  

б) 111111 

в) 11111   

г)   

д) 111 

4. Задан нормальный алгоритм Маркова: алфавит  1,A    и схема подстановок 1) 

 ,  2) 1 1 . Алгоритм перерабатывает слово 11+111+1+11 в слово 

+а) 11111111  

б)   

в) 11111   

г) 111111 

д) 111 

5. Задан нормальный алгоритм Маркова: алфавит  1A   и схема подстановок 1) 1

. Алгоритм перерабатывает слово 11 в слово 

+а) 111  

б)   

в) 1   

г) 1+1 

д) + 

6. Задан нормальный алгоритм Маркова: алфавит  1A   и схема подстановок 1) 1

. Алгоритм перерабатывает слово 111 в слово 

+а) 1111  

б)   

в) 11   

г) 11+1 

д) +1 

7. Задан нормальный алгоритм Маркова: алфавит  1A   и схема подстановок 1) 1

. Алгоритм вычисляет функцию ( )f x   

+а) x+1  

б) 0 

в) 1   

г) x 

д) 2
x 
  

8. Марковская подстановка ( , )P Q  обозначается через 

+а) P Q    

б) ( )f P Q  

в) P Q    

г) P Q  

д) P Q  
  

9. Символом P Q  обозначается марковская подстановка  

+а) заключительная   

б) начальная 

в) вторая в списке   

г) третья в списке 
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д) предпоследняя
 
  

10. Нормальный алгоритм Маркова с алфавитом  ,A a b  и схемой подстановок 1) 

bb ba , 2) ba a , 3) a , 4) b    преобразует слово aba   в слово 

+а)    

б) ba  

в) aa    

г) b  

д) abab  
  

 

2. Понятие эффективности и сложности алгоритмов.            
 

Алгоритмы полиномиальной сложности (класс Р). 

Большинство алгоритмов имеют полиномиальный порядок сложности. Иногда время 

работы оказывается линейным, как при последовательном поиске: при удлинении списка 

данных вдвое алгоритм работает вдвое дольше. В алгоритмах последовательного поиска 

нас интересует процесс просмотра списка в поисках некоторого элемента, называемого 

целевым. При последовательном поиске предполагается, что список не отсортирован. 

Например, ключевое значение может быть номером сотрудника, фамилией, или любым 

другим уникальным идентификатором. Алгоритм последовательного поиска последова-

тельно просматривает по одному элементу списка, начиная с первого, до тех пор пока не 

найдет нужный элемент. Очевидно, что чем дальше в списке находится конкретное значе-

ние ключа, тем больше времени уйдет на его поиск. 

Очень часто встречаются алгоритмы сложности  2NO  – такую сложность имеют не-

которые алгоритмы сортировки: если длину входного списка удвоить, то время работы 

алгоритма возрастет в 4 раза. Все восемь существующих алгоритмов сортировки демон-

стрируют широкий спектр возможных вариантов поведения. Первая из них, сортировка 

вставками, сортирует список, вставляя очередной элемент в нужное место уже отсортиро-

ванного списка. Пузырьковая сортировка сравнивает элементы попарно, переставляя 

между собой элементы тех пар, порядок в которых нарушен. Сортировка Шелла представ-

ляет собой многопроходную сортировку, при которой список разбивается на подсписки, 

каждый из которых сортируется отдельно, причем на каждом проходе число подсписков 

уменьшается, а их длина растет. 

Рассмотрим наиболее типичный вариант сортировки – пузырьковую сортировку. Ал-

горитм пузырьковой сортировки совершает несколько проходов по списку. При каждом 

проходе происходит сравнение соседних элементов. Если порядок соседних элементов 

неправильный, они меняются местами. Каждый проход начинается с начала списка. Спер-

ва сравниваются 1 и 2 элементы, затем 2 и 3, потом 3 и 4 и т.д. Элементы с неправильным 

порядком в паре переставляются. При обнаружении на первом проходе наибольшего эле-

мента списка он будет переставляться со всеми последующими пока не дойдет до конца 

списка. Поэтому при втором проходе нет необходимости производить сравнение с по-

следним элементом. При втором проходе второй по величине элемент списка опустится во 

вторую позицию с конца и т.д. Стоит заметить, что при каждом проходе ближе к своему 

месту продвигается сразу несколько элементов, хотя гарантировано занимает окончатель-

ное положение лишь один. 

Сколько сравнений выполняется в наихудшем случае. На первом проходе будет вы-

полнено 1N  сравнений соседних значений, на втором 2N  сравнений. Дальнейшее 

исследование показывает, что при каждом очередном проходе число сравнений уменьша-

ется на 1. Поэтому сложность в наихудшем случае дается формулой 
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Сложность стандартного алгоритма матричного умножения равна  3NO  и при уве-

личении размеров матриц вдвое такой алгоритм работает в 8 раз дольше. 

Матрица – математический объект, эквивалентный двумерному массиву. Если число 

столбцов в первой матрице совпадает с числом строк во второй, то эти две матрицы мож-

но перемножить:  

Для вычисления произведения двух матриц каждая строка первой почленно умножа-

ется на каждый столбец второй. Затем подсчитывается сумма таких произведений и запи-

сывается в соответствующую клетку результата. Стандартный алгоритм умножения мат-

рицы размером  ba  на матрицу размером  cb  выполняет abc  умножений и   cba 1  

сложений. Однако исследователям удалось обнаружить другие алгоритмы, умножающие 

матрицы более эффективно, в частности алгоритм Виноградова и алгоритм Штрассена. 

Алгоритм Штрассена работает с квадратными матрицами. На самом деле он настолько 

эффективен, что иногда разумно расширить матрицы до квадратных, и при этом он все 

равно дает выигрыш. Анализ общего случая показывает, что число умножений при пере-

множении двух NN   матриц приблизительно равно 81,2N , а число сложений 
281,2 66 NN  . 

Сводя три результата воедино, имеем следующую таблицу:  

 

 Умножение Сложение 

Стандартный алгоритм 3N  23 NN   

Алгоритм Виноградова 
2

2 23 NN 
 

2

443 23 NNN 
 

Алгоритм Штрассена 81,2N  281,2 66 NN   

 

Все рассмотренные алгоритмы имеют полиномиальную сложность. Самым время-

емким был алгоритм умножения матриц, его сложность   3NO . Главное, однако то, что 

мы могли найти такое решение задач за разумный промежуток времени. Все эти задачи 

относятся к классу Р – классу задач полиномиальной сложности. Такие задачи называются 

также практически разрешимыми. 

 

Алгоритмы недетерминированной полиномиальной сложности (класс NP задач). 

Кроме практически разрешимых задач, относящихся к классу p – классу задач поли-

номиальной сложности, существует и другой класс задач: они практически неразрушимы 

и мы не знаем алгоритмов, способных решить их за разумное время. Эти задачи образуют 

класс NP – недетерминированной полиномиальной сложности. 

Отметим только, что сложность всех известных детерминированных алгоритмов, ре-

шающих эти задачи, либо экспоненциально, либо факториальна. Сложность некоторых из 

них равна N2 , где N – количество входных данных. В этом случае при добавлении к спис-

ку входных данных одного элемента время работы алгоритма удваивается. Если для ре-

шения такой задачи на входе из 10 элементов алгоритму требовалось 1024 операций, то на 

входе из 11 элементов число операций составит уже 2048. Это значительное возрастание 

времени при небольшом удлинении входа. 

Термин «недетерминированные полиномиальные» характеризующие задачи из класса 

NP, объясняется следующим двухшаговым подходом к их решению. На первом шаге име-

ется недетерминированный алгоритм, генерирующий возможное решение такой задачи – 

что-то вроде попытки указать решение; иногда такая попытка оказывается успешной, и 

мы получаем оптимальный или близкий к оптимальному ответу, чаще нет (ответ далек от 

оптимального). На втором шаге проверяется, действительно ли ответ, полученный на 1 

шаге, является решением исходной задачи. Каждый из этих шагов по отдельности требует 
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полиномиального времени. Проблема, однако, в том, что мы не знаем, сколько раз нам 

придется повторить оба эти шага, чтобы получить искомое решение. Хотя оба шага и по-

линомиальны, число обращений к ним может быть экспоненциальным или факториаль-

ным. 

К классу NP относится задача о коммивояжере. Нам задан набор городов и «стои-

мость» путешествия между любыми двумя из них. Нужно определить такой порядок, в 

котором следует посетить все города (по одному разу) и вернуться в исходный город, что-

бы общая стоимость путешествия оказалась минимальной. Эту задачу можно применить, 

например, для определения порядка эффективного сбора мусора из баков на улицах горо-

да или выбора кратчайшего пути распространения информации по всем узлам компью-

терной сети. Восемь городов можно упорядочить 40 320 возможными способами, а для 

десяти городов это число возрастает уже до 3 628 800. Поиск кратчайшего пути требует 

перебора всех этих возможностей. Предположим, что у нас есть алгоритм, способный 

подсчитать стоимость путешествия через 15 городов в указанном порядке. Если за секун-

ду такой алгоритм способен пропустить через себя 100 вариантов, то ему потребуется 

больше четырех веков, чтобы исследовать все возможности и найти кратчайший путь. 

Даже если в нашем распоряжении имеется 400 компьютеров, все равно у них уйдет на это 

год, а ведь мы имеем дело лишь с 15 городами. Для 20 городов миллиард компьютеров 

должен будет работать параллельно в течение девяти месяцев, чтобы найти кратчайший 

путь. Ясно, что быстрее и дешевле путешествовать хоть как-нибудь, чем ждать, пока ком-

пьютеры выдадут оптимальное решение. 

Можно ли найти кратчайший путь, не просматривая их все? До сих пор никому не 

удалось придумать алгоритм, который не занимается, по существу, просмотром всех пу-

тей. Когда число городов невелико, задача  решается быстро, однако это не означает, что 

так будет всегда, а нас как раз интересует решение общей задачи. 

Задача о коммивояжере, конечно, очень похожа на задачи про графы. Каждый город 

можно представить вершиной графа, наличие пути между двумя городами - ребром, стои-

мость путешествия между ними — весом этого ребра. Отсюда можно сделать вывод, что 

алгоритм поиска кратчайшего пути решает и задачу коммивояжера, однако это не так. Ка-

кие два условия задачи о коммивояжере отличают ее от задачи о кратчайшем пути? Во-

первых, мы должны посетить все города, а алгоритм поиска кратчайшего пути дает лишь 

путь между двумя заданными городами. Если выбрать путь из кратчайших кусков, выда-

ваемых алгоритмом поиска кратчайших путей, то он будет проходить через некоторые го-

рода по нескольку раз. Второе отличие состоит в требовании возвращения в исходную 

точку, которое отсутствует в поиске кратчайшего пути. 

Наше краткое обсуждение того, насколько велико число возможных упорядочиваний 

вершин, должно было убедить Вас в том, что детерминированный алгоритм, сравниваю-

щий все возможные способы упорядочивания. работает чересчур долго. Чтобы показать, 

что эта задача относится к классу NР, нам необходимо понять, как ее можно решить по-

средством описанной выше двухшаговой процедуры. В задаче о коммивояжере на первом 

шаге случайным образом генерируется некоторое упорядочивание городов. Поскольку это 

недетерминированный процесс, каждый раз будет получаться новый порядок. Очевидно, 

что процесс генерации можно реализовать за полиномиальное время: мы можем хранить 

список городов, генерировать случайный номер, выбирать из списка город с этим именем 

и удалять его из списка, чтобы он не появился второй раз. Такая процедура выполняется 

за 0(N) операций, где N — число городов. На втором шаге происходит подсчет стоимости 

путешествия по городам в указанном порядке. Для этого нам нужно просто просуммиро-

вать стоимости путешествия между последовательными парами городов в списке, что 

также требует 0(N) операций. Оба шага полиномиальны, поэтому задача о коммивояжере 

лежит в классе NP. Времяемкой делает ее именно необходимое число итераций этой про-

цедуры. 
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Здесь следует отметить, что такую двухшаговую процедуру можно  было применить к 

любой из рассматривавшихся нами ранее задач. Например, сортировку списка можно вы-

полнять, генерируя произвольный порядок элементов исходного списка и проверяя, не яв-

ляется ли этот порядок возрастающим. Не относит ли это рассуждение задачу сортировки 

к классу NP? Конечно, относит. Разница между классом Р и классом NP в том, что в пер-

вом случае у нас имеется детерминированный алгоритм, решающий задачу за полиноми-

альное время, а во втором мы такого алгоритма незнаем. 

Сведение задачи к другой задаче 

Один из способов решения задач состоит в том, чтобы свести, или редуцировать, одну 

задачу к другой. Тогда алгоритм решения второй задачи можно преобразовать таким об-

разом, чтобы он решал первую. Если преобразование выполняется за полиномиальное 

время и вторая задача решается за полиномиальное время, то и наша новая задача также 

решается за полиномиальное время. 

Поясним наше рассуждение примером. Пусть первая задача состоит и том, чтобы 

вернуть значение «да» в случае, если одна из данных булевских поименных имеет значе-

ние «истина», и вернуть «нет» в противоположном случае. Вторая задача заключается в 

том, чтобы найти максимальное значение в списке целых чисел. Каждая из них допускает 

простое ясное решение, но предположим на минуту, что мы знаем решение задачи о спис-

ке максимума, а задачу про булевские переменные решать не умеем. Мы хотим свести за-

дачу о булевских переменных к задаче о максимуме целых чисел. Напишем алгоритм пре-

образования набора значений булевских переменных в список целых чисел, который зна-

чению «ложь» сопоставляет число 0, а значению «истина»— число 1. Затем воспользуем-

ся алгоритмом поиска максимального элемента в списке. По тому, как составлялся список, 

заключаем, что этот максимальный элемент может быть либо нулем, либо единицей. Та-

кой ответ можно преобразовать в ответ в задаче о булевских переменных, возвращая «да», 

если максимальное значение равно 1, и «нет», если оно равно 0. 

Мы видели в главе 1, что поиск максимального значения выполняется за линейное 

время, а редукция первой задачи ко второй тоже требует линейного времени, поэтому за-

дачу о булевских переменных тоже можно решить за линейное время. 

В следующем разделе мы воспользуемся техникой сведения, чтобы кое-что узнать о 

NP задачах. Однако редукция NP задач может оказаться гораздо более сложной. 

 

Понятие сложности вычислений.  NP- полные задачи. 
NP-полные задачи 

При обсуждении класса NP следует иметь в виду, что наше мнение, согласно которо-

му их решение требует большого времени, основано на том, что мы просто не нашли эф-

фективных алгоритмов их решения. Может быть, посмотрев на задачу коммивояжера с 

другой точки зрения, мы смогли бы разработать полиномиальный алгоритм ее решения. 

То же самое можно сказать и про другие задачи, которые мы будем рассматривать в сле-

дующем параграфе. 

Термин NP-полная относится к самым сложным задачам в классе NP. Эти задачи вы-

делены тем, что если нам все-таки удастся найти полиномиальный алгоритм решения ка-

кой-либо из них, то это будет означать, что все задачи класса NP допускают полиноми-

альные алгоритмы решения. 

Мы показываем, что задача является NP-полной, указывая способ выведения к ней 

всех остальных задач класса NP. На практике эта деятельность выглядит не столь уж 

устрашающе - нет необходимости осуществлять редукцию для каждой NP задачи. Вместо 

этого для того, чтобы доказать NP-полноту некоторой NP задачи А, достаточно свести к 

ней какую-нибудь NP-полную задачу В. Редуцировав задачу В к задаче А, мы показываем, 
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что и любая NP задача может быть сведена к А за два шага, первый из которых   ее редук-

ция к В. 

В предыдущем разделе мы выполняли редукцию полиномиального алгоритма. По-

смотрим теперь на редукцию алгоритма, решающего NP задачу. Нам понадобится проце-

дура, которая преобразует все составные части задачи в эквивалентные составные части 

другой задачи. Такое преобразование должно сохранять информацию: всякий раз, когда 

решение первой задачи дает положительный ответ, такой же ответ должен быть и во вто-

рой задаче, и наоборот. 

Гамильтоновым путем в графе называется путь, проходящий через каждую вершину в 

точности один раз. Если при этом путь возвращается в исходную вершину, то он называ-

ется гамильтоновым циклом. Граф, в котором есть гамильтонов путь или цикл, не обяза-

тельно является полным. Задача о поиске гамильтонова цикла следующим образом сво-

дится к задаче о коммивояжере. Каждая вершина графа — это город. Стоимость пути 

вдоль каждого ребра графа положим равной 1. Стоимость пути между двумя городами, не 

соединенными ребром, положим равной 2. А теперь решим соответствующую задачу о 

коммивояжере. Если в графе есть гамильтонов цикл, то алгоритм решения задачи о ком-

мивояжере найдет циклический путь, состоящий из ребер веса 1. Если же гамильтонова 

цикла нет, то в найденном пути будет по крайней мере одно ребро веса 2. Если в графе N 

вершин, то в нем есть гамильтонов цикл, если длина найденного пути равна N, и такого 

цикла нет, если длина найденного пути больше N. 

В 1971 году Кук доказал NP-полноту обсуждаемой в следующем параграфе задачи о 

конъюнктивной нормальной форме. NP-полнота большого числа задач была доказана пу-

тем редукции к ним задачи о конъюнктивной нормальной форме. В книге Гэри и Джонсо-

на, опубликованной в 1979 году, приведены сотни задач, NP-полнота которых доказана. 

Редукция — настолько мощная вещь, что если любую из NP-полных задач удастся 

свести к задаче класса Р, то и все NP задачи получат полиномиальное решение. До сих пор 

ни одна из попыток построить такое сведение не удалась. 

 

Типичные NP задачи 

Каждая из задач, которые мы будем обсуждать, является либо оптимизационной, либо 

задачей о принятии решения. Целью оптимизационной задачи обычно является конкрет-

ный результат, представляющий собой минимальное или максимальное значение. В зада-

че о принятии решения обычно задается некоторое пограничное значение, и нас ин-

тересует, существует ли решение, большее (и задачах максимизации) или меньшее (в за-

дачах минимизации) указанной границы. Ответом в задачах оптимизации служит полу-

ченный конкретный результат, а в задачах о принятии решений — «да» или «нет». 

Ранее мы занимались оптимизационным вариантом задачи о коммивояжере. Это за-

дача минимизации, и нас интересовал путь минимальной стоимости. В варианте принятия 

решения мы могли бы спросить, существует ли путь коммивояжера со стоимостью, мень-

шей заданной константы С. Ясно, что ответ в задаче о принятии решения зависит от вы-

бранной границы. Если эта граница очень велика (например, она превышает суммарную 

стоимость всех дорог), то ответ «да» получить несложно. Если эта граница чересчур мала 

(например, она меньше стоимости дороги между любыми двумя городами), то ответ «нет» 

также дается легко. В остальных промежуточных случаях время поиска ответа очень ве-

лико и сравнимо со временем решения оптимизационной задачи. Поэтому мы будем гово-

рить вперемешку о задачах оптимизации и принятия решений, используя ту из них, кото-

рая точнее отвечает нашим текущим целям. 

В следующих нескольких разделах мы опишем еще шесть NP задач — как в оптимиза-

ционном варианте, так и в варианте принятия решения. 

Раскраска графа 
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Как мы уже говорили, граф G = (V, Е) представляет собой набор вершин, или узлов, V 

и набор ребер Е соединяющих вершины попарно. Здесь мы будем заниматься только не-

ориентированными графами. Вершины графа можно раскрасить в разные цвета, которые 

обычно обозначаются целыми числами. Нас интересуют такие раскраски, в которых кон-

цы каждого ребра окрашены разными цветами. Очевидно, что в графе с N вершинами 

можно покрасить вершины в N различных цветов, но можно ли обойтись меньшим коли-

чеством цветов? В задаче оптимизации нас интересует минимальное число цветов, необ-

ходимых для раскраски вершин графа. В задаче принятия решения нас интересует, можно 

ли раскрасить вершины в С или менее цветов. 

У задачи о раскраске графа есть практические приложения. Если каждая вершина 

графа обозначает читаемый в колледже курс, и вершины соединяются ребром, если есть 

студент, слушающий оба курса, то получается весьма сложный граф. Если предположить, 

что каждый студент слушает 5 курсов, то на студента приходится 10 ребер. Предположим, 

что на 3500 студентов приходится 500 курсов. Тогда у получившегося графа будет 500 

вершин и 35 000 ребер. Если на экзамены отведено 20 дней, то это означает, что вершины 

графа нужно раскрасить в 20 цветов, чтобы ни у одного студента не приходилось по два 

экзамена в день. 

Разработка бесконфликтного расписания экзаменов эквивалентна раскраске графов. 

Однако задача раскраски графов принадлежит к классу NP, поэтому разработка бескон-

фликтного расписания за разумное время невозможна. Кроме того при планировании эк-

заменов обычно требуется, чтобы у студента было не больше двух экзаменов в день, а эк-

замены по различным частям курсам назначаются в один день. Очевидно, что разработка 

«совершенного» плана экзаменов невозможна, и поэтому необходима другая техника для 

получения по крайней мере неплохих планов. 

 

Раскладка по ящикам 

Пусть у нас есть несколько ящиков единичной емкости и набор объектов различных 

размеров Nsss ,...,, 21 . В задаче оптимизации нас интересует наименьшее количество ящи-

ков, необходимое для раскладки всех объектов, а в задаче принятия решения — можно ли 

упаковать все объекты в В или менее ящиков. 

Эта задача возникает при записи информации на диске или во фрагментированной 

памяти компьютера, при эффективном распределении груза на кораблях, при вырезании 

кусков из стандартных порций материала по заказам клиентов. Если, например, у нас есть 

большие металлические листы и список заказов на меньшие листы, то естественно мы хо-

тим распределить заказы как можно плотнее, уменьшив тем самым потери и увеличив до-

ход. 

 

Упаковка рюкзака 

У нас имеется набор объектов объемом Nss ,...,1  стоимости Nww ,...,1 . В задаче опти-

мизации мы хотим упаковать рюкзак объемом К так, чтобы его стоимость была макси-

мальной. В задаче принятия решения нас интересует, можно ли добиться, чтобы суммар-

ная стоимость упакованных объектов была по меньшей мере W. 

Эта задача возникает при выборе стратегии вложения денег: объемом здесь является 

объем различных вложений стоимостью - предполагаемая величина дохода, а объем рюк-

зака определяется размером планируемых капиталовложений. 

 

Задача о суммах элементов подмножеств 

Пусть у нас есть множество объектов различных размеров Nss ,...,1  и некоторая поло-

жительная верхняя граница L. В задаче оптимизации нам необходимо найти набор объек-

тов, сумма размеров которых наиболее близка к L и не превышает этой верхней границы. 
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В задаче принятия решения нужно установить, существует ли набор объектов с суммой 

размеров L. Это упрощенная версия задачи об упаковке рюкзака. 

Задача об истинности КНФ-выражения 

Конъюнктивная нормальная форма (КНФ) представляет собой последовательность 

булевских выражений, связанных между собой операторами AND (обозначаемыми  ), 

причем каждое выражение является мономом от булевских переменных или их отрица-

ний, связанных операторами OR (которые обозначаются через  ). Вот пример булевского 

выражения в конъюнктивной нормальной форме (отрицание обозначается чертой над 

именем переменной): 

         edcbadcbdcbacaba  . 

Задача об истинности булевского выражения в конъюнктивной нормальной форме 

ставится только в варианте принятия решения: существуют ли у переменных, входящих в 

выражение, такие значения истинности, подстановка которых делает все выражение ис-

тинным. Как число переменных, так и сложность выражения не ограничены, поэтому чис-

ло комбинаций значений истинности может быть очень велико. 

 

Задача планирования работ 

Пусть у нас есть набор работ, и мы знаем время, необходимое для завершения каждой 

из них, Nttt ,...,, 21 , сроки Nddd ,...,, 21 , к которым эти работы должны быть обязательно за-

вершены, а также штрафы Nppp ,...,, 21 , которые будут наложены при незавершении каж-

дой работы в установленные сроки. Задача оптимизации требует установить порядок ра-

бот, минимизирующий накладываемые штрафы. В задаче принятия решений мы спраши-

ваем, есть ли порядок работ, при котором величина штрафа будет не больше Р. 

 

      Вопросы для самопроверки. 

1. Что такое алгоритм? 

2. Перечислите основные свойства алгоритмов. 

3. Назовите универсальные алгоритмические модели. 

4. Дайте определение примитивно-рекурсивных функций. 

5. Дайте определение частично рекурсивных и общерекурсивных функций. 

6. Дайте определение машины Тьюринга. 

7.  Дайте определение и приведите примеры полиномиальных алгоритмов. 

8. В чем выражается вычислительная сложность алгоритмов? 

9. Какая задача считается труднорешаемой? 

10.  Что означает термин NP- полная задача? 

 

 

1. Оценить применимость алгоритма. 

Агенство недвижимости, база данных. Запись – пара (предложение, спрос). Найти 

варианты обмена (т.е. такие пары, где первая компонента одной совпадает со второй 

компонентой другой). Оценить простейший вариант поиска – «лобовой».  

Решение. Трудоемкость n(n–1)/2. Если на одну проверку нужна 1 миллисекунда, то при 

n = 100 потребуется около 5 секунд, при n=100 000 – 510
6
 сек, т.е. около 1389 часов. 

Алгоритм непригодный. 

 

3.15-16.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия об основных подходах к формализации понятия алгоритма (машина 

Тьюринга; рекурсивный алгоритм, нормальные алгоритмы Маркова); понятие эффектив-

ности и сложности алгоритмов; 

- приобрели умения и навыки алгоритмизации простейших задач.  
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3.17 Практическое занятие №ПЗ-17 (2 часа). 

Тема: « Конечные автоматы»                      
         

3.17.1 Задание для работы: 

1. Понятие конечного автомата. Историческая справка. Способы задания конечного авто-

мата. Примеры конечных автоматов. Виды автоматов. Общие задачи теории автоматов. 

 

3.17.2 Краткое описание проводимого занятия: 
1. Понятие конечного автомата. Историческая справка. Способы задания конечного авто-

мата. Примеры конечных автоматов. Виды автоматов. Общие задачи теории автоматов. 

 

1.Раздел дискретной математики, изучающий модели преобразователей дискретной 

информации, называется теорией  

+а) автоматов  

б) вероятностей 

в) множеств 

г) функций  

д) поля 

2. Конечный автомат это математическая модель дискретного устройства по пере-

работке   

+а) информации  

б) вероятности 

в) алгебры 

г) формул 

д) поля 

3. В конечном автомате  ; ; ; ( , ); ( , )A X Q Y x q x q   множество X  называется    

+а) входным алфавитом   

б) множеством состояний 

в) выходным алфавитом   

г) функцией переходов    

д) функцией выходов                                             
 
  

4. В конечном автомате  ; ; ; ( , ); ( , )A X Q Y x q x q   множество Q  называется    

+а) множеством состояний 

б) входным алфавитом   

в) выходным алфавитом   

г) функцией переходов    

д) функцией выходов    
 
      

5. В конечном автомате  ; ; ; ( , ); ( , )A X Q Y x q x q   множество Y  называется    

+а) выходным алфавитом 

б) входным алфавитом   

в) множеством состояний   

г) функцией переходов 

д) функцией выходов                       
  
  

6. В конечном автомате  ; ; ; ( , ); ( , )A X Q Y x q x q   объект ( , )x q  называется    

+а) функцией переходов 

б) входным алфавитом   

в) выходным алфавитом   

г) множеством состояний  



66 

 

д) функцией выходов          

7. В конечном автомате  ; ; ; ( , ); ( , )A X Q Y x q x q   объект ( , )x q  называется    

+а) функцией выходов   

б) входным алфавитом   

в) выходным алфавитом   

г) множеством состояний  

д) функцией переходов                          
             

8. Задан конечный автомат   ; ; ; ( , ); ( , )A X Q Y x q x q   - элемент задержки 

(элемент памяти):  0,1X  ,   0,1Q  ,   0,1Y  , функция переходов  (0,0) 0  ,  

(0,1) 0  , (1,0) 1  , (1,1) 1  , функция выходов  (0,0) 0  ,  (0,1) 1  , 

(1,0) 0  , (1,1) 1  . При входном сигнале 
1 0x   в состоянии 

2 1q   автомат выдаѐт 

выходной сигнал-…                                                                                                                                                                                                                                                                                                                                                                  

ОТВЕТ:1 

9. Задан автомат   ; ; ; ( , ); ( , )A X Q Y x q x q   - элемент задержки (элемент па-

мяти):  0,1X  ,   0,1Q  ,   0,1Y  , функция переходов  (0,0) 0  ,  (0,1) 0  , 

(1,0) 1  , (1,1) 1  , функция выходов  (0,0) 0  ,  (0,1) 1  , (1,0) 0  , (1,1) 1 

. При входном сигнале 
2 1x   в состоянии 

1 0q   автомат выдаѐт выходной сигнал-…                                                                                                                                                                                                                                                                                                                                                                  

ОТВЕТ:0                                                                                              

10. Автомат   ; ; ; ( , ); ( , )A X Q Y x q x q   - элемент задержки (элемент памяти):

 0,1X  ,   0,1Q  ,   0,1Y  , функция переходов  (0,0) 0  ,  (0,1) 0  ,

(1,0) 1  , (1,1) 1  , функция выходов  (0,0) 0  ,  (0,1) 1  , (1,0) 0  , (1,1) 1 

. При входном сигнале 
1 0x   из состояния 

2 1q   автомат переходит в состояние-…                                                                                                                                                                                                                                                                                                                                                                  

ОТВЕТ:0 

11. Задан конечный автомат   ; ; ; ( , ); ( , )A X Q Y x q x q   - (элемент памяти):

 0,1X  ,   0,1Q  ,   0,1Y  , функция переходов  (0,0) 0  ,  (0,1) 0  , 

(1,0) 1  , (1,1) 1  , функция выходов  (0,0) 0  ,  (0,1) 1  , (1,0) 0  , (1,1) 1 

. При входном сигнале 
2 1x   из состояния 

1 0q   автомат переходит в состояние-…                                                                                                                                                                                                                                                                                                                                                                  

ОТВЕТ:1 

3.17.3 Результаты и выводы: в результате проведенного занятия студенты: 

- освоили понятия  конечного автомата,  способы задания конечного автомата, примеры 

конечных автоматов, виды автоматов; 

- приобрели умения и навыки решения простейших задач по теме «Автоматы».  

 

3.18 Практическое занятие №18 (2 часа). 

Тема: «Исчисление высказываний и предикатов. Математические (формальные аксиома-

тические) теории первого порядка»                      

         

3.18.1 Задание для работы: 

1. Формальные системы.  

2. Исчисление высказываний. 

3.18.2 Краткое описание проводимого занятия: 
1. Формальные системы.  

2. Исчисление высказываний. 
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Формальные системы - это системы операций над объектами, понимаемыми как по-

следовательность символов (т.е. как слова в фиксированных алфавитах), сами операции 

также являются операциями над символами. Термин "формальный" подчѐркивает, что 

объекты и операции над ними рассматриваются чисто формально, без каких бы то ни бы-

ло содержательных интерпретаций символов. Предполагается, что между символами не 

существует никаких связей и отношений, кроме тех, которые явно описаны средствами 

самой формальной системы. 

 Исторически теория формальных систем, так же как и теория алгоритмов, возникла 

в рамкам оснований математики при исследовании строения аксиоматических теорий и 

методов доказательства в таких теориях. Всякая точная теория определяется, во-первых, 

языком, т.е. некоторым множеством высказываний, имеющих смысл с точки зрения этой 

теории, и, во-вторых, совокупностью теорем - подмножеством языка, состоящим из вы-

сказываний, истинных в данной теории. 

 В математике с античных времѐн существовал образец систематического построе-

ния теории - геометрия Евклида, в которой все исходные предпосылки сформированы яв-

но, в виде аксиом, а теоремы выводятся из этих аксиом с помощью цепочек логических 

рассуждений, называемых доказательствами. Однако, до середины 19 века математиче-

ские теории, как правило, не считали нужным явно выделять все исходные принципы, 

критерии же строгости доказательств и очевидности утверждений в разные времена были 

различными и явно не формулировались. Время от времени это приводило к необходимо-

сти пересмотра основ той или иной теорий. Известно, например, что основания диффе-

ренциального и интегрального счисления, разработанных в 18 век Ньютоном и Лейбни-

цем, в 19 века подверглись серьѐзному пересмотру. Математический анализ в его совре-

менном виде опирается на работы Коши, Больцано и Вейерштрасса по теории пределов. 

 В конце 19 века такой пересмотр затронул общие принципы доказательств в мате-

матических теориях. Это привело к созданию новой отрасли математики - оснований ма-

тематики, предметом которой и стало построение теорий, чтобы в них не возникало про-

тиворечий. Одной из фундаментальных идей, на которые опираются исследования по ос-

нованию математики, является идея формализации теорий, т.е. последовательного прове-

дения аксиоматического метода построения теорий.  

При этом не допускается пользоваться какими-либо предположениями об объектах 

теории, кроме тех, которые выражены явно в виде аксиом; аксиомы рассматриваются как 

формальные последовательности символов ( выражения), а методы доказательств— как 

методы получения одних выражении из других с помощью операций над символами. Та-

кой подход гарантирует четкость исходных утверждений и однозначность выводов, одна-

ко может создаться впечатление, что осмысленность и истинность в формализованной 

теории не играют никакой роли. Внешне это так, однако, в действительности и аксиомы и 

правила вывода стремятся выбирать таким образом, чтобы построенной с их помощью 

формальной теории можно было придать содержательный смысл. 

Более конкретно формальная система (или исчисление) строится следующим обра-

зом. 

1. Определяется некоторое счетное множество символов, т.е. множество, элементы 

которого могут быть взаимно однозначно сопоставлены элементам натурального ряда 

1,2,...N, которые называется термами. Имеется другое конечное множество символов, 

элементы которого называются связками или операциями. Наконец, существует конечное 

множество вспомогательных символов. Конечные последовательности символов называ-

ются выражениями данной системы. 

2. Определяется  множество формул, или правильно построенных выражений, обра-

зующее язык теории. Это множество задается конструктивными средствами (как правило, 

индуктивным определением) и, следовательно, перечислимо. Обычно оно и разрешимо. 

Для правильно построенных формул (ППФ) задаются правила их конструирования, т.е. 

определяется эффективная процедура, с помощью которой по данному выражению выяс-
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няется, является ли формула правильно построенной в данной  формальной системе (ФС) 

или нет. Формула, для которой существует такая процедура, называется разрешимой в 

данной ФС, в противном случае неразрешимой. Иначе говоря, для неразрешимых формул 

нельзя построить алгоритм выяснения свойства формулы быть теоремой, для этого тре-

буются  все новые и новые озарения (изобретательства), не поддающиеся формализации.  

3. Выделяется подмножество формул, называемых аксиомами ФС. Так же как и для 

ППФ для аксиом должна иметься процедура, позволяющая определить, является ли  ППФ 

аксиомой или нет. Подмножество может быть и бесконечным, во всяком случае, оно 

должно быть разрешимо.  

4.  Задается конечное множество R1, R,2,..,Rk  отношений между ППФ, называемых 

правилами вывода. Должна иметься эффективная процедура, позволяющая для произ-

вольной конечной последовательности ППФ решить, может ли каждый член этой после-

довательности быть выведен с помощью конечного числа правил вывода. Правило вывода 

R(F1, ..., Fn, G) —это вычислимое отношение на множестве формул. Если формулы F1, ..., 

Fn, G находятся в отношении R, то формула G называется непосредственно выводимой из 

F1, ..., Fn по правилу R. Часто правило R(F1, ..., Fn, G) записывается в виде (F1, ..., Fn)/G. 

Формулы F1, ..., Fn называются посылками правила R, a G—его следствием или за-

ключением. Примеры аксиом и правил вывода будут приведены несколько позднее. 

Выводом формулы В из формул A1, ..., An называется последовательность формул F1, 

..., Fm, такая, что Fm = B, а любая Fi(i = 1,...,m) есть либо аксиома, либо одна из исходных 

формул A1, ..., An, либо непосредственно выводима из формул F1, ..., Fi-1 (или какого-то их 

подмножества) по одному из правил вывода. Если существует вывод В из A1, ..., An, то го-

ворят, что В выводима из A1, ..., An. Этот факт обозначается так: A1,...,An├ В. Формулы A1, 

..., An называются гипотезами или посылками вывода. Переход в выводе от Fi-1 к Fi назы-

вается i-м шагом вывода. 

Доказательством формулы В в теории Т называется вывод В из пустого множества 

формул, т. е. вывод, в котором в качестве исходных формул используются только аксио-

мы. Формула В, для которой существует доказательство, называется формулой, доказуе-

мой в теории Т, или теоремой теории Т; факт доказуемости В обозначается ├ В. 

Очевидно, что присоединение формул к гипотезам не нарушает выводимости. По-

этому если ├В, то А├В, и если A1, ..., An ├ В, то  A1, ..., An, An+1 ├ В  для любых A и An+1. 

Порядок гипотез в списке несуществен. 

Например, если удалось построить вывод В из A1, ..., An, то элементы последователь-

ности ППФ A1, ..., An называются посылками вывода (или гипотезами). Сокращенно вывод  

В из  A1, ..., An записывается в виде  A1, ..., An ├ В, или если Г= A1,.., An то Г├ В. Напом-

ним, что вывод ППФ без использования посылок есть доказательство ППФ В, а сама В – 

теорема, и это записывается ├ В. 

3.18.3 Результаты и выводы: в результате проведенного занятия студенты: 

- познакомились с понятием формальной системы, историей возникновения понятия фор-

мальной системы, принципами построения. 

 

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ СЕМИНАРСКИХ ЗАНЯТИЙ 

 Семинарские занятия не предусмотрены рабочим учебным планом. 
 


