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1. КОНСПЕКТ ЛЕКЦИЙ 

1.1 Лекция № 1 (2 часа) 
Тема: «Основные сведения теории погрешностей»   
1.1.1. Вопросы лекции 
1.Источник ошибок. Распространение ошибок.  
2.Графы вычислительных процессов. 
3.Округление чисел. Значащие и верные цифры. Общая формула погрешностей.  
4.Обратная задача теории погрешностей. Вероятностная оценка погрешностей. 
1.1.2.Краткое содержание вопросов  
1.Источник ошибок. Распространение ошибок.  
Приближенным числом или приближением называется число, незначительно отличающее-

ся от точного значения величины и заменяющее его в вычислениях. Под погрешностью же при-
нято понимать разность между абсолютным значением и его приближением.  

Для правильного понимания подходов и критериев, используемых при решении приклад-
ной задачи с применением ЭВМ, важно понимать, что получить точное значение решения прак-
тически невозможно. Получаемое на ЭВМ решение почти всегда (за исключением некоторых 
весьма специальных случаев) содержит погрешность, т.е. является приближенным. Невозмож-
ность получения точного решения следует уже из ограниченной разрядности вычислительной 
машины.  

Наличие погрешности обусловлено рядом весьма глубоких причин.  
1. Математическая модель является лишь приближенным описанием реального процесса. 

Характеристики процесса, вычисленные в рамках принятой модели, заведомо отличаются от 
истинных характеристик, причем их погрешность зависит от степени адекватности модели ре-
альному процессу.  

2. Исходные данные, как правило, содержат погрешности, поскольку они либо получают-
ся в результате экспериментов (измерений), либо являются результатом решения некоторых 
вспомогательных задач.  

3. Применяемые для решения задачи методы в большинстве случаев являются прибли-

женными. Найти решение возникающей на практике задачи в виде конечной формулы возмож-
но только в отдельных, очень упрощенных ситуациях.  

4. При вводе исходных данных в ЭВМ, выполнении арифметических операций и выводе 
результатов на печать производятся округления.  

Полная погрешность результата решения задачи на ЭВМ складывается из трех 
составляющих: неустранимой погрешности, погрешности метода и вычислительной погрешно-
сти: .  

Появление неустранимой погрешности обусловлено тем, что принятие математической мо-
дели и задание исходных данных вносит в решение ошибку, которая не может быть устранена 
далее. Единственный способ уменьшить эту погрешность — перейти к более точной математи-
ческой модели и задать более точные исходные данные.  

Достоверная информация о порядке величины погрешности метода позволяет осознанно 
выбрать метод решения задачи и разумно задать его точность. Желательно, чтобы величина 
погрешности метода была в 2—10 раз меньше неустранимой погрешности. Большее значение 
ощутимо снижает точность результата, меньшее — обычно требует увеличения затрат, 
практически уже не влияя на значение полной погрешности.  

2.Графы вычислительных процессов. 
Величина вычислительной погрешности (при фиксированных модели, входных данных и 

методе решения) в основном определяется характеристиками используемой ЭВМ. Желательно, 
чтобы эта величина была хотя бы на порядок меньше величины погрешности метода и совсем 
не желательна ситуация, когда она существенно ее превышает.  

Абсолютная и относительная погрешности 
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Пусть имеется некоторая числовая величина, и числовое значение, которое ей присвоено 
, считается точным, тогда под погрешностью приближенного значения числовой величины 

(ошибкой) понимают разность между точным и приближенным значением числовой вели-
чины:    

Погрешность может принимать как положительное так и отрицательное значение. Величи-
на называется известным приближением к точному значению числовой величины - любое 
число, которое используется вместо точного значения. Простейшей количественной мерой 
ошибки является абсолютная погрешность.  

Абсолютной погрешностью приближенного значения называют величину , про 
которую известно, что:   

Качество приближения существенным образом зависит от принятых единиц измерения и 
масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, 
для чего вводится понятие относительной погрешности.  

Относительной погрешностью приближенного значения называют величину , про ко-

торую известно, что:  .  
Относительную погрешность часто выражают в процентах. Использование относительных 

погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц из-
мерения.  

Так как точное значение обычно неизвестно, то непосредственное вычисление величин аб-
солютной и относительной погрешностей по предложенным формулам невозможно. Более ре-
альная и часто поддающаяся решению задача состоит в получении оценок погрешности вида:  

    (*)  
где и — известные величины, которые называют верхними границами (или просто 

границами) абсолютной и относительной погрешностей.  
Если величина известна, то неравенство (*) будет выполнено, если положить  

 
Точно так же если величина известна, то следует положить:  

 
Но поскольку точное значение неизвестно, на практике используют приближенные равен-

ства вида:          
3.Округление чисел. Значащие и верные цифры. Общая формула погрешностей.  
В литературе по методам вычислений широко используется термин "точность". Точное зна-

чение величины — это значение, не содержащее погрешности. Повышение точности восприни-
мается как уменьшение погрешности. Часто используемая фраза "требуется найти решение с 
заданной точностью " означает, что ставится задача о нахождении приближенного решения, 
принятая мера погрешности которого не превышает заданной величины . Вообще говоря, сле-
довало бы говорить об абсолютной точности и относительной точности, но часто этого не де-
лают, считая, что из контекста ясно, как измеряется величина погрешности.  

Погрешности основных арифметических операций  
Правило 1: Пусть и — приближенные значения чисел и , тогда абсолютная погреш-

ность алгебраической суммы (суммы или разности) не превосходит суммы абсолютных по-
грешностей слагаемых, т.е.[1]:  

 
Правило 2: Пусть и — ненулевые числа одного знака, тогда:  
1. ; 2. .  
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Здесь , а [1].  
Первое из равенств означает, что при суммировании чисел одного знака не происходит по-

тери точности, если оценивать точность в относительных единицах. Совсем иначе обстоит дело 
при вычитании чисел одного знака. Здесь граница относительной ошибки возрастает в раз 
и возможна существенная потеря точности. Если числа и близки настолько, что 

,то и не исключена полная или почти полная потеря точности. Когда это 
происходит, говорят о катастрофической потери точности.  

При построении численного метода решения задачи следует избегать вычитания близких 
чисел одного знака. Если же такое вычитание неизбежно, то следует вычислять аргументы с 
повышенной точностью, учитывая ее потерю примерно раз.  

Правило 3: Для относительных погрешностей произведения и частного приближенных чи-
сел верны оценки:  

1. ; 2. ;  
в последней из которых [1].  
Приведенные равенства чаще всего используют для практической оценки погрешности.  
Выполнение арифметических операций над приближенными числами, как правило, сопро-

вождается потерей точности. Единственная операция, при которой потеря не происходит, — это 
сложение чисел одного знака. Наибольшая потеря точности может произойти при вычитании 
близких чисел одного знака.  

Погрешности элементарных функций 
1. Погрешность функции многих переменных  
Пусть — дифференцируемая в области функция переменных, вычисле-

ние которой производится при приближенно заданных значениях аргументов , тогда 
для абсолютной погрешности значения справедлива следующая оценка:  

.  Здесь - отрезок, соединяющий точки и : множество 

точек вида , где ; а .  
Оценка вытекает из формулы конечных приращений Лагранжа [1].  
Для оценки границ относительных погрешностей используют равенство:   

   Здесь .  
4.Обратная задача теории погрешностей. Вероятностная оценка погрешностей. 
Обратная задача теории погрешности заключается в следующем: при каких значениях ар-

гумента известная функция будет иметь погрешность не превосходящую за-
данной величины. 

Простейшее решение обратной задачи дается принципом равных влияний. Согласно этому 
принципу предполагается, что все частные дифференциалы одинаково влияют на образование 
общей абсолютной погрешности.  

Предельная погрешность функции для малых абсолютных погрешно-

стей аргументов . Оценка для относительной погрешности функции: 

или .   
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1.2.Лекция 2. (2ч.) 
Тема: «Решение систем алгебраических уравнений методом простых итераций.»  
1.2.1. Вопросы лекции. 
1 Простейшие операции над матрицами, векторами и определителями в среде Mathcad 
2.Методы решения СЛАУ. 
3. Метод простых итераций. 
1.2.2. Краткое содержание вопросов 
1. Простейшие операции над матрицами, векторами и определителями в среде Mathcad 
Матричные вычисления можно условно разделить на несколько типов. Первый тип - это 

простейшие действия, которые реализованы операторами и несколькими функциями, предна-
значенными для создания, объединения, сортировки, получения основных свойств матриц и т. 
п. Второй тип - это более сложные функции, которые реализуют алгоритмы вычислительной 
линейной алгебры, такие как решение систем линейных уравнений, вычисление собствен-
ных векторов и собственных значений. 

Простейшие операции матричной алгебры реализованы в MathCAD в виде операторов. На-
писание операторов по смыслу максимально приближено к их математическому действию. 
Каждый оператор выражается соответствующим символом. Рассмотрим матричные и вектор-
ные операции MathCAD 2001. Векторы являются частным случаем матриц размерности 1×n , 
поэтому для них справедливы все те операции, что и для матриц, если ограничения особо не 
оговорены (например, некоторые операции применимы только к квадратным матрицам nn × ). 
Какие-то действия допустимы только для векторов (например, скалярное произведение), а ка-
кие-то, несмотря на одинаковое написание,   по-разному действуют на векторы и матрицы. 

Транспонирование 
Определение. Транспортированием называют операцию, переводящую матрицу размер-

ности nm ×  в матрицу размерности mn × ,  делая столбцы исходной  матрицы строками, а стро-
ки - столбцами. Ввод символа транспонирования (transpose) осуществляется с помощью панели 
инструментов Matrix (Матрица). Не забывайте, что для вставки символа транспонирования 
матрица должна находиться между линиями ввода. 

Пример. Транспонирование векторов и матриц 
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Сложение 
В MathCAD можно как складывать матрицы, так и вычитать их друг из друга. Для этих 

операторов применяются символы <+> или <-> соответственно. 
Матрицы должны иметь  одинаковую размерность,  иначе  будет выдано сообщение 

об ошибке. Каждый элемент суммы двух матриц равен сумме соответствующих элементов 
матриц-слагаемых. 

Пример. Сложение и вычитание матриц 
 
 
 
Результат смены знака матрицы эквивалентен смене знака всех ее элементов.    Для того 

чтобы изменить знак матрицы, достаточно ввести перед ней знак минуса, как перед обычным 
числом.  

Пример. Смена знака матрицы 
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Умножение 
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При умножении следует помнить, что матрицу размерности km ×  допустимо умножать 
только на матрицу размерности nk × . В результате получается матрица размерности nm × . 

Чтобы ввести символ умножения, нужно воспользоваться панелью инструментов Matrix 
(Матрица), нажав на ней  кнопку <х>  (Умножение).   Умножение   матриц  обозначается 
по умолчанию точкой, как показано в примере 14. Символ умножения матриц можно выбирать 
точно так же, как и в скалярных выражениях. 

Пример. Умножение матриц 
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5











:=

        

B

0

1

7

4

24

4

4−

0

6

7−

11

0

10−

8

2

1











:=

     

A B⋅

11−

31−

31−

19

60

36

52

580

93−

87−

5

85

15−

14

20−

179−











=

 

       C BT:=            

C

0

24

6

10−

1

4

7−

8

7

4−

11

2

4

0

0

1











= A C⋅

184−

16

104

88

168

70

58−

94

66−

74−

6−

136

17

2

0

97











=

 
 

S
1

7

5−

3

6

2









:=
               

H
0

18

3

5

11

1









:=
          S H⋅ =S H⋅  

Обратите внимание, что попытка перемножить матрицы S и H несоответствующего 
(одинакового 2x3) размера оказалась безрезультатной: после введенного знака равенства нахо-
дится пустой местозаполнитель, а само выражение в редакторе MathCAD выделяется красным 
цветом. При установке курсора на это выражение, появляется сообщение о несовпадении чис-
ла строк первой матрицы числу столбцов второй матрицы. 

Пример. Умножение вектора и строки 

A
1

2









:=
            B 3 4( ):=                  

A B⋅
3

6

4

8









=
            B A⋅ 11=  

Тот же самый оператор умножения действует на два вектора по-другому. Аналогично 
сложению матриц со скаляром определяется умножение и деление матрицы на скалярную ве-
личину. Символ умножения вводится также как и в случае умножения двух матриц. На ска-
ляр можно умножать любую матрицу nm × . 

Пример. Умножение матрицы на скаляр 

A

5

0

0

9

3

2











:=

                

A 3⋅

15

0

0

27

9

6











=

            

A

3

1.667

0

0

3

1

0.667











=

 
 Определитель квадратной матрицы 
Определитель (Determinant) матрицы обозначается стандартным математическим симво-

лом. Чтобы ввести оператор нахождения определителя матрицы, можно нажать кнопку <|х|> на 
панели инструментов Matrix (Матрица). В результате любого из этих действий появляется ме-
стозаполнитель, в который следует поместить матрицу. Чтобы вычислить определитель уже вве-
денной матрицы нужно: 

1) Переместить курсор в документе таким образом, чтобы поместить матрицу между ли-
ниями ввода. 

2) Ввести оператор нахождения определителя матрицы. 
3) Ввести знак равенства, чтобы вычислить определитель. 
Пример. Нахождение определителя матрицы 

B

0

3

1

7

4

0











:=
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2

7

5−

9









53=
       

0

23

1

6−

9−

0

5

0

3











459=

      

1

5

0

1−

2

7

2

3−

3

8

4

0

4

1

4−

6−











258−=

 
 
 
 
 Модуль вектора 
Модуль вектора (vector magnitude) обозначается тем же символом, что и определитель мат-

рицы. По определению, модуль вектора равен квадратному корню из суммы квадратов его эле-
ментов. 

Пример. Поиск модуля вектора 

34

102









107.517=
     

1

2

3











3.742=

        

4

6−

3−

2











8.062=

 
Скалярное произведение векторов 
Скалярное произведение векторов (vector inner product) определяется как скаляр, равный 

сумме попарных произведений соответствующих элементов. Векторы должны иметь одина-
ковую размерность, скалярное произведение имеет ту же размерность. Скалярное произведе-
ние двух векторов u и v равно αcos⋅⋅=⋅ vuvu , где α - угол между векторами. Если векторы 

ортогональны,   их  скалярное   произведение  равно   нулю.   Обозначается скалярное про-
изведение тем же символом умножения. Для обозначения скалярного произведения поль-
зователь также может выбирать представление оператора умножения. 

Никогда не применяйте для обозначения скалярного произведения символ <х>,   ко-
торый   является   общеупотребительным   символом   векторного произведения. 

Пример. Скалярное произведение векторов 

2

7−









5−

9









⋅ 73−=
        

1

2

3











4

5

6











⋅ 32=

         

2

3−

0

1











0

12

7

3











⋅ 33−=

 
Сумма элементов вектора и след матрицы 
Иногда бывает нужно вычислить сумму всех элементов вектора. Для этого существует 

вспомогательный оператор, задаваемый кнопкой ∑U  на панели Matrix (Матрица).  Этот опе-

ратор чаще оказывается полезным не в векторной алгебре, а при организации циклов с ин-
дексированными переменными. 

На примере показано применение операции суммирования диагональных элементов 
квадратной матрицы. Эту сумму называют следом (trace) матрицы. Данная операция организо-
вана в виде встроенной функции tr: 

 tr (A) – след квадратной матрицы А. 
Пример. Суммирование элементов вектора и диагонали матрицы 
 
 
                               
 
Обратная матрица 
Поиск  обратной  матрицы  возможен,   если  матрица квадратная,  и  ее определи-

тель не равен нулю. Произведение исходной матрицы на обратную матрицу по определению 

A
2

5−

9−

1









:= tr A( ) 3=

1

2

5











∑ 8=

A
1−

0.3

0.2−

0.2

0.2

0.2

0.2−

0.7−

0.8

0.2











=
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является единичной матрицей. Для ввода оператора поиска обратной матрицы, нажмите кноп-
ку < 1−x  > на панели инструментов Matrix (Матрица). 

Пример. Поиск обратной матрицы 
 
 
 
 
 
 
 
Возведение матрицы в степень 
К квадратным матрицам можно формально применять операцию возведения в степень п. 

Для этого п должно быть целым числом. Ввести оператор возведения матрицы в степень п 

можно точно так же, как и для скалярной величины: нажав кнопку < γx > (возвести в сте-
пень) на панели Calculator (Калькулятор). После появления место заполнителя в него следу-
ет ввести значение степени п.  

Пример. Примеры возведения квадратной матрицы в целую степень 

A

2

2

0

1

2

1

3

1−

1











:=

     

A
2−

0.09−

0.06

0.14

0.24

0.16−

0.04−

0.19−

0.46

0.26−











=

   

A
4

108

94

36

101

90

29

69

79

25











=

    

A
5

418

368

130

379

353

119

292

271

104











=

 
 Ранг матрицы 
Определение. Рангом (rank) матрицы называют наибольший порядок k минора отличного 

от нуля.  
Для вычисления ранга в MathCAD предназначена функция rank. 
-rank (A) - ранг матрицы; А - матрица. 
2.Методы решения СЛАУ.  Определение 2.1. Системой линейных алгебраических уравне-

ний, содержащей т уравнений и п неизвестных, называется система вида 

        











=+++

=+++

=+++

,...

..............................................

,...

,...

2211

22222121

11212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

      где числа ija  ( mi ,1= , nj ,1= ) называются коэффи-

циентами системы, числа ib  — свободными членами. Подлежат нахождению числа nx .  

Такую систему удобно записывать в компактной матричной форме  bxA =⋅ . 
Здесь А — матрица коэффициентов системы, называемая основной матрицей: 



















=

mnmm

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

,



















=

nx

x

x

x
...

2

1

 — вектор-столбец из неизвестных jx , 



















=

mb

b

b

b
...

2

1

 — вектор-столбец из свободных членов ib . 

Определение. Расширенной матрицей системы называется матрица  A  системы, дополнен-
ная столбцом свободных членов 

A

2

2

0

1

2

1

3

1−

1











:= A
1−

0.3

0.2−

0.2

0.2

0.2

0.2−

0.7−

0.8

0.2











=A 10=

A
1−

A⋅

1

0

0

0

1

0

0

0

1











=A A
1−

⋅

1

0

0

0

1

0

0

0

1











=
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

















=

mmnmm

n

n

b

b

b

aaa

aaa

aaa

A
...

...

............

...

...

2

1

21

22221

11211

 

Определение. Решением системы называется п значений неизвестных  
**

2
*
1 ,...,, nxxx , при 

подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение 

системы можно записать в виде матрицы-столбца  





















*

*
2

*
1

...

тx

x

x

 

 
Определение. Система уравнений называется совместной, если она имеет хотя бы одно 

решение, и несовместной, если она не имеет ни одного решения. 
Определение. Совместная система называется определенной, если она имеет единственное 

решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое 
ее решение называется частным решением системы. Совокупность всех частных решений назы-
вается общим решением. 

Определение. Решить систему — это значит выяснить, совместна она или несовместна. 
Если система совместна, найти ее общее решение. 

Определение. Две системы называются эквивалентными (равносильными), если они имеют 
одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение 
одной из них является решением другой, и наоборот. 

Эквивалентные системы получаются, в частности, при элементарных преобразованиях сис-
темы при условии, что преобразования выполняются лишь над строками матрицы. 

Если определитель матрицы системы n  линейных уравнений с n  переменными 0≠=∆ A  

(т.е. матрица A  - невырожденная), то единственное решение системы определяется: 
а) методом матричного исчисления по формуле bAx ⋅= −1 ; 

б) по формулам Крамера: 
∆

∆
= j

jx  ( nj ,1= ), где j∆  - определитель матрицы, полученной 

из матрицы A  заменой j -го столбца столбцом свободных членов b . 
Методом Гаусса можно решить любую систему уравнений вида (2.1). Для этого составля-

ют расширенную матрицу коэффициентов A , затем матрицу A  с помощью элементарных пре-
образований приводят к ступенчатому виду (так называемый «прямой ход»); далее по получен-
ной матрице выписывают новую систему и решают ее методом исключения переменных: начи-
ная с последних (по номеру) переменных находят все остальные (так называемый «обратный 
ход»). 

Метод Жордана—Гаусса решения систем линейных уравнений состоит в преобразовании 

расширенной матрицы системы A   к виду, при котором r переменных системы (где Arangr = ) 

образуют диагональную матрицу с точностью до перестановки строк или столбцов, что позво-
ляет сразу, без дополнительных преобразований, получить решение системы. 

Исчерпывающий ответ на вопрос о совместности системы (2.1)  дает теорема Кронекера-

Капелли. 
Теорема. Система линейных алгебраических уравнений совместна тогда и только тогда, 

когда ранг расширенной матрицы системы равен рангу основной матрицы. 
Правила практического разыскания всех решений совместной системы линейных уравне-

ний вытекают из следующих теорем. 
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Теорема. Если ранг совместной системы равен числу неизвестных, то система имеет един-
ственное решение. 

Теорема. Если ранг совместной системы меньше числа неизвестных, то система имеет бес-
численное множество решений. 

Правило решения произвольной системы линейных уравнений 

1) Найти ранги основной и расширенной матриц системы. Если )()( ArAr ≠ , то система не-
совместна. 

2) Если rArAr == )()( , система совместна. Найти какой-либо базисный минор порядка r  
(напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). 
Взять r  уравнений, из коэффициентов которых составлен базисный минор (остальные уравне-
ния отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют 
главными и оставляют слева, а остальные rn − неизвестных называют свободными и переносят 
в правые части уравнений. 

3) Найти выражения главных неизвестных через свободные. Получено общее решение сис-
темы. 

 4) Придавая свободным неизвестным произвольные значения, получим соответствующие 
значения главных неизвестных. Таким образом, можно найти частные решения исходной сис-
темы уравнений.  

Определение  Система линейных уравнений называется однородной, если все свободные 
члены равны нулю: 

      











=+++

=+++

=+++

,0...

..............................................

,0...

,0...

2211

2222121

1212111

nmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

                                 

Определение. Однородная система всегда совместна, так как  0...21 ==== nxxx  является 

решением системы. Это решение называется нулевым или тривиальным. 
При каких условиях однородная система имеет и ненулевые решения? 
Теорема. Для того чтобы система однородных уравнений имела ненулевые решения, необ-

ходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа п неизвестных, т. е. 
nr < . 
Теорема. Для того чтобы однородная система п линейных уравнений с n  неизвестными 

имела ненулевые решения, необходимо и достаточно, чтобы ее определитель ∆  был равен ну-
лю, т. е. 0=∆ . 

Определение. Если ранг матрицы системы nrAr <=)( , то система (2.2) имеет rn −  ли-

нейно независимых решений rneee −,...,, 21 , причем любое решение системы (2.2) является ли-

нейной комбинацией решений rneee −,...,, 21 . Набор решений (векторов) rneee −,...,, 21  называ-

ется фундаментальной системой решений системы (2.2). 
Правило для нахождения фундаментальной системы решений системы  
1) r  основных (базисных) переменных (с отличным от нуля базисным минором) выражают 

через неосновные (свободные) переменные; 
2) поочередно заменяют )( rn − неосновных переменных элементами каждой строки невы-

рожденной квадратной матрицы порядка rn − , например, единичной rnE − . 

Пример. Исследуйте и, если решение существует, найдите по формулам Кремера решение 
системы: 
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Решение: 
1) Установите режим автоматических вычислений, пометив строку Automatic Calculation в 

меню Math. 
2) Присвойте переменной ORIGIN значение, равное 1. Значение этой переменной определя-

ет номер первой строки (столбца) матрицы. По умолчанию в MathCAD нумерация начинается с 
0. 

 

3) Введите матрицу системы:  
 

4) Введите столбец свободных членов:  
 

5) Вычислите определитель матрицы системы:  

 
6) Вычислите определители матриц ∆ i, полученных из матрицы системы заменой i-го 

столбца столбцом свободных членов: 

            
     

7) Найдите решение системы по формулам Кремера: 

            
              

 Пример. Решите как матричное уравнение bxA =⋅  систему линейных уравнений: 

 
 

 
Решение: 
1) Установите режим автоматических вычислений. 
2)  

 
3) Введите матрицу системы и матрицу-столбец свободных членов: 

            

4) Вычислите решение системы по формуле y A
1−

b⋅ , предварительно вычислив определи-
тель матрицы системы: 
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5) Проверьте правильность решения умножением матрицы системы на вектор-столбец ре-
шения: 

 
6) Найдите решение системы с помощью функции lsolve и сравните результаты вычисле-

ний: 

 

 
 Пример. Найдите методом Гаусса решение системы линейных уравнений: 

 
 

 
 

Решение:  
1) Установите режим автоматических вычислений. 
2)  

 
3) Введите матрицу системы и матрицу-столбец свободных членов: 

              
4) Сформируйте расширенную матрицу системы, используя функцию augment(A,b), кото-

рая формирует матрицу, добавляя к столбцам матрицы системы А справа столбец свободных 
членов b: 

 

 
5) Приведите расширенную матрицу к ступенчатому виду, используя функцию rref(Ar), ко-

торая приводит расширенную матрицу к ступенчатому виду с единичной матрицей в первых 
столбцах, т.е. выполняет прямой и обратный ходы метода Гаусса: 

 

 
6) Сформируйте столбец решения системы, используя функцию submatrix(Ag,1,4,5,5), кото-

рая выделяет блок матрицы Ag, расположенный в строках с 1-ой по 4-ый и в столбцах с    5-го 
по 5-ый (последний столбец): 
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7) Проверьте правильность решения умножением матрицы системы на вектор-столбец ре-

шения: 

 
 Пример. Исследуйте однородную систему линейных уравнений: 

 
 

 
 

 
Решение:  
1) Установите режим автоматических вычислений. 
2)  

 
3) Введите матрицу системы: 

 
4) Вычислите ранг матрицы системы: 

 
5) Приведите матрицу системы к ступенчатому виду: 

 

 
6) Определив базисные и свободные переменные, запишите полученную эквивалентную 

систему:  

 
 

 
7) Используя функцию Find, решите полученную систему относительно базовых перемен-

ных: 

 
8) Запишите общее решение системы: 
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9) Найдите фундаментальную систему решений: 

                
  
Пример. Исследуйте неоднородную систему: 

 
 

 
 
 

Решение:  
1) Установите режим автоматических вычислений. 
2)  

 
3) Введите матрицу системы и матрицу-столбец свободных членов: 

              
4) Сформируйте расширенную матрицу системы: 

 

 
5) Вычислите ранг основной матрицы и ранг расширенной матрицы системы и сделайте 

вывод о совместности системы: 

       
6) Приведите расширенную матрицу совместной системы к ступенчатому виду: 

 

 
7) Определив базисные и свободные переменные, запишите полученную эквивалентную 

систему и разрешите её относительно базисных переменных: 
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8) Запишите общее решение: 

 

9) Найдите фундаментальную систему решений:  
3. Метод простых итераций 
Прикладные задачи часто сводятся к решению систем линейных алгебраических уравне-

ний. Точные (прямые) методы даёт точное решение за конечное число операций, если они вы-
полнялись без погрешности. К точным методам относится метод Жордана-Гаусса с выбором 
разрешающего элемента и метод Гаусса. 

Альтернативой прямым методам являются итерационные методы, основанные на много-

кратном уточнении 
0

x  - приближённо заданного решения задачи. Верхним индексом в скоб-
ках обозначается номер итерации (совокупности повторяющихся действий). 

Суть простейшего итерационного процесса – метода простых итераций, состоит в выполне-
нии следующих процедур. 

1) Исходная задача  











=+++

=+++

=+++

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

...............................................

,...

,...

2211

22222121

11212111

 

преобразуется к равносильному виду 










+⋅+++=

+++⋅+=

++++⋅=

.0...

.......................................................

,...0

,...0

2211

2221212

1121211

nnnnn

nn

nn

xxxx

xxxx

xxxx

βαα

βαα

βαα

 

2) Вектор β  принимается в качестве начального приближения β=0
x  и далее многократ-

но выполняются действия по уточнению решения согласно рекуррентному соотношению 
( ) ( ) ,1 βα += −kk xx  ...,2,1=k  

3) В качестве условия окончания итерационного процесса можно взять условие,    
( ) ( ) ε≤− −1kk xx

, 

где ε  - заданная погрешность приближённого решения 
( )kxx ≈ . 
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До расчёта можно получить число итераций k , требуемых для достижения заданной точно-
сти: 

α

βαε

lg

lg)1lg(lg
1

−−+
≥+k

. 

Для обеспечения условий сходимости нужно получить систему вида βα += xx  из системы 
bAx =  так, чтобы коэффициенты при неизвестных в правой части системы были существенно 

меньше единицы. Этого можно достичь, если исходную систему вида βα += xx  с помощью 
равносильных преобразований привести к системе, у которой абсолютные величины коэффи-
циентов, стоящих на главной диагонали, больше абсолютных величин каждого из других коэф-
фициентов при неизвестных в соответствующих уравнениях (такую систему называют систе-
мой с преобладающими диагональными коэффициентами). Если теперь разделить все уравне-
ния на соответствующие диагональные коэффициенты и выразить из каждого уравнения неиз-

вестное с коэффициентом, равным единице, будет получена система вида βα += xx , у которой 

все 
1<ijα

.  
Для того чтобы сформулировать достаточное условие сходимости метода, напомним опре-

деления норм, наиболее часто употребляемых при исследовании линейных систем. Понятие 
нормы позволяет оценить степень близости двух векторов. В частности, если норма разности 
точного и приближённого решений системы мала, то, по-видимому, приближённое решение 
хорошо аппроксимирует точное решение.  

Существует много способов введения нормы вектора. Чаще всего используются следующие 
три нормы: 

∑
=

=
n

i

ixx
1

1
, 

∑
=

=
n

i

ixx
1

2

2

,    
i

ii
xx max=

,  где ( )nxxxx ,...,, 21= . 
Внешне столь различные, эти нормы эквивалентны. 

Если для векторов ( )nxxxx ,...,, 21=  введена норма 
x

, то согласованной с ней нормой мат-
риц называют величину 

.sup
0 x

Ax
A

x≠
=

 

Так, в случае нормы 1
x

 согласованная норма матрицы равна 
∑

=

=
n

i

ij
j

aA
1

1
max

, а в слу-

чае нормы i
x

 согласованная норма матрицы равна 
ij

ii
aA max=

. Обе эти нормы легко вычис-
лить. 

Для сходимости метода простых итераций  
( ) ( ) ,1 βα += −kk xx  достаточно чтобы выполня-

лось условие 
1<α

 по какой либо норме матрицы, согласованной с нормой векторов.  
Пример. Найдите методом простых итераций  в среде MathCAD приближённое решение 

линейной системы 









=++

=++

=++

13102

,1210

,141022

321

321

321

xxx

xxx

xxx

   с точностью 
210−=ε . 

Решение: 
1) Установите режим автоматических вычислений. 
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2) Преобразуйте исходную систему bAx = к виду βα += xx . 

Так как 
1022 +<

, 
1101 +<

, 
1021 +<

, переставим уравнения местами так,  чтобы 
выполнялось условие преобладания диагональных элементов:  









=++

=++

=++

.141022

,13102

,1210

321

321

321

xxx

xxx

xxx

 

Получаем 
1110 +>

, 
1210 +>

, 
2210 +>

. Выразим из первого уравнения 1x , из вто-

рого 2x , из третьего 3x :  









+⋅−⋅−=

+⋅−⋅−=

+⋅−⋅−=

.4,12,02,0

,3,11,02,0

,2,11,01,0

213

312

321

xxx

xxx

xxx

 

3) Введите матрицы α  и β .   

β

1.2

1.3

1.4











:=

      

α

0

0.2−

0.2−

0.1−

0

0.2−

0.1−

0.1−

0











:=

 
4) Проверьте достаточное условие сходимости.  
norm1 α( ) 0.4=

( )
 

Заметим,  
{ } 14,04,0;3,0;2,0maxmax

1
1

<=== ∑
=

n

i

ij
j

aα
, следовательно, условие сходимости 

выполнено. 
5) Определите нулевое (начальное) приближение решения и количество итераций. 

x 0〈 〉
β:=  ,   k 1 5..:=  

6) Введите формулу вычисления последовательных приближений решения и вычислите их. 

  x k〈 〉
β α x k 1−〈 〉

⋅+:= . 

x

1.2

1.3

1.4

0.93

0.92

0.9

1.018

1.024

1.03

0.995

0.993

0.992

1.002

1.002

1.002

1

0.999

0.999











=

 

7) Расчёт закончен, поскольку условие окончания выполнено.   ε x5〈 〉
x4〈 〉

−:= ,    

ε 4.393 10
3−

×= .             
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1.3.Лекция 3.(2ч) 

Тема: «Решение СЛАУ методом Зейделя». 
1.3.1. Вопросы лекции 
1 Сущность метода Зейделя. 
2. Решение систем методом Зейделя в среде Mathcad 
1.3.2. Краткое содержание вопросов 
1. Сущность метода Зейделя. Метод Зейделя является модификацией метода простых ите-

раций и в некоторых случаях приводит  к более быстрой сходимости. 
Итерации по методу Зейделя отличаются от простых итераций тем, что при нахождении i -й 

компоненты ( )1+k -го приближения сразу используются уже найденные компоненты ( )1+k -го 

приближения с меньшими номерами 1,...,2,1 −i . 

Расчёты в MathCAD осуществляются по формуле x k 1+〈 〉
E L−( )

1−
U⋅ x k〈 〉

⋅  E L−( )
1−

β⋅+:= , где 

E - единичная матрица n -го порядка, 

















=

0...00

............

...00

...0

2

112

n

n

L
α
αα

, 


















=

0...

............

0...0

0...00

21

21

nn

U

αα

α

. 
Пример. Найдите методом простых итераций  в среде MathCAD приближённое решение 

линейной системы








=++

=++

=++

13102

,1210

,141022

321

321

321

xxx

xxx

xxx

 

 с точностью 
210−=ε . 

Решение: 
1) Установите режим автоматических вычислений. 

2) Преобразуйте исходную систему bAx = к виду βα += xx . 

Так как 
1022 +<

, 
1101 +<

, 
1021 +<

, переставим уравнения местами так,  чтобы 
выполнялось условие преобладания диагональных элементов:  









=++

=++

=++

.141022

,13102

,1210

321

321

321

xxx

xxx

xxx

 

Получаем 
1110 +>

, 
1210 +>

, 
2210 +>

. Выразим из первого уравнения 1x , из вто-

рого 2x , из третьего 3x :  









+⋅−⋅−=

+⋅−⋅−=

+⋅−⋅−=

.4,12,02,0

,3,11,02,0

,2,11,01,0

213

312

321

xxx

xxx

xxx

 
3) Введите матрицы α  и β . 

β

1.2

1.3

1.4











:=

      

α

0

0.2−

0.2−

0.1−

0

0.2−

0.1−

0.1−

0











:=

 
4) Проверьте достаточное условие сходимости.  
norm1 α( ) 0.4=

( )
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Заметим,  
{ } 14,04,0;3,0;2,0maxmax

1
1

<=== ∑
=

n

i

ij
j

aα
, следовательно, условие сходимости 

выполнено. 
5) Определите нулевое (начальное) приближение решения и количество итераций. 

x 0〈 〉
β:=  ,   k 1 5..:=  

6) Введите формулу вычисления последовательных приближений решения и вычислите их. 

  x k〈 〉
β α x k 1−〈 〉

⋅+:= . 

x

1.2

1.3

1.4

0.93

0.92

0.9

1.018

1.024

1.03

0.995

0.993

0.992

1.002

1.002

1.002

1

0.999

0.999











=

 
7) Расчёт закончен, поскольку условие окончания выполнено.    

ε x5〈 〉
x4〈 〉

−:= ,    ε 4.393 10
3−

×= .             
2. Решение систем методом Зейделя в среде Mathcad 
Пример 6.2. Найдите методом Зейделя  в среде MathCAD приближённое решение линейной 

системы 









=++

=++

=++

13102

,1210

,141022

321

321

321

xxx

xxx

xxx

 
 с точностью 

310−=ε . 
Решение: 

1) Преобразуйте исходную систему bAx = к виду βα += xx  как в примере 4.2.1. 

2) Так как 
{ } 14,04,0;3,0;2,0maxmax

1
1

<=== ∑
=

n

i

ij
j

aα
, следовательно, условие сходимости 

выполнено. 

3) Зададим          

x 0〈 〉
1.2

0

0











:=

 

В поставленной задаче 001,0=ε . 
 

4) Зададим             

E

1

0

0

0

1

0

0

0

1











:=

         

U

0

0.2−

0.2−

0

0

0.2−

0

0

0











:=

        

L

0

0

0

0.1−

0

0

0.1−

0.1−

0











:=

 

5) Выполним расчёты по формуле x k 1+〈 〉
E L−( )

1−
U⋅ x k〈 〉

⋅  E L−( )
1−

β⋅+:=   при  k 1 5..:= . 
 
 
 
 
 

6)  Процесс завершен так как   ε x 5〈 〉
x 4〈 〉

−:= ,   ε 1.953 10
4−

×= .           

x

1.2

0

0

0.93

0.92

0.9

0.996

1.011

1.03

1

1.001

0.999

1

1

1

1

1

1

1

1

1











=
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1.4.Лекция 4. (2 ч) 
Тема: «Численные методы решения алгебраических у равнений». 
1.4.1. Вопросы лекции 
1.Отделение корней, основные методы отделения корней.  
2.Уточнение корней.  
3.Метод хорд и касательных. Комбинированный метод. 
4. Модифицированный метод Ньютона. Метод итераций. 
5.Геометрическая интерпретация. Применение метода итераций для вычисления значений 

функций. Оценка точности методов. 
1.4.2. Краткое содержание вопросов  
1.Отделение корней, основные методы отделения корней.  

Корнем уравнения 0)( =xf , называется такое значение xx = , аргумента функции )(xf , 

при котором это уравнение обращается в тождество: 0)( =xf . Корень уравнения 0)( =xf , гео-
метрически представляет собой абсциссу точки пересечения, касания или другой общей точки 

графика функции )(xf  и оси OX . 
Определить корень уравнения – значит найти такой конечный промежуток, внутри которо-

го имеется единственный корень данного уравнения. Отделение корней уравнения 0)( =xf , 

можно выполнить графически, построив график функции 0)( =xf , по которому можно судить 

о том, в каких промежутках находятся точки пересечения его с осью OX .. Корень уравнения 
)()( 21 xfxf = , представляет собой абсциссу точки пересечения графиков )(1 xfy =  и )(2 xfy = . 

  Теорема: (критерии отделения корней). 

1) Функция )(xf  - непрерывна на отрезке [ ]ba, . 

2) ⇒<⋅ 0)()( bfaf 0)( =xf  на отрезке [ ]ba,   имеет хотя бы один корень. 

3) )(xf  - строго монотонная функция ⇒  !∃  [ ]bax ,∈ : 0)( =xf . 
2.Уточнение корней.  
Прежде чем использовать приближенный метод, уравнение надо исследовать его на нали-

чие корней и уточнить, где эти корни находятся, т.е. найти интервалы изоляции корней. Ин-

тервалом изоляции корня называется отрезок, на котором корень уравнения существует и 
единственен. 

Необходимое условие существования корня уравнения на отрезке [a,b]: Пусть f(x) непре-
рывна и f(a)f(b)<0 (т.е., на концах интервала функция имеет разные знаки). Тогда внутри отрез-
ка [a, b] существует хотя бы один корень уравнения f(x)=0. 

Достаточное условие единственности корня на отрезке [a,b]: 
Корень будет единственным, если f(a)f(b)<0 и f /(x) не меняет знак на отрезке [a, b], т.е. f(x) 

– монотонная функция, в этом случае отрезок [a,b] будет интервалом изоляции. 
Если корней несколько, то для каждого нужно найти интервал изоляции.  
Существуют различные способы исследования функции: аналитический, табличный, 

графический.  
Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее 

поведения при и нахождение участков возрастания и убывания функции.  
Графический способ – это построение графика функции f(x) и определение числа корней 

по количеству пересечений графика с осью x. 
Табличный способ – это построение таблицы, состоящей из столбца аргумента x и столбца 

значений функции f(x). О наличии корней свидетельствуют перемены знака функции. Чтобы не 
произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интер-
вал изменения достаточно широким. 

3.Метод хорд и касательных. Комбинированный метод. 
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4. Модифицированный метод Ньютона. Метод итераций. 
 

1. Метод половинного аргумента 
2. Метод хорд 

ax =0 , )()(

)()(
1

bfxf

bfxxfb
x

k

kk

k −

−⋅
=+

, ,...2,1,0=k  

(для случая 0)()( >′⋅ afbf ); 

bx =0 , )()(

)()(
1

afxf

afxxfa
x

k

kk

k −

−⋅
=+

, ,...2,1,0=k  

(для случая 0)()( >′⋅ bfaf ); 

µ

)( k

k

xf
xx ≤−

, где 
)(min xf

bxa
′=

≤≤
µ

 

3. Метод касательных 

ax =0 , )(

)(
1

k

k

kk
xf

xf
xx

′
−=+

, ,...2,1,0=k  

(для случая 0)()( >′′⋅ afaf ), 

µ

)( k

k

xf
xx ≤−

, где 
)(min xf

bxa
′=

≤≤
µ

 

4. Метод простой итерации 
],[0 bax ∈  

)(1 kk xx ϕ=+  

1)(1

)(
−−⋅

′−

′
<− kkk xx

x

x
xx

ϕ
ϕ

 

5. Комбинированный метод 

ax =0 , bx =1 , )(

)(

22

22
222

−

−
− ′

−=
k

k

kk
xf

xf
xx

, 

)()(

)()(

2212

22121222
12

−−

−−−−
+ −

−
=

kk

kkkk

k
xfxf

xfxxfx
x

.   
 
Полученное приближенное решение можно сравнить с приближенным решением, опреде-

ляемым посредством встроенной функции MathCad root.  
=:t <начальное приближение>,  )),((: ttfrootr = (возвращает значение t, лежащее между а и 

b, при котором выражение )(tf  равно нулю. Эта функция должна определятся приблизитель-
ным значением для t). 

При этом надо иметь в виду, что условием окончания итерационного цикла в MathCAD яв-

ляется выполнение неравенства TOLtf k <)( , где TOL – системная переменная, имеющая по 

умолчанию значение 
310 −
. Изменения значения переменной TOL, пользователь может повы-

сить точность получаемого решения в MathCAD. 

Пример.  Исследовать функции 
xexxf −−= 2)(  и решить уравнение 02 =− − xex  итераци-

онными методами (половинного аргумента, хорд, касательных, простой итерации), в среде 

MathCAD с точностью 
210 −
, а также посредством встроенной функции root. 

Решение: 
1. Отделение корня уравнения. 
Очевидно, что данное уравнение будет иметь единственное решение, т.к. график функции 

один раз пересекает ось абсцисс. Найдём интервал изоляции действительного корня уравнения. 

Представим данное уравнение в  виде 
xex −=2
 и построим графики функций 

2
1 )( xxf =  и 

xexf −=)(2 . Графики функций на интервале [ ]8,0;4,0  пересекаются в одной точке.  

5 0 5 10

100

x
2

exp x−( )−

x              
0 5 10

1

0

1

2

x
2

exp x−( )

x

1 0 1 2
0

2

4

x
2

exp x−( )

x  



23 

 

2. Метод половинного аргумента. 

Воспользуемся методом половинного деления для нахождения корня [ ]8,0;4,0∈x .  
xexxf −−= 2)(  

       1) )(xf - непрерывна; 

2) f 0.4( ) 0.51032−= , f 0.8( ) 0.190671= , 0)8,0()4,0( <⋅ ff , функция  f(x) на  отрезке [ ]8,0;4,0  имеет 
хотя бы один корень; 

3)                                       >0 - функция  f(x)  монотонно возрастает на отрезке [ ]8,0;4,0 , сле-

довательно, существует единственный корень [ ]8,0;4,0∈x , такой что 0)( =xf . 
 
   4)                                   >0    - кривая вогнута. 
 

а b f(a) f(b) b-a 
2

ba +

 







 +
2

ba
f

 
0,4 0,8 -0,51032 0,190671 0,4 0,6 -0,189 
0,6 0,8 -0,189 0,190671 0,2 0,7 -0,006585 
0,7 0,8 -0,006585 0,190671 0,1 0,75 0,09 
0,7 0,75 -0,006585 0,09 0,05 0,725 0,041 
0,7 0,725 -0,006585 0,041 0,025 0,7125 0,017 
0,7 0,7125 -0,006585 0,017 0,0125 0,70625 0,005298 
0,7 0,70625 -0,006585 0,005298 0,00625 0,703125 0,0006511 

003125,0
2

00625,0

2
703125,0 ==

−
<−

ab
x

;  0,003125<0,01.                                                      

С помощью метода половинного деления получили искомый корень уравнения 70,0≅x  с 
точностью до 0,01. 

3. Метод хорд. 
Этот метод при тех же предположениях обеспечивает более быстрое нахождение корня, 

чем метод половинного аргумента. 
x
0

0.4:=
, k 1 3..:= , 

x
k

0.8 x
k 1−( )2

⋅ 0.8exp x
k 1−( )− − x

k 1−
0.190671⋅−

x
k 1−( )2

exp x
k 1−( )− − 0.190671−





:=

      

x

0.4

0.691199

0.70301

0.70345











=

 
 
ε x

3
x
2

−:=
, ε 0.00044= 001,0=< ε , 70,0=x  

4. Метод касательных. 

За нулевое приближение 0x  принимается такое значение из отрезка [ ]8,0;4,0  для которого 

выполняется условие 0)()( 0 >′′⋅ xfxf . f 0.75( ) 0.09= >0,                                    >0. 

x
0

0.75:=
           k 1 2..:=       

x
k

x
k 1−

x
k 1−( )2

exp x
k 1−( )− −

2 x
k 1−( ) exp x

k 1−( )− + 











−:=

 

x

0.75

0.704302

0.703468











=

 

x
f x( )d

d
2 x⋅ exp x−( )+→

2
x

f x( )d

d

2
2 exp x−( )−→

2
x

f x( )d

d

2
2 exp x−( )−→
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ε x
2

x
1

−:=
       ε 0.000834= 001,0=< ε  

Искомый корень уравнения 70,0=x . 
5. Метод простой итерации. 

φ x( ) ln x
2( )−:= ,   x

φ x( )d

d

2−

x
→

,  x 0.4:=     , x
φ x( )d

d
5−=

 ,  x 0.6:=   ,     x
φ x( )d

d
2.5−=

 ,  
1)( >′ xφ

 в проме-

жутке 8,04,0 ≤≤ x , следовательно, итерационный процесс расходится, поэтому способ итера-

ций не применим для функции )(xφ .  
Попробуем выразить x  по-другому.   

φ1 x( ) exp x−( ):= ,   x
φ1 x( )d

d

1−

2
exp x−( )

1

2
⋅→

 , x 0.4:= ,    x
φ1 x( )d

d
0.409−=

, x 0.6:= , x
φ1 x( )d

d
0.37−=

. 
1)( <′ xφ

 

в промежутке 8,04,0 ≤≤ x , следовательно, итерационный процесс сходится. Найдём прибли-
жения: 

φ1 x( ) exp x−( ):=  
x
0

0.75:=
         k 1 4..:=        

x
k

exp x
k 1−( )− :=

     
ε x

4
x
3

−:=
      ε 0.002713= 001,0=< ε  

Искомый корень уравнения 70,0=x . 
5.Геометрическая интерпретация. Применение метода итераций для вычисления значений 

функций. Оценка точности методов. 

Геометрический смысл метода простой итерации. 

 

 

Сходящийся метод простой итерации  

   

Расходящийся метод простой итерации  

В качестве начального приближения обычно берут середину отрезка [a,b]: . 

На практике часто в качестве берут функцию , где с – некоторая по-

стоянная. Постоянную c выбирают таким образом, чтобы для всех x∈[a, b]. 

При таком выборе функции метод простой итерации называют методом релаксации. 
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Получим условия на выбор 

с:  

Таким образом, если f/(x)<0, то 2/f/(x)<c<0. Если же f/(x)>0, то 2/f/(x)>c>0. 

Видно, что знак у с совпадает со знаком f/(x). Часто с берут в виде: 

. 

Убедимся, что такое c удовлетворяет условию сходимости: 

Пусть f/(x)>0. Тогда M>0 и m>0 -> c>0 и 

. Следовательно, 2/f/(x)>c>0. 

Пусть f/(x)<0. Тогда M<0 и m<0-> c<0 и 

 

Следовательно, 2/f/(x)<c<0. 

Найдем, второй корень нашего исходного уравнения x3- 6x2+3x+11=0, который лежит на 

интервале [1, 3] с точностью . 

Сначала найдем функцию . В нашем случае f(x)= x3- 6x2+3x+11. 

Для нахождения c необходимо найти максимальное и минимальное значения f/(x) на отрез-
ке [1, 3]. Для этого необходимо найти значения f/(x) на концах интервала и в точках, где f//(x)=0, 
т.е. в точках экстремума, если такие точки для рассматриваемого интервала существуют. И вы-
брать среди этих значений f/(x) максимальное и минимальное значения.  

f/(1)=3x2-12x+3=-6, f/(3)=-6, f//(x)=6x-12=0 при x=2 , f/(2)=-8. 
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1.5.Лекция 5. (2ч) 
Тема: «Приближение и интерполяция функций»  
1.5.1. Вопросы лекции 
1.1 Общая задача и алгоритмы приближения.  
2.Метод наименьших квадратов. Степенной и ортогональные базисы. Линейный вариант 

МНК 
1.5.2. Краткое содержание вопросов 
1. Общая задача и алгоритмы приближения.  
Аппроксимировать – это означает "приближённо заменять". Допустим, известны значения 

некоторой функции в заданных точках. Требуется найти промежуточные значения этой функ-
ции. Это так называемая задача о восстановлении функции. Кроме того, при проведении рас-
четов сложные функции удобно заменять алгебраическими многочленами или другими элемен-
тарными функциями, которые достаточно просто вычисляются (задача о приближении функции).  

Постановка задачи интерполяции 
На интервале [a, b] заданы точки xi, i=0, 1,..., N; a ≤ x i ≤ b, и значения неизвестной функции 

в этих точках fi, i=0, 1,...., N. Требуется найти функцию F(x), принимающую в точках xi те же 

значения fi. Точки называются узлами интерполяции, а условия F(xi)= fi. – условиями ин-

терполяции. При этом F(x) ищем только на отрезке [a,b]. Если необходимо найти функцию вне 
отрезка, то - это задача экстраполяции. Пока мы будем рассматривать только интерполяцион-
ные задачи. 

Задача имеет много решений, т.к. через заданные точки (xi, fi), i=0, 1,..., N, можно провести 
бесконечно много кривых, каждая из которых будет графиком функции, для которой выполне-
ны все условия интерполяции. Для практики важен случай аппроксимации функции многочле-

нами, т.е. . 
Все методы интерполяции можно разделить на локальные и глобальные. В случае ло-

кальной интерполяции на каждом интервале [xi–1, xi] строится отдельный полином. В случае 
глобальной интерполяции отыскивается единый полином на всем интервале [a, b]. При этом ис-
комый полином называется интерполяционным полиномом. 

2.Метод наименьших квадратов. Степенной и ортогональные базисы. Линейный вариант 
МНК 

Метод наименьших квадратов 
Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран 

вид эмпирической зависимости: с неизвестными коэффициентами 

. Запишем сумму квадратов отклонений между вычисленными по эмпирической 
формуле и заданными опытными данными: 

. 

Параметры будем находить из условия минимума функции . В 
этом состоит метод наименьших квадратов (МНК).  

Известно, что в точке минимума все частные производные от по равны нулю: 

(1) 
Рассмотрим применение МНК для частного случая, широко используемого на практике. В 

качестве эмпирической функции рассмотрим полином  

. 
Формула (1) для определения суммы квадратов отклонений примет вид: 
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(2) 
Вычислим производные: 

 

Приравнивая эти выражения нулю и собирая коэффициенты при неизвестных , 
получим следующую систему линейных уравнений: 

 
Данная система уравнений называется нормальной. Решая эту систему линейных уравне-

ний, получаем коэффициенты .  

В случае полинома первого порядка m=1, т.е. , система нормальных уравне-
ний примет вид: 

 

При m=2 имеем:  
Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффи-

циенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклоне-
ний. 

Пример. Заданы координаты точек: 

x -5 -3.5 -2 1.5 3.25 5 

f 0.5 1.2 1.4 1.6 1.7 1.5 

т.е. N=6. Требуется найти эмпирические зависимости: линейную , квадра-

тичную , гиперболическую по методу МНК и выбрать среди 
них наилучшую по наименьшей сумме квадратов отклонений. 

Система нормальных уравнений для линейной зависимости: 
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Учитывая, что N=6, , получим 

 

Решая систему линейных уравнений, получим . Следовательно, ли-

нейная зависимость имеет вид: . 

Вычислим сумму квадратов отклонений: . 
Рассмотрим квадратичную зависимость. Система нормальных уравнений имеет вид 

 

Найдем неподсчитанные суммы:  

 

Решая СЛАУ, получим  

Следовательно, квадратичная зависимость имеет вид: . 

Вычислим сумму квадратов отклонений: . 
Выпишем систему нормальных уравнений для гиперболической зависимости. Согласно 

МНК находим сумму квадратов отклонений: 

. Составляем систему нормальных уравнений: 

    Или      

Учитывая, что , получим 

 

Сумма квадратов отклонений:  
Из трех зависимостей выбираем наилучшую, т.е. квадратичную. 
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1.6.Лекция 6. (2ч) 
Тема: «Приближение и интерполяция функций» 
1.6.1. Вопросы лекции 
1. Интерполирование каноническим многочленом Лагранжа.  
2.Схема Эйткена для интерполирования. Интерполяционные формулы Ньютона.  
3.Применение интерполяции для решения уравнений. Обратная интерполяция. Интерполя-

ция сплайнами. 
1.6.2  Краткое содержание вопросов 
1 . Интерполирование каноническим многочленом Лангранжа.  
Приближение функций -нахождение для данной функции f функции g из некотоpoгo опре-

делённого класса (напр., среди алгебраических многочленов заданной степени), в том или ином 
смысле близкой к f, дающей её приближённое представление. Существует много разных вари-
антов задачи о приближении функций в зависимости от того, какие функции используются для 
приближения, как ищется приближающая функция g, как понимается близость функций f и д. 

Интерполирование функций - частный случай задачи приближения, когда требуется, чтобы в 
определённых точках (узлах интерполирования) совпадали значения функции f и приближаю-
щей её функции д, а в более общем случае - и значения некоторых их производных. 

Для оценки близости исходной функции f и приближающей её функции д используются в 
зависимости от рассматриваемой задачи метрики различных функциональных пространств. 
Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р-й 

степенью, LP, р>=1, в которых расстояние между функциями f и g определяется (для функций, 
заданных на отрезке [a, b] по формулам 

Наиболее часто встречающейся и хорошо изученной является задача о приближении функ-
ций полиномами, т. е. выражениями вида где ф1, ...,фn-заданные функции, а а1 ..., аn - произ-
вольные числа. Обычно это алгебраические многочлены или тригонометрические полиномы 

Пусть функция y=f(x) задана таблицей. Построим интерполяционный многочлен Ln(x) сте-
пень которого не больше n, и выполняются условия (3.1): Ln(xi)=yi, i=0, 1, …, n 

Будем искать Ln(x) в виде , где pi(x) многочлен 

степени n и , т.е. pi(x) только в одной точке отличен от нуля при i=j, а остальных 
точках он обращается в нуль. Следовательно, все эти точки являются для него корнями: 
pi(x)=c(x-x0)(x-x1)…(x-xi-1)(x-xi+1)…(x-xn) 
при x=xi 

pi(xi)=c(xi-x0)(xi-x1)…(xi-xi-1)(xi-xi+1)…(xi-xn)  
1=c(xi-x0)(xi-x1)…(xi-xi-1)(xi-xi+1)…(xi-xn)  
c=[(xi-x0)(xi-x1)…(xi-xi-1)(xi-xi+1)…(xi-xn)]-1 

подставим с в формулу pi(x), получим: 

 
Это и есть интерполяционный многочлен Лагранжа. По таблице (*) формула (3.2) позволя-

ет весьма просто составить внешний вид многочлена. 
Пример 1. 
N=1 (два узла интерполяции) 
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- уравнение прямой, проходящей через точки (x0, y0), (x1, y1) 

 
x x0 x1 
y y0 y1 

 
Пример 2. 
N=2 (три узла интерполяции) 
 

 
 

x x0 x1 x2 
y y0 y1 y2 

 
- уравнение параболы, проходящей через точки (x0, y0), (x1, y1), (x2, y2) 

 
Построим график этой функции и отметим на нем узловые точки Mi(xi, yi) 

 
2.Схема Эйткена для интерполирования. Интерполяционные формулы Ньютона.  
Схема Эйткена предлагает более удобную форму нахождения полинома Лагранжа.  

Основная идея данного метода заключается в следующем.  
На первом этапе вычисляются многочлены L0,1(x), L1,2(x), :, Ln-1,n(x), построенные на каждой па-
ре соседних узлов 0,1; 1,2; :; n-1,n соответственно.  

При этом , , 

. Таким образом, многочлены, построенные на паре со-
седних узлов, вычисляются по формулам: 

. Затем на основе этих многочленов вы-
числяются многочлены, построенные на тройках соседних узлов: 

. И т.д. пока не получится один 

x 1 3 
y 1 9 

x 1 3 4 
y 12 4 6 
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многочлен, построенный на всех узлах интерполяции: 

. Полученный многочлен L0, 1, ..., n(x) Ln(x). 
  Интерполяционные формулы Ньютона 
� Первая интерполяционная формула Ньютона  
� Пусть yi = f ( xi ), xi = x0 + ih, i = 1, 2, :, n.  
� Нужно построить Pn(x), удовлетворяющий двум условиям:  
1. Степень полинома не должна превышать n.  
2. Pn( xi ) = yi. 
Формула Pn(x) для первой интерполяционной формулы Ньютона имеет вид: 

,          где q = ( x -
 x0 ) / h.  

Первая интерполяционная формула Ньютона применяется тогда, когда x находится вначале 
таблицы. Тогда в качестве x0 следует брать ближайшее слева к заданному x табличное значе-
ние.  

� Вторая интерполяционная формула Ньютона  
Когда значение аргумента находится ближе к концу отрезка интерполяции, применять первую 
интерполяционную формулу становится невыгодно.  
Для этого применяется вторая интерполяционная формула Ньютона: 

,  где q = ( x -
 xn ) / h.  
Здесь в качестве xn следует брать ближайшее справа к заданному x табличное значение. 

  Оценка погрешностей первой и второй интерполяционных формул Ньютона 
Используя подстановки q = ( x - x0 ) / h и q = ( x - xn ) / h и заменяя соответствующим обра-

зом выражение для Пn+1(x) в формуле оценки погрешности интерполяционной формулы Ла-
гранжа, получим формулы для оценки погрешности интерполирования по первой и второй ин-
терполяционной формуле Ньютона соответственно:  

,  . 
3.Применение интерполяции для решения уравнений. Обратная интерполяция. Интерполя-

ция сплайнами. 
  Интерполяция сплайнами 

При большом количестве узлов интерполяции сильно возрастает степень интерполяцион-
ных многочленов, что делает их неудобными для вычислений.  
В этом случае удобно пользоваться особым видом кусочно-полиномиальной интерполяции - 
интерполяции сплайнами.  
Суть этого подхода заключается в следующем.  

Определение. Пусть отрезок [a, b] разбит точками на n частичных отрезков [xi , xi+1], 
i = 0, 1,..:, n-1. Сплайном порядка m называется функция Sm (x), обладающая следующими 
свойствами:  

1)  Функция Sm (x) непрерывна на отрезке [a, b] вместе со своими производными до неко-
торого порядка р.  
    2)  На каждом отрезке [xi , xi+1] функция совпадает с некоторым алгебраическим многочле-
ном Pm,i (x) степени m.  



32 

 

Разность m - p между степенью сплайна и наивысшим порядком непрерывной на отрезке [a, 
b] производной называют дефектом сплайна. Будем рассматривать сплайны, дефект которых 
равен 1.  

Наиболее широкое распространение получили кубические сплайны S3 (x).  
Итак, для осуществления интерполяции необходимо построить такой сплайн, что S(xi)= yi, 

i = 0, 1,..:, n.  
Согласно определению кубический сплайн можно представить в виде: 

,  
где каждый из P3, i (x) - многочлен третьей степени: 

.  
При этом коэффициенты ai = yi.  

Можно показать, что коэффициенты сi вычисляются по формулам: 

.  Для вычисления коэффициентов di ис-

пользуются формулы: .  

Для вычисления коэффициентов bi - формулы: .  
Пример. Кубическая сплайн-интерполяция  

x 0 1 2 3 4 5 6( )T:=  
y 4.1 2.4 3 4.3 3.6 5.2 5.9( )T:=  
s cspline x y,( ):=  
A t( ) interp s x, y, t,( ):=  

0 5
0

5

10
êóáè÷åñêèé ñïëàéí

y

A t( )

x t,  Кубическая сплайн-интерполяция  

0 5
0

2

4

6

8

10
ëèíåéíûé ñïëàéí

y

A t( )

x t,        
0 5

0

2

4

6

8

10
êâàäðàòè÷íûé ñïëàéí

y

A t( )

x t,  
Примеры сплайн-интерполяций 
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Сплайн-интерполяция в MathCAD реализована чуть сложнее линейной. Перед применени-
ем функции interp необходимо предварительно определить первый из ее аргументов - вектор-
ную переменную s. Делается это при помощи одной из трех встроенных функций тех же аргу-

ментов ),( yx .  
- lspline( x , y ) - вектор значений коэффициентов линейного сплайна; 
- pspline( x , y ) -вектор значений коэффициентов квадратичного сплайна; 
- cspline( x , y ) – вектор значений коэффициентов кубического сплайна;  
- x , y  - векторы данных.  
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1.7. Лекция 7. (2 ч ) 
Тема: «Численное дифференцирование и интегрирование»  
1.7.1. Вопросы лекции 
1.Задача численного дифференцирования и её решение.  
2.Численное интегрирование. 
3.Основные квадратурные формулы. Методы трапеций, Симпсона, Ньютона. 4.Оценка 

точности численного интегрирования. Выбор оптимального шага при численном 
дифференцировании и интегрировании.  

  
1.7.2. Краткое содержание вопросов 
1.Задача численного дифференцирования и её решение.  
Функция y = f(x) задана таблицей:   

x x0 x1 ... xn  
y y0 y1 ... yn  

на отрезке [a; b] в узлах a = x0 < x1 < x2 < : <xn =b</x. Требуется найти приближенное зна-
чение производной этой функции в некоторой точке х* [a; b]. При этом х* может быть как 
узловой точкой, так и расположенной между узлами.  

  Численное дифференцирование на основе интерполяционных формул Ньютона 
Считая узлы таблицы равноотстоящими, построим интерполяционный полином Ньютона. 

Затем продифференцируем его, полагая, что f '(x) φ'(x) на [a; b]: 

     
Формула значительно упрощается, если производная ищется в одном из узлов таблицы: 

х* = xi = x0 + ih:        
Подобным путём можно получить и производные функции f (x) более высоких порядков. 

Однако, каждый раз вычисляя значение производной функции f (x) в фиксированной точке х в 
качестве х0 следует брать ближайшее слева узловое значение аргумента.  

Численное дифференцирование на основе интерполяционной формулы Лагранжа 
Запишем формулу Лагранжа для равноотстоящих узлов в более удобном виде для диффе-

ренцирования:  

 
Затем, дифференцируя по х как функцию от t, получим:  

 
Пользуясь этой формулой можно вычислять приближённые значения производной таблично-
заданной функции f (x) в одном из равноотстоящих узлов.  
Аналогично могут быть найдены значения производных функции f(x) более высоких порядков.  

 

Пример. Найти значение производной функции xxf =)(  в точке 32=x , используя таб-
лицу. 
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x  xy =  
310−⋅∆y  

32 10−⋅∆ y  
33 10−⋅∆ y  

34 10−⋅∆ y  
32 5,657 88 -2 1 -1 
33 5,745 86 -1 0  
34 5,831 85 -1   
35 5,916 84    
36 6,000     

Решение:  

В данном случае 1=h ; применяя формулу (6.5.6) к данным первой строки таблицы (до раз-
ностей третьего порядка включительно), получим: 

089,0
3

001,0

2

002,0
088,0)32( =++=′f

. 
Сопоставляя полученный ответ со значением 

088,0
657,52

1

322

1
)( 32 =

⋅
==′x

, 
замечаем совпадение значений в пределах двух знаков после запятой. 

Оценка погрешности 

[ ] [ ] ))()((
)!1(

)( )1(11)1( ξξ ++++ +⋅⋅
+

= nnnn
n

n f
dt

d
tt

dt

d
f

n

h
xr

     

В случае оценки погрешности в узле таблицы ( 0xx = , 0=t ) будем иметь:  

)1(

)1(
)( 0

1

0 +

∆⋅−
≈

+

nh

y
xr

nn

n

.    

Для оценки погрешности при малых  h  используют формулу: 

( )
1

0
1

1 )(
+

+
+ ∆

≈
n

n
n

h

y
f ξ

.   
 
2.Численное интегрирование. 

Требуется вычислить определённый интеграл вида , причём функция может 
быть задана как в виде формулы, так и в виде таблицы.  

  Квадратурные формулы Ньютона-Котеса 

, где - коэффициенты 
Котеса.  Эти формулы дают на одном участке интегрирования различные представления для 
различного числа n отрезков разбиения.  

  Формулы прямоугольников 

Пусть требуется вычислить интеграл .   
Если отрезок интегрирования [a; b] достаточно велик, то нужно разбить его на более мелкие 

отрезки равной длины , где n - число отрезков, и заменяя на каждом из отрезков кри-
волинейную трапецию прямоугольником, вычислить площади этих прямоугольников. Затем 
полученные площади нужно сложить, эта сумма и будет принята за приближённое значение ис-
комого интеграла.  
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Что касается построения прямоугольников, то их можно строить по-разному: можно прово-
дить перпендикуляр до пересечения с кривой f (x) из правого конца каждого отрезка (Рис. 1), 
можно - из левого конца (Рис. 2)  

 
Рис. 1  

 
Рис. 2  

 
В зависимости от этого формулы для вычисления несколько различны и носят название форму-
лы прямоугольников с правыми или левыми ординатами соотвественно: 

(формула "правых" прямоугольников) 

(формула "левых" прямоугольников)  
Существует ещё формула "средних" прямоугольников: 

, для которой построение прямо-
угольников осуществляется через середины каждого из отрезков разбиения:  

 
3.Основные квадратурные формулы. Методы трапеций, Симпсона, Ньютона.  
  Формула трапеций 
Идея метода аналогична той, что представлена в ме-

тоде прямоугольников. Отличие заключается в том, что 
на каждом отрезке разбиения криволинейная трапеция 
заменяется на обычную трапецию, площадь которой вы-

числяется по формуле , где o1 и o2 - основа-
ния трапеции. 
Вычисляя и суммируя площади всех трапеций, получаем 
приближённое значение искомого интеграла:  

 
  Формула Симпсона 
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Заменяя на каждом отрезке разбиения часть кривой y = f (x) на параболическую кривую, 
вычисляя площади получившихся фигур и суммируя их, получим формулу Симпсона: 

 
  Квадратурные формулы Гаусса 
Традиционно при получении квадратурных формул Гаусса в исходном интеграле выполня-

ется замена переменной, переводящая интеграл по отрезку [a; b] в интеграл по отрезку [-1; 1]: 

.  

Тогда .  Будем использовать линейную интерпо-
ляцию подынтегральной функции.  Если вместо отрезка [-1; 1] взять в качестве узлов интерпо-
ляции подвижные узлы t1, t2, то нужно выбрать эти значения так, чтобы площадь трапеции, ог-
раниченной сверху прямой, проходящей через точки A1 (t1, φ(t1) ) и A2 (t2, φ(t2) ) была равной 
интегралу от любого многочлена некоторой наивысшей степени.  

Полагая, что это многочлен третьей степени, вычислим t1, t2, которые получаются равными 

и , отличаясь лишь нумерацией значений.  
Далее разбивая отрезок интегрирования на n частей, применяя к каждому из них описанную 

выше идею, можно получить формулу Гаусса: 

 
  Метод Монте-Карло 
Идея метода:  
Пусть f (x) > 0 (для простоты рассуждений). 

Возьмём число M, такое что f (x)  M для любого x из 
отрезка [a; b]. На графике - это прямая y = M. 
Используя счётчик случайных чисел можно получить 
точки, случайно и равномерно распределённые в прямо-
угольнике, образованном:  

отрезком [a; b] оси Ох  
отрезком, принадлежащим прямой y = M длины b-a  
отрезками, принадлежащими прямым х = a и x = b, заключёнными между осью Ох и прямой 

y = M. 
Координаты таких точек вычисляются по формулам: 

.  
Если найдено таким образом n точек и k из них принадлежит криволинейной трапеции, ограни-
ченной кривой y = f (x), прямыми x = a, x = b и осью Ох, то, с учётом того, что при больших n 
распределение точек по прямоугольнику близко к равномерному, то отношение k / n прибли-
жённо равно отношению площади криволинейной трапеции к площади прямоугольника: 

 При этом . 

 Подставляя значения площадей и выражая интеграл, получаем:  
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1.8-9.Лекция 8-9. (4 ч) 
 Тема: «Приближённое вычисление обыкновенных дифференциальных уравнений». 
1.8-9.1. Вопросы лекции 
1.Приближённое решение ДУ. Задача Коши. Интегрирование ДУ с помощью рядов. 

Методы последовательных приближений и последовательного дифференцирования. 
2. Метод неопределённых коэффициентов. Численные табличные методы решения ДУ.  
3.Метод Эйлера, уточнение метода. Методы прогноза и коррекции. Метод Рунге-Кутта.  
1.8-9.2. Литература. 
1.8-9.2.  Краткое содержание вопросов 
1.Приближённое решение ДУ. Задача Коши. Интегрирование ДУ с помощью рядов. 

Методы последовательных приближений и последовательного дифференцирования. 
Простейшим обыкновенным дифференциальным уравнением (ОДУ) является уравнение 

первого порядка, разрешённое относительно производной: y ' = f (x, y)    (1). Основная задача, 
связанная с этим уравнением известна как задача Коши: найти решение уравнения (1) в виде 
функции y (x), удовлетворяющей начальному условию: y (x0 ) = y0    (2).  
ДУ n-ого порядка y (n) = f (x, y, y',:, y

(n-1)
 ), для которого задача Коши состоит в нахождении 

решения y = y(x), удовлетворяющего начальным условиям:  
y (x0 ) = y0 , y' (x0 ) = y'0 , :, y

(n-1)
(x0 ) = y

(n-1)
0 , где y0 , y'0 , :, y

(n-1)
0 - заданные числа, можно свести 

к системе ДУ первого порядка.  
  Метод Эйлера 
В основе метода Эйлера лежит идея графического построения решения ДУ, однако этот же 

метод даёт одновременно и численную форму искомой функции. Пусть дано уравнение (1) с 
начальным условием (2).  
Получение таблицы значений искомой функции y (x) по методу Эйлера заключается в 

циклическом применении формулы: , i = 0, 1, :, n. Для геометрического 
построения ломаной Эйлера (см. рис.) выберем полюс A(-1,0) и на оси ординат отложим 
отрезок PL=f(x0 , y0 ) (точка P - это начало координат). Очевидно, что угловой коэффициент 
луча AL будет равен f(x0 , y0 ), поэтому чтобы получить первое звено ломаной Эйлера 
достаточно из точки М провести прямую MM1 параллельно лучу AL до пересечения с прямой х 
= х1 в некоторой точке М1(х1, у1). Приняв точку М1(х1, у1) за исходную откладываем на оси Оу 
отрезок PN = f (x1, y1) и через точку М1 проводим прямую М1М2 | | AN до пересечения в точке 
М2(х2, у2) с прямой х = х2 и т.д.  

 
Недостатки метода: малая точность, систематическое накопление ошибок.  
2. Метод неопределённых коэффициентов. Численные табличные методы решения ДУ.  
3.Метод Эйлера, уточнение метода. Методы прогноза и коррекции. Метод Рунге-Кутта.  
  Методы Рунге-Кутта 
Основная идея метода: вместо использования в рабочих формулах частных производных 

функции f (x, y) использовать лишь саму эту функцию, но на каждом шаге вычислять её 
значения в нескольких точках. Для этого будем искать решение уравнения (1) в виде:  
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Меняя α, β, r, q, будем получать различные варианты методов Рунге-Кутта.  
При q=1 получаем формулу Эйлера.  
При q=2 и r1=r2=½ получаем, что α, β= 1 и, следовательно, имеем формулу: 

, которая называется 
усовершенствованный метод Эйлера-Коши. При q=2 и r1=0, r2=1 получаем, что α, β = ½ и, 

следовательно, имеем формулу: - второй 
усовершенствованный метод Эйлера-Коши.  

При q=3 и q=4 также существуют целые семейства формул Рунге-Кутта. На практике они 
применяются наиболее часто, т.к. не наращивают ошибок.  Рассмотрим схему решения 
дифференциального уравнения методом Рунге-Кутта 4 порядка точности. Расчёты при 
использовании этого метода ведутся по формулам: 

 
Их удобно вносить в следующую таблицу:  

x y y' = f (x,y) k=h · f(x,y) ∆y  
x0 y0 f(x0,y0) k1

(0) k1
(0)  

x0 + ½·h y0 + ½·k1
(0) f(x0 + ½·h, y0 + ½·k1

(0)) k2
(0) 2k2

(0)  
x0 + ½·h y0 + ½·k2

(0) f(x0 + ½·h, y0 + ½·k2
(0)) k3

(0) 2k3
(0)  

x0 + h y0 + k3
(0) f(x0 + h, y0 + k3

(0)) k4
(0) k4

(0)  
        ∆y0 = Σ / 6  
x1 y1 = y0 + ∆y0 f(x1,y1) k1

(1) k1
(1)  

x1 + ½·h y1 + ½·k1
(1) f(x1 + ½·h, y1 + ½·k1

(1)) k2
(1) 2k2

(1)  
x1 + ½·h y1 + ½·k2

(1) f(x1 + ½·h, y1 + ½·k2
(1)) k3

(1) 2k3
(1)  

x1 + h y1 + k3
(1) f(x1 + h, y1 + k3

(1)) k4
(1) k4

(1)  
        ∆y1 = Σ / 6  

x2 y2 = y1 + ∆y1 и т.д. 
до получения 

всех искомых 
значений y  
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2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

2.1.Практическое занятие 1 (ПЗ-1).   
Тема. «Основные сведения теории погрешностей» (2 часа) 
2.1.1 Задание для работы: 

1.Источник ошибок. Распространение ошибок.  
2.Графы вычислительных процессов. 
2.Округление чисел. Значащие и верные цифры.  
2.1.2 Краткое описание проводимого занятия: 
Пример 1. Абсолютная и относительная погрешности приближенного числа e. 
Число e - трансцендентное число, представляется бесконечной непериодической дробью 

e = 2.71828. Приближенное значение числа e* = 2.7. Граница абсолютной погрешности | e - e* | 
< 0.019, относительная погрешность числа  

,      
Пример 2. Значащие цифры числа. 
Значащие цифры чисел подчеркнуты: 0.03589,    10.4920,   0.00456200. 
Верные цифры числа. 
Верные цифры числа a = 356.78245 подчеркнуты. 

Если , то верных цифр в числе 5:    a = 356.78245. 

Если , то верных цифр в числе 4:    a = 356.78245. 

Если , то верных цифр в числе 7:    a = 356.78245. 

Если , то верных цифр в числе 8:    a = 356.78245. 
2.1.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-

ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.2. Практическое занятие 2 (ПЗ-2).  
Тема. «Решение систем алгебраических уравнений методом простых итераций». (2 ч) 

2.2.1 Задание для работы: 
1. Простейшие операции над матрицами, векторами и определителями в среде Mathcad 
2.Методы решения СЛАУ. 
3. Метод простых итераций. 

2.2.2 Краткое описание проводимого занятия: 
Решение системы уравнений методом простой итерации 
Пусть дана система уравнений Ax = b 

           
Для построения итерационного процесса найдем собственные числа матрицы A 

 - используется встроенная функция для нахождения собственных чи-
сел 

Вычислим итерационный параметр и проверим условие сходимости 

              

 - условие сходимости выполнено 
Возьмем начальное приближение - вектор x0, зададим точность 0.001 и найдем началь-

ные приближения по приведенной ниже программе: 

  

  

Точное решение 
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Замечание. Если в программе возвращать матрицу rez, то можно просмотреть все най-
денные итерации. 

2.2.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-

ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.3.Практическое занятие 3 (ПЗ-3).  
Тема. «Решение СЛАУ методом Зейделя». (2 часа) 
2.3.1 Задание для работы: 
1. Сущность метода Зейделя. 
2. Решение систем методом Зейделя в среде Mathcad 

2.3.2 Краткое описание проводимого занятия: 
Решение систем линейных уравнений методом Зейделя. 
Рассмотрим параллельно решение 3-х систем уравнений: 

,      ,      
Приведем системы к виду удобному для итераций: 

,      ,       

Заметим, что условие сходимости    выполнено только для первой системы. Вычислим 3 
первых приближения к решению в каждом случае. 

1-ая система.      ,      ,      ,      
Точное решение здесь   x 1 = 1.4,    x 2 = 0.2. Итерационный процесс сходится. 

2-ая система.      ,      ,      ,        - итерационный 
процесс разошелся. 
Точное решение   x 1 = 1,    x 2 = 0.2.  

3-я система.      ,      ,      ,        - итерационный про-
цесс зациклился.  
Точное решение   x 1 = 1,    x 1 = 2.  
Для геометрической интерпретации полученных результатов постройте чертеж.  

2.3.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-

ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.4.Практическое занятие 4 (ПЗ-4).  
Тема. «Численные методы решения алгебраических у равнений.». (2 часа) 
2.4.1 Задание для работы: 
1.Отделение корней, основные методы отделения корней.  
2. Метод хорд и касательных. Комбинированный метод. 
3. Метод итераций. 
4. Изучение возможностей встроенной функции root. 

2.4.2 Краткое описание проводимого занятия: 
Пример. Дано уравнение: 5х – 6х – 3 = 0.  
Решение 
Обозначим: У = 5х – 6х – 3. 
На интервале [-1;1,8] необходимо вычислить значения функции У. Результаты расчета 

занести в таблицу 2.3 и построить график этой функции. График функции: У = 5х – 6х – 3 пред-
ставлен на рис. 3.1. 

  
Таблица 3.3 
Расчет значений функции У 

х -1 -0,5 0 0,5 1 1,5 1,8 

Y 
3,2

0 0,45 
-

2,00 -3,76 
-

4,00 
-

0,82 
4,3

2 
  

 
 
Рис. 3.1. График функции: У = 5х – 6х – 3 
 
По графику определяем, что корни заключены в следующих промежутках:  
x1Î[-1;0]; x2Î[1;1,8]. 

Дано уравнение: х3 – 0,2x2 + 0,5x + 1,5 = 0. Уточнить корень с погрешностью e < 0,001. 

Решение 

Запишем: f(х) = х3 – 0,2x2 + 0,5x + 1,5. 

Проведя процедуру отделения корней, получим, что корень находится в промежутке [-1; 0], 
т.е. а = -1, Ь = 0. 

f(-1) = -1 – 0,2 – 0,5 + 1,5 = -0,2 < 0; 

f(0) = 1,5 > 0. 
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 Делим интервал [-1; 0] на две части, т.е. находим х = (-1+0)/2 = -0,5. Затем определяем про-
изведение f(a)·f(x). Если f(a)·f(x)>0, то начало интервала a переносим в точку х (а=х). Если 
f(a)·f(x)<0, то конец интервала b переносим в точку х (b=х). Затем новый интервал делим попо-
лам и т.д. Результаты расчетов представлены в табл. 3.4. 

 Таблица 3.4 

Результаты расчетов  по методу деления отрезка пополам 

a b x f(a) f(x) f(a) f(x) 

-1,0000 0,000000 -0,50000 -0,2000 1,0750 -0,2150000 

-1,0000 -0,500000 -0,75000 -0,2000 0,5906 -0,1181250 

-1,0000 -0,750000 -0,87500 -0,2000 0,2395 -0,0478906 

-1,0000 -0,875000 -0,93750 -0,2000 0,0315 -0,0062988 

-1,0000 -0,937500 -0,96875 -0,2000 -0,0812 0,0162439 

-0,9688 -0,937500 -0,95313 -0,0812 -0,0241 0,0019587 

-0,9531 -0,937500 -0,94531 -0,0241 0,0039 -0,0000934 

-0,9531 -0,945313 -0,94922 -0,0241 -0,0101 0,0002429 

-0,9492 -0,945313 -0,94727 -0,0101 -0,0031 0,0000311 

-0,9473 -0,945313 -0,94629 -0,0031 0,0004 -0,0000012 

-0,9473 -0,946289 -0,94678 -0,0031 -0,0013 0,0000042 

 Ответ: х»-0,94653. 

Дано уравнение х3 – 0,2x2 + 0,5x + 1,5 = 0. Уточнить корень с погрешностью e < 0,001. 

 2.4.3 Результаты и выводы: 

На данном занятии студентами получены знания об основных численных методах реше-
ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.5.Практическое занятие 5 (ПЗ-5).  
Тема. «Приближение и интерполяция функций» (2 часа) 
2.5.1 Задание для работы: 
1 Общая задача и алгоритмы приближения.  
2.Метод наименьших квадратов. Степенной и ортогональные базисы. Линейный вариант 
МНК 

3.5.2 Краткое описание проводимого занятия: 
Приближение функции по методу наименьших квадратов. 
Пусть функция задана таблицей своих значений:  

x -
3 

-1 0 1 3 

y -
4 

-
0.8 

1.6 2.3 1.5 

Приблизим функцию многочленом 2-ой степени. Для этого вычислим коэффициенты 
нормальной системы уравнений:  

, , ,  

, ,  
Составим нормальную систему наименьших квадратов, которая имеет вид: 

 

Решение системы легко находится: , , . 
 
2.5.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-
ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных ти-
пов и итерационные алгоритмы), методы обработки экспериментальных данных (интер-
поляция и приближение), численные методы интегрирования и дифференцирования, 
численные методы решения дифференциальных уравнений в обыкновенных дифферен-
циалах и экстремальных задач (одномерных и многомерных). 
Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для 
выражения количественных и качественных отношений; корректно применять числен-
ные методы для решения математически формализованных задач на компьютерах. 
Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.6.Практическое занятие 6. (ПЗ-6).  
Тема. «Приближение и интерполяция функций» (2 часа) 
2.1.1 Задание для работы: 
1 . Интерполирование каноническим многочленом Лагранжа.  
2. Интерполяционные формулы Ньютона.  
3.Интерполяция функций в среде Mathcad 

2.6.2 Краткое описание проводимого занятия: 

Построение многочлена Лагранжа. 

По таблице построим интерполяционный многочлен: 

x -1 0 1 2 
y 4 2 0 1 

=  

Использование остаточного члена интерполяции. 

Пусть требуется составить таблицу функции на отрезке [1,10]. Какой величины должен 
быть шаг h, чтобы при линейной интерполяции значение функции восстанавливалось с по-

грешностью не меньшей ? 

Запишем остаточный член интерполяции при линейной интерполяции  

. 

Так как , то . Тогда . Следовательно, . 

2.6.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-

ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.7.Практическое занятие 7. (ПЗ-7).  
Тема. «Численное дифференцирование и интегрирование»  
2.7.1 Задание для работы: 
1.Задача численного дифференцирования и её решение.  

2.Численное интегрирование. 
2.7.2 Краткое описание проводимого занятия: 

Определить функцию f(x) таблично, вычислив значения уi = f(xi) в точках хi = a + h i, i = 0, 1, ..., 
8,   h=(b - a)/8 на отрезке [a, b].  
 Варианты задания 1 

 №  
варианта 

f(x) [a, b] [c, d] 

1 
 

[0.4, 0.8] [2, 2.1] 

2 2 [0.8, 1.6] [-1, -0.9] 

3 
1/(x ) 

[0.18, 0.98] [0.5, 0.6] 

4 
 

[0.8, 1.6] [2, 2.1] 

5 x
2   [0, 0.4] [1.5, 1.6] 

Задание 2. Вычислить интеграл :  
• с помощью встроенного оператора интегрирования; 
• по формуле прямоугольников; 
• по формуле Симпсона; 
• с помощью встроенного оператора интегрирования и интерполяцией табличной функ-

ции кубическим сплайном (функции cspline и interp); 
• методом неопределенных коэффициентов для численного интегрирования. 

Задание 3. Вычислить интеграл методом Монте-Карло. Для этого необходимо:  
• определить диапазон случайных чисел, например j: = 0..1000; 
• определить с помощью функции rnd равномерно распределенную случайную величину η 

j на отрезке интегрирования [a, b]; 
• создать вектор Fj = f(η j); 
• с помощью функции mean вычислить интеграл. 

2.7.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах ре-

шения линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 
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2.8.Практическое занятие 8.  
Тема. «Приближённое вычисление обыкновенных дифференциальных уравнений». (4 ч) 
2.8.1 Задание для работы: 

1.Приближённое решение ДУ. Задача Коши. Интегрирование ДУ с помощью рядов. Методы 
последовательных приближений и последовательного дифференцирования. 
2. Метод неопределённых коэффициентов. Численные табличные методы решения ДУ.  

2.8.2 Краткое описание проводимого занятия: 
Найти три последовательных приближения решения уравнения 
  
y

'
=x

2
+y

2 с начальным условием y(0)=0. 
  
Учитывая начальное условие, заменяем уравнение интегральным 

 
В качестве начального приближения возьмем y0(x)≡0 
Первое приближение находим по формуле 

 
Аналогично получим второе и третье приближения: 

 

 

 
  
На практике количество приближений выбирают так, чтобы yn и yn-1 приближения 

совпадали в пределах допустимой точности. Для n=3 и  

y3 вычислено с точностью порядка 0.001. 
 2.8.3 Результаты и выводы: 
На данном занятии студентами получены знания об основных численных методах реше-

ния линейных и нелинейных алгебраических уравнений (работа с матрицами разных типов и 
итерационные алгоритмы), методы обработки экспериментальных данных (интерполяция и 
приближение), численные методы интегрирования и дифференцирования, численные методы 
решения дифференциальных уравнений в обыкновенных дифференциалах и экстремальных за-
дач (одномерных и многомерных). 

Приобретены умения логически мыслить; составлять типовые математические модели 
для решения инженерных задач; употреблять математические понятия и символы для выраже-
ния количественных и качественных отношений; корректно применять численные методы для 
решения математически формализованных задач на компьютерах. 

Сформировались навыки  владения  на практике методами решения указанных задач с  
использованием проблемно-ориентированных прикладных программ. 

 
 


