
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ 
УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ   

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» 

Кафедра «Математика и теоретическая механика» 
 

 
 
 
 
 
 
 
 
 
 
 
 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ  
ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ 

 
 

ОСНОВЫ ТЕНЗОРНОЙ АЛГЕБРЫ И ВЕКТОРНОГО    АНАЛИЗА 

 
 

Направление подготовки (специальность) 27.03.04 Управление в технических системах 

Профиль образовательной программы: Системы и средства автоматизации 
технологических процессов 

Форма обучения    очная 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



СОДЕРЖАНИЕ 

1. Конспект лекций………………………………………………………….………….…............3 

1.1 Лекция № 1 Векторная алгебра ……………………...………………………..........................3 

1.2 Лекция № 2 Вектор-функции скалярного аргумента ……………………..............................8 

1.3 Лекция № 3  Скалярное поле......................................................................................................12 

1.4 Лекция № 4 Векторное поле......................................................................................................15 

1.5 Лекция № 5 Дивергенция вектора............................................................................................17 

1.6 Лекция № 6  Циркуляция............................................................................................................19 

1.7 Лекция № 7 Ротор вектора.......................................................................................................22 

1.8 Лекция № 8 Векторные поля.....................................................................................................27 

1.9 Лекция № 9 Понятие тензора..................................................................................................30 

1.10 Лекция № 10 Тензорная алгебра.............................................................................................34 

1.11 Лекция № 11 Свертывание тензоров....................................................................................35 

1.12 Лекция № 12 Главные оси тензора........................................................................................37 

1.13 Лекция № 13 Признак тензорности величин........................................................................39 

1.14 Лекция № 14  Тензорный анализ.............................................................................................41 

1.15 Лекция № 15 Поле тензора второго ранга...........................................................................46 

1.16 Лекция № 16 Тензорная производная....................................................................................53 

1.17 Лекция № 17 Интегральное представление дифференциальных операторов. Интегральные 

теоремы векторного анализа.....................................................................................55 

 

2. Методические указания по проведению практических занятий…………...............…...60 

2.1 Практическое занятие № ПЗ-1 Векторная алгебра…….......................................................60 

2.2 Практическое занятие № ПЗ-2 Вектор-функции скалярного аргумента……....................61 

2.3 .Практическое занятие № ПЗ-3 Скалярное поле....................................................................62 

2.4 Практическое занятие № ПЗ-4 Векторное поле....................................................................63 

2.5 Практическое занятие № ПЗ-5 Дивергенция вектора...........................................................63 

2.6 Практическое занятие № ПЗ-6 Циркуляция............................................................................64 

2.7 Практическое занятие № ПЗ-7 Ротор вектора.....................................................................65 

2.8 Практическое занятие № ПЗ-8 Векторные поля....................................................................66 

2.9 Практическое занятие № ПЗ-9 Понятие тензора.................................................................67 

2.10 Практическое занятие № ПЗ-10 Тензорная алгебра............................................................67 

2.11 Практическое занятие № ПЗ-11 Свертывание тензоров...................................................68 

2.12 Практическое занятие № ПЗ-12 Главные оси тензора.......................................................69 

2.13 Практическое занятие № ПЗ-13 Признак тензорности величин......................................70 



2.14 Практическое занятие № ПЗ-14 Тензорный анализ..........................................................70 

2.15 Практическое занятие № ПЗ-15 Поле тензора второго ранга.......................................71 

2.16 Практическое занятие № ПЗ-16 Тензорная производная .Интегральное представление 

дифференциальных операторов. Интегральные теоремы векторного анализа........................ 71 

 

1. КОНСПЕКТ ЛЕКЦИЙ 

 
1.1Лекция  №1 (2часа) 

Тема: «Векторная алгебра»  

1.1.1 Вопросы лекции: 
1. Векторы и скаляры. Проекция вектора на ось. Линейная зависимость векторов. 
1.Линейные операции над векторами в декартовой системе координат. Радиус-вектор и координаты 

точки. 
1.Скалярное и векторное произведение векторов. 
1.Произведения трех векторов: векторно-скалярное произведение, двойное векторное произведение. 
1.1.2. Краткое содержание вопросов 
1. Векторы и скаляры. Проекция вектора на ось. Линейная зависимость векторов. 
  При изучении разделов физики, механики и технических наук встречаются скалярные и векторные 
величины. 
  Скалярные величины полностью определяются своим числовым значением (Длина, площадь, объем, 
масса, температура тела и т.д.) 
  Векторные величины определяются числовым значением и направлением.(Скорость, сила, момент 
силы и т.д.) 
Векторные величины изображаются с помощью векторов. 
Определение. Вектором называется направленный отрезок, имеющий определенную длину. 
                                                А (начало)         
                                                                                       

                                                                      а                              В (конец) 

Обозначения: аАВ, . 
                                                                                                           
Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора. 

Обозначения: аАВ = . 

 

Определение. Проекцией вектора АВа =  на вектор в  называется число a
b

Pr , модуль которого 

равен расстоянию между основаниями перпендикуляров АА ′  и ВВ ′ , которые опущены на прямую,  

на которой лежит вектор в . Знак этого числа + , если векторы ВА ′′  и в  направлены в одну 

сторону, и − , если они направлены в противоположные стороны. 
                                                            
              
Определение. Углом между двумя векторами называется наименьший угол, на который нужно 
повернуть один из векторов, чтобы его направление совпало с направлением другого вектора. 
 

     a
r

 

                     в  
 



Теорема 1. Проекция вектора а   на вектор в равна произведению модуля  вектора а  на косинус 
угла ϕ  между этими векторами. 

            a
b

Pr = ϕcosа                                                                                                       

 

Следствие 1. Проекция вектора а   на вектор в положительна, если векторы образуют острый угол, 
отрицательна, если угол тупой, равна нулю, если угол прямой. 
 
Следствие 2. Проекции равных векторов на один и тот же вектор равны между собой. 
 

Теорема 2. Проекции векторов а   и  в на вектор с обладают следующими свойствами: 

                     )(Pr вa
с

+ = a
с

Pr + в
с

Pr  

                      )(Pr a
с

λ =λ a
с

Pr  
 

  Рассмотрим векторы naаa ...,, 21  и действительные числа .,....,, 21 nααα  

Определение. Выражение nn aaa ααα +++ ...2211 называется линейной комбинацией векторов. 
 

Определение. Векторы naa ,...,1   называются линейно зависимыми, если существуют числа 

nααα ,....,, 21  не равные нулю одновременно, для которых имеет место равенство 

0...2211 =+++ nn aaa ααα . (1) 

Векторы naa ,...,1   называются линейно независимыми, если равенство (1) имеет место только при 

условии .0....21 ==== nααα  
Замечание: Если несколько векторов ЛЗ, то хотя бы один из них всегда можно представить в виде 
линейной комбинации остальных. 
Справедливо и обратное утверждение: Если один из векторов представлен в виде линейной 
комбинации остальных векторов, то все эти векторы ЛЗ. 
 
                                         Линейная зависимость векторов на плоскости. 
 
Теорема 1. Всякие три вектора на плоскости ЛЗ. 
 

Теорема 2. Для того, чтобы два вектора а   и в  на плоскости были ЛНЗ необходимо и достаточно, 
чтобы они были неколлинеарными. 
 
Следствие . Максимальное число ЛНЗ векторов на плоскости равно двум. 
 
                                         Линейная зависимость векторов в пространстве. 
 
Теорема 3. Всякие четыре вектора в пространстве ЛЗ. 
 

Теорема 4. Для того, чтобы три вектора а , в , c
r

в пространстве были ЛНЗ необходимо и достаточно, 
чтобы они были некомпланарными. 
 
Следствие . Максимальное число ЛНЗ векторов в пространстве равно трем. 
 



                                                   Базис на плоскости и в пространстве. 
 
Определение. Базисом на плоскости называются любые 2 ЛНЗ вектора. 
 

Пусть а - произвольный вектор плоскости, в , c
r

-ЛНЗ , значит образуют базис. 

Т.к. а , в , c
r

-ЛЗ, то сва 21 αα += - вектор а  разложен по базису { }св,  

);( 21 αα -координаты вектора а  на плоскости относительно базиса { }св, . 

Теорема 5. Разложение вектора а  по базису { }св,  является единственным. 
 
Определение. Базисом в пространстве называются любые 3 ЛНЗ вектора. 
 
Следствие . Три любых некомпланарных вектора образуют базис. 
 

Пусть а - произвольный вектор пространства, а  в , c
r

, d -ЛНЗ , значит образуют базис. 

Т.к. а , в , c
r

, d -ЛЗ, то dсва 321 ααα ++= - вектор а  разложен по базису { }dсв ,,  

);;( 321 ααα -координаты вектора а  в пространстве относительно базиса { }dсв ,, . 

Теорема 6. Разложение вектора а  по базису { }dсв ,,  является единственным. 
 
 
2. Линейные операции над векторами в декартовой системе координат. Радиус-вектор и координаты 

точки. 
Определение. Упорядоченная система трех взаимно перпендикулярных осей в пространстве с 
общим началом отсчета и общей единицей длины называется прямоугольной декартовой системой 
координат в пространстве. (Для плоскости берут две взаимно перпендикулярных оси) 
Оси упорядочены, т.е. указано какую считать первой (ОХ), второй (ОУ), третьей (OZ). 
 
                      Плоскость                                                                               Пространство 
 
 

{ }ji, -прямоугольный декартовый базис              { }kji ;, -прямоугольный декартовый базис                                  
         плоскости                                                                    пространства 
 

Пусть а - произвольный вектор плоскости                                                                                         

== ОАа =+ 21 ОАОА jуiх + -разложение            =а kzjуiх ++     

вектора а  по базису { }ji,                                                        
( ух; )-прямоугольные декартовы                            ( zух ;; )                           

           координаты  вектора а                    

а ( ух; )                                                                        а ( zух ;; ) 

                                 Геометрический смысл чисел  zух ;; .  

=а kzjуiх ++  . Найдем проекции вектора а  на координатные оси. 

aОХPr = ОХPr ( kzjуiх ++ )= ОХхPr i + ОХу Pr у + ОХz Pr k = x  
                                                     1              0               0 

 aОYPr = ОYPr ( kzjуiх ++ )= ОYхPr i + ОYу Pr у + ОYz Pr k = y  
                                                     0              1               0 



  zaОZ =Pr    

Числа zух ;;  - проекции вектора а на координатные оси. 
Определение. Пусть 1М - произвольная точка пространства. 

 Радиус-вектором т. 1М назовем вектор 1ОМ , имеющий своим началом  т. О - начало заданной 

системы координат, а концом т. 1М . 

Декартовыми прямоугольными координатами т. 1М  назовем проекции ее радиуса- вектора 1ОМ  
на координатные оси. 

11 Pr OMx ОХ= , 11 Pr OMy ОY= , 11 Pr OMz ОZ=           1M ( 111 ;; zух ) 
                            Действия над векторами, заданными своими координатами. 
 
1) при сложении векторов складываются их соответствующие координаты. 

       );;( 321 ααα=a ;    );;( 321 βββ=b ; 

       a
r

 + b
r

= );;( 332211 βαβαβα +++ .  
   2) при умножении вектора на число его координаты  умножаются на это число 

        =aλ );;( 321 λαλαλα . 
   3) равные векторы имеют одинаковые координаты. 

     a
r

 = b
r

⇔  332211 ;; βαβαβα === . 
   4) признак коллинеарности векторов. 

           ⇒ва       λ
β
α

β
α

β
α

===⇔
3

3

2

2

1

1
 

     5) Координаты вектора, заданного координатами начала и конца. 
 
                                   z                                 Пусть заданы точки А(x1, y1, z1),   B(x2, y2, z2).                     
                                                                      Найдем АВ ? 

                                                                       АВ =   ОВ -  ОА                             

                                         А                            АВ = (x2 – x1, y2 –  y1, z2 – z1)                                                                  
                                                                         
                                                          В 
 
                                  О                                                               у 
 
 
 
                          х 
                                                                                                                                                                                   
    Чтобы найти координаты вектора нужно из координат его конца вычесть координаты начала. 
 
   3. Скалярное и векторное произведение векторов. 
Определение. Скалярным произведением векторов a

r
 и b

r
 называется число, равное произведению 

длин этих сторон на косинус угла между ними. 
 

a
r
⋅b
r

 =  a
r
b

r
cosϕ 

 
 
 Свойства скалярного произведения: 



1) Скалярное произведение двух векторов равно длине одного вектора, умноженной на проекцию 
второго вектора на ось, определяемую первым вектором. 
 

      a
r

                               a
b

Pr = ϕcosа        

                в                       b
a

Pr = ϕcosb  

                                         a
r
⋅b
r

= а ϕcosb = а b
a

Pr = b a
b

Pr  

 
 
2)  a

r
⋅b
r

 = b
r
⋅a
r

; 

3)  a
r
⋅( b
r

+ c ) = a
r
⋅b
r

+ a
r
⋅ c ; 

4)   (m a
r

)⋅b
r

 = a
r
⋅(mb

r
) = m( a

r
⋅b
r

); 
5)  a

r
⋅a
r

 =  a
r
2; 

Следствие: Скалярное произведение одноименных координатных ортов равно единице. 

1=== kkjjii  

6)  a
r
⋅b
r

 = 0, если a
r
⊥b
r

 или a
r

= 0 или b
r

 = 0.(Справедливо и обратное утверждение) 
Следствие: Скалярное произведение разноименных координатных ортов равно нулю. 

000 === kikjji  
 

Если рассматривать векторы ),,();,,( bbbaaa zyxbzyxa в декартовой прямоугольной системе 
координат, то 

a
r
⋅b
r

 = xa xb +  ya yb + za zb; 

 

 Используя полученные равенства, получаем формулу для вычисления угла между векторами: 

ba

zzyyxx bababa
rr

⋅

++
=ϕcos ; 

 
Определение. Векторным произведением векторов a

r
и b

r
 называется вектор c

r
, удовлетворяющий 

следующим условиям: 
1) вектор c

r
ортогонален векторам a

r
и b

r
 

2) c
r

 численно равен площади параллелограмма, построенного на векторах a
r

и b
r

, как на  
    сторонах, т.е. 

    ϕsinbac
rrr

⋅= , где ϕ - угол между векторами a
r

и b
r

, πϕϕ ≤≤≥ 0;0sin  

3) направление вектора c
r

таково, что если смотреть из его конца, то кратчайший поворот  
    вектора a

r
к вектору b

r
вокруг полученного вектора c

r
должен быть виден против движения  

    часовой стрелки. ( a
r

, b
r

и c
r

 образуют правую тройку векторов.) 

Обозначается: bac
rrr

×=  или ],[ bac
rrr

= . 
 
 
 
 
                                                     c

r
 

                                                             b
r

 



                                                                ϕ 
                                        
                                                              a

r
 

Свойства векторного произведения векторов: 
 
1) baab

rrrr
×−=× ; 

2) 0=× ba
rr

, если a
r
b

r
 или a

r
= 0 или b

r
= 0; 

3) (m a
r

)×b
r

= a
r
×(m b

r
) = m( a

r
×b
r

); 
4) a

r
×(b

r
+ с

r
) = a

r
×b
r

+ a
r
× с

r
; 

5) Если заданы векторы a
r

(xa, ya, za) и b
r

(xb, yb, zb) в декартовой прямоугольной системе координат с 

единичными векторами kji
rrr

,, , то 
 

a
r
×b
r

=

bbb

aaa

zyx

zyx

kji
rrr

 

 
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, 
построенного на векторах a

r
и b

r
. 

 
4. Произведения трех векторов: векторно-скалярное произведение, двойное векторное произведение. 
Определение. Смешанным произведением векторов a

r
, b

r
 и c

r
 называется число, равное 

скалярному произведению вектора a
r

 на вектор, равный векторному произведению векторов b
r

 и c
r

. 

 Обозначается )( cba
rrr

×⋅  
  
Геометрическое приложение смешанного произведения. 

Модуль смешанного произведения )( cba
rrr

×⋅  равен объему параллелепипеда, построенного на 

векторах a
r

, b
r

 и c
r

, как на ребрах. 

                                                              ( ))( cbaV дапарал

rrr
×⋅=−  

 
 
 
 
 
                             cb

rr
×  

 
 
 
 
    a

r
 

 
 
     c

r
 

      
 
    
                                          b

r
 



 
Свойства смешанного произведения: 

 
 1)Смешанное произведение равно нулю, если: 
  а)хоть один из векторов равен нулю; 
  б)два из векторов коллинеарны; 
  в)векторы компланарны. 

 2) )()( cbacba
rrrrrr

×⋅=⋅×  

 3) )( cba
rrr

×⋅ )()()()()( bcaabccabbacacb
rrrrrrrrrrrrrrr

×⋅−=×⋅−=×⋅−=×⋅=×⋅=  

 4) )()()()( 2121 cbacbacbaa
rrrrrrrrrr

×⋅+×⋅=×⋅+ µλµλ  

 5) Объем треугольной пирамиды, образованной векторами a
r

, b
r

 и c
r

, равен 

( ))(
6

1
cbaVпир

rrr
×⋅=  

 6)Если ),,( 111 zyxa =
r

, ),,(),,,( 333222 zyxczyxb ==
rr

, то 

333

222

111

)(

zyx

zyx

zyx

cba =×⋅
rrr

 

 
 
 
 
1.2 Лекция  №2 (2часа) 

Тема: «Вектор-функция скалярного аргумента.»  

1.2.1 Вопросы лекции: 
1. Определение вектор-функции. 
2. Производная вектор-функции по скалярному аргументу. 
3.Интеграл от вектор-функции скалярного аргумента. 
1.2.2 Краткое содержание вопросов 
1. Определение вектор-функции. 
      В обычном анализе основным является понятие функции, т. е. закона, устанавливающего 

соответствие между элементами двух множеств: значений аргумента  и значений 

функции . Это соответствие обычно обозначается следующим образом: 

   или  
(44) 

Обобщение функции одной переменной на числовую функцию  переменных состоит в том, чтобы 
рассматривать в качестве аргумента не одно число, а упорядоченный 

набор  чисел , в соответствие которому поставить значение функции : 

   или  
(45) 

      Можно расширить множество значений аргумента и функции и включить в них, помимо чисел, 
множество векторов. В этом случае установление соответствия между элементами таких множеств 
позволяет определить три новых типа функций: 



1. Если в соответствие скаляру  ставится вектор , тогда будет задана вектор-функция 

скалярного аргумента ;  

2. Если аргумент вектор , а значение скаляр  - то задана скалярная функция векторного 

аргумента ;  

3. Наконец, соответствие вектор   вектор  задает векторную функцию 
векторного аргумента. 

      Вектор  называется радиус-вектором и определяет точку пространства, в которой задаются 
значения функций векторного аргумента. 
      Существует одно важное отличие перечисленных множеств векторов (1)-(3). В случае (1) 
значения функции не зависят от пространственного положения начала вектора. Такие векторы 
называются свободными и их можно привести к общему началу. Для случая (3) этого сделать нельзя, 
поэтому такие векторы называются связанными. 
      В заключение следует отметить, что использование вектора как единой, самостоятельной 
величины, позволяет использовать в анализе основное преимущество векторного исчисления - 
возможность описания безотносительно к координатным системам, что оказывается очень важным 
для физических приложений. Поэтому в дальнейшем все рассуждения будут строиться на основе 
именно этого принципа. 

      Пусть множество значений вектор-функции скалярного аргумента  приведено к общему 
началу в точке 0. Совместим с этой точкой начало декартовой системы координат. Тогда для 

любого  вектор  может быть разложен по ортам : 

 
(46) 

Таким образом, задание вектор-функции скалярного аргумента означает задание трех скалярных 

функций . В этом случае говорят, что вектор-функция задана в декартовой 
системе координат. (Здесь и далее предполагается, что в сокращенной записи с использованием 

индексных обозначений , ,  и 

соответственно , , , а также используется правило Эйнштейна 
суммирования по "немым" индексам). 

      При изменении значения аргумента  конец вектора  будет описывать в пространстве 

кривую, которая называется годографомвектора . Например, в механике, годографом радиус-

вектора  будет траектория движения. Согласно (46) уравнения годографа можно получить 

исключением изуравнений 

 

(47) 



что приводит в общем случае к системе уравнений вида: 

 

(48) 

которая определяет годограф, как линию пересечения двух поверхностей, уравнения которых заданы 

функциями , . 
2 .Производная вектор-функции по скалярному аргументу. 
      На вектор-функцию можно распространить такие понятия обычного анализа функций, как 
предел, непрерывность, дифференцируемость. Так, 

вектор  называется пределом  при , если . 

Функция  называется непрерывной при ,если 

 
(51) 

      Пусть для  существует близкое значение . Тогда производной вектор-

функции поскалярному аргументуназывается 

 
(52) 

 
Рис.12. К определению производной вектор-функции. 
Согласно такому определению, производная вектор-функции также является вектор-функцией и 
поэтому можно аналогично определить и высшие производные. 

      Рассмотрим геометрический смысл производной вектор-функции . Если взять два 

значения  и , то вектор  будет направлен по 

секущей  годографа. Тогда, из рис. 12 видно, что при  секущая будет стягиваться к 
касательной и, следовательно, производная вектор-функции направлена по касательной к 

годографу вектора . 
      Определение производной (52) совпадает с ее обычным определением в математическом анализе. 
Учитывая, что алгебраические операции с векторами аналогичны алгебре чисел (Гл. 1), (кроме 

некоммутативности векторного произведения ) можно утверждать 
(проверить это утверждение рекомендуется самостоятельно, используя правила 

дифференцирования скалярных функций), что правила дифференцирования вектор-функции по 
скалярному аргументу будут совпадать с правилами дифференцирования обычных функций. Таким 
образом: 



1. 
 

(53) 

2. 
 

(54) 

3. 
 

(55) 

4. 
 

(56) 

5. 

 

(57) 

Последнее равенство (57) является обобщением правила дифференцирования сложной функции. 
Если вектор-функция задана в координатном виде (46), то в декартовой системе 

 
3. Интеграл от вектор-функции скалярного аргумента        
Понятие производной вектор-функции позволяет дать определение неопределенного интеграла. 

Пусть даны две вектор-функции  и . Тогда  называется неопределенным 

интегралом (первообразной) , если и обозначается как 

 
(59) 

В (59) -  постоянный вектор (векторная константа) и это выражение следует понимать как три 

независимых интеграла от функций  в какой-либо системе координат, в частности, в 

декартовой. Например, в механике положение точки  определяется, если известна ее 

скорость , как 

 
(60) 

      Аналогично можно ввести понятие определенного интеграла от вектор-функции скалярного 
аргумента. 

 
1.3 Лекция  № 3(2часа) 

Тема: «Скалярное поле.»  

1.3.1. Вопросы лекции: 
1. Скалярное поле. Поверхности уровня. 
2. Производная по направлению. 
3 Градиент скалярной функции. Свойства градиента. 
1.3.2 Краткое содержание вопросов 
1. Скалярное поле. Поверхности уровня. 
Теории поля - крупный раздел физики, механики, математики, в котором изучаются скалярные, 
векторные, тензорные поля. 



 Определение. Полем называется область V пространства, в каждой точке которой определено 
значение некоторой величины. Если каждой точке пространства М ставится в соответствие некоторая 
скалярная величина U, то таким образом задается скалярное поле U(M) (поле температуры, 
плотности, атмосферного давления). Если каждой пространства М ставится в соотвтствие вектор А

ur
, 

то задается векторное поле  А
ur

 (М) поле силы тяжести, скоростей частиц текущей жидкости, 
магнитное поле). 
 
Если функции U(M) и А

ur
 (М) не зависят от времени, то соответствующие поля называются 

стационарными, в противном случаи – нестационарными. Далее будем рассматривать стационарные 
поля. 
 Рассмотрим в 3-х мерном пространстве некоторую область. Согласно определению, 

скалярное поле является функцией точки. Так как положение точки  можно 

характеризовать ее радиус-вектором , то задание поля будет означать, что установлено 

соответствие между  и U. Таким образом, поле можно рассматривать как функцию 

векторного аргумента  U=U(r)  

Если в области определения поля ввести декартову систему координат, то  можно представить как 

упорядоченную тройку чисел  и тогда задание поля будет эквивалентно заданию 
функции трех переменных U=U(x;y;z). В дальнейшем будем считать эту функцию непрерывной и 
дифференцируемой. 
U=U(x;y) – плоское скалярное поле 
Аналогично: в пространстве М зададим векторное поле, постовив в соответствие каждой точке точке 
пространства вектор, определенный координатами: 

( , , ) ( , , ) ( , , )А P x y z i Q x y z j R x y z k= + +
ur rr r

 
или 

( , , )А А x y z=
ur ur

 или  ( )А А r=
ur ur

 
Для наглядной характеристики поля используют поверхности уровня. 
      Поверхностью уровня поля  U(M)  называют геометрическое место точек, в которых поле 

принимает постоянное значение. Согласно такому определению, уравнение поверхности уровня 
будет иметь вид: 
U(M)=c   или U(x;y;z)=c (61) 
Уравнение (61) является уравнением поверхности, что объясняет соответствующее название. 

Придавая  различные значения, можно получить наглядное представление о том, как 
величина U распределена в пространстве. При этом, если в некоторой области поле изменяется 
быстро, поверхности уровня будут сближаться. Пересекаться они не могут, за исключением одной 
точки. 
 

 
Рис.14. Поверхности уровня скалярного поля. 
В случае плоского поля U=U(x;y)   -    U(x;y)=c  -  линия уровня                        



 
2 Производная по направлению. 
Рассмотрим функцию  U(x, y, z) в точке М( x, y, z) и точке М1( x + ∆x, y + ∆y, z + ∆z). 

 Проведем через точки М и М1 вектор S .  Углы наклона этого вектора к направлению 
координатных осей х, у, z обозначим соответственно α, β, γ. Косинусы этих углов называются 

направляющими косинусами вектора S . 

 Расстояние между точками М и М1 на векторе S  обозначим ∆S. 
  

222
zyxS ∆+∆+∆=∆  

 
 Высказанные выше предположения, проиллюстрируем на рисунке: 

 

 Определение: Предел 
S

u

S ∆
∆

→∆ 0
lim   называется производной функции u(x, y, z) по направлению 

вектора S  в точке с координатами ( x, y, z). 

0
lim
S

u u

s S∆ →

∂ ∆
=

∂ ∆  

Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные  
по переменным х, у и z.  

cos cos cos
u u u u

s x y z
α β γ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂  

 

( cos sin
u u u

s x y
α α

∂ ∂ ∂
= +

∂ ∂ ∂ ,U=U(x;y)) 

 Заметим, что величина s является скалярной. Она лишь определяет направление вектора S . 
  
Производная по направлению характеризует скорость изменения функции(поля) в точке по этому 

направлению. 0( 0)
u

s

∂
> <

∂
, то функция U возрастает(убывает) в направлении S . 

u

s

∂
∂

- мгновенная 

скорость изменения функции U в направлении S . 
 
3 Градиент скалярной функции. Свойства градиента. 
Определение: Если в некоторой области D задана функция U = U(x, y, z) и некоторый вектор, 
проекции которого на координатные оси равны значениям функции U в соответствующей точке 

z

u

y

u

x

u

∂
∂

∂
∂

∂
∂

;; , 



то этот вектор называется градиентом функции u. 
 

k
z

u
j

dy

u
i

x

u
gradu

rrr

∂
∂

+
∂

+
∂
∂

=  

 
 При этом говорят, что в области D задано поле градиентов. 
 

Связь градиента с производной по направлению. 
 
 Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов 

k
z

u
j
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u
i

x

u
gradu

rrr

∂
∂

+
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+
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Тогда производная 
s

u

∂
∂

 по направлению некоторого вектора S  равняется проекции вектора gradu на 

вектор S . 

s

u
пр gradu

s

∂
=

∂
 

                                                      cos
u

gradu
s

ϕ
∂

= ⋅
∂

 

 Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – 
вектор, показывающий направление наискорейшего изменения  некоторого скалярного поля u в 
какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент 
давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции. 
 С точки зрения геометрического представления  градиент перпендикулярен поверхности 
уровня функции. 
 

1.4 Лекция  №4 (2часа) 
Тема: «Векторное поле.»  
1.4.1. Вопросы лекции: 
1. Векторное поле. Векторные линии. 
2. Определение потока вектора и его физический смысл. 
3. Вычисление потока вектора. 
1.4.2 Краткое содержание вопросов 
1. Векторное поле. Векторные линии. 
Определение поля можно распространить и на векторные величины. Тогда: - если в каждой точке 

пространства М, принадлежащей некоторой области трехмерного пространства задать 

вектор , то таким образом будет задано векторное поле.Вектор  (рис. 16) 
называется вектором поля. 

 
Рис.16. К определению векторного поля. 



При произвольном течении жидкости скорости частиц в общем случае также будут зависеть от их 
пространственного положения, образуя, следовательно, векторное поле. Векторное поле является 
векторной функцией векторного аргумента. 

 
(62) 

Если в области определения векторного поля ввести декартову систему координат, то вектор поля 

можно разложить по ортам , , : 

 
(63) 

при этом . Таким образом, задание векторного поля в системе 

координат означает задание трех независимых функций трех переменных. 

     Будем считать, что все функции  непрерывны и дифференцируемы, что обычно 
выполняется в физических приложениях теории поля. Отдельные точки, где эти условия не 
выполнены (т. е. вектор поля не определен или испытывает скачки), называются особыми и требуют 
специального рассмотрения. Геометрической характеристкой векторного поля являются векторные 

линии, т.е. кривые, в любой точке которых касательная к ним совпадает с вектором 

поля  (рис. 17). Например, в случае стационарного течения жидкости векторные линии можно 
рассматривать как траектории движения частиц жидкости, а количество линий будет 
пропорционально числу частиц. 

 
Рис.17 К определению векторных линий. 
Чтобы получить уравнение векторных линий, будем рассматривать сами линии как годограф 

некоторой вектор-функции  скалярного аргумента. Тогда вектор  будет направлен по 

касательной к векторной линии в точке с радиус-вектором  (рис. 17). Следовательно, он будет 
пропорционален вектору поля в этой точке: 

 
(64) 

где  - некоторый коэффициент пропорциональности.В системе координат 

 
(65) 

Исключив из (65) , получим систему 

 

(66) 

которая называется системой дифференциалных уравнений векторных линий. Независимых 
уравнений в этой системе только два и общее решение может быть представлено в виде: 

 

(67) 



и каждая векторная линия, таким образом, будет линией пересечения двух поверхностей  и  
 
2. Определение потока вектора и его физический смысл. 
       Понятие потока векторного поля можно определить на примере исследования скоростей течения 

жидкости . Выберем в области поля  некоторую поверхность произвольной формы 
(рис.26). 

 
Рис. 26 К определению потока векторного поля. 
Так как поле задано во всех точках пространства, окружающего эту поверхность, то 

вектор  можно построить в любой точке  на поверхности. Рассмотрим 

площадку  поверхности и вычислим количество жидкости, протекающей через эту площадку за 

единицу времени. Эта величина будет равна плотности жидкости , умноженной на объем 

наклонного цилиндра с основанием  и образующей, по модулю равной  в точке . 

Высота цилиндра равна проекции образующей на нормаль  в этой 

точке: . Тогда, 

 

(85) 

где  - ориентированный элемент поверхности. Полное количество жидкости, 

протекающей через всю поверхность , будет определяться интегралом 

 
(86) 

и называется потоком жидкости через поверхность . 
 
       Рассмотрим общее определение потока векторного поля. Пусть в некоторой области 

пространства задано векторное поле  и поверхность . Тогда: потоком поля  через 

поверхность  называется величина 

 
(87) 

Особый интерес для исследования векторных полей представляет поток через замкнутую 
поверхность: 



 

(88) 

Рассмотрим более подробно эту величину также на гидромеханическом примере. Поместим в поток 
жидкости замкнутую поверхность 

a  
Рис.26 К определению потока векторного поля. 

 (рис. 26). Тогда, по смыслу выражения (86), если жидкость однородна, то количество жидкости, 

"втекающей" внутрь , будет очевидно равно количеству вытекающей и в этом случае . 

Ситуация изменится, если внутрь  поместить кусочек тающего льда. Тогда, за счет 

"производства" жидкости внутри  вытекать будет больше, чем "втекать" и, следовательно, в этом 

случае . Аналогично, если внутри жидкость будет каким-либо образом поглощаться, 

то . В первом случае ( ) говорят, что внутри  есть источник, во втором ( ) -

 сток;  - источников или стоков поля нет. Эти определения можно распространить для 

произвольного поля  
 
3. Вычисление потока вектора. 

 
 
1.5 Лекция  №5 (2часа) 

Тема: «Дивергенция вектора»  
1.5.1 Вопросы лекции: 
1. Определение дивергенции вектора.  
2. Вычисление дивергенции вектора 
 
1.5.2 Краткое содержание вопросов 
1. Определение дивергенции вектора  
Таким образом, величину потока векторного поля через замкнутую поверхность можно 
рассматривать как характеристику самого поля. Тогда, векторное поле можно исследовать, помещая 

пробную замкнутую поверхность в различные области поля и определяя поток . Если разделить 

величину потока  на объем , захваченный поверхностью , то можно получить в области 
поля среднюю плотность потокаили среднюю мощность источника поля (если он есть внутри). 
Однако из-за конечных размеров пробной поверхности результаты таких исследований могут 
оказаться неоднозначными, например, если внутри окажутся два одинаковых по мощности источник 
и сток. Выбор поверхности также выглядит неоднозначно. Чтобы избавиться от такой зависимости и 
неоднозначности, будем, как и при рассмотрении градиента скалярного поля, стягивать поверхность 

к некоторой точке . Тогда, в пределе , , если он существует, будет получена 

величина мощности источника поля в точке . Эта величина называется дивергенцией 



векторного поля и обозначается как  (от divergentia - расходимость). Согласно такому 

определению, дивергенция векторного поля  вычисляется как 

 

(89) 

Выражение (89) определяет характеристику поля  инвариантным способом. Выберем в 

области задания поля  декартову систему координат. 

Тогда . Вычислим поток поля  через 

замкнутую поверхность : 

 

(90) 

Применяя теорему о среднем к правой части (90) 

 

(91) 

и переходя к пределу  из (91), получим 

 
(92) 

Выражение (92) является формулой для вычисления дивергенции поля  в декартовой системе 
координат. Из определения (89) и (92) следует, что дивергенция векторного 

поля, , является скалярной величиной, точнее скалярным полем. 
 
       Перечислим свойства дивергенции: 
 

1.   
(93) 

2.  
сложное поле  

(94) 

 
 
2 .Вычисление дивергенции вектора 

Пример . Дано векторное поле . Вычислить  

       Решение. Используем формулу (92), тогда  и , ,  

   т. е.  
 

       Пример . Вычислить дивергенцию напряженности электрического поля точечного заряда . 



       Решение.Напряженность поля точечного заряда , где  - радиус-вектор с началом в 

точке расположения заряда . 

 
Так как 

 
то 

 

Таким образом, если , то . В точке  дивергенция неопределена (  !). 

Несмотря на такую особенность можно вычислить поток поля  через поверхность, 

окружащую заряд . Выберем в качестве такой поверхности  сферу радиуса  с центром в 
начале координат, где расположен и сам заряд. На поверхности сферы модуль напряженности 

поля будет постоянным, а направление векторов поля (по радиусу) совпадает с направлением 

нормали  к этой поверхности. Поэтому 

 
Полученный результат, в соответствии с условием задачи можно интерпретировать следующим 

образом: в пространстве, окружающем заряд, источников электрического поля нет, так как , 

но в начале координат источник есть, так как  и поток поля через замкнутую поверхность 
также отличен от нуля. На этом основании естественно будет считать, что заряд и есть источник 

электрического поля. (Результат в электростатике носит название теоремы Гаусса). 
 

 
 
 

1.6 Лекция  №6 (2часа) 
Тема: «Циркуляция.»  
1.6.1 Вопросы лекции: 
1. Линейный интеграл вектора. 
2. Циркуляция.   
1.6.2 Краткое содержание вопросов 
1. Линейный интеграл вектора. 
2. Циркуляция.   



Пусть в некоторой области пространства задано силовое векторное поле . Выберем в этом поле 

площадку и точку  на ее поверхности. Пусть эта площадка ограничена контуром . Построим в 

точке  нормаль  к плошадке по правилу "правого винта". Так как силовое поле задано во всем 
пространстве, то оно также 

 
Рис.28 К определению ротора векторного поля. 

задано и в каждой точке на контуре . Вычислим работу, которая совершается при обходе 

контура . Работа на участке  контура , где вектор  по величине 

равен  и направлен по касательной в контуру . Полная работа при обходе 

контура  (рис. 28): 

 

(96) 

Аналогичная величина, определенная для произвольного векторного 

поля  называется циркуляцией векторного поля  по контуру : 

 

(97) 

В рассмотренном примере работа (96) есть циркуляция силового поля. 

      Рассмотрим свойства циркуляции (97). Разделим замкрутый контур  (рис. 29) на две 

части отрезком . Тогда, цикруляция  по всему контуру  будет равна сумме 

циркуляций по контурам  и , так как по отрезку  проход осуществляется 

дважды в противоположных направлениях. Пусть контур  охватывает площадь , а 

контуры  и  соответственно и . Тогда, можно записать: 

 

(98) 

Рис.29 К вычислению циркуляции векторного поля. 

Из (98) следует, что  можно представить в виде интеграла по поверхности, опирающейся на 

контур : 

 
(99) 



и, используя теорему о среднем, (99) далее можно записать как: 

 
(100) 

Будем изменять ориентацию вектора  (рис. 28), сохраняя его начало в точке . Так как 
контур будет изменять свою ориентацию в поле, то величина циркуляции также будет изменяться 

и ее можно рассматривать как функцию : . При этом , так как 

направление обхода в этом случае будут противоположным. Так как поле  считается 

непрерывным, то  будет непрерывной функцией . Из анализа известно, что если 
непрерывная функция на ограниченном участке меняет свой знак, то она проходит через 0. Поэтому 

существует такой вектор , что . Частный случай такой ситуации возникает на 
примере с силовым полем, когда векторы поля будут перпендикулярны к площадке, охватываемой 

контуром . Функцию , удовлетворяющую перечисленным свойствам, можно построить, 

если выбрать  в виде 

 
(101) 

при этом вектор  должен быть связан с самим полем  в точке . Таким образом, можно 
записать 

 

(102) 

Из (102) в применении к силовому полю  следует, что если в окрестности 

точки  вектор  отличен от нуля, то поле будет совершать работу при перемещении 
материальной точки по замкнутому контуру и наоборот. 

 
1.7 Лекция № 7(2часа) 

Тема: «Ротор вектора.»  

1.7.1 Вопросы лекции: 
1. Ротор вектора. Свойства ротора вектора.  

2. Оператор Гамильтона. 

 
1.7.2 Краткое содержание вопросов 
 
1. Ротор вектора. Свойства ротора вектора.  

      Будем стягивать контур  к точке . Тогда, в предельном случае формулы (102) 

вектор  называется ротором векторного поля : 

 

(103) 



Формула (103) инвариантным образом определяет новую характеристику векторного поля - ротор, 
который векторным полем. 
 

 

Пусть , тогда, так как , то, используя теорму Стокса 

 

(104) 

Применяя теорему о среднем к (104) и переходя к пределу (97), 

 
(105) 

Формула (105) определяет способ вычисления ротора поля в декартовой системе координат. На 
основе известных свойств определителей это выражение можно переписать также в виде: 

 

(106) 

С использованием (105), (104) можно переписать в виде: 

 

(107) 

что выражает содержание теоремы Стокса для векторных полей: 

      - циркуляция векторного поля по замкнутому контуру  равна потоку ротора поля через 

поверхность, которая опирается на этот контур. 
 

 
Рис.29 Поле скоростей 
 
      Пример 3-11. Вычислить ротор векторного поля скоростей точек твердого тела, вращающегося 

вокруг своей оси с угловой скоростью . 
      Решение. Пусть ось вращения направлена по оси . Из механики известно, что 

скорость , где вектор угловой скорости . Отсюда,  и 
тогда 



 
С помощью этого примера можно выяснить физический смысл ротора векторного поля. Ротор поля 

скоростей, , как видно, совпадает по направлению с вектором угловой скорости. Таким 
образом, ротор поля во многих случаях условно можно считать "осью", вокруг которой, по правилу 

правого винта, "закручены" векторные линии этого поля, (рис. 29). Отсюда происходит и 
термин rotor - вихрь. 
     Векторное поле, для которого ротор отличен о нуля, называется вихревым. При этом, векторные 
линии этого поля замкнуты (или замыкаются на бесконечности), а ротор направлен перпендикулярно 
векторной линии, так, что если смотреть из конца положительного направления ротора, то векторная 
линия должна быть направлена против часовой стрелки. 
     Формула (103) может оказаться не совсем удобной, так как несмотря на то, что она определяет 

ротор, но вычислить позволяет лишь его проекцию на некоторе направление . Поэтому, имеет 

смысл преобразовать это это выражение так, чтобы получить непосредственно вектор . 

     Рассмотрим контур , охватывающий площадку . Построим на этой площадке цилиндр с 

образующей высоты , направленной вдоль нормали  к  (рис. 30). Проинтегрируем обе 
части определения (103) вдоль образующей цилиндра: 
 

 
Рис.30 К вычислению ротора векторного поля 

 

(108) 

Если  - нормаль к боковой поверхности цилиндра, то  и . 
Тогда правая часть (108) запишется как интерал по боковой поверхности 

цилиндра  ( ): 

 

(109) 

Последний интеграл преобразуется к интегралу по всей поверхности цилиндра, если учесть, что 

интегралы типа (109), вычисленные на основаниях  и , равны нулю, так как здесь , 
поэтому: 



 

(110) 

Применяя теорему о среднем к левой части (110) и устремляя , получим: 

 

(111) 

Так как вектор  в левой части (111) в отношении интегрирования является константой, то 
окончательно получаем: 

 

(112) 

Выражение (112) является эквивалентным (103) и также может рассматриваться, как 

определение ротора векторного поля. 
 
2 Оператор Гамильтона. 

Вычисление таких характеристик полей, как градиент, дивергенция и ротор заключается, как уже 
было показано ранее, в вычислении соответствующих производных, их переменожении или 
суммировании и, таким образом, представляет собой некоторое действие (операцию) над полем. 
Общим свойством этой операции является ее векторный характер. Это свойство можно учесть и в 
самой форме записи способа вычисления, если определить символический вектор - 

оператор  (набла): 

 

(113) 

который удовлетворяет всем правилам векторной алгебры, т. е. его можно умножать на число 

(скаляр) или вектор. Знак  означает, что при этом соответствующая величина должна быть 
подставлена сюда вместе с символом векторной операции. Тогда, сравнивая (113) с (75), (89) и (112), 
получим: 
 

1) умножение вектора  на скаляр  вектор: 

 
(114) 

2) скалярное умножение  на вектор   скаляр: 

 
(115) 

3) векторное умножение  на вектор   вектор: 

 
(116) 

Сравнивая далее (114)-(116) с (79), (92) и (106), получим, что в декартовой системе координат 

оператор  запишется как 

 
(117) 



Определение (113) удобно тем, что оно пригодно для любой системы координат, в то время как (117) 
- частный случай для декартовой. 

      Оператор  является дифференциальным оператором а его действие, независимо от 
алгебраической операции, в комбинации с которой он применяется к полю в (114)-(116), подчиняется 
обычным правилам дифференцирования функций (сумма, произведение). В применении к сложным 
выражениям, содержащим комбинации скалярных или векторных полей, вычисления градиента, 
дивергенции или ротора на основе их определений может оказаться весьма громоздким, а при 
использовании символической записи становится более наглядным и простым. При этом 
необходимо, однако, следить, чтобы характер величин (скаляр или вектор) сохранялся на протяжении 
всех вычислений, а каждое промежуточное выражение имело смысл с точки зрения векторной 

алгебры. Например, если ,  - векторы, то выражение  не имеет смысла, если не указана 
сответствующая бинарная операции: сумма, скалярное или векторное произведение -

 , , . 
      С учетом этих замечаний, можно получить следующие полезные тождества: 
 

1.  
 

(118) 

2.  

 

(119) 

3.  
 

(120) 

4.  
 

(121) 

5.  

 

(122) 

6.  
 

(123) 

7.  

 
(124) 

8.  

 
(125) 

9.   
(126) 

   

  Докажем формулы (125) и (123). . Согласно правилу дифференцирования 
произведения, будем отмечать те функции, которые будут оставаться постоянными, т. 

е. . Тогда: 

 



Раскроем двойное векторное произведение по правилу "BAC-CAB", учитывая, что в первом 

слагаемом действию дифференцирования "подвергается" вектор , во втором - : 

 
Во втором и четвертом слагаемых сомножители переставлены местами по свойству векторного 
произведения, чтобы учесть предыдущие замечания. Опуская подчеркивания и переходя от 
символической формы записи к соответствующим обозначениям, получим (125). Аналогично для 
(123): 

 
где были использованы свойства цикличности смешанного произведения векторов и антисимметрии 
векторного. Остальные формулы предлагается доказать самостоятельно. 
      При выполнении векторного дифференцирования полезно знать следующие результаты для 
простейших скалярных и векторных функций: 

 

(127) 

Формулы (127) легко доказать с использованием определений градеинта, дивергенции и ротора в 
декартовой системе координат. 
 

1.8 Лекция  № 8(2часа) 
Тема: «Векторные поля.»  
1.8.1 Вопросы лекции: 
1. Потенциальное и соленоидальное векторные поля. 

2. Лапласово векторное поле 

 
1.8.2 Краткое содержание вопросов 
1. Потенциальное и соленоидальное векторные поля. 

В физике большое значение играют векторные поля, для которых дивергенция, ротор или эти 
величины вместе, обращаются в ноль. Такие поля называются специальными. К ним 
относятся потенциальное, соленоидальное и Лапласово поля. 
 

      Потенциальное поле. Векторное поле  называется потенциальным, если в каждой его точке 
ротор поля равен нулю: 

 
(150) 



Согласно (150) и смыслу понятия ротор, потенциальное поле также называется безвихревым. Легко 

показать, что поле градиента, , где  - некоторое скалярное поле, является 

потенциальным. Действительно, согласно (135), . Тогда потенциальное 

векторное поле  может быть представлено, как градиент скалярного поля . Поле  называется 
потенциалом векторного поля 

 
(151) 

      Потенциальное поле обладает одним важным свойством. Рассмотрим циркуляцию 
потенциального поля по замкнутому контуру (рис. 32). Применяя теорему Стокса для векторных 
полей (107), получим: 

 

(152) 

С другой стороны, если контур  в (152) состоит из двух частей  (рис. 32), то из 
(152) получаем: 

 

(153) 

и следовательно 

 

(154) 

 
Рис.32 К вычислению циркуляции потенциального векторного поля 
 
Равенство (154) означает, что циркуляция потенциального векторного поля между 

точками  и  не зависит от формы контура и следовательно определяется только их 
положением. С использованием (151) и определения производной по направлению (81) можно 
показать, что в (154) 

 

(155) 



Полученное равенство может служить способом вычисления потенциала, если положить , 

что всегда можно сделать, добавив к полю  постоянное поле , которое не 

поменяет , так как . 

      Соленоидальное поле. Векторное поле  называется соленоидальным, если в каждой его точке 
дивергенция обращается в ноль: 

 
(156) 

Рассмотрим векторное поле  и его ротор . Тогда из (137) для поля  получим 

(156), т. е. соленоидальное поле  можно представить как ротор некоторого векторного поля: 

 
(157) 

Поле  называется векторным потенциалом поля . 

      Отметим важную особенность векторного потенциала. Если  изменить, добавив к нему поле 

градиента , то поле  (157) при этом не изменится: 

 
(158) 

Таким образом, векторный потенциал определен неоднозначно. 
      
 
2. Лапласово векторное поле 

Лапласово (гармоническое) поле. Векторное поле  называется Лапласовым, если в каждой точке 
пространства для него одновременно выполняются условия: 

 
(159) 

 
(160) 

Так как (160) - это условие потенциальности поля, следовательно  можно представить 

как . Подставляя это выражение в (159), получим, учитывая (134), уравнение, 

определяющее поле               (161) 
  
Уравнение (161) называется уравнением Лапласа и, согласно (134), в декартовой системе координат 
оно имеет вид 
 

 

(162) 

Функции, удовлетворяющие уравнению (162), называются гармоническими. Способы решения (162) 
и свойства гармонических функций рассматриваются в математический физике. 
 

1.9 Лекция  № 9(2часа) 



Тема: «Понятие тензора.»  
1.9.1 Вопросы лекции: 
1. Тензоры нулевого ранга, первого ранга.  

2. Тензоры второго ранга, тензоры высших рангов. 
1.9. 2 Краткое содержание вопросов 
 
1. Тензоры нулевого ранга, первого ранга. 
Понятие тензора наиболее естественно возникает при рассмотрении физических задач, связанных с 
использованием величин, определяющих собственные характеристики исследуемых объектов. 
Интуитивно понятно, что эти собственные или внутренние характеристики должны обладать 
свойством инвариантности и не иметь зависимости от способа их применения, который определяется 
выбором системы координат. Физические скаляры, такие как масса, заряд и другие, отвечают таким 
требованиям с очевидностью. Простейшие кинематические величины (скорость, ускорение) имеют 
векторный характер и относительно системы координат задаются тройкой чисел, которые при 
вращении осей изменяются по правилам (36) и (37). Инвариантность в этом случае выражается в том, 
что, несмотря на изменение координат, сам вектор, как объект-стрелка, остается совершенно 
неизменным и самостоятельным, что позволяет построить "графические" правила (треугольника, 
параллелограмма в 1-й гл.) для выполнения алгебраических действий с векторами, а также 
непротиворечивый символический способ выполнения дифференциальных операций с векторными 
полями (Гл.3). Таким образом, использование векторного способа записи для физических величин и 
действий над ними, что было сделано Дж. У. Гибсом, позволяет выразить те или иные 
закономерности в форме, которая полностью соответствует фундаментальному физическому закону - 
принципу относительности. 

 
Рис.45 Вращающееся твердое тело 
Используя свойство инвариантности, можно построить величины, которые, аналогично скалярам и 
векторам можно связать с собственными характеристиками физических объектов. В качестве 
примера вычислим кинетическую энергию вращающегося тела произвольной формы (рис. 45). Пусть 

тело закреплено в центре инерции и вращается с угловой скоростью . Тогда, если вещество 

распределено по объему с плотностью , то 

 

(243) 

Раскрывая квадрат векторного произведения под знаком интеграла и записывая результат с 
использованием индексных обозначений и правила Эйнштейна (Гл.1), получим 

 

что с использованием свойств -символа можно переписать как 

 
(244) 



Тогда, после подстановки (244) в (243), выражение для кинетической энергии принимает вид 

 

(245) 

Обозначим величину в квадратных скобках как  

 

(246) 

тогда (245) можно окончательно представить в форме 

 
(247) 

Так как величина кинетической энергии определяется, помимо кинематических характеристик, роль 
которых в данном случе играет угловая скорость, инертными свойствами самого тела, то из (247) 

следует, что свойства "вращательной инерции" связаны с величинами . Если все 

значения  записать в виде матрицы 

 

(248) 

то (247) можно записать как двойное скалярное произведение 

 
(249) 

Чтобы выяснить смысл величин , рассмотрим частный случай, когда , а тело 

имеет форму шара радиуса . Тогда матрица  будет иметь вид: 

 

(250) 

где  - масса шара. Так как матрица  пропорциональна единичной матрице, то 

присутствие индексов в обозначении является в этом случае излишним. Действительно, 
кинетическая энергия вращения шара, закрепленного в центре, после подстановки (250) в (247) 
принимает вид 

 
(251) 



Величина  называется моментом инерции шара и является характеристикой инерции 
однородного тела сферической формы при вращении. Следует отметить, что в случае шара 
выражение для кинетической энергии с очевидностью является инвариантым, поскольку выражается 
только через скалярные величины. Для того, чтобы придать какой-либо физический смысл 

величинам  в общем случае, необходимо выяснить какие изменения произойдут с набором этих 

чисел, в другой системе координат. Вычислим  в системе координат , развернутой 

относительно исходной системы . 

 

(252) 

Новые переменные  в (252) связаны c соотношением (37) 

 
(253) 

Так как  согласно (30), а значение якобиана перехода замены 

переменных (253) det , то 

 

(254) 

где также использована замена для формулы . Как видно, значение 

интеграла в точности совпадает с согласно (246) и это позволяет выразить  как 

 
(255) 

Закон преобразования для величин  позволяет получить интересное соотношение. Действительно, 

вычислим значение величины . Тогда 

 
(256) 

а так как  в соответствии с (30) выражает значения координат вектора в системе ,то 

 
(257) 

Полученный результат имеет несколько важных особенностей: 
• выражения для значения кинетической энергии в различных системах координат совершенно 

одинаковы по форме; 
• отмеченная инвариантость обеспечивается билинейным законом преобразования (255) 

для . 



Эти свойства величин  позволяют связать их с собственной характеристикой тела, которая 
количественно выражает свойство инерции при вращательном движении. Вся 

совокупность  является компонентами (координатами) одной величины, которая в данном случае 
называется тензором инерции, при этом формула (248) является одним из способов записи тензора 
или его матричным представлением. 

Тензором ранга  называется совокупность  величин , которые при переходе 

из одной системы координат в другую, преобразуются по закону 

 (258) 

Из определения тензора ранга  следует, что скаляры и векторы являются частными случаями 

таких величин. Действительно рассмотрим случаи с , тогда скаляром или тензором 

ранга 0 называется набор из  величин , которые преобразуются по закону 

 
(259) 

вектором или тензором ранга 1 называется совокупность  величин , которые 

преобразуются по закону 

          

  
 

Если компоненты вектора  расположить в виде столбца, то формулы преобразования можно 
записать в матричном виде 

 (262) 

 (263) 

 
2. Тензоры второго ранга, тензоры высших рангов. 

Согласно общему определению, для случая  можно получить частное 

определение: тензором 2-го ранга называется совокупность  величин , которые 

преобразуются по закону 

 
(264) 

Рассмотренный выше тензор инерции, согласно закону преобразования (257) и определению (264), 

является тензором 2-го ранга. Другим примером тензора второго ранга является -символ 



Кронекера. Действительно, компоненты -символа можно получить как скалярное произведение 
ортов прямоугольной системы: 

 
(265) 

 
(266) 

Используя закон преобразования ортов (37), а также (265) и (266), получим 

 
(267) 

откуда видно, что -символ преобразуется как тензор 2-го ранга. Продолжая вычисления в (267), 

 
(268) 

Таким образом, преобразуясь как тензор 2-го ранга, дельта-символ, в то же время, не меняет своего 
вида. Такие тензоры называютсяинвариантными. 
      И наконец, тензор 2-го ранга можно получить как прямое произведение двух векторов, тензоров 

1-го ранга. Действительно, пусть  и - компоненты векторов  и . Тогда, 

составляя  величин , легко показать, что они преобразуются по закону 

 
(269) 

который соответствует определению тензора 2-го ранга (264). 
В силу равноправия пространственных координатных систем, уравнения, выражающие физические 
законы, должны иметь одинаковые форму и соответственно решения в любой из этих систем. Это 
требование означает, что уравнения должны быть записаны в тензорной форме. Действительно, 

пусть в системе задано тензорное уравнение 

 
(270) 

Умножим (270) слева на  и просуммируем по индексам . Тогда 

 
(271) 

и, как видно, вид тензорных уравнений при переходе в систему  не изменился. В качестве 
примера можно рассмотреть выражение для 2-го закона Ньютона: 

• векторная форма 

 
• тензорная форма (координатная) 

 
Выражение для кинетической энергии вращающегося тела 

 
также является примером ковариантного тензорного выражения. 
 

1.10 Лекция  №10 (2часа) 
Тема: «Тензорная алгебра»  



1. 10.1 Вопросы лекции: 
1. Сложение тензоров.    
2. Умножение тензоров. 
 
1.10.2 Краткое содержание вопросов 
 
1. Сложение тензоров.    

Пусть заданы тензоры  и  одинакового ранга, тогда величина , построенная по правилу 

 
(272) 

называется суммой тензоров  и и является также тензором ранга  . Для доказательства 

второго утверждения вычислим значения в системе  . Тогдa 

 
(273) 

и с учетом определения(272) 

 
(274) 

 
2 Умножение тензоров. 
 

Пусть даны два тензора  (ранга ) и  (ранга ). Тогда, величина , образованная из 

компонент тензоров  и , по правилу 

 
(275) 

 

называется произведением тензоров  и  и является тензором ранга . Вычислим  в 

системе . Тогда 

 

(276) 

 
1.11 Лекция  № 11(2часа) 

Тема: «Свертывание тензоров.»  

1.11.1 Вопросы лекции: 
1. Свертывание тензоров.  
2. Свойство симметрии тензоров. 
3.Единичный тензор. 
1.11.2 Краткое содержание вопросов 
 
1. Свертывание тензоров.  

Пусть задан тензор  ранга  с компонентами . Сверткой тензора  называется 
суммирование компонент по каким-либо парам индексов 



 

(277) 

Выполняя сверки по различным парам индексов, можно получать новые тензоры, ранг которых будет 
уменьшаться на 2 единицы от "сворачивания" каждой пары индексов. Для примера рассмотрим 

свертку тензора 3-го ранга, т. е. , и вычислим его значения в системе . Тогда 

 
(278) 

и свертка  пребразуется как тензор ранга 1=3-2. 
 
2. Свойство симметрии тензоров. 

Тензор ранга  называется симметричным или антисимметричным по каким-либо индексам, 
если имеет место следующее соотношение: 

 
(279) 

где знак "+" в (279) отвечает симметричному, а "-" антисимметричному тензору. 
 
Свойство: симметрия тензоров не зависит от выбора координатной системы. Действительно 

пусть в системе  задан симметричный тензор 2-го ранга, т. е. . Тогда, переходя в 

систему ,получим 

 

      Пример 5-1. Рассмотрим произвольный тензор ранга 2 -  и построим симметричный тензор с 
компонентами 

 
и, поступая аналогично, антисимметричный тензор 

 

Тогда, очевидно, что тензор  2-го ранга может быть представлен в виде суммы симметричного и 
антисимметричного тензоров как 

 
Для тензоров высших рангов возможно аналогичное построение, при этом, однако, будет получаться 
большее число новых тензоров, которые не обязательно будут полностью симметричными или 
антисимметричными. 
 
      Пример 5-2. Свертка тензорного выражения по паре "симметричных" и "антисимметричных 
индексов" дает ноль. Действительно, рассмотрим тензор 4-го ранга, построенный из симметричного 

и антисимметричного тензоров как  и вычислим его свертку , тогда 



 

откуда следует, что . 
 
3.  Единичный тензор. 

Важным примером псевдотензора является -символ, определяемый соотношениями (14), (16), (17). 
Из формулы (16) следует, что при собственных преобразованиях (поворотах системы координат) 

 
и -символ ведет себя как тензор ранга 3. 
 

Рассмотрим теперь преобразование с , например, преобразование инверсии, матрица которого 

имеет вид (34). В этом случае правая тройка  переходит в левую , при этом 

 
(280) 

где I... - матрицы (34). Но -символ определен в правой системе координат, 

поэтому  и следовательно (280) можно переписать в виде 

 
(281) 

Таким образом, -символ является псевдотензором 3-го ранга. 
Над псевдотензорами можно производить такие же алгебраические операции, как и над истинными 
(полярными) тензорами : сложение, умножение, свертку. При этом следует учитывать, что 

1. Сумма псевдотензоров одинакового ранга является псевдотензором того же ранга; 
2. Сумма тензора и псевдотензора не является ни тензором ни псевдотензором. Такая величина 

преобразуется как тензор только при поворотах (собственных преобразованиях) систем 
координат; 

3. произведение псевдотензора на псевдотензор является тензором; 
4. произведение псевдотензора на тензор является псевдотензором. 

      Пример 5-3. Величина , где , ,  - компоненты векторов 
(тензоров 1-го ранга), согласно алгебре псевдотензоров является псевдоскаляром, так как операция 
умножения дает псевдотензор 6-го ранга, а три сверки далее понижают ранг до нуля. Из определения 
(16) следует, что этот скаляр является смешанным произведением 

 
 

1.12 Лекция  № 12(2часа) 
Тема: «Главные оси тензора.»  

1.12.1 Вопросы лекции: 
1. Главные оси тензора.  

2. Приведение тензора к главным осям. 

 
1.12.2 Краткое содержание вопросов 
1. Главные оси тензора. 



Геометрический смысл преобразования, осуществляемого скалярным произведением тензора второго 
ранга на вектор, состоит в повороте и растяжение вектора. Спрашивается, есть ли такие векторы, 
которые этим преобразованием только растягиваются, но не поворачиваются? 
 Сформулируем эту задачу математически. 
  

          (1.77)' 

 TikAk=  Ai           (1.77)''    

 (T11 -  ) A1+T12 A2+T13A3=0 

 T21  A1+(T22 -  ) A2+T23 A3=0        (1.77)''' 

 T31 A1+T32 A2+(T33 -  ) A3=0 
Таким образом, чтобы найти компоненты интересующего нас вектора, надо решить систему 
линейных алгебраических однородных уравнений (1.77). Условием нетривиального решения 
является обращение в нуль определителя из коэффициентов системы 

   =0        (1.78) 

Раскрыв определитель, получим уравнение тетей степени относительно неизвестного пока  . Оно 

называется характеристическим. Решив его найдем три корня  1,  2,  3. Если они вещественные, 
то для каждого из них определим  с помощью системы (1.77)''' тройку вещественных чисел 
(А(1)
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Три вектора  (А
(1)

1, А
(1)

2, А
(1)

3);  (А
(1)

1, А
(1)

2, А
(1)

3);  (А
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(1)
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3) определяют в 

пространстве три главных, или собственных направления тензора  . 
С ними можно связать оси некой прямолинейной системы координат, которые в этом случае 

называются главными осями тензора. Компоненты тензора в системе главных осей тензора 

называют главными значениями тензора. 
УТВЕРЖДЕНИЕ а) Характеристическое уравнение симметричного тензора второго ранга имеет три 
вещественных корня. 
б) Три главных оси симметричного тензора взаимно перпендикулярны друг другу. 
а) Воспользуемся уравнением (1.77)'' и коплексно сопряженными с им 

 ТikAk=  Ai 

 (ТikAk)
.
=  

.
Ai

.          (1.79) 
Первые домножим на Ai и просуммируем по i, а вторые - на Ak и просуммируем по k. Это даст 

 ТikAkА
.
i=  |  |

2 

 ТikAkА
.
i=  

.
|  |

2           (1.80) 
Вычтем из верхнего нижние 

 (Тik - Tki)  А
.
iAk=(  -  

.)|  |
2        (1.81) 

Так как  Тik=Tki и  |  |
2
=0, и |  |

2
  0, то (  -  

.)=0 

Но (  -  
.)=2Jm  , значит  - вещественное.     

б) Пусть кони характеристического уравнения разные, т.е.  1   2   3. Каждому из них 

соответствует свой вектор  . 

Рассмотрим уравнением (1.77)''' для  и  



 Тik  =  1  

 Тik  =  2            (1.82) 

Умножим верхнее  на , а нижнее на , просуммируем по i и вычтем из верхнего нижнее 

 (  1 -  2 )(  
.
  )=  Тik   -   Тik  =0    (1.83) 

Так как по i и k ведется суммирование и они пробегают один и тот же набор значений, то их можно 
поменять друг с другом. Сделаем это в одном из слагаемых справа и получим     

(  1 -  2)
 . (  

.  )=   ( Тki  - Тik) = 0     (1.84) 

, так как Тki =Тik,  1   2, поэтому (  
.  ) = 0, т.е.  и    ортогональны друг другу. 

В случае, когда    1 =  2, или  1 =  2 =  3, наше построение не является доказательством 

ортогональности векторов  и  . Теперь существует бесконечный набор собственных 

направлений тензора  .  Но из них всегда можно выделить такие, в 

которых ,  ,   взаимно перпендикулярны друг другу. 
УТВЕРЖДЕНИЕ В системе главных осей тензора второго ранга представляется  

диагональной матрицей. 
Если оси системы координат совпадают с главными осями тензора, то тензор, действуя на орты, 
лишь растягивает их, т.е. 

        =  i            (1.85) 
Перейдем от векторного уравнения (1.85) к системе уравнений для компонент орта 

 (е1,1 , е1,2 , е1,3 ). 

 Т11 е1,1+ Т12 е1,2+ Т13 е1,3=  1 е1,1 

 Т21 е1,1+ Т22 е1,2+ Т23 е1,3=  1 е1,2       (1.85)' 

 Т31 е1,1+ Т32 е1,2+ Т33 е1,3=  1 е1,3 
Так как е1,1=1, е1,2 = е1,3= 0, то нее сразу следует 

Т11=  1;  Т21=Т13=0.         (1.86)' 

Аналогичным образом, рассматривается действие тензора    на орты   и , получим, что  

 Т22=  2;  Т12=Т32=0; Т33=  3;  Т13=Т23=0                        (1.86)'' 
Таким образом, 

  Тik=  i  ik                   (1.86)''' 

             (1.87) 

Если главные значения тензора совпадают друг с другом  1 =  2 =  3, он становится просто 

кратным  единичному тензору , компоненты которого Iik=  ik 



   ,           (1.88) 
Несложно доказать, что поворот осей координат не меняет компоненты единичного тензора. Во 

всех системах он имеет неизменный вид. Значит, это же верно для тензора, имеющего три 
одинаковых главных значения. Легко понять, скалярное умножение такого тензора на вектор 

эквивалентно умножению вектора на скалярную величину  . В физике с такой ситуацией мы 
сталкиваемся, например, при рассмотрении тензорных характеристик изотропных тел. У изотропных 
тел физические свойства одинаковы по всем направлениям. Одинаковыми будут и главные значения 
соответствующих тензоров. Поэтому, если для характеристики электропроводности анизотропного 
кристалла надо указать три главных направления и три главных значения тензора 
электропроводности, то изотропный проводник характеризуют одним коэффициентом 
электропроводности. На этом основании часто говорят, что у изотропных тел электропроводность, 
теплопроводность, диэлектрическая и магнитная проницаемость и т.д. характеризуются скалярными 
величинами. Выше было сказано, в каком смысле это надо понимать. 
2. Приведение тензора к главным осям. 
При преобразовании осей координат компоненты тензора преобразуются, их численные значения 
меняются. Они называются инвариантами тензора. 
Для нахождения инвариантов тензора второго ранга раскроем определитель (1.80) и найдем явный 
вид коэффициентов характеристического уравнения.        

 
3 -  

2(Т11 + Т22 + Т33) +   = 0  (1.89) 
Корни характеристического уравнения – это числа, значение которых не зависят от выбора системы 
координат. Поэтому коэффициенты характеристического уравнения – суть инварианты тензора. Они 

просто связаны с характеристическими числами  1,  2 ,  3.    
I1= Т11+ Т22+ Т33          (1.90)' 

 I2=                  (1.90)'' 

 I3=                        (1.90)''' 
Сумма диагональных элементов матрицы называется ее следом, или шпуром. Первый 
инвариант  I1 как раз и равен следу тензора. 

 I1=Тr  =Sp            (1.91) 
 

1.13 Лекция  №13 (2часа) 
Тема: «Признак тензорности величин.»  

1. 13.1 Вопросы лекции: 
1. Признак тензорности величин. 
1.13.2 Краткое содержание вопросов 
 
1. Признак тензорности величин. 

Если величина  является скаляром, а  и  - компоненты векторов, то  является 
тензором второго ранга. 



Доказательство: так как  - скаляр, то в другой системе координат его значение не 

меняется , но поскольку  и , то 

 
Тогда имеем 

 

и отсюда, в силу независимости набора величин , получаем, что 

 
т. е. закон преобразования компонент тензора второго ранга. 
Ранее было показано, что все линейные ортогональные преобразования в зависимости от знака 

определителя матрицы , можно разделить насобственные и несобственные. Закон изменения 
компонент тензоров может зависеть от типа преобразования и по этой причине различают: 

1. истинные (полярные) тензоры, компоненты которых преобразуются "обычным" способом 

1.  
при любых типах преобразований; 

2. псевдотензоры (аксиальные), которые преобразуются по правилу 

 
Как следует из определения, при собственном преобразовании отличить тензор от псевдотензора 
нельзя, а при несобственном - это сделать можно за счет появления дополнительного множителя, 
равного -1. 
 

 
1.14 Лекция  № 14(2часа) 

Тема: «Тензорный анализ.»  

1.14.1 Вопросы лекции: 
1. Тензорное поле, тензор-функции скалярного аргумента. 
1.14.2 Краткое содержание вопросов 
1. Тензорное поле, тензор-функции скалярного аргумента. 
Если каждой точке пространства или некоторой его области однозначно соответствует некоторый 

тензор ранга , то говорят, что задано тензорное поле ранга . Частные случаи тензорных полей 
уже были рассмотрены ранее - скалярное поле как тензорное поле ранга ноль, векторное поле как 
тензорное поле ранга 1. Тензорные поля, которые меняются со временем, 
называются нестационарными. 
 
Далее будут рассматриваться непрерывные тензорные поля, т. е. такие что 

 
Для тензорных полей справедливы все операции тензорной алгебры, при этом, естественно, все 
действия (сложение, умножение, свертка) должны производиться в фиксированной точке 
пространства. 
 



       Рассмотрим простейшие свойства тензорных полей: 
1. дифференцирование тензорного поля по скалярному аргументу не меняет его ранг. 

Справедливость этого утверждения следует из определения производной 

 
2.однократное дифференцирование тензорного поля по координатам радиус-вектора увеличивает 
его ранг на единицу. 

Действительно, рассмотрим тензорное поле второго ранга , образуем 

из его компонент совокупность всевозможных частных производных  и рассмотрим закон 
преобразования: 

 

Так как , то , тогда 

 
что и требовалось доказать. 

Рассмотрим -мерное пространство, отказываясь от некоторых предположений, существенных для 
векторов, как направленных отрезков в 3-х мерном пространстве. Будем считать, что дано множество 

объектов, обозначаемых как  на котором определены две операции: сложение -

  и умножение на число (в общем случае комплексное) - , удовлетворяющие 8 

аксиомам линейного пространства. -мерность означает, что на этом множестве 

существуют  линейно независимых векторов , которые образуют базис, а 

любые  векторов будут линейно зависимы. В этом случае любой вектор может быть 
однозначно представлен в виде линейной комбинации базисных векторов 

 
(282) 

Индексы, нумерующие базисные векторы, т. е.  будем писать сверху и 
называть контравариантными, в отличие отковариантных индексов, которые принято писать 
снизу. Как уже отмечалось ранее, многократные суммы в тензорной алгебре принято записывать в 
сокращенной форме, используя правило Эйнштейна. Так как в выражении типа (282) используется 
два типа индексов, то упрощенное правило Эйнштейна должно быть расширено и теперь будем 
считать суммируемыми такие пары индексов, в которых один - верхний, а второй - обязательно 

нижний (или наоборот). Тогда (282)можно переписать в форме 

 

(283) 



Набор коэффициентов  однозначно определяет любой вектор  в выбранном базисе и 

называется контравариантными координатами вектора  в базисе . Множество наборов 

контравариантных координат само по себе образует линейное -мерное пространство, поскольку 
для таких составных объектов определены операции сложения и умножения, отвечающие 8 
аксиомам, и это пространство является изоморфным исходному. Таким образом, 

координаты  сами являются контравариантными векторами, в отличие от ковариантного . 
Заметим, что линейные пространства ко- и контравариантных векторов - это разные пространства с 
элементами разной природы. 

Рассмотрим в исходном пространстве другой набор базисных векторов . Так как 

каждый из  является  вектором в отношении набора , то в силу линейной зависимости 

набора  всегда можно выразить  в виде линейной комбинации : 

 
(284) 

или в матричной форме 

 

(285) 

Матрица  связывает два базисных набора и аналогична матрице ортогональных преобразований, 
но теперь, согласно договоренности о правиле суммирования (283), матричные элементы необходимо 
нумеровать ко- и контравариантными индексами. Например, единичная матрица будет иметь 
элементы: 

 

(286) 

что определяет -символ Кронекера. Так как новые векторы (284) линейно независимы, то строки 
матрицы (285) также линейно независимы и определитель матрицы (285) должен быть отличным от 
нуля: 

 
(287) 

что эквивалентно условию существования для матрицы  обратной матрицы  

   или  
(288) 

(288) является единственным условием, которое накладывается на преобразование векторов. В 

остальном коэффициенты  произвольны. 

Если, наоборот, выразить векторы  через как 



 
(289) 

то, используя (284), получим для матрицы : 

 
(290) 

т. е.      
 

При переходе к новому базису  контравариантные координаты вектора  изменяются: 

 
(291) 

и, используя связь между двумя базисами (284),  
 (292) 

откуда  
 (293) 
Для того, чтобы записать выражение (293) в матричном виде, необходимо учесть, что при 

использовании "ступенчатой" индексации верхний правый индекс в выражении  по смыслу 
правила матричного умножения должен рассматриваться как номер столбца и тогда аналог формулы 

(285), но для преобразования координат вектора , принимает вид: 

 

(294) 

Аналогично можно получить и обратное преобразование контравариантных координат 

 
(295) 

Весьма важно сравнить формулы преобразования базисных ковариантных векторов (284) и (294) 

 

(296) 

Видно, что матрицы этих преобразований различны, а именно матрица преобразования координат 
является транспонированной обратной по отношению к матрице преобразования самих векторов - 
такие преобразования называются также контрагредиентнымипреобразованиями. Отсюда и 
происходит название контравариантные координаты, т. е. противопреобразующиеся по 
сравнению с преобразованиями базисных векторов. Отметим, что ортонормированные базисные 
векторы как направленные отрезки, рассматриваемые в Главе 1, преобразуются с помощью 

ортогональной матрицы, для которой  и соответственно , т. е. 
контрагредиентное преобразование совпадает с исходным. В этом случае нет различий в способах 
преобразования базисных векторов и координат произвольных векторов и необходимости различать 
типы величин с помощью разных типов индексов, т. е. ко- и контравариантных, не возникало. 



Рассмотрим линейную скалярную функцию с областью определения из -мерного векторного 

пространства, т. е. любому вектору сопоставим в соответствие число 

 
(297) 

причем       
 (298) 

Так как в выбранном базисе  любой вектор определяется своими контравариантными 
координатами (283),то 

 
(299) 

Обозначим для краткости       
 (300) 

тогда       
 (301) 

Теперь выберем в этом же пространстве другой базис . Тогда разложение вектора-аргумента 

скалярной функции (297) изменится , но значение самой функции остаетсяпрежним 

 
(302) 

Так как при переходе от одного базиса к другому контравариантные координаты преобразуются по 

закону (293), то значения функции на базисных векторах  также должны изменяться, чтобы 

обеспечить инвариантность значения : 

 
(303) 

т. е. эти величины преобразуются точно так же, как и векторы базиса. Итак, если на линейном 

пространстве задана линейная скалярная функция , то в каждом базисе возникают  чисел, 
которые преобразуются по такому же закону, что и векторы соответствующего базиса. Таким 
образом, мы приходим к понятию ковариантного тензора ранга 1 (ковариантного вектора). 
 
      Определение: ковариантным тензором ранга 1, определенным на линейном пространстве 

размерности , называется объект , который в любом базисе задается  числами, 

занумерованными нижними индексами ; в разных базисах наборы 

чисел различны, но их значения связаны 1-ой матрицей преобразования базисных 

векторов  по тому же закону:  
 (304) 

Числа  называются ковариантными координатами тензора  в соответствующем базисе. 



Термин ковариантный, т. е. сопреобразующийся, выражает то обстоятельство, что закон 

преобразования  точно такой же, как и для векторов базиса. Примером ковариантного тензора 1-го 

ранга служит линейная функция ; верно и обратное - любой ковариантный тензор 1-го ранга 
можно трактовать как линейную функцию. 
Можно обобщить понятие ковариантного тензора, увеличив его ранг. Например, рассмотрим 

скалярную линейную функцию двух векторных аргументов . Выбрав базис  и учитывая 
линейность функции, ее можно представить как 

 
(305) 

Вводя  чисел , можно легко показать, что они преобразуются по закону 

 
(306) 

который указывает на то, что объект  с компонентами  является ковариантным тензором 2-го 
ранга. В общем случае: 

- ковариантным тензором ранга , определенным на линейном пространстве размерности , 

называется объект , который в любом базисе задается  числами, которые удобно 

нумеровать нижними  индексами  и которые в разных базисах связаны матрицами 
преобразования базисных векторов по тому же самому закону: 

 
(307) 

 
 
 
 
 

1.15 Лекция  № 15(2часа) 
Тема: «Поле тензора второго ранга»  

1.15.1 Вопросы лекции: 
1. Поле тензора второго ранга.  

2. Поток, дивергенция и производная по направлению тензорного поля. 

 
1.15.2 Краткое содержание вопросов 
1. Поле тензора второго ранга.  

Поле тензора второго ранга задается девятью функциями   i,k = 1,2,3. Для него, как и для 
векторного поля, можно ввести ряд интегральных и дифференциальных характеристик. 

ОПРЕДЕЛЕНИЕ. Потоком тензорного поля   через поверхность S называется поверхностный 

интеграл, взятый от скалярного произведения тензора на вектор нормали 



           (2.44) 

Поток тензорного поля - это вектор. Его компоненты равны 

           (2.45)' 

Если под знаком интеграла окажется скалярное произведение вектора на тензор, то компоненты 
потока тензора будут выражаться интегралами 

           (2.45)'' 

Заметим, что в общем случае (2.45)' не равны (2.45)''. Но, как правило, в приложениях встречаются 
симметричные тензорные поля (они имеют физический смысл). Для них (2.45)' и (2.45)'' 
тождественны (проверьте!). 

ОПРЕДЕДЕНИЕ. По аналогии с дивергенцией векторного поля  дивергенция тензорного поля 

определяется как предел отношения потока тензорного поля через замкнутую поверхность к 

величине ограниченного ею объема при стягивании поверхности к точке 

          (2.46) 

Дивергенция тензора - это вектор, компоненты которого могут быть получены путем 
дифференцирования компонент тензора 

        (2.47)' 

или 

            (2.47)'' 

ОПРЕДЕЛЕНИЕ. Под производной тензора  по направлению, определяемому единичным 

вектором , понимают тензор, компонента которого суть производные компонент тензора  по 

этому же направлению, т.е. 

           (2.48) 

, где, по аналогии с (2.11) и (2.27), 

          (2.49) 

Поэтому можно записать 



           (2.50) 

Из (2.49) видно, что производные тензора второго ранга по всевозможным направлениям 

выражаются через компоненты тензора третьего ранга  

           
 
2. Поток, дивергенция и производная по направлению тензорного поля. 

Рассмотрим поле скалярной физической величины . Геометрическое место точек, в 

которых   принимает некое значение, называется поверхностью уровня. Ее уравнение получим, 

приравняв   постоянной 

 (x1, x2, x3) = C                                                                                                                     (2.3) 

Например, уравнение 

            

                                                                                                 (2.4) 

определяет поверхность уровня электростатического поля точечного заряда Q, помещенного в начало 
координат. Поверхности уровня, которые в данном случае называют еще и эквипотенциальными 

поверхностями, - суть сферы радиуса   с центром в начале координат. 

Меняя значение постоянной С, мы будем переходить с одной поверхности уровня на другую. 

Возьмем две близко расположенные точки пространства с радиус-векторами  и  +  . Как 
известно из математического анализа, приращение функции, т.е. 

             ,                                                                                     (2.5) 

при бесконечно малых  = d  отличается от полного дифференциала на величину более 

высокого порядка малости, чем | d  | 

                  (2.6)    , где (2.7) 

                                                                                



В любой части (2.6) стоит разность двух скалярных величин, т.е. величина скалярная. 

Значит,   и    каждая в отдельности тоже скаляры. Тройка чисел   по 

определению - компоненты вектора; значит, согласно (1.4.5.),   – компоненты вектора. 

ОПРЕДЕЛЕНИЕ. Вектор с компонентами   называется градиентом скалярного 

поля   и обозначается  =                         (2.8) 

Введем в рассмотрение единичный вектор  вдоль направления  

            

   =      (2.9) и найдем предел отношения    при   0: 

        

      (   )=                                                                           (2.10) 

ПО ОПРЕДЕЛЕНИЮ   (2.10) называют производной от  по направлению . Из (2.6), (2.7) и  

(2.9) следует, что производная от по направлению равна скалярному произведению  на   . 

     =(  
.
  )                                                                                                             (2.11) 

Производная   выражает скорость изменения функции при переходе от одной точки пространства 

к другой вдоль направления . Она зависит от модуля градиента и угла, который 

вектор  составляет с градиентом. Поэтому можно сказать, что    - локальная характеристика 

неоднородности поля . Быстрее всего поле меняется в направление самого 

градиента  || , когда. В направлении  ┴  поле не меняется последнее означает, что 

такие лежат в плоскости касательной к поверхности уровня поля . Значит, 



сам   направлен перпендикулярно к поверхности уровня в сторону возрастания 

функции  .      

•  

Выражение (2.8) можно рассматривать как результат действия на 

функцию   дифференциального оператора  

            =                                                                                   (2.12) 

             =                                                                                                                           

Он называется оператором "набла" и очень широко встречается в тензорном анализе. 

Обратим внимание на то, что тензор первого ранга   получен однократным 

дифференцированием тензора нулевого ранга – скалярной функции . Дифференцируя 

компоненты векторного поля , мы получаем девять функций , которые как нетрудно 
показать, представляют из себя компоненты тензора второго ранга. Общий результат таков, что, 
дифференцируя компоненты тензора ранга n, получаем тензор ранга n+1 

                                                                                                      (2.13) 

Векторное поле   характеризуется тремя функциями   которые известным 
образом преобразуются при поворотах осей координат. 

ОПРЕДЕЛЕНИЕ Векторными линиями поля   называются линии, касательные к которым в 

каждой точке имеют направление вектора    



 

Пусть вектор d  совпадает по направлению с касательной к векторной линии в точке с радиус-

вектором . Это означает, что он параллелен вектору  и  

d    = 0                                                                                                          (2.14) 
т.е. 
            

• dx2A3 – dx3A2 =0  
• dx3A1 – dx1A3 =0                                                                               (2.15) 
• dx1A2 – dx2A1 =0 

Из (2.15) следует, что 

                                               (2.16) 
Решением этих двух дифференциальных уравнений будет два семейства поверхностей, пересечением 
которых являются векторные линии. Картина силовых линий передает специфику конкретного 
векторного поля, но в основном качественно. Для получения локальных количественных 
характеристик, как в случае скалярного поля, требуется обратиться к операциям дифференцирования. 

Дифференцируя функции , получим девять производных, которые, как отмечалось в 2.2.1., 
являются компонентами тензора второго ранга. Разложим его на симметричную и 
антисимметричную части     

                                                                  (2.17) 
Как будет показано ниже, свертка и антисимметричная часть тензора (2.17) являются важнейшими 

характеристиками векторного поля . Свертка носит специальное название дивергенции 

векторного поля . 
            

div                                                                                               (2.18) 

Если  – полярный вектор, то div  – скаляр, если  -  аксиальный вектор, то div  – 
псевдоскаляр. 

Антисимметричная часть тензора   эквивалентна аксиальному вектору (если вектор  – 

полярный ), который носит специальное название ротор поля   и обозначается rot . 



            rot  =                      (2.19) 
В более компактной форме ротор вектора записывается с помощью определителя 
            

rot  =                                                                                                    (2.20) 
Дивергенцию и ротор можно построить с помощью оператора набла. Отвлечемся от того 

обстоятельства, что набла - дифференциальный оператор, и будем смотреть на него просто как на 

вектор. Построим скалярное и векторное произведение вектора  и  , разложив их при этом 

так, чтобы    стоял слева от  . 

             =                                                                     (2.21) 

 =              (2.22) 

После этого придадим выражениям   тот же смысл, что и  , .т.е. производной  . 
Тогда из (2.21), (2.22) автоматически следует, что 

             = div                                                                                                   (2.23) 

             =rot                                                                                                  (2.24) 
Применение векторного дифференциального оператора набла позволяет формализовать и 

упростить вывод многих формул векторного анализа, но действовать при этом надо осторожно. 

Следует помнить, что "вектор"   не имеет ни длины, ни направления. В отличие от обычных 

векторов, для которых , оператор набла и вектор функции представлять нельзя: 

                    
В разделе 2.2.2. мы чисто формально ввели некую скалярную характеристику векторного поля, 
которую назвали дивергенцией. Ниже мы хотим дать ей менее формальное определение, не 
зависящую от вида выбранной системы координат и допускающее простое физические толкование. 
Рассмотрим в пространстве, в котором определено векторное поле, некую поверхность S. 
Ориентацию элементов dS этой поверхности  будем характеризовать единичными векторами 
внешних нормалей. 
Определние. Поток вектора  через поверхность S называется скалярная величина, определяемая 

интегралом 

                                                                                                            (2.28) 
Интегралы такого типа широко встречаются в физике. Для примера рассмотрим стационарное поле 

скоростей частиц жидкости или газа. Объем жидкости, протекающий через элемент 
поверхности  DS за время Dt, равен 



                                                                             (2.29) 

 
Умножим это выражение на плотность жидкости   и разделим на , получим массу жидкости, 
протекающей через элемент поверхности  в единицу времени. Просуммировав по всем 

элементам , на которые разбита поверхность, и перейдя к пределу , получим, что масса 
жидкости, протекающая через поверхность S за еденицу времени, выражается ингералом 

                                                                                                                           (2.30) 

, который имеет смысл потока вектора  через поверхность S. 
Особый интерес представляет собой случай, когда поверхность S замкнутая. Поток через нее может 

быть равен нулю или отличен от нуля. Для рассмотренного нами примера он характеризует 
соотношение между массой жидкости, втекающей за единицу времени внутрь объема, ограниченного 
поверхностью S, и вытекающей из него. Если поток равен нулю, то суммарная мощность источников 
и стоков жидкости, расположенных внутри объема, равны между собой. Если поток больше нуля, то 
мощность источников превышает мощность стоков, если меньше нуля, то наоборот. 

Будем стягивать поверхность S в точку и найдем предел, к которому стремится поток векторного 
поля. Если эта точка лежит вне области локализации источник или стока, то ясно, что этот предел 
должен быть равен нулю. Если же он нулю не равен, мы имеем дело с точкой, являющейся 
источником или стоком. Распределение источников и стоков векторного поля в пространстве и их 
мощность определяет характер векторного поля в целом, поэтому важно выработать общий метод 
получения соответствующих данных, не прибегая к нахождению потоков с последующим переходом 
к пределу. В этом нам может помочь утверждение (мы приводим его без доказательства), которое 
дает обобщенное независимое от системы координат ( 2.18) определение дивергенции векторного 
поля. 

Определение. Дивергенция векторного поля   в точке M называется предел отношения потока поля 
через замкнутую поверхность,  ограничивающую объем, содержащий точку M, к величине этого 
объема, когда объем и ограничивающая его поверхность стягиваются в точку (M). 

                                                                                                     (2.31) 
На основе (2.31) можно также получить независимое от конкретного вида системы координат 

определение градиента скалярного поля . Для этого введем вектрное поле 



                                                                                                                        (2.32) 

, где   - произволный постоянный вектор. 
Так как 

                                                                                                         (2.33) 
, то, согласно (2.31) и (2.32), 

                                                                                              (2.34) 

или, ввиду произвольности  

                                                                                                     (2.35) 
На основе определения (2.31) в векторном анализе существует важная теорема Гаусса-

Остроградского, позволяющая во многих случаях проще вычислять поток векторного поля через 
замкнутые поверхности. Далее мы приводим только ее формулировку. 
Теорема. Интеграл по объему от дивергенции векторного поля равен потоку поля через 

поверхность, ограничивающую этот объем, если компоненты поля вместе с их частными 

производными непрерывны в объеме и на поверхности. 

                                                                                                      (2.36) 
 
 

1.16 Лекция  № 16(2часа) 
Тема: «Тензорная производная» 
1.16.1 Вопросы лекции: 
1. Тензорное поле и его дифференцирование.  
2. Абсолютный дифференциал и абсолютная производная. 
 
1.16.2 Краткое содержание вопросов 
1. Тензорное поле и его дифференцирование.  

Закон преобразования компонент радиус-вектора 1 2 3( , , )r x x x
r

 при ортогональном преобразовании 
декартовой системы координат имеет тот же вид, что и закон преобразования любого вектора (см. 
раздел 2): 

i ij j

j

x U x′ =∑  

 Рассмотрим новые координаты { }1 2 3, ,x x x′ ′ ′  как функции координат  

 

{ }1 2 3, ,x x x  (т.е. 1 2 3( , , )i ix x x x x′ ′= ),   мы видим, что: 

i
i j

j

x
U

x

′∂
=

∂  

Матрица обратного преобразования определяется матричными элементами: 

( ) 1 i

i j
j

x
U

x

− ∂
=

′∂  



Поскольку матрица ( )U  ортогональна, то  

                                                  ( ) ( )1 T

j ii j i j
U U U

−
= =  

таким образом, в случае ортогональных преобразований: 

ji

j i

xx

x x

∂′∂
=

′∂ ∂  

 Теперь можно строго доказать, что частные производные скалярного поля ϕ  в каждой точке 

пространства являются компонентами векторного поля gradϕ .  Компоненты градиента в новой 

системе координат { }1 2 3, ,x x x′ ′ ′  равны:  
{ }1 2 3, ,

i

x x x

x

ϕ ′ ′ ′ ′∂

′∂
.      При этом       { } { }1 2 3 1 2 3, , , ,x x x x x xϕ ϕ′ ′ ′ ′ = . 

Переходя от новых координат { }ix′ ,  к исходным координатам { }ix  получаем: 

{ } { }1 2 3 1 2 3, , , , j i
i j

i j i j j j

xx x x x x x x
U

x x x x x x

ϕ ϕ ϕ ϕ′ ′ ′ ′ ∂∂ ∂ ′∂ ∂ ∂
= = =

′ ′∂ ∂ ∂ ∂ ∂ ∂  

 Итак, мы видим, что величины: ixϕ∂ ∂  в самом деле, преобразуются по закону 
преобразования векторных величин. 

 Аналогично доказывается, что многокомпонентные величины 
2

i kx x

ϕ∂
∂ ∂

 и i ju x∂ ∂ , где iu  - 

компоненты векторного поля, являются тензорами второго  
 

ранга. Тензор второго ранга i ju x∂ ∂  в общем случае не является ни симметричным, ни 
антисимметричным тензором. Его, однако, можно представить в виде суммы симметричного и 
антисимметричного тензоров: 

                                
1 1

2 2
j ji i i

j j i j i

u uu u u

x x x x x

   ∂ ∂∂ ∂ ∂
= + + −   

∂ ∂ ∂ ∂ ∂      
 

 Антисимметричный тензор второго ранга  
1
2

ji
ij

j i

uu
p

x x

 ∂∂
= − 

∂ ∂  
 имеет три отличные от нуля 

компоненты.  Вследствие этого бывает удобно вместо тензора  i jp   ввести псевдовектор, 

определенный равенством: i i j k k js e p= .  

Симметричный тензор 
1
2

ji

j i

uu

x x

 ∂∂
+ 

∂ ∂  
 удобно представить в виде суммы шарового тензора и 

симметричного тензора, имеющего нулевой след (тензора девиации ijD ): 

1 1 1 1 1
2 2 3 3 3

j ji i k k
i j i j i j i j

j i j i k k

u uu u u u
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Для тензорного поля 1 2 ... 1 2 3( , , )i i i N
T x x x  N-го ранга справедлива обобщенная теорема 

Остроградского-Гаусса. 
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...

N

N

N NN

i i i

i i i iN
i iiV S

T
dV T dS

x

∂
=

∂∑ ∑∫ ∫                               (7.1) 

 
2. Абсолютный дифференциал и абсолютная производная. 



 Для тензорных полей компоненты приращения тензора не равны приращениям его компонент. Для 
контравариантного векторного поля ui приращение равно выражению 

 

где  - символы Кристоффеля. Слагаемое du
i учитывает зависимость 

компонент приращения тензора от приращения его компонент, а слагаемое  - зависимость 
компонент приращения тензора от изменения системы координат при переходе от точки к точке. 
     Вектор Du

i называют ковариантным (абсолютным) дифференциалом контравариантного 

векторного поля, а совокупность величин  - ковариантной (абсолютной) 
производной этого поля. 
 

 

 

1.17 Лекция  № 17(2часа) 

Тема: «Интегральное представление дифференциальных операторов. Интегральные теоремы 

векторного анализа.»  

1. 17.1 Вопросы лекции: 

1. Интегральные теоремы тензорного анализа. 

1.17.2 Краткое содержание вопросов 
1. Интегральные теоремы тензорного анализа. 



 
 
 



 



 



 



 



2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

2. 1 Практическое занятие №1 ( 2 часа). 

Тема: «Векторная алгебра» 

2.1.1 Задание для работы: 

1 Векторы и скаляры. Проекция вектора на ось. Линейная зависимость векторов. 
2. Линейные операции над векторами в декартовой системе координат. Радиус-вектор и 

координаты точки. 
3.  Скалярное и векторное произведение векторов. 
4. Произведения трех векторов: векторно-скалярное произведение, двойное векторное 

произведение. 
2.1.2 Краткое описание проводимого занятия: 

1. Коллинеарны ли  векторы 1с
r

 и 2с
r

, построенные по векторам а
r

и в
r

, если а
r

=(1;-2;3), в
r

=(3;0;-

1),  .3,42 21 авсвас
rrrrrr

−=+=  
2. Даны точки А(2;-3;1), B(6;1;-1),C(4;8;-9),Д(2;-1;2). Требуется: 

    а) записать векторы САВА
rr

,  и ДА
r

 в системе орт и найти модули этих векторов ; 

    б) найти угол между векторами ВА
r

 и СА
r

; 

    в) найти проекцию вектора ДА
r

 на вектор ВА
r

; 
    г) координаты точки М, делящей отрезок АВ в отношении 1: 3. 
    д) найти площадь треугольника АВС 

3. Векторы )4;6;2( −=ВА
r

 и )2;2;4( −=СА
r

определяют стороны треугольника АВС. Найти длину 

вектора ДС
r

, совпадающего с медианой , проведённой из вершины С. 

4. Найти вектор Х
r

, зная, что он перпендикулярен к векторам )3;2;1(),1;3;2( −=−= ва
rr

 и 

удовлетворяет условию .6)2( −=+−⋅ kjiX
rrrr

 
2.1.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2. 2 Практическое занятие №2 ( 2 часа). 

Тема: «Вектор-функция скалярного аргумента.» 
2.2.1 Задание для работы: 

1. Определение вектор-функции. 
2. Производная вектор-функции по скалярному аргументу. 
3. Интеграл от вектор-функции скалярного аргумента. 

2..2 Краткое описание проводимого занятия: 
1. Продифференцировать векторную функцию )(tr :     

а) [ ]aebeatr tt ϖϖ ϖ,)( += ,          ba , - постоянные векторы 

б) [ ]tвtаtr cos,sin)( =  

в) [ ]2,cos,sin)( сttаtаtr =  

2. Найти производную при 0=t  векторной функции )(tr : ),cos,(sin tttr  
3. Найти интеграл от вектор-функции скалярного аргумента 

а) [ ]aebeatr tt ϖϖ ϖ,)( += ,          ba , - постоянные векторы 



б) [ ]tвtаtr cos,sin)( =  

в) [ ]2,cos,sin)( сttаtаtr =  
 

2.2.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2.3 Практическое занятие № 3 ( 2 часа). 

Тема: «Скалярное поле» 

2.3.1 Задание для работы: 

1. Скалярное поле. Поверхности уровня. 
2. Производная по направлению. 
3. Градиент скалярной функции. Свойства градиента. 

2.3.2 Краткое описание проводимого занятия: 

1.Определить поверхность уровня поля:а) ; б) ; в) ; 

г) ; 

2.Найти градиент скалярного поля. 

а) ; б) ; в) ; г) ; 

3.Найти единичный вектор нормали   к поверхности, определяемой уравнением 

a)         в точке M(1,1,1); 

b)       в точке M(2,4,4); 

4.  Найти угол между градиентами полей v(x,y,z) и u(x,y,z) в точке Mo : 

a)            ,  , ; 

5. Найти угол между нормалями к поверхностямa)       и   в точке (0,1,2); 

6.  Найти производную по направлению для поля 

a)     в точке Mo(1,2) в направлении к параболе ; 

b)   в точке Mo (1, 0, -1) в направлении M(2,-4,3); 

7. Найти единичный вектор нормали к поверхности 



a)       в координатах (X,Y); b)       в координатах (X,Z); 

2.3.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 
2.4 Практическое занятие № 4( 2 часа). 

Тема: «Векторное поле» 
2.4.1 Задание для работы: 

1. Векторное поле. Векторные линии. 
2. Определение потока вектора и его физический смысл. 
3. Вычисление потока вектора. 
 

2.4.2 Краткое описание проводимого занятия: 

1. Найти векторные линии поля 

a)     ;   b)     ;   c)     ; 

2. Найти поток векторного поля   через замкнутую поверхность S: 

а)  , S:   , z = 1; 

б)  , S:   z = x2 +y2 , z = 4; 

в)  , S:   , z = 1; 

2.1. По определению; 

2.2  По  теореме Гаусса-Остроградского.  

2.4.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 

2.5 Практическое занятие №5  ( 2 часа). 

Тема: «Дивергенция вектора» 

2.5.1 Задание для работы: 



1. Определение дивергенции вектора.  
2. Вычисление дивергенции вектора 
3. Теорема Остроградского в векторной форме 

2.5.2 Краткое описание проводимого занятия: 

1. Вычислить дивергенцию  поля 

a)     ;  b)     ;    c)     ; 

d)     ;  e)     ;f)      ;  

g)     ;   h)     ;       i)       

2.5.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 
2.6 Практическое занятие №6 ( 2 часа). 

Тема: «Циркуляция» 

2.6.1 Задание для работы: 

1. Линейный интеграл вектора. 
2.  Циркуляция.     

2.6.2 Краткое описание проводимого занятия: 

1. Найти циркуляцию векторного поля    вдоль замкнутой линии L: 

a)  , L:  z 2= x2 +y2, z = 1; 

b)  , L:  z = x2 + y2 , z = 4; 

c)  ,  L: x + y + z = 1, x = 0 , y = 0, z = 0; 

d)  , L:  , x =0; 

e)  L: x + y + z = 1,  

1.1. По определению; 

1.2  По  теореме Гаусса-Остроградского.  



2.6.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2.7 Практическое занятие №7 ( 2 часа). 

Тема: «Ротор вектора» 

2.7.1 Задание для работы: 

1. Ротор вектора. Свойства ротора вектора. 

2. Теорема Стокса в векторной      форме.  

3. Оператор Гамильтона. 

2.7.2 Краткое описание проводимого занятия: 

 1. Вычислить ротор поля 

a) ;  b) ;  c) ; 

d) ;     

2. Используя  оператор набла   
2.1. Вычислить дивергенцию поля 

a) ;b) ;  c) ;  d)   

2.2  Вычислить ротор поля 

a) ;     b)  

2.З. Вычислить 

a) ;   b) ;    c) ;  d)      

Указание:  - оператор с  заданным векторным 

полем  

2.7.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 



количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 

2. 8 Практическое занятие №8 ( 2 часа). 

Тема: «Векторные поля» 
2.8.1 Задание для работы: 

1. Потенциальное и соленоидальное векторные поля. 

2. Лапласово векторное поле 

2.8.2 Краткое описание проводимого занятия: 

1. Какие из следующих полей являются потенциальными? 

a) ; 

b) ; 

2.  Найти скалярный потенциал  потенциального поля  

a)      ; 

b)      ; 

3. Какие из следующих полей являются соленоидальными? 

a)      ; 

b)      ; 

4.      Найти векторный потенциал   соленоидального поля  

a)      ; 

b)      ; 

2.8.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 



2.9  Практическое занятие № 9( 2 часа). 

Тема: «Понятие тензора» 
2.9.1 Задание для работы: 

1. Тензоры нулевого ранга, первого ранга.  

2. Закон преобразования компонент тензора. 

3. Тензоры второго ранга, тензоры высших рангов. 

2.9.2 Краткое описание проводимого занятия: 
1. Найти матрицу поворота системы координат на плоскости при повороте на угол ϕ .   

а) Убедится, что матрица ( )3U  поворота на угол 3 1 2ϕ φ ϕ= +  совпадает с произведением матриц 

( )1U  и ( )2U , которые являются матрицами поворота на углы 1φ  и 2φ  соответственно. 

б) Убедиться, что матрица поворота ( )2U  на угол ϕ−  совпадает с матрицей ( ) 1

1U
−

, где ( )1U - 

матрица поворота на угол ϕ . 
2.  Найти матрицу поворота системы координат  в трехмерном пространстве на угол ϕ . 
а)  Вокруг оси Ox. б)  Вокруг оси Oy. в)  Вокруг оси Oz 

3. В случае двумерного пространства вычислить компоненты вектора ib  в системе координат, 

повернутой на угол φ  по сравнению с исходной. Компоненты вектора и угол φ  следующие: 

а)   1 21, 2, / 6b b φ π= = = .      б)    1 23, 1, /3b b φ π= = = . 

в)   1 25, 2, / 4b b φ π= = = .     г)    1 21, 4, / 6b b φ π= − = = −  

4.  В случае двумерного пространства вычислить компоненты тензора второго ранга i ja  в 

системе координат, повернутой на угол φ  по сравнению с исходной. Компоненты тензора и угол φ  
следующие: 

 а)  11 12 21 221, 2, 3, 5, /3a a a a φ π= = = − = =  

 б)  11 12 21 221, 4, 2, 1, / 4a a a a φ π= − = = − = =  

5.  В трехмерном пространстве заданы компоненты вектора. Найти компоненты вектора в 

системе координат, повернутой на угол φ  вокруг оси Ox по сравнению с исходной. Компоненты 

вектора и угол φ  следующие: 

       а)   1 2 31, 2, 3, /3b b b φ π= = = − =  

       б)   1 2 34, 1, 5, / 2b b b φ π= = − = =  
2.9.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2. 10 Практическое занятие № 10( 2 часа). 

Тема: «Тензорная алгебра» 

2.10.1 Задание для работы: 

1. Сложение тензоров.    
2. Умножение тензоров. 

2.10.2 Краткое описание проводимого занятия: 



1. Найти тензор i j i j j ic a b= + ,  где  i ja  и i jb  являются тензорами в двумерном пространстве и 
их компоненты равны: 

       а) 11 12 21 221, 2, 3, 5a a a a= = = − = ,  11 12 21 221, 4, 2, 1b b b b= − = = − =  

      б) 11 12 21 223, 1, 2, 6a a a a= = = − = , 11 12 21 225, 2, 1, 1b b b b= = = =  

      в) 11 12 21 222, 1, 2, 3a a a a= = = − = ,  11 12 21 220, 6, 2, 4b b b b= = = =  

2. В двумерном пространстве заданы векторы ia  и ib  а так же тензоры второго ранга i jc  и i jd . 
Найти тензорную размерность приведенных ниже величин и вычислить все их компоненты: 

     а)  i ja b    б)   i ia b     в)  i j ka c    г)  i j kb d    д)  i ic   е) j jd   ж)  i i ja c  з)  i j ia c  

     и) i j ja c   к)  i i jb d    л) i j ib d     м)  i j jb d    н)  i j j kc d    о) j i j kc d   п)  i i j jc d  

 Векторы ia  и ib  и тензоры i jc  и i jd  равны: 

1 2 1 21, 2, 3, 1a a b b= = = = −  

11 12 21 223, 1, 2, 6c c c c= = = − =  

11 12 21 225, 2, 1, 1d d d d= = = =  
2.10.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2. 11 Практическое занятие №11 ( 2 часа). 

Тема: «Свертывание тензоров» 
2.11.1 Задание для работы: 

1. Свертывание тензоров.  

2. Свойство симметрии тензоров. 

3. Единичный тензор. 

2.11.2 Краткое описание проводимого занятия: 

1.  Разложить тензор  i jc  на сумму симметричного i ja  и антисимметричного i jb  тензоров. Для 

симметричного тензора i ja : найти собственные значения и собственные векторы, проверить 
ортогональность собственных векторов, найти орты системы координат, связанной с главными 
осями, записать матрицу поворота к главным осям, записать вид тензора в главных осях, 
классифицировать тензор (шаровой, симметрический, асимметрический, положительно, 
отрицательно определенный или знаконеопределенный). 

Произвести вычисления для тензоров i jc  с компонентами: 

 a)  

9 3 2

3 2 4

2 4 6

− 
 − − 
 − 

   б)  

3 9 5

9 3 4

5 4 3

− 
 − 
 − 

 

в)   

3 5 6

3 1 3

6 3 2

− 
 − 
 − − 

  г)  

2 6 1

6 3 1

1 1 3

− 
 − − 
 − 

 



2. Рассматриваются две декартовые системы координат O  и O′  с общим началом и базисными 

векторами (ортами) ( )1 2 3, ,e e e
r r r

 и ( )1 2 3, ,e e e′ ′ ′
r r r

, образующими правые ортонормированные тройки. 

Матричные элементы матрицы поворота системы координат ( )ij i jU e e′= ⋅
r r

. Новая система 

координат O′   получена путем вращения исходной системы координат O  на угол 90о вокруг одной 
из ее осей. Матрица данного поворота имеет вид: 

0 0 1

0 1 0

1 0 0
ijU

− 
 =  
 
 

 

Вокруг какой из осей был совершен поворот?  
3. Рассматриваются две декартовые системы координат O  и O′  с общим началом и базисными 

векторами (ортами) ( )1 2 3, ,e e e
r r r

 и ( )1 2 3, ,e e e′ ′ ′
r r r

, образующими правые ортонормированные тройки. 

Матричные элементы матрицы поворота системы координат ( )ij i jU e e′= ⋅
r r

. Новая система 

координат O′   получена путем вращения исходной системы координат O  на угол 180о вокруг одной 
из ее осей. Матрица данного поворота имеет вид: 

1 0 0

0 1 0

0 0 1
ijU

 
 = − 
 − 

 

Вокруг какой из осей был совершен поворот?  
2.11.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2.12 Практическое занятие №12 ( 2 часа). 

Тема: «Главные оси тензора.» 

2.12.1 Задание для работы: 

1. Главные оси тензора.  

2. Приведение тензора к главным осям.  

2.12.2 Краткое описание проводимого занятия: 

1.  Для вещественного симметричного тензора 2-го ранга ija , компоненты которого записаны в 

стандартной матричной символике: 

                                         

2 1 1

1 2 1

1 1 2
ija

 
 =  
 
 

 

не решая уравнение на собственные значения: ( )det 0ij ija λδ− = , а используя только 

свойство инвариантности свертки тензора iia ,  выбрать из предложенного списка правильные 
собственные значения данного тензора: 

а)  1λ = 2,   2λ = 1,  3λ =1 б)  1λ = 2 ,  2λ = 2,  3λ =1 



в)  1λ = 4,   2λ = 1,  3λ =1 г)  1λ = 2,   2λ = 2,  3λ =2 

2. Вещественный симметричный тензор ija  является положительно определенным и имеет 3 

различные собственные значения. Какую форму имеет характеристическая поверхность  данного 

тензора,  заданная уравнением ij i ja x x =1. 

а) Трехосный эллипсоид   б) Одноосный эллипсоид 
в) Двуполостный гиперболоид  г) Однополостный гиперболоид 

2.12.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 
2. 13 Практическое занятие №13 ( 2 часа). 

Тема: «Признак тензорности величин..» 

2.13.1 Задание для работы: 

1. Признак тензорности величин. 

2.13.2 Краткое описание проводимого занятия: 
1. Вычислить в тензорной форме : 
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2.13.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2. 14 Практическое занятие №14 ( 2 часа). 

Тема: «Тензорный анализ.» 

2.14.1 Задание для работы: 

1.  Тензорное поле, тензор-функции скалярного аргумента. 
2.14.2 Краткое описание проводимого занятия: 

1. Даны: a
r

- истинный (полярный) вектор и b
r

- псевдовектор (аксиальный вектор). Чем является 

их векторное произведение a b × 
rr

? 

а)  истинным вектором  б)  псевдовектором 
в)  скаляром    г)  псевдоскаляром 

2.  Даны два псевдовектора (аксиальные векторы): a
r

 и b
r

. 



Чем является их скалярное произведение ( )a b⋅
rr

 ? 

а)  скаляром    б)  псевдоскаляром  
в)  истинным вектором  г)  псевдовектором 
3.  Матрица ортогонального преобразования декартовых координат имеет вид 

( )
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100
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001
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Какому именно ортогональному преобразованию она соответствует? 
а) Повороту на 180о относительно оси OZ  
б) Зеркальному отражению в XY координатной плоскости 
в) Зеркальному отражению в XZ координатной плоскости 
г) Зеркальному отражению в YZ координатной плоскости 
4. В исходной декартовой системе координат заданы компоненты аксиального вектора: a1=1, 

a2=2, a3=3. Указать правильный набор его компонент в системе координат, полученной в результате 
зеркального отражения в XY координатной плоскости исходной системы координат. 

а)  a1=1, a2=2, a3=-3.         б)  a1=-1, a2=-2, a3=3. 
в)  a1=-1, a2=-2, a3=-3.      г)  a1=1, a2=2, a3=3.  

2.14.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2. 15 Практическое занятие № 15( 2 часа). 

Тема: «Поле тензора второго ранга.» 

2.15.1 Задание для работы: 

1. Поле тензора второго ранга.  

2. Поток, дивергенция и производная по направлению тензорного поля. 

2.15.2 Краткое описание проводимого занятия: 
1. Вычислить в тензорной форме : 
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2.15.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

2.16 Практическое занятие №16 ( 2 часа). 

Тема: «Тензорная производная .Интегральное представление дифференциальных операторов. 
Интегральные теоремы векторного анализа» 

2.16.1 Задание для работы: 

1. Тензорное поле и его дифференцирование.  
2. Абсолютный дифференциал и абсолютная производная.  



3. Интегральные теоремы тензорного анализа. 

 
2.16.2 Краткое описание проводимого занятия: 

1). Продифференцировать : 
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1. Найти поток поля ),2,)(( yxzxyzxra +−+−
rr

 через поверхность сферы радиуса r с 
центром в начале координат. 

2. Найти циркуляцию поля ),2,)(( yxzxyzxra +−+−
rr

 по окружности единичного радиуса с 
центром в начале координат, лежащей в плоскости (y,z). 

3. Найти циркуляцию поля ][ ra
rr

 по окружности единичного радиуса с центром в начале 
координат, лежащей в плоскости, нормаль которой образует равные углы с координатными осями 

( ),,(, zyxrconsta
rr

= ). 
2.16.3 Результаты и выводы: 

В результате проведения практического занятия студент освоит основные понятия и методы 
тензорной алгебры и анализа; базовую терминологию и математическую символику для выражения 
количественных и качественных отношений объектов тензорной алгебры и анализа;основные 
теоремы тензорной алгебры и анализа; 

 

 

 


