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1. КОНСПЕКТ ЛЕКЦИЙ 
 

1.1 Лекция №1 (2 часа).  
Тема: «Линейные однородные дифференциальные уравнения п-го порядка с постоянными 

коэффициентами» 
 
1.1.1 Вопросы лекции: 
1. Линейное однородное дифференциальное уравнение n-го порядка с постоянными 

коэффициентами. 

2. Корни характеристического уравнения действительные и различные. 

3. Корни характеристического уравнения действительные и кратные. 

4. Корни характеристического уравнения комплексные и различные. 

5. Корни характеристического уравнения комплексные и кратные. 

 

1.1.2 Краткое содержание вопросов: 
1. Линейное однородное дифференциальное уравнение n-го порядка с постоянными 
коэффициентами. 
Линейное однородное дифференциальное уравнение n-го порядка с постоянными 

коэффициентами записывается в виде 

                                                   (1) 

где a1, a2,..., an − постоянные числа, которые могут быть действительными или комплексными.  

Используя линейный дифференциальный оператор L(D), данное уравнение можно представить 

в виде 

                                                                                          (2) 

где 

                                                               (3) 

Для каждого дифференциального оператора с постоянными коэффициентами можно ввести 

характеристический многочлен 

                                                                        (4) 

Алгебраическое уравнение 

                                                                      (5)  

называется характеристическим уравнением  дифференциального уравнения.  

 

Согласно основной теореме алгебры, многочлен степени n имеет ровно n корней с учетом их 

кратности. При этом корни уравнения могут быть как действительными, так и комплексными 

(даже если все коэффициентыa1, a2,..., an действительные).  

Рассмотрим более детально различные случаи корней характеристического уравнения и 

соответствующие формулы общего решения дифференциального уравнения. 

 
2. Корни характеристического уравнения действительные и различные. 
Предположим, что характеристическое уравнение L(λ)=0 имеет n корней λ1, λ2,..., λn. В этом 

случае общее решение дифференциального уравнения записывается в простом виде: 

                        ,...)( 21

21

x

n

xx neCeCeCxy
λλλ +++=                                           (6) 

где C1, C2,..., Cn − постоянные, зависящие от начальных условий. 

 

3. Корни характеристического уравнения действительные и кратные. 
Пусть характеристическое уравнение L(λ) = 0 степени n имеет m корней λ1, λ2,..., λm, кратность 

которых, соответственно, равна k1, k2,..., km. Ясно, что выполняется условие 
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Тогда общее решение однородного дифференциального уравнения с постоянными 

коэффициентами имеет вид 
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Видно, что в формуле общего решения каждому корню λi  кратности ki  соответствует ровно 

 ki членов, которые образуются умножением  x  в определенной степени на экспоненциальную 

функцию 
xie

λ
. Степень x изменяется в интервале от 0 до ki − 1, где ki − кратность корня λi. 

 
4. Корни характеристического уравнения комплексные и различные. 
Если коэффициенты дифференциального уравнения являются действительными числами, то 

комплексные корни характеристического уравнения будут представляться в виде пар 

комплексно-сопряженных чисел: 

 
В этом случае общее решение записывается как 

           ...)sincos()sincos()( 4321 ++++= xCxCexCxCexy xx δδββ γα             (8) 

 
5. Корни характеристического уравнения комплексные и кратные. 
Здесь каждой паре комплексно-сопряженных корней  α±iβ  кратности k  соответствует  2k 

 частных  решений 

.sin,cos

,...,sin,cos,sin,cos

11 xxexxe

xxexxexexe

kxkx

xxxx

ββ

ββββ
αα

αααα

−−
 

Тогда часть общего решения дифференциального уравнения, соответствующая данной паре 

комплексно-сопряженных корней, конструируется следующим образом: 
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      (9) 

В общем случае, когда характеристическое уравнение имеет как действительные, так и 

комплексные корни произвольной кратности, общее решение строится в виде суммы 

рассмотренных выше решений вида 1-4.  

 

1.2 Лекция №2 (2 часа).  
Тема: «Линейные однородные системы дифференциальных уравнений с постоянными 

коэффициентами» 
 
1.2.1 Вопросы лекции: 
1. Нормальная линейная система дифференциальных уравнений с постоянными 

коэффициентами n-го порядка. 

2. Метод исключения. 

 

1.2.2 Краткое содержание вопросов: 
1. Нормальная линейная система дифференциальных уравнений с постоянными 
коэффициентами n-го порядка. 
Нормальная линейная система дифференциальных уравнений с постоянными коэффициентами 

n-го порядка записывается в виде 

                     
где  x1(t), x2(t), ..., xn(t) − неизвестные функции переменной t, которая часто имеет смысл 

времени,aij − заданные постоянные коэффициенты, которые могут быть как действительными, 

так и комплексными  ,fi (t) − заданные (в общем случае комплексные) функции переменной t.  

Будем считать, что все указанные функции являются непрерывными на некотором 

интервале [a, b]действительной числовой оси t.  
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Полагая 

 
систему дифференциальных уравнений можно переписать в матричной форме: 

 

Если вектор  f(t) тождественно равен нулю: , то система называется однородной: 

 
Однородные системы уравнений с постоянными коэффициентами можно решать различными 

способами. Чаще всего используются следующие методы решений: 

• метод исключения (метод сведения системы n уравнений к одному уравнению n-го 

порядка); 

• метод интегрируемых комбинаций; 

• метод собственных значений и собственных векторов (включая метод 

неопределенных коэффициентов или использование жордановой формы в случае 

кратных корней характеристического уравнения); 

• метод матричной экспоненты. 

 
2. Метод исключения. 
Используя метод исключения, нормальную линейную систему n уравнений можно привести к 

одному линейному уравнению n-го порядка. Этот метод удобно использовать для решения 

простых систем − прежде всего, для систем 2-го порядка. 

Рассмотрим однородную систему двух уравнений с постоянными коэффициентами: 

 
где функции x1, x2 зависят от переменной t.  

Продифференцируем первое уравнение и подставим производную x2' из второго уравнения: 

 
Из первого уравнения подставим  a12x2. Получаем линейное однородное уравнение 2-го 

порядка: 

 
Его решение легко построить, если известны корни характеристического уравнения: 

 
В случае действительных коэффициентов  aij  корни могут быть как действительными 

(различными или кратными), так и комплексными. В частности, если 

коэффициенты a12 и a21 одного знака, то дискриминант характеристического уравнения всегда 

будет положительным и, соответственно, корни будут действительными и различными.  

После определения функции x1(t) другую функцию x2(t) можно найти из первого уравнения 

системы. 

Метод исключения можно применять не только к однородным линейным системам. Его можно 

использовать также для решения неоднородных систем дифференциальных уравнений или 

систем уравнений с переменными коэффициентами.  
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1.3 Лекция №3,4 (4 часа).  
Тема: «Метод собственных значений и собственных векторов» 
 
1.3.1 Вопросы лекции: 
1. Понятие о собственных значениях и собственных векторах. 

2. Нахождение собственных значений и собственных векторов линейного преобразования. 

3. Фундаментальная система решений однородной линейной системы. 

4. Все корни характеристического уравнения действительны и различны. 

5. Характеристическое уравнение имеет кратные корни, у которых геометрическая и 

алгебраическая кратности равны. 

6. Характеристическое уравнение имеет кратные корни, у которых геометрическая кратность 

меньше алгебраической кратности. 

 

1.3.2 Краткое содержание вопросов: 
1. Понятие о собственных значениях и собственных векторах. 
Рассмотрим линейную однородную систему n дифференциальных уравнений с постоянными 

коэффициентами, которую можно записать в матричном виде как 

 
где приняты следующие обозначения: 

 
Будем искать нетривиальные решения однородной системы в виде 

 
где V ≠ 0 − постоянный n-мерный вектор, который мы определим позже.  

Подставляя указанное пробное выражение для X(t) в систему уравнений, получаем: 

 
Данное уравнение означает, что при действии линейного оператора  A вектор V  преобразуется 

в коллинеарный вектор  λV. Вектор, обладающий таким свойством, называется  собственным 

вектором линейного преобразования A, а число  λ  называется  собственным  значением.  

Таким образом, мы приходим к выводу, что для того, чтобы векторная функция  X(t)=exp(λt)V]  

являлась решением линейной однородной системы, необходимо и достаточно, чтобы 

число λ было собственным значением, а вектор V − соответствующим собственным вектором 

линейного преобразования A. 

Как видно, решение линейной системы уравнений можно построить алгебраическим методом. 

Поэтому приведем далее некоторые необходимые сведения из линейной алгебры. 

 
2. Нахождение собственных значений и собственных векторов линейного преобразования. 
Вернемся к полученному выше матрично-векторному уравнению 

 
Его можно переписать как 

 
где 0 означает нулевой вектор.  

Вспомним, что произведение единичной матрицы  I  порядка  n  и  n-мерного вектора V  равно 

самому вектору: 

 
Поэтому наше уравнение принимает вид: 

 
Из последнего соотношения следует, что определитель матрицы  A −λI  равен нулю: 
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Действительно, если предположить, что  det(A−λI)≠0, то у этой матрицы будет существовать 

обратная матрица  (A−λI)
−1

 . Умножая обе части уравнения слева на обратную матрицу  (A 

−λI)
−1

 , получим: 

 
Это, однако, противоречит определению собственного вектора, который должен быть отличен 

от нуля. Следовательно, собственные значения λ должны удовлетворять уравнению 

 
которое называется  характеристическим уравнением  линейного преобразования A. 

Многочлен в левой части уравнения называется  характеристическим многочленом  линейного 

преобразования (или линейного оператора) A. Множество всех собственных 

значений λ1, λ2,..., λn образует спектр оператора A.  

Итак, первый шаг в нахождении решения системы линейных дифференциальных уравнений − 

это решение характеристического уравнения и нахождение всех собственных значений      

 λ1, λ2, ..., λn.  

Далее, подставляя каждое собственное значение λi в систему уравнений 

 
и решая ее, находим собственные векторы, соответствующие данному собственному 

значению  λi. Заметим, что после подстановки собственных значений система становится 

 вырожденной, т.е. некоторые уравнения будут одинаковыми. Это следует из того, что 

определитель такой системы равен нулю. В результате система уравнений будет иметь 

бесконечное множество решений, т.е. собственные векторы можно определить с точностью до 

постоянного коэффициента. 

 
3. Фундаментальная система решений однородной линейной системы. 
Раскладывая определитель характеристического уравнения n-го порядка, мы получаем в общем 

случае следующее уравнение: 

 
где 

 
Здесь число  ki  называется алгебраической кратностью собственного значения λi. Для каждого 

такого собственного значения существует  si  линейно независимых собственных векторов. 

Число si называется геометрической кратностью собственного значения  λi. В курсе линейной 

алгебры доказывается, что геометрическая кратность si  не превосходит алгебраическую 

кратность ki, т.е. выполняется соотношение 

 
Оказывается, что вид общего решения однородной системы существенно зависит от кратности 

собственных значений. Рассмотрим возможные случаи, которые здесь возникают. 

 
4. Все корни характеристического уравнения действительны и различны. 
В данном простейшем случае каждому собственному значению λi один собственный вектор Vi. 

Эти векторы образуют множество линейно независимых решений 

 
т.е. фундаментальную систему решений однородной системы уравнений.  

В силу линейной независимости собственных векторов соответствующий вронскиан будет 

отличен от нуля: 
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Общее решение системы имеет следующий вид: 

 
где C1, C2, ..., Cn − произвольные числа.  

Характеристическое уравнение может иметь комплексные корни. Если при этом все 

коэффициенты матрицы A действительны, то комплексные корни появляются всегда в виде пар 

комплексно-сопряженных чисел. Предположим, что мы получили пару комплексных 

собственных значений  λi = α ± βi. Данной паре комплексно-сопряженных чисел соответствует 

пара линейно-независимых действительных решения вида 

 
Таким образом, действительная и мнимая части комплексного решения образуют пару 

действительных решений. 

 
5. Характеристическое уравнение имеет кратные корни, у которых геометрическая и 
алгебраическая кратности равны. 
Этот случай практически не отличается от предыдущего. Несмотря на наличие собственных 

значений с кратностью более 1, мы можем определить  n  линейно независимых собственных 

векторов. В частности, любая симметрическая матрица с действительными числами, у 

которой есть  n  собственных чисел, будет иметь  n  собственных векторов. Аналогичным 

свойством обладают  унитарные матрицы. В общем случае квадратная матрица размером  nxn 

 должна быть диагонализируемой, чтобы иметь n собственных векторов.  

 

Общее решение системы n дифференциальных уравнений представляется в виде 

 
Здесь полное число слагаемых равно n, Cij − произвольные числа. 

 
6. Характеристическое уравнение имеет кратные корни, у которых геометрическая 
кратность меньше алгебраической кратности. 
В некоторых матрицах A (такие матрицы называются дефектными) собственное 

число λi кратностью ki может иметь меньше, чем ki линейно независимых собственных 

векторов. В этом случае вместо недостающих собственных векторов определяются так 

называемые присоединенные векторы, так чтобы в результате получить множество  n  линейно 

независимых векторов и построить соответствующую  фундаментальную систему  решений.  

Для этой цели обычно применяются два способа: 

 

• Построение фундаментальной системы решений методом неопределенных 

коэффициентов; 

• Построение фундаментальной системы решений с помощью жордановой формы. 

 

 

 



 9

1.4 Лекция №5 (2 часа).  
Тема: «Построение общего решения системы уравнений методом неопределенных 

коэффициентов» 
 
1.4.1 Вопросы лекции: 
1. Линейная однородная система  n  дифференциальных уравнений с постоянными методом 

неопределенных коэффициентов. Метод Эйлера.  

 

1.4.2 Краткое содержание вопросов: 
1. Решение Линейная однородная система  n  дифференциальных уравнений с 
постоянными методом неопределенных коэффициентов. Метод Эйлера.  
Линейная однородная система  n  дифференциальных уравнений с постоянными 

коэффициентами имеет вид: 

 
Здесь X(t) − n-мерный вектор,  A − квадратная матрица с постоянными коэффициентами 

размера n x n.  

Далее мы опишем общий алгоритм решения данной системы и рассмотрим конкретные случаи, 

где решение строится  методом неопределенных коэффициентов.  

Будем искать решение заданной системы уравнений в виде вектор-функций 

 
где λ − собственное значение матрицы A, а  V − собственный вектор этой матрицы.  

Собственные значения λi находятся из характеристического уравнения 

 
где I − единичная матрица.  

Поскольку корни λi могут быть кратными, то в общем случае для системы n-го порядка это 

уравнение имеет вид: 

 
Здесь выполняется условие 

 
Степень  ki  множителя (λ − λi)  называется  алгебраической кратностью  собственного  числа 

 λi.  

Для каждого собственного значения λi можно определить собственный вектор (или несколько 

собственных векторов в случае кратного λi), используя формулу 

 
Число собственных векторов, ассоциированных с собственным значением  λi, называется  

геометрической кратностью  λi  (обозначим ее как  si). Таким образом, собственное 

число λi характеризуется двумя величинами − алгебраической кратностью  ki  и геометрической 

кратностью si. Справедливо следующее соотношение: 

 
т.е. геометрическая кратность si (или число собственных векторов) не превосходит 

алгебраическую кратность  ki собственного числа λi.  

 

Фундаментальная система решений и, соответственно, общее решение системы существенно 

зависят от алгебраической и геометрической кратности чисел λi. В простейшем случае si = ki = 

1, когда собственные значения λi матрицы A попарно различны и каждому 

числу λi соответствует собственный вектор Vi, фундаментальная система решений состоит из 

функций вида 
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В этом случае общее решение записывается как 

 
где Ci − произвольные константы.  

Обсудим случай  комплексных корней  характеристического уравнения. Если все коэффициенты 

в уравнениях являются действительными числами, то комплексные корни будут "рождаться" 

парами в виде комплексно-сопряженных чисел α±iβ. Для построения компонента решения, 

связанного с такой парой, достаточно взять одно число, например, α+iβ  и определить для него 

собственный вектор V, который также может иметь комплексные координаты. Тогда решение 

будет представляться комплекснозначной векторной функцией [exp(α+iβ)t]V(t). 

Экспоненциальную функцию можно разложить по формуле Эйлера: 

 
В результате часть общего решения, соответствующая паре собственных значений α±iβ, будет 

представляться в виде 

 
где V = VRE + iVIM − комплекснозначный собственный вектор. В полученном выражении вектор-

функцииX
 (1)

 и X
 (2)

 в действительной и мнимой части образуют два линейно-

независимых действительных решения. 

 

Как видно, решение для пары комплексно-сопряженных собственных значений строится таким 

же образом, как и для действительных собственных значений. В конце преобразований нужно 

лишь явно выделить действительную и мнимую части векторной функции.  

 

Теперь рассмотрим случай кратных корней  λi. Для простоты будем считать их 

действительными. Здесь процесс решения снова разветвляется на два сценария.  

 

Если алгебраическая кратность  ki  и геометрическая кратность  si  собственного числа  λi  

совпадают (ki=si >1), то для этого значения  λi  существует  ki  собственных векторов. В 

результате собственному числу  λi  будет соответствовать  ki  линейно-независимых решений 

вида 

 
Всего в этом случае система n уравнений будет иметь n собственных векторов, образующих 

фундаментальную систему решений. Примеры таких систем приведены на странице Метод 

собственных значений и собственных векторов. 

 

Наиболее интересным является случай кратных корней λi, когда геометрическая 

кратность si меньше алгебраической кратности ki. Это значит, что у нас имеется только si (si < 

ki) собственных векторов, ассоциированных с числом λi. Число собственных 

векторов si определяется формулой 

 
где  rank(A−λiI)  означает ранг матрицы  A−λiI , в которую подставлено значение λi.  

 

Решение, соответствующее  λi, можно искать в виде произведения многочлена степени  ki−si  на 

экспоненциальную функцию exp(λit): 
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Здесь  Pki−si (t)  является векторным многочленом, т.е. каждой из n координат соответствует 

свой многочлен степени  ki−si  с некоторыми коэффициентами, подлежащими определению.  

 

Собственно говоря, метод неопределенных коэффициентов нужен только в случае кратных 

корней λi, когда число линейно-независимых собственных векторов меньше алгебраической 

кратности корня λi. 

 

Чтобы найти векторы  A0, A1, ..., Aki−si  для каждого такого собственного числа λi, надо 

подставить вектор-функцию Xi (t) в исходную систему уравнений. Приравнивая коэффициенты 

при членах с одинаковыми степенями в левой и правой частях каждого уравнения, получим 

алгебраическую систему уравнений для нахождения неизвестных векторов A0, A1, ..., Aki−si.  

 

Описанный здесь способ построения общего решения системы однородных дифференциальных 

уравнений иногда называют также методом Эйлера.  

 

1.5 Лекция №6,7 (4 часа).  
Тема: «Построение общего решения системы уравнений с помощью жордановой формы» 
 
1.5.1 Вопросы лекции: 
1. Жорданова форма матрицы. 

2. Присоединенные векторы и жордановы цепочки 

3. Общее решение системы для матриц 2x2 и 3x3 

4. Вычисление собственных и присоединенных векторов при различных размерностях матриц и 

собственных значений и построение общего решения. 

 

1.5.2 Краткое содержание вопросов: 
1. Жорданова форма матрицы. 
Снова рассмотрим линейную однородную систему n дифференциальных уравнений с 

постоянными коэффициентами: 

 
где 

 
Фундаментальная система решений такой системы должна включать в себя n линейно-

независимых функций. При построении решения с использованием метода собственных 

значений и собственных векторов часто оказывается, что число собственных векторов 

меньше n, т.е. для таких систем не существует базиса, состоящего лишь из собственных 

векторов. В этом случае решение можно искать, например, методом неопределенных 

коэффициентов. Однако существует более общий и элегантный способ построения общего 

решения. Он основан на том факте, что любую квадратную матрицу можно привести к так 

называемой жордановой нормальной форме (строго говоря, это справедливо над полем 

комплексных чисел). Зная жорданову форму матрицы и жорданов базис, можно составить 

общее решение системы уравнений.  

 

Рассмотрим эту технику решения более подробно. Предварительно введем некоторые базовые 

определения. 

Жорданову форму можно рассматривать как обобщение квадратной диагональной матрицы. На 

ее диагонали размещаются т.н. жордановы клетки, соответствующие собственным 
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значениям λi исходной матрицы. Собственные числа λi могут быть равными в различных 

клетках. Структура жордановой матрицы может выглядеть, например, так: 

 
Сами собственные значения матрицы λi находятся на главной диагонали, причем каждое 

собственное числоλi встречается столько раз, какова его алгебраическая кратность ki. В 

каждой клетке размером более 1 имеется параллельный ряд над главной диагональю, 

состоящий из единиц. Все остальные элементы жордановой матрицы равны нулю. Порядок 

расположения жордановых клеток в матрице определен неоднозначно. 

 
2. Присоединенные векторы и жордановы цепочки. 
Рассмотрим жорданову клетку размером k с собственным значением λ. Такой клетке 

соответствует k базисных векторов  V1, V2,..., Vk. Вектор V1  (V1 ≠0) среди них является 

 собственным  и  удовлетворяет уравнению 

 
Вектор V2  (V2 ≠ 0) определяется из уравнения 

 
и называется присоединенным вектором первого порядка. Аналогично находятся другие 

 присоединенные векторы более высокого порядка: 

 
Заметим, что из соотношений 

 
следует, что 

 
Для присоединенного вектора Vk порядка k будет справедливо равенство 

 
Цепочка векторов V1, V2, ..., Vk, состоящая из собственного вектора V1 и присоединенных 

векторов V2, ..., Vk, является линейно-независимой и называется жордановой цепочкой.  

 

Каждой жордановой цепочке длины k соответствует k линейно-независимых решений 

однородной системы в виде 
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Полное число всех решений равно сумме длин жордановых цепочек для всех клеток, т.е. равно 

размеру матрицы n. Совокупность таких линейно-независимых векторных функций 

составляет фундаментальную систему решений. 

 
3. Общее решение системы для матриц 2x2 и 3x3.  
На практике наиболее часто встречаются системы дифференциальных уравнений 2-го и 3-го 

порядка. Рассмотрим все случаи жордановых форм, которые могут встретиться в таких 

системах, и соответствующие им формулы общего решения. Всего существует 8 различных 

случаев (3 для матрицы 2х2 и 5 для матрицы 3х3). Данную классификацию удобно 

проиллюстрировать следующей таблицей: 

 
4. Вычисление собственных и присоединенных векторов при различных размерностях 
матриц и собственных значений и построение общего решения. 
Случай 1. Матрица 2x2. Два различных собственных значения λ1, λ2 

В этом случае жорданова форма имеет обычный диагональный вид. Каждому собственному 

значению λi  соответствует один собственный вектор Vi, который находится из матричного 

уравнения 

 
Общее решение выражается формулой 
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Случай 2. Матрица 2x2. Одно собственное значение λ1 (k1=2, s1=2) 

Данная матрица имеет единственное собственное значение кратностью 2. Ранг матрицы при 

этом значенииλ1 равен 1. Поэтому геометрическая кратность будет равна 

 
т.е. при решении уравнения 

 
получается два линейно-независимых собственных вектора V1 и V2. Общее решение системы 

имеет почти такой же вид, как и в случае 1: 

 
 

Случай 3. Матрица 2x2. Одно собственное значение λ1 (k1=2, s1=1) 

Здесь ранг матрицы равен 2. Следовательно, геометрическая кратность собственного числа λ1 и 

количество собственных векторов равно 

 
Этот собственный вектор V1 = (V11,V21)

 T
 находится из уравнения 

 
Для построения фундаментальной системы решений не хватает еще одного линейно-

независимого вектора. В качестве такого вектора возьмем присоединенный вектор  

V2=(V21,V22)
 T

,  удовлетворяющий уравнению 

 
Если из найденных собственного и присоединенного векторов составить матрицу H, равную 

 
то жорданова форма J находится с помощью соотношения 

 
где H

 −1
 − матрица, обратная к H. Это свойство можно использовать для проверки правильности 

определения собственных и присоединенных векторов.  

 

Общее решение системы представляется в виде: 

 
 

Случай 4. Матрица 3x3. Три различных собственных значения λ1, λ2, λ3 

Здесь жорданова форма имеет диагональный вид. Каждому собственному числу  λi  

соответствует  свой собственный вектор  Vi,  который определяется из уравнения 

 
Общее решение системы 3-х дифференциальных уравнений записывается в виде: 

 
 

Случай 5. Матрица 3x3. Два собственных значения λ1 (k1=2, s1=2), λ2 (k2=1, s2=1) 

В данном случае характеристическое уравнение имеет два корня, один из которых 

кратный (k1 = 2). При подстановке этого кратного корня  λ1 матрица  A−λ1I  имеет ранг 1. В 

результате у числа  λ1  геометрическая кратность и количество ассоциированных с ним 

собственных векторов равно 

 
Оба линейно-независимых собственных вектора V1 и V2 (им соответствуют две жордановы 

клетки) определяются из уравнения 

 
Третья клетка в жордановой форме состоит из простого собственного значения  λ2  (k2 =1,  s2 = 

1). Собственный вектор V3 для этого числа находится из уравнения 
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Общее решение системы выражается формулой 

 
 

Случай 6. Матрица 3x3. Два собственных значения λ1 (k1=2, s1=1), λ2 (k2=1, s2=1) 

Этот случай отличается от предыдущего тем, что для первого собственного числа λ1 удается 

найти лишь один собственный вектор V1, который удовлетворяет уравнению 

 
Здесь ранг матрицы для числа λ1 равен 2: 

 
Недостающий линейно-независимый вектор находится как вектор V2, присоединенный к  V1: 

 
Другое собственное значение λ1 (соответствующее второй жордановой клетке) обеспечивает 

еще один собственный вектор  V3. Общее решение системы имеет вид: 

 
 

Случай 7. Матрица 3x3. Одно собственное значение λ1 (k1=3, s1=2) 

Здесь жорданова форма состоит из двух клеток с одинаковым собственным значением λ1. 

Первая клетка имеет один собственный вектор V1 и один присоединенный вектор V2. Они 

находятся из соотношений 

 
Первое уравнение имеет два решения в виде двух собственных векторов (поскольку 

 rank(A−λ1I)=1). Второй собственный вектор (обозначим его как V3) связан со второй 

жордановой клеткой.  

 

Общее решение системы описывается выражением 

 
 

Случай 8. Матрица 3x3. Одно собственное значение λ1 (k1=3, s1=1) 

В этом случае линейный оператор A имеет одно собственное значение λ1 кратностью k1=3. При 

этом ранг матрицы A равен 2. Это приводит к тому, что уравнение 

 
имеет решение в виде единственного собственного вектора V1. Недостающие 2 линейно-

независимых вектора определяются как присоединенные векторы из цепочки соотношений 

 
Общее решение имеет вид: 

 
 

1.6 Лекция №8 (2 часа).  
Тема: «Метод матричной экспоненты» 
 
1.6.1 Вопросы лекции: 
1. Определение и свойства матричной экспоненты. 

2. Применение матричной экспоненты для решения однородных линейных систем с 

постоянными коэффициентами. 

3. Алгоритм решения системы уравнений методом матричной экспоненты. 
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1.6.2 Краткое содержание вопросов: 
1. Определение и свойства матричной экспоненты. 
Рассмотрим квадратную матрицу A размером nxn, элементы которой могут быть как 

действительными, так и комплексными числами. Поскольку матрица A квадратная, то для нее 

определена операция возведения в степень, т.е. мы можем вычислить матрицы 

 
где через I обозначена единичная матрица порядка n.  

 

Составим бесконечный матричный степенной ряд 

 
Сумма данного бесконечного ряда называется матричной экспонентой и обозначается как 

 exp(tA): 

 
Этот ряд является абсолютно сходящимся.  

 

В предельном случае, когда матрица состоит из одного числа a, т.е. имеет размер 1x1, 

приведенная формула превращается в известную формулу разложения экспоненциальной 

функции exp(at)  в ряд Маклорена: 

 
Матричная экспонента обладает следующими основными свойствами: 

• Если A − нулевая матрица, то exp(tA) = exp(0) = I; 

• Если A = I (I − единичная матрица), то exp(tI) = exp(t)I; 

• Если для A существует обратная матрица A
−1

, то exp(A)exp(−A) = I; 

• exp(mA)exp(nA) = exp((m+n)A), где m, n − произвольные действительные или 

комплексные числа; 

• Производная матричной экспоненты выражается формулой  

 

• Пусть H − невырожденное линейное преобразование.  

 

2. Применение матричной экспоненты для решения однородных линейных систем с 
постоянными коэффициентами. 
Матричная экспонента может успешно использоваться для решения систем дифференциальных 

уравнений. Рассмотрим систему линейных однородных уравнений, которая в матричной форме 

записывается в виде 

 
Общее решение такой системы представляется через матричную экспоненту в виде 

 



 17

где C=(C1, C2, ..., Cn)
 T

 − произвольный  n-мерный вектор. Символ  
T
  обозначает операцию 

транспонирования. В этой формуле мы не можем записать вектор  C  перед матричной 

экспонентой, поскольку произведение матриц    не определено.  

 

Для задачи с начальными условиями (задачи Коши) компоненты вектора C выражаются через 

начальные условия. В этом случае решение однородной системы записывается в виде 

 
Таким образом, решение однородной системы уравнений становится известным, если 

вычислена соответствующая матричная экспонента. Для ее вычисления можно воспользоваться 

бесконечным рядом, который содержится в определении матричной экспоненты. Однако часто 

это позволяет найти матричную экспоненту лишь приближенно. Для решения задачи можно 

использовать также алгебраический способ, основанный на последнем свойстве из 

перечисленных выше. Рассмотрим этот способ и общий ход решения более подробно. 

 
3. Алгоритм решения системы уравнений методом матричной экспоненты. 
1) Сначала находим собственные значения λi матрицы (линейного оператора) A;  

2) Вычисляем собственные и (в случае кратных собственных значений) присоединенные 

векторы; 

3) Из полученных собственных и присоединенных векторов составляем невырожденную 

матрицу линейного преобразования H. Вычисляем соответствующую обратную матрицу H
 −1

; 

4) Находим нормальную жорданову форму J для заданной матрицы A, используя формулу                    

 
Примечание: В процессе нахождения собственных и присоединенных векторов часто 

становится ясной структура каждой жордановой клетки. Это позволяет сразу 

записать жорданову форму без вычисления по указанной формуле.  

5) Зная жорданову форму J, составляем матрицу exp(tJ). Соответствующие формулы для такого 

преобразования выводятся из определения матричной экспоненты. Для некоторых простых 

жордановых форм матрица exp(tJ) имеет вид, приведенный в таблице: 

 
6) Вычисляем матричную экспоненту exp(tA) по формуле 

 
7) Записываем общее решение системы, которое имеет следующий вид: 

 



 18

8) В случае систем дифференциальных уравнений 2-го порядка общее решение выражается 

формулой 

 
где C1, C2 − произвольные постоянные. 

 

1.7 Лекция №9 (2 часа).  
Тема: «Линейные неоднородные системы дифференциальных уравнений с постоянными 

коэффициентами» 
 
1.7.1 Вопросы лекции: 
1. Нормальная линейная неоднородная система n уравнений с постоянными коэффициентами. 

2. Метод исключения. 

3. Метод неопределенных коэффициентов. 

4. Метод вариации постоянных. 

 

1.7.2 Краткое содержание вопросов: 
1. Нормальная линейная неоднородная система n уравнений с постоянными 
коэффициентами. 
Нормальную линейную неоднородную систему n уравнений с постоянными коэффициентами  

можно записать в виде 

 
где t − независимая переменная (часто t означает время),  xi(t) − неизвестные функции, которые 

являются непрерывными и дифференцируемыми на некотором интервале  [a,b] действительной 

числовой оси t, aij (i, j = 1,...,n) − постоянные коэффициенты,  fi (t) − заданные функции 

переменной t, непрерывные на [a,b]. Будем считать, что функции  xi (t),  fi (t)  и коэффициенты  

aij  могут принимать как действительные, так и комплексные значения.  

 

Введем следующие векторы: 

 
и квадратную матрицу 

 
Тогда систему уравнений можно представить в более компактной матричной форме: 

 
Для линейных неоднородных систем, также как и в случае одного линейного неоднородного 

уравнения, справедлива следующая важная теорема:  

 

Общее решение  X(t) неоднородной системы представляет собой сумму общего решения  X0(t) 

соответствующей однородной системы и частного решения  X1(t)  неоднородной системы: 

 
Еще одним важным свойством линейных неоднородных систем является  принцип 

суперпозиции,  который формулируется следующим образом:  
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Если X1(t) − решение системы с неоднородной частью  f1(t), а  X2(t) − решение такой же системы 

с неоднородной частью  f2(t), то векторная функция 

 
будет являться решением системы с неоднородной частью 

 
Наиболее распространенными способами решения неоднородных систем являются метод 

исключения, метод неопределенных коэффициентов (в случае, когда функция  f(t) 

является векторным квазимногочленом) и метод вариации постоянных. Рассмотрим указанные 

методы решения более подробно. 

 
2. Метод исключения. 
Данный метод позволяет свести нормальную неоднородную систему n уравнений к одному 

уравнению n-го порядка. Этот способ удобно использовать для решения систем 2-го порядка. 

 
3. Метод неопределенных коэффициентов. 
Метод неопределенных коэффициентов хорошо подходит для решения систем уравнений, 

неоднородная часть которых представляет собой  квазимногочлен. 

 

Действительным векторным квазимногочленом называется вектор-функция вида 

 
где  α,  β − заданные действительные числа, а Pm(t),  Qm(t) − векторные многочлены степени m. 

Например, векторный многочлен Pm(t) записывается как 

 
где A0, A1, ..., Am − n-мерные векторы (n − число уравнений в системе).  

 

В случае, когда неоднородная часть  f(t) является векторным квазимногочленом, то частное 

решение также будет представляться некоторым векторным квазимногочленом, похожим по 

структуре на  f(t). 

 

Так, например, если неоднородная функция равна 

 
то частное решение системы следует искать в виде 

 
где k=0 в нерезонансном случае, т.е. когда показатель α  в экспоненциальной функции не 

совпадает ни с одним из собственных значений λi. Если же показатель α совпадает с каким-либо 

собственным значением λi, т.е. в так называемом резонансном случае, то значение k полагается 

равным длине жордановой цепочки для данного собственного числа λi. На практике в 

качестве k можно брать алгебраическую кратность собственного значения λi.  

 

Аналогичные правила определения степени многочленов применяются и для квазимногочленов  

вида 

 
Здесь резонансный случай возникает, если число α+βi совпадает с комплексным собственным 

значением  λi  матрицы A.  

 

После выбора структуры частного решения  X1(t)  неизвестные векторные коэффициенты 

 A0, A1, ..., Am, ..., Am+k устанавливаются путем подстановки выражения для  X1(t)  в исходную 

систему и приравнивания коэффициентов при членах с одинаковыми степенями  t  в левой и 

правой части каждого уравнения. 
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4. Метод вариации постоянных. 
В случае произвольной правой части  f(t) общим методом решения является метод вариации 

постоянных (метод Лагранжа).  

 

Пусть общее решение однородной системы найдено и представляется в виде 

 
где Φ(t) − фундаментальная система решений, т.е. матрица размером  nxn, столбцы которой 

образованы линейно независимыми решениями однородной системы,  С=(C1, C2,..., Cn)
 T

 − 

вектор произвольных постоянных чисел Сi (i=1,...,n). 

 

Заменим постоянные числа  Ci  на неизвестные функции  Сi (t)  и подставим функцию  

X(t)=Φ(t)C(t)  в неоднородную систему уравнений: 

 
Поскольку вронскиан системы не равен нулю, то существует обратная матрица Φ

−1
(t). Умножая 

последнее уравнение слева на  Φ
−1

(t),  получаем: 

 
где C0 − произвольный постоянный вектор.  

 

Тогда общее решение неоднородной системы можно записать как 

 
Отсюда видно, что частное решение неоднородного уравнения представляется формулой 

 
Таким образом, решение неоднородного уравнения выражается в квадратурах для любой 

неоднородной части f(t). Во многих задачах соответствующие интегралы можно вычислить 

аналитически. Это позволяет выразить решение неоднородной системы в явном виде.  

 
1.8 Лекция №10 (2 часа).  
Тема: «Линейные системы дифференциальных уравнений с переменными коэффициентами» 
 
1.8.1 Вопросы лекции: 
1. Нормальная линейная система дифференциальных уравнений с переменными 

коэффициентами . 

2. Фундаментальная система решений и фундаментальная матрица. 

3. Определитель Вронского и формула Лиувилля-Остроградского. 

4. Метод вариации постоянных (метод Лагранжа). 

 

1.8.2 Краткое содержание вопросов: 
1. Нормальная линейная система дифференциальных уравнений с переменными 
коэффициентами. 
Нормальная линейная система дифференциальных уравнений с переменными коэффициентами  

записывается в виде 

 
где  xi (t) − неизвестные функции, которые являются непрерывными и дифференцируемыми на 

некотором интервале [a,b]. Коэффициенты  aij(t)  и свободные члены  fi (t)  представляют собой 

непрерывные функции, заданные на интервале [a,b].  

 

Используя векторно-матричные обозначения, данную систему уравнений можно записать как 

 
где 
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В общем случае матрица  A(t) и вектор-функции X(t),  f(t) могут принимать как действительные, 

так и комплексные значения. 

 

Соответствующая однородная система с переменными коэффициентами в векторной форме 

имеет вид 

 
 

2. Фундаментальная система решений и фундаментальная матрица. 
Вектор-функции  x1(t), x2(t), ..., xn(t) являются линейно зависимыми на интервале [a,b], если 

найдутся такие числа  c1, c2,..., cn, одновременно не равные нулю, что выполняется тождество 

 
Если указанное тождество выполняется лишь при условии 

 
то вектор-функции xi (t) называются линейно независимыми на заданном интервале.  

 

Любая система n линейно независимых решений  x1(t), x2(t),..., xn(t)  называется  

фундаментальной  системой  решений.  

 

Квадратная матрица Φ(t), столбцы которой образованы линейно независимыми решениями 

x1(t), x2(t),..., xn(t), называется фундаментальной матрицей системы уравнений.  Она имеет 

следующий вид: 

 
где xij (t) − координаты линейно независимых векторных решений  x1(t), x2(t),..., xn(t). 

 

Заметим, что фундаментальная матрица Φ(t) является невырожденной, т.е. для нее всегда 

существует обратная матрица Φ
−1

(t). Поскольку фундаментальная матрица содержит  n  

линейно независимых решений, то при ее подстановке в однородную систему уравнений 

получаем тождество 

 
Умножим это уравнение справа на обратную функцию Φ

−1
(t): 

 
Полученное соотношение однозначно определяет однородную систему уравнений, если задана 

фундаментальная матрица. 

 

Общее решение однородной системы выражается через фундаментальную матрицу в виде 

 
где C − n-мерный вектор, состоящий из произвольных чисел. 

 

Упомянем один интересный частный случай однородных систем. Оказывается, если 

произведение матрицы A(t) и интеграла от этой матрицы коммутативно, т.е. 
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то фундаментальная матрица Φ(t) для данной системы уравнений имеет вид 

 
Такое свойство выполняется в случае симметрических матриц и, в частности, в 

случае диагональных матриц. 

 
3. Определитель Вронского и формула Лиувилля-Остроградского. 
Определитель фундаментальной матрицы Φ(t) называется определителем Вронского  или  

вронскианом системы решений x1(t), x2(t),..., xn(t): 

 
Определитель Вронского удобно использовать для проверки линейной независимости решений. 

Справедливы следующие правила: 

• Решения  x1(t), x2(t),..., xn(t)  однородной системы уравнений являются  фундаментальной 

системой тогда и только тогда, когда соответствующий вронскиан  отличен от нуля в 

какой-нибудь точке t интервала [a,b]. 

• Решения  x1(t), x2(t),..., xn(t)  являются линейно зависимыми на интервале [a,b] тогда и 

только тогда, когда вронскиан тождественно равен нулю на этом интервале. 

Для определителя Вронского системы решений  x1(t), x2(t),..., xn(t)  справедлива формула 

Лиувилля-Остроградского: 

 
где  tr(A(τ)) − след матрицы A(τ), т.е. сумма всех диагональных элементов: 

 
Формула Лиувилля-Остроградского может применяться для построения общего решения 

однородной системы, если известно одно частное решение этой системы. 

 
4. Метод вариации постоянных (метод Лагранжа). 
Перейдем к рассмотрению неоднородных систем, которые в векторно-матричной форме 

записываются в виде 

 
Общее решение такой системы представляется в виде суммы общего решения  X0(t)  

соответствующей однородной системы и частного решения  X1(t) неоднородной системы, т.е. 

 
где Φ(t) − фундаментальная матрица, C − произвольный числовой вектор.  

 

Наиболее общим методом решения неоднородных систем является метод вариации 

постоянных (метод Лагранжа). При использовании этого метода вместо постоянного 

вектора C мы рассматриваем вектор C(t), компоненты которого являются непрерывно 

дифференцируемыми функциями независимой переменной t, т.е. полагаем 

 
Подставляя это выражение в неоднородную систему, находим неизвестный вектор C(t): 
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Учитывая, что матрица Φ(t) невырожденная, умножим последнее уравнение слева на  Φ

−1
(t): 

 
После интегрирования получаем вектор  C(t).  

 
 
1.9 Лекция №11,12 (4 часа).  
Тема: «Основные понятия теории устойчивости» 
 
1.9.1 Вопросы лекции: 
1. Устойчивость по Ляпунову. 

2. Асимптотическая и экспоненциальная устойчивость. 

3. Орбитальная устойчивость. 

4. Структурная устойчивость. 

5. Редукция к задаче об устойчивости нулевого решения 

6. Устойчивость линейных систем. 

7. Устойчивость по первому приближению. 

 

1.9.2 Краткое содержание вопросов: 
1. Устойчивость по Ляпунову. 
Предположим, что некоторое явление описывается системой  n  дифференциальных уравнений 

 
с начальными условиями 

 
Будем считать, что функции  fi (t, x1, x2,..., xn)  определены и непрерывны вместе со своими 

частными производными на множестве {t∈[t0,+∞), xi ∈R
n
}. Далее без ограничения общности 

полагаем, что начальный момент равен нулю:  t0=0.  

 

Систему дифференциальных уравнений удобнее записать в векторной форме: 

 
В реальных системах начальные условия задаются с определенной точностью. Поэтому 

возникает естественный вопрос: как малые изменения начальных условий влияют на поведение 

решения при больших временах - в предельном случае при t→∞? 

 

Если траектория движения системы мало изменяется при малых возмущениях начального 

положения, то говорят, что движение системы является  устойчивым.  

 

Строгое определение устойчивости в терминах ε-δ-нотации было предложено в 1892 году 

русским математиком А.М.Ляпуновым (1857-1918). Рассмотрим более подробно понятие 

устойчивости, введенное Ляпуновым. 

 

Устойчивость по Ляпунову 

Решение φ(t) системы дифференциальных уравнений 

 
с начальными условиями 

 
устойчиво (в смысле Ляпунова), если для любого ε > 0 найдется число δ=δ(ε)>0, такое, что если 

 
для всех значений t ≥ 0. В противном случае решение φ(t) называется неустойчивым.  
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В качестве нормы для измерения расстояния между точками можно использовать, 

например, эвклидову метрику ||xe|| или метрику Манхеттена ||xm||: 

 
В случае n=2 устойчивость по Ляпунову означает, что любая траектория X(t), которая 

начинается в  δ(ε)-окрестности точки  φ(0), остается внутри трубки с максимальным 

радиусом ε при всех  t ≥ 0 (рис. 1). 

 

 
Рис. 1. Устойчивость по Ляпунову.                Рис. 2. Асимптотическая устойчивость. 

 
Рис. 3. Экспоненциальная устойчивость.           Рис. 4. Орбитальная устойчивость. 

 
2. Асимптотическая и экспоненциальная устойчивость. 
Если решение φ(t) системы дифференциальных уравнений не только устойчиво в смысле 

Ляпунова, но и удовлетворяет соотношению 

 
при условии 

 
то говорят, что решение φ(t) является асимптотически устойчивым. В этом случае все 

решения, достаточно близкие к  φ(0) в начальный момент времени, постепенно сходятся к φ(t) 

при увеличении  t. Схематически это показано на рисунке 2.  

 

Если решение φ(t) асимптотически устойчиво и, кроме того, из условия 

 
следует, что 

 
для всех t ≥ 0, то говорят, что решение φ(t) является экспоненциально устойчивым. В таком 

случае все решения, близкие к φ(0) в начальный момент, сходятся к φ(t) со скоростью (большей 

или равной), которая определяется экспоненциальной функцией с параметрами α, β  (рис. 3).  

 

Общая теория устойчивости, помимо устойчивости в смысле Ляпунова, содержит много других 

концепций и определений устойчивого движения. В частности, важное значение имеют 

понятия  орбитальной и структурной устойчивости. 

 
3. Орбитальная устойчивость. 
Орбитальная устойчивость описывает поведение замкнутой траектории (орбиты) под 

действием малых внешних возмущений. 
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Рассмотрим автономную систему 

 
т.е. систему уравнений, правая часть которых не содержит в явном виде независимой 

переменной t. В векторном виде автономная система записывается как 

 
Пусть φ(t) − периодическое решение заданной автономной системы, т.е. имеет вид замкнутой 

траектории (орбиты). Если для любого  ε > 0  найдется постоянное число  δ=δ(ε)>0, такое, что 

траектория всякого решения  X(t), начинающегося в  δ-окрестности траектории  φ(t), остается в 

 ε-окрестности траектории φ(t) при всех t ≥ 0, то такая траектория  φ(t) называется  орбитально 

устойчивой (рис. 4). 

 

По аналогии с асимптотической устойчивостью в смысле Ляпунова вводится также понятие 

асимптотической орбитальной устойчивости. Такой тип движения реализуется, например, в 

системах, имеющих предельный цикл. 

 
4. Структурная устойчивость. 
Предположим, что у нас имеются две автономных системы с близкими свойствами - в том 

смысле, что их фазовые портреты содержат одинаковые особые точки и геометрически 

похожие траектории. Такие системы можно назвать структурно устойчивыми.  

 

В строгом определении требуется, чтобы данные системы были  орбитально топологически 

эквивалентными, т.е. должен существовать гомеоморфизм (это страшное слово означает 

взаимно-однозначное и непрерывное отображение), который преобразует семейство траекторий 

первой системы в семейство траекторий второй системы с сохранением направления движения. 

В этих терминах определение структурной устойчивости формулируется следующим образом. 

 

Рассмотрим автономную систему, которая в невозмущенном и возмущенном состоянии 

описывается, соответственно, двумя уравнениями: 

 
Если для любой ограниченной и непрерывно-дифференцируемой векторной функции g(X) 

существует числоε > 0, такое, что траектории невозмущенной и возмущенной системы 

являются орбитально топологически эквивалентными, то такая система называется  

структурно  устойчивой. 

 
5. Редукция к задаче об устойчивости нулевого решения. 
Пусть задана произвольная неавтономная система 

 
с начальным условием  X(0)=X0 (задача Коши), где вектор-функция  f  определена на 

множестве{t ∈[t0,+∞), xi ∈R
n
}.  

 

Предположим, что данная система имеет решение φ(t), устойчивость которого требуется 

исследовать. Анализ устойчивости упрощается, если рассмотреть возмущения 

 
для которых получается дифференциальное уравнение 

 
Очевидно, что последнему уравнению удовлетворяет нулевое решение 

 
что соответствует тождеству 



 26

 
Таким образом, исследование устойчивости решения φ(t) можно заменить на исследование  

устойчивости функции Z(t)  вблизи точки Z=0. 

 
6. Устойчивость линейных систем. 
Линейная система 

 
называется устойчивой, если все ее решения устойчивы в смысле Ляпунова.  

Оказывается, что неоднородная линейная система будет устойчивой при любом свободном 

члене f(t), если устойчиво нулевое решение соответствующей однородной системы 

 
Поэтому при изучении устойчивости в классе линейных систем достаточно ограничиться 

анализом однородных дифференциальных систем. В наиболее простом случае, когда матрица 

коэффициентов A является постоянной, условия устойчивости формулируются в 

терминах собственных значений матрицы A.  

 

Рассмотрим однородную линейную систему 

 
где A − постоянная матрица размером n × n. Такая система (она также является  автономной) 

имеет нулевое решение X(t)=0. Устойчивость данного решения определяется следующими 

теоремами. 

 

Пусть λi − собственные числа матрицы A. 

 

Теорема 1. Линейная однородная система с постоянными коэффициентами устойчива в смысле 

Ляпунова тогда и только тогда, когда все собственные значения  λi  матрицы  A  удовлетворяют 

соотношению 

 
причем у собственных значений, действительная часть которых равна нулю, алгебраическая и 

геометрическая кратность должны быть одинаковы (т.е. соответствующие жордановы 

клетки должны быть размера 1 × 1).  

 

Теорема 2. Линейная однородная система с постоянными коэффициентами 

является асимптотически устойчивой тогда и только тогда, когда все собственные значения  λi  

имеют отрицательные действительные части: 

 
Теорема 3. Линейная однородная система с постоянными коэффициентами неустойчива, если 

выполнено хотя бы одно из условий: 

• матрица A имеет собственное значение λi с положительной действительной частью; 

• матрица A имеет собственное значение λi с нулевой действительной частью, причем 

геометрическая кратность собственного числа λi меньше его алгебраической  кратности. 

Приведенные теоремы позволяют исследовать устойчивость линейных систем с постоянными 

коэффициентами, зная собственные значения и собственные векторы. Однако во многих 

случаях характер устойчивости можно определить, не решая систему уравнений, а 

используя критерии устойчивости. Одним из таких признаков устойчивости 

является критерий Рауса-Гурвица. Он позволяет судить об устойчивости системы, зная лишь 

коэффициенты характеристического уравнения матрицы A. 

 
7. Устойчивость по первому приближению. 
Рассмотрим нелинейную автономную систему 
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Предположим, что система имеет нулевое решение X = 0, которое будем исследовать на 

устойчивость.  

 

Считая функции fi (X) дважды непрерывно дифференцируемыми в некоторой окрестности 

начала координат, можно разложить правую часть в ряд Маклорена: 

 
где слагаемые Ri описывают члены второго (и более высокого) порядка малости относительно 

координатных функций  x1, x2,..., xn. 

 

Возвращаясь к векторно-матричной записи, получаем: 

 
где якобиан J определяется формулой 

 
Значения частных производных в этой матрице вычисляются в точке разложения в ряд, т.е. в 

данном случае в нуле.  

 

Во многих случаях вместо исходной нелинейной автономной системы можно рассматривать и 

исследовать на устойчивость соответствующую линеаризованную систему или систему 

уравнений первого приближения. Устойчивость такой системы определяется следующими 

признаками: 

• Если все собственные значения якобиана  J  имеют  отрицательные действительные 

части, то нулевое решение X=0 исходной системы и линеаризованной  

является асимптотически устойчивым. 

• Если хотя бы одно собственное значение якобиана  J  имеет положительную 

действительную часть, то нулевое решение X=0 исходной системы и линеаризованной 

системы является  неустойчивым. 

В критических случаях, когда собственные числа имеют действительную часть, равную нулю, 

следует использовать другие методы исследования устойчивости. 
 
 
1.10 Лекция №13,14 (4 часа).  
Тема: «Положения равновесия линейных автономных систем» 
 
1.10.1 Вопросы лекции: 
1. Основные типы точек равновесия. 

2. Устойчивый и неустойчивый узел. 

3. Дикритический узел. 

4. Вырожденный узел 

5. Седло. 

6. Устойчивый и неустойчивый фокус 
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7. Центр 

8. Вырожденная матрица 

9. Бифуркационная диаграмма. 

10. Алгоритм построения фазового портрета. 

 

1.10.2 Краткое содержание вопросов: 
1. Основные типы точек равновесия. 
Пусть задана линейная однородная система второго порядка с постоянными коэффициентами: 

 
Данная система уравнений является автономной, поскольку правые части уравнений не 

содержат в явном виде независимой переменной t.  

 

В матричной форме система уравнений записывается как 

 
Положения равновесия находятся из решения стационарного уравнения 

 
Это уравнение имеет единственное решение  X=0, если матрица  A  является  невырожденной, 

т.е. при условии  detA≠0. В случае вырожденной матрицы система имеет бесконечное 

множество точек равновесия.  

 

Классификация положений равновесия определяется собственными значениями  λ1,  λ2 

 матрицы  A. Числа  λ1,  λ2 находятся из решения характеристического уравнения 

 
В общем случае, когда матрица A является невырожденной, существует 4 различных типа точек 

равновесия: 

 

Точка равновесия Собственные значения  λ1, λ2   

1. Узел λ1, λ2  – действительные числа одного знака ( 021 >⋅λλ ) 

2. Седло λ1, λ2  – действительные числа разного знака ( 021 <⋅λλ ) 

3. Фокус λ1, λ2  – комплексные числа; действительные части равны и 

отличны от нуля ( 0ReRe 21 ≠= λλ ) 

4. Центр λ1, λ2  – чисто мнимые числа ( 0ReRe 21 == λλ ) 

 

Устойчивость положений равновесия определяется общими теоремами об устойчивости. Так, 

если действительные собственные значения (или действительные части комплексных 

собственных значений) отрицательны, то точка равновесия является асимптотически 

устойчивой. Примерами таких положений равновесия являются устойчивый узел  и  

устойчивый фокус. 

 

Если действительная часть хотя бы одного собственного числа положительна, то 

соответствующее положение равновесия является неустойчивым. Например, это может 

быть седло.  

Наконец, в случае чисто мнимых корней (точка равновесия является центром) мы имеем дело с 

классической устойчивостью в смысле Ляпунова.  

Наша дальнейшая цель состоит в том, чтобы изучить поведение решений вблизи положений 

равновесия. Для систем 2-го порядка это удобно делать графически с помощью фазового 

портрета, представляющего собой совокупность фазовых траекторий  на координатной 
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плоскости. Стрелки на фазовых траекториях показывают направление перемещения точки (т.е. 

некоторого конкретного состояния системы) с течением времени. 

Рассмотрим подробнее каждый тип точки равновесия и соответствующие фазовые портреты. 

 
2. Устойчивый и неустойчивый узел. 
Собственные значения λ1, λ2 точек типа "узел" удовлетворяют условиям: 

 
Здесь могут возникнуть следующие частные случаи.  

 

Корни λ1, λ2 различны (λ1 ≠ λ2) и отрицательны (λ1 < 0, λ2 < 0). Построим схематический 

фазовый портрет такой точки равновесия. Пусть для определенности |λ1| < |λ2|. Общее решение 

системы имеет вид 

 
где V1 = (V11, V21)

 T
, V2 = (V12, V22)

 T
 − собственные векторы, соответствующие числам λ1, λ2, 

а C1, C2 − произвольные константы. 

 

Поскольку оба собственных значения отрицательны, то решение  X=0  является  

асимптотически устойчивым. Такое положение равновесия называется  устойчивым узлом. 

При t→∞ фазовые кривые стремятся к началу координат  X=0. 

 

Уточним направление фазовых траекторий. Поскольку 

 
то производная  dy/dx  равна 

 
Разделим числитель и знаменатель на exp(λ1t) : 

 
В данном случае  λ2−λ1<0. Поэтому члены с экспоненциальной функцией в пределе 

при t →∞ стремятся к нулю. В результате при C1 ≠ 0 получаем: 

 
т.е. при t → ∞ фазовые траектории становятся параллельными собственному вектору V1.  

 

В случае C1 = 0 производная при любом t равна 

 
т.е. фазовая траектория лежит на прямой, направленной вдоль собственного вектора V2.  

 

Теперь рассмотрим поведение фазовых траекторий при t →−∞. Очевидно, что координаты  x(t), 

 y(t) стремятся к бесконечности, а производная  dy/dx  при  C2≠0  принимает следующий вид: 

 
т.е. фазовые кривые в бесконечно удаленных точках становятся параллельными вектору V2.  

 

Соответственно, при C2 = 0 производная равна 
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В этом случае фазовая траектория определяется направлением собственного вектора V1.  

 

С учетом рассмотренных свойств фазовых траекторий, фазовый портрет устойчивого 

узла имеет вид, показанный схематически на рисунке 6. 

 

                            
Рис. 6. Устойчивый узел.                          Рис. 7. Неустойчивый узел. 

 

Аналогичным образом можно исследовать поведение фазовых траекторий и для других типов 

положений равновесия. Далее, опуская детальный анализ, проведем основные качественные 

характеристики других точек равновесия. 

 

Корни λ1, λ2 различны (λ1 ≠ λ2) и положительны (λ1 > 0,  λ2 > 0). В этом случае точка  X=0  

называется неустойчивым узлом. Ее фазовый портрет показан на рисунке 7. 

 

Заметим, что в случае как устойчивого, так и неустойчивого узла фазовые траектории касаются 

прямой, которая направлена вдоль собственного вектора, соответствующего меньшему по 

абсолютной величине собственному значению λ. 

 
3. Дикритический узел. 
Пусть характеристическое уравнение имеет один нулевой корень кратности 2, т.е. рассмотрим 

случай λ1=λ2=λ≠0. При этом система имеет базис из двух собственных векторов, т.е. 

геометрическая кратность собственного значения  λ  равна 2. В терминах линейной алгебры это 

означает, что размерность собственного подпространства матрицы A равна 2:  dim ker A = 2. 

Такая ситуация реализуется в системах вида 

 
Направление фазовых траекторий зависит от знака λ. Здесь возможны следующие два случая:  

Случай λ1 = λ2 = λ <0. Такое положение равновесия называется  устойчивым дикритическим  

узлом (рисунок 8).  

Случай λ1 = λ2 = λ >0. Данная комбинация собственных значений соответствует неустойчивому  

дикритическому  узлу (рисунок 9). 

 

                       
Рис. 8. Устойчивый                        Рис. 9. Неустойчивый 

дикритический  узел.                        дикритический  узел. 

 



 31

 
4. Вырожденный узел. 
Пусть собственные значения матрицы A снова являются совпадающими:  λ1=λ2=λ≠0. В отличие 

от предыдущего случая дикритического узла предположим, что геометрическая кратность 

собственного значения (или другими словами размерность собственного подпространства) 

равна теперь 1. Это означает, что матрица A имеет лишь один собственный вектор V1. Второй 

линейно независимый вектор, необходимый для составления базиса, определяется как 

вектор W1, присоединенный к V1.  

 

В случае λ1 = λ2 = λ <0 точка равновесия называется  устойчивым вырожденным узлом (рисунок 

10).  

При λ1 = λ2 = λ >0 положение равновесия называется  неустойчивым вырожденным 

узлом (рисунок 11). 

                    
Рис. 10. Устойчивый                    Рис. 11. Неустойчивый 

вырожденный узел.                    вырожденный узел.    

 
5. Седло. 
Положение равновесия является седлом при условиях 

 
Поскольку одно из собственных значений положительно, то седло является неустойчивой 

точкой равновесия. Пусть, например,  λ1 <0,  λ2 >0. Собственные значения  λ1  и  λ2  

ассоциируются с соответствующими собственными векторами V1 и V2. Прямые, направленные 

вдоль собственных векторов V1, V2, называются сепаратрисами. Они являются асимптотами 

для остальных фазовых траекторий, имеющих форму гипербол. Каждой из сепаратрис можно 

сопоставить определенное направление движения. Если сепаратриса связана с отрицательным 

собственным значением λ1 < 0, т.е. в данном случае направлена вдоль вектора V1, то движение 

вдоль нее происходит к точке равновесия X = 0. И наоборот, при λ2 > 0, т.е. для сепаратрисы, 

связанной с вектором V2, движение направлено от начала координат. Схематически фазовый 

портрет седла показан на рисунке 12. 

 
Рис. 12. Седло. 
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6. Устойчивый и неустойчивый фокус. 
Пусть теперь собственные значения  λ1,  λ2  являются комплексными числами, действительные 

части которых не равны нулю. Если матрица A состоит из действительных чисел, то 

комплексные корни будут представляться в виде  комплексно-сопряженных чисел: 

 
Выясним, какой вид имеют фазовые траектории в окрестности начала координат. Построим 

комплексное решение X1(t), соответствующее собственному числу λ1=α+iβ: 

 
где V1 = U + iW − комплекснозначный собственный вектор, ассоциированный с 

числом λ1, U и W − действительные векторные функции. В результате преобразований 

получаем 

 
Действительная и мнимая части в последнем выражении образуют общее решение системы, 

которое имеет вид: 

 
Представим постоянные C1, C2 в виде 

 
где δ − некоторый вспомогательный угол. Тогда решение записывается как 

 
Таким образом, решение X(t) раскладывается по базису, заданному векторами U и W: 

 
где коэффициенты разложения µ(t), η(t) определяются формулами: 

 
Отсюда видно, что фазовые траектории представляют собой спирали. При α < 0 спирали будут 

закручиваться, приближаясь к началу координат. Такое положение равновесия 

называется устойчивым фокусом. Соответственно, при α > 0 мы имеем неустойчивый фокус.  

 

Направление закручивания спиралей можно определить по знаку коэффициента a21 в исходной 

матрице A. Действительно, рассмотрим производную dy/dt, например, в точке (1,0): 

 
Положительный коэффициент a21 >0 соответствует закручиванию спиралей против часовой 

стрелки, как показано на рисунке 13. При a21 < 0 спирали будут закручиваться по часовой 

стрелке (рисунок 14). 

 

Таким образом, с учетом направления закручивания спиралей, всего существует 4 различных 

вида фокуса. Схематически они показаны на рисунках 13-16. 
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Рис. 13. Устойчивый фокус.                   Рис. 14. Устойчивый фокус. 

       
Рис. 15. Неустойчивый фокус.                   Рис. 16. Неустойчивый фокус. 

 
7. Центр. 
Если собственные значения матрицы A являются число мнимыми числами, то такое положение 

равновесия называется центром. Для матрицы с действительными элементами мнимые 

собственные значения будут комплексно-сопряженными. В случае центра фазовые траектории 

формально получаются из уравнения спиралей при α =0 и представляют собой эллипсы, т.е. 

описывают периодическое движение точки на фазовой плоскости. Положения равновесия типа 

"центр" являются устойчивыми по Ляпунову.  

 

Возможны два вида центра, различающиеся направлением движения точек (рисунки 17, 18). 

Как и в случае спиралей, направление движения можно определить, например, по знаку 

производной dy/dt  в какой-либо точке. Если взять точку (1,0), то 

 
т.е. направление вращения определяется знаком коэффициента a21. 

         
Рис. 17. Центр.                              Рис. 18. Центр. 

 

Итак, мы рассмотрели различные типы точек равновесия в случае невырожденной 

матрицы A (detA ≠0). С учетом направления фазовых траекторий всего существует 13 

различных фазовых портретов, показанных, соответственно, на рисунках 6-18.  

Теперь обратимся к случаю вырожденной матрицы A. 
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8. Вырожденная матрица. 
Если матрица является вырожденной, то у нее одно или оба собственных значения равны нулю. 

При этом возможны следующие частные случаи:  

 

Случай λ1 ≠ 0, λ2 = 0.  

Здесь общее решение записывается в виде 

 
где V1=(V11, V21)

 T
, V2=(V12, V22)

T
 − собственные векторы, соответствующие числам λ1 и λ2. 

Оказывается, что в данном случае вся прямая, проходящая через начало координат и 

направленная вдоль вектора V2, состоит из точек равновесия (эти точки не имеют специального 

названия). Фазовые траектории представляют собой лучи, параллельные другому собственному 

вектору V1. В зависимости от знака λ1движение при  t→∞ происходит либо в направлении 

прямой V2 (рис.19), либо от нее (рис.20). 

 

                          
Рис. 19. Вырожденная матрица               Рис. 20. Вырожденная матрица 

λ1 ≠ 0, λ2 = 0.                                                                λ1 ≠ 0, λ2 = 0. 

 

Случай λ1 = λ2 = 0, dim ker A = 2.  

В этом случае размерность собственного подпространства матрицы равна 2 и, следовательно, 

существуют два собственных вектора V1 и V2. Такая ситуация возможна при нулевой 

матрице A. Общее решение выражается формулой 

 
Отсюда следует, что любая точка плоскости является положением равновесия системы.  

 

Случай λ1 = λ2 = 0, dim ker A = 1.  

Данный случай вырожденной матрицы отличается от предыдущего тем, что существует лишь  

1 собственный вектор (Матрица A при этом будет ненулевой). Для построения базиса в качестве 

второго линейно независимого вектора можно взять вектор W1, присоединенный к V1. Общее 

решение системы записывается в виде 

 
Здесь все точки прямой, проходящей через начало координат и направленной вдоль 

собственного вектора V1, являются неустойчивыми положениями равновесия. Фазовые 

траектории представляют собой прямые, параллельные V1. Направление движения вдоль этих 

прямых при t → ∞ зависит от постоянной C2: при C2 < 0движение происходит слева направо, а 

при C2 > 0 − в противоположную сторону (рис.21). 

 

Как видно, в случае вырожденной матрицы существует 4 различных фазовых портрета, Таким 

образом, линейная автономная система второго порядка допускает всего 17 различных фазовых 

портретов. 
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         Рис. 21. Вырожденная матрица                             Рис. 22. Бифуркационная кривая 

                 λ1 = λ2 = 0, dim ker A = 1 

 
9. Бифуркационная диаграмма. 
Выше мы рассмотрели классификацию положений равновесия линейной системы, основанную 

на собственных значениях. Однако тип точки равновесия можно определить и без вычисления 

собственных значений λ1, λ2, а зная лишь только определитель матрицы det A и ее след tr A. 

 

Напомним, что следом матрицы называется число, равное сумме диагональных элементов: 

 
Действительно, характеристическое уравнение матрицы имеет следующий вид: 

 
Его можно записать через определитель и след матрицы: 

 
Дискриминант этого квадратного уравнения определяется соотношением 

 
Таким образом, бифуркационная кривая, разграничивающая различные режимы устойчивости, 

представляет собой параболу на плоскости (tr A, det A) (рис.22): 

 
Выше параболы находятся точки равновесия типа фокус и центр. Точки типа "центр" 

расположены на положительной полуоси 0y, т.е. при условии tr A=0. Ниже параболы находятся 

точки типа "узел" или "седло". Сама парабола содержит дикритические или вырожденные узлы. 

 

Устойчивые режимы движения существуют в левом верхнем квадранте бифуркационной 

диаграммы. Остальные три квадранта соответствуют неустойчивым положениям равновесия. 

 
10. Алгоритм построения фазового портрета. 
Для схематического построения фазового портрета линейной автономной системы 2-го порядка 

с постоянными коэффициентами 

 
необходимо выполнить следующие действия: 

 

1. Найти собственные значения матрицы, решив характеристическое уравнение 

 
2. Определить тип положения равновесия и характер устойчивости. 

Примечание: Тип положения равновесия можно также определить на основе бифуркационной 

диаграммы (рис.22), зная след и определитель матрицы: 
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3. Найти уравнение изоклин: 

 
4. Если положение равновесия является узлом или седлом, то необходимо вычислить 

собственные векторы и начертить параллельные им асимптоты, проходящие через начало 

координат. 

5. Схематически начертить фазовый портрет. 

6. Показать направление движения по фазовым траекториям (это зависит от устойчивости или 

неустойчивости точки равновесия). В случае фокуса следует определить направление 

закручивания траекторий. Это можно сделать, вычислив вектор скорости (dx/dt, dy/dt) в 

произвольной точке, например, в точке (1,0). Аналогичным образом определяется направление 

движения, если положение равновесия является центром. 

 

Описанный алгоритм не является жесткой схемой. При исследовании конкретной системы 

вполне допустимы различные вариации и другие приемы, позволяющие в итоге изобразить 

фазовый портрет. 

 

 

1.11 Лекция №15 (2 часа).  
Тема: «Устойчивость в первом приближении» 
 
1.11.1 Вопросы лекции: 
1. Система  уравнений первого приближения. 

2. Точки равновесия. 

 

1.11.2 Краткое содержание вопросов: 
1. Система  уравнений первого приближения. 
Рассмотрим автономную систему n дифференциальных уравнений: 

 
В векторной форме она записывается как 

 
Будем считать, что данная система имеет положение равновесия  X=0, которое будем 

исследовать на устойчивость. Предполагается, что функции  fi (X) дважды непрерывно 

дифференцируемы в некоторой окрестности начала координат. Поэтому эти функции можно 

разложить в ряд Маклорена по переменным  xi, выделив линейные члены. В результате система 

уравнений будет иметь следующий вид: 

 
Здесь слагаемые Ri (x1, x2, ..., xn) описывают члены второго порядка малости относительно 

переменных x1, x2,..., xn.  

 

Полученная система в векторно-матричной записи выглядит так: 
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где якобиан J определяется матрицей 

 
Значения частных производных в этой матрице вычисляются в точке разложения в ряд, т.е. в 

данном случае при  X=0. 

 

При исследовании на устойчивость вместо исходной нелинейной системы мы можем 

рассматривать линеаризованную систему 

 
которая называется системой уравнений первого приближения по отношению к исходной 

системе.  

 

Вопрос о том, в каких случаях исходная нелинейная система и соответствующая система 

уравнений первого приближения имеют одинаковый характер устойчивости был 

разрешен А.М.Ляпуновым  (1857-1918). Справедливы следующие теоремы: 

 

Теорема Ляпунова об устойчивости по первому приближению.  

Если все собственные значения  λi  якобиана  J  имеют отрицательные действительные части, 

то нулевое решение  X=0  исходной системы и линеаризованной системы является 

 асимптотически устойчивым.  

 

Теорема Ляпунова о неустойчивости по первому приближению.  

Если хотя бы одно собственное значение  λi  якобиана  J  имеет  положительную 

действительную часть, то нулевое решение  X=0  исходной системы и линеаризованной 

системы является неустойчивым.  

 

В критических случаях, когда действительные части всех собственных значений  λi  якобиана  J 

неположительны, причем существует хотя бы одно собственное значение с нулевой 

действительной частью, нулевое решение может быть устойчивым или неустойчивым. В этом 

случае выяснить характер устойчивости в рамках первого приближения невозможно и 

необходимо использовать другие методы исследования устойчивости.  

 
2. Точки равновесия. 
Итак, приведенные теоремы Ляпунова позволяют исследовать устойчивость нулевого решения 

нелинейных систем в тех случаях, когда положение равновесия характеризуется собственными 

значениями с ненулевой действительной частью. Такие точки равновесия называются грубыми. 

Более точное определение формулируется так:  

 

Положение равновесия  X=0 автономной системы n-го порядка 

 
называется грубым, если соответствующий якобиан  J  имеет ровно n попарно различных 

собственных значений с ненулевой действительной частью.  

 

Заметим, что в случае системы 2-го порядка только следующие 3 типа точек равновесия 

являются грубыми: 
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Указанные типы точек характеризуются собственными значениями с ненулевой 

действительной частью. Напротив, точка равновесия типа "центр" не является грубой, 

поскольку она всегда имеет чисто мнимые собственные значения. 

 

Таким образом, область применения метода исследования устойчивости по первому 

приближению ограничена грубыми (или структурно устойчивыми) системами.  

 

 

1.12 Лекция №16 (2 часа).  
Тема: «Метод функций Ляпунова» 
 
1.12.1 Вопросы лекции: 
1. Определение функции Ляпунова. 

2. Теоремы об устойчивости. 

3. Теоремы о неустойчивости. 

 

1.12.2 Краткое содержание вопросов: 
1. Определение функции Ляпунова. 
Функция Ляпунова представляет собой скалярную функцию, заданную на фазовом 

пространстве системы, с помощью которой можно доказать устойчивость положения 

равновесия. Метод функций Ляпунова применяется для исследования устойчивости различных 

дифференциальных уравнений и систем. Ограничимся рассмотрением автономных систем 

 
имеющих нулевое положение равновесия  X ≡ 0. 

 

Предположим, что в некоторой окрестности U начала координат задана непрерывно 

дифференцируемая функция 

 
Пусть V(X)>0 для всех X∈U \{0}, а в начале координат V(0)=0. Такими функциями являются, 

например, функции вида 

 
Найдем полную производную функции V(X) по времени t: 

 
Это выражение можно записать в виде скалярного произведения двух векторов: 

 
Здесь первый вектор представляет собой градиент функции V(X), т.е. он всегда направлен в 

сторону наибольшего возрастания функции V(X). Как правило, функция V(X) возрастает при 

удалении от начала координат, т.е. при условии  |X|→∞. Второй вектор в скалярном 

произведении − это вектор скорости движения. В любой точке он направлен по касательной к 

фазовой траектории. 



 39

 

Рассмотрим случай, когда производная функции V(X) в окрестности U начала координат 

отрицательна: 

 
Это означает, что угол φ между вектором градиента и вектором скорости больше 90°. Для 

функции двух переменных это схематически показано на рисунках 28 и 29. 

                  
Рис. 28                                              Рис. 29 

 

Очевидно, что если производная  dV/dt  вдоль фазовой траектории всюду отрицательная, то 

траектория движения стремится к началу координат, т.е. система является устойчивой. В 

противном случае, когда производная  dV/dt  положительна, траектория стремится от начала 

координат, т.е. система является неустойчивой. 

 

Перейдем к строгим формулировкам.  

 

Функция V(X), непрерывно дифференцируемая в некоторой окрестности U начала координат, 

называется функцией Ляпунова автономной системы 

 
если выполнены следующие условия: 

1. V(X) > 0 для всех X ∈ U \{0}; 

2. V(0) = 0; 

3. dV/dt ≤ 0 для всех X ∈ U. 

2. Теоремы об устойчивости. 
Теорема об устойчивости в смысле Ляпунова. Если в некоторой окрестности U нулевого 

решения  X=0 автономной системы существует функция Ляпунова V(X), то положение 

равновесия  X=0  является устойчивым по Ляпунову.  

 

Теорема об асимптотической устойчивости. Если в некоторой окрестности U нулевого 

решения  X=0 автономной системы существует функция Ляпунова V(X) с отрицательно 

определенной производной dV/dt < 0 для всех X ∈ U \{0}, то положение равновесия 

 X=0 является  асимптотически устойчивым. 

 

Как видно, для асимптотической устойчивости нулевого решения требуется, чтобы полная 

производная  dV/dt была строго отрицательной (отрицательно определенной) в окрестности 

начала координат. 

 

3. Теоремы о неустойчивости. 
Теорема Ляпунова о неустойчивости. Пусть в окрестности U нулевого решения  X=0  

существует непрерывно дифференцируемая функция V(X), такая, что 
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1. V(0) = 0; 

2. dV/dt > 0. 

Если в окрестности U имеются точки, в которых V(X) > 0, то нулевое решение X=0  является  

неустойчивым.  

 

Теорема Четаева о неустойчивости. Пусть в окрестности U нулевого решения  X=0  автономной 

системы существует непрерывно дифференцируемая функция  V(X). Пусть 

окрестность U содержит подобласть U1, включающую начало координат (рис.30), такую, что 

1. V(X) > 0 для всех X ∈ U1\{0}; 

2. dV/dt > 0 для всех X ∈ U1\{0}; 

3. V(X) = 0 для всех X ∈ δU1, где δU1 обозначает границу подобласти U1. 

Тогда нулевое решение X = 0 системы неустойчиво. В этом случае фазовые траектории в 

подобласти U1 будут стремиться от начала координат.  

 

Таким образом, функции Ляпунова позволяют установить устойчивость или неустойчивость 

системы. Преимуществом данного метода является то, что здесь не требуется знать само 

решение X(t). Кроме того, данный метод позволяет исследовать устойчивость положений 

равновесия негрубых систем, − например, в случае, когда точка равновесия является центром. 

Недостаток заключается в том, что не существует общего метода построения функций 

Ляпунова. В частном случае однородных автономных систем с постоянными коэффициентами 

функцию Ляпунова можно искать в виде квадратичной формы. 

                         
Рис. 30                                                    Рис. 31 

 

 

1.13 Лекция №17 (2 часа).  
Тема: «Критерий Рауса – Гурвица» 
 
1.13.1 Вопросы лекции: 
1. Суть метода. 

2. Критерии устойчивости для систем 2-го, 3-го и 4-го порядков. 

 

1.13.2 Краткое содержание вопросов: 
1. Суть метода. 
Рассмотрим однородную систему дифференциальных уравнений n-го порядка с постоянными  

коэффициентами: 

 
где X(t) − n-мерный вектор, A − квадратная матрица размера n × n.  
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Нелинейную автономную систему можно также свести к такой системе, выполнив 

линеаризацию вблизи точки равновесия. Далее без потери общности будем считать, что точка 

равновесия находится в начале координат. Этого всегда можно достигнуть выбором 

подходящей системы координат. 

 

Устойчивость или неустойчивость положения равновесия определяется знаками 

действительных частей собственных значений матрицы A. Чтобы найти собственные 

значения λ, необходимо решить характеристическое уравнение 

 
которое сводится к алгебраическому уравнению n-ой степени 

 
Корни такого уравнения легко вычисляются в случае n = 2 и в некоторых случаях при  n≥3. В 

остальных случаях решение характеристического уравнения представляет значительные 

трудности. Более того, Н.Х.Абелем (1802-1829) была доказана теорема, согласно которой при n 

≥ 5 общее алгебраическое уравнение неразрешимо в радикалах, т.е. в общем случае не 

существует формул, выражающих корни уравнения через его коэффициенты в случае  n≥5.  

 

В такой ситуации большое значение имеют методы, позволяющие, не решая само 

характеристическое уравнение, определить, будут ли все его корни иметь отрицательную 

действительную часть, т.е. установить устойчивость системы. Одним из таких методов 

является критерий Рауса-Гурвица, который содержит необходимые и достаточные условия 

устойчивости системы.  

 

Рассмотрим снова характеристическое уравнение 

 
описывающее динамическую систему. Заметим, что необходимое условие 

устойчивости выполняется, если все коэффициенты уравнения ai > 0. Поэтому далее считаем, 

что коэффициент a0 > 0. Запишем так называемую матрицу Гурвица. Она составляется 

следующим образом. Главная диагональ матрицы содержит элементы  a1, a2,..., an. Первый 

столбец содержит числа с нечетными индексами a1, a3, a5,.... В каждой строке индекс каждого 

следующего числа (считая слева направо) меньше на 1 индекса предыдущего числа. Все 

остальные коэффициенты ai с индексами больше n или меньше 0 заменяются нулями. В 

результате получаем матрицу, представленную на рисунке 32: 

 
Рис. 32. 

 

Главные диагональные миноры ∆i матрицы Гурвица определяются формулами 

 
Сформулируем теперь критерий устойчивости Рауса-Гурвица : Для того, чтобы все корни 

характеристического уравнения имели отрицательные действительные части, необходимо и 

достаточно, чтобы все главные диагональные миноры матрицы Гурвица были положительны 

при условии a0 > 0, ∆1 > 0, ∆2 > 0, ..., ∆n > 0. Поскольку ∆n = an ∆n −1, то последнее неравенство 

можно записать как an > 0. 
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2. Критерии устойчивости для систем 2-го, 3-го и 4-го порядков. 
Для наиболее распространенных систем 2-го, 3-го и 4-го порядков получаем следующие 

критерии устойчивости: 

 

Для системы 2-го порядка условие устойчивости выглядит так: 

 
или 

 
то есть все коэффициенты в квадратном характеристическом уравнении должны быть 

положительными. Другими словами, для системы 2-го порядка необходимое условие 

устойчивости является одновременно и достаточным. Подчеркнем, что речь идет 

об асимптотической устойчивости  нулевого решения.  

 

Для системы 3-го порядка критерий устойчивости определяется неравенствами 

 
или 

 
Аналогично, для системы 4-го порядка получаем следующую совокупность неравенств: 

 
или 

 
Если все n−1 главных миноров Гурвица положительны, а минор n-го порядка равен нулю:  ∆n = 

0, то система находится на границе устойчивости. Так как ∆n = an ∆n −1, то возможны два случая: 

1. Коэффициент an =0. Это соответствует случаю, когда один из корней 

характеристического уравнения равен нулю. Система находится на 

границе апериодической устойчивости. 

2. Определитель ∆n −1 = 0. В этом случае существуют два комплексно-сопряженных 

мнимых корня. Система находится на границе колебательной устойчивости. 

Критерий устойчивости Рауса-Гурвица относится к семейству алгебраических критериев. Его 

удобно применять для анализа устойчивости систем низкого порядка. С увеличением порядка 

сложность вычислений заметно возрастает. В таких случаях может оказаться 

предпочтительным использование других критериев, например, теоремы Льенара-

Шипара или частотного критерия Найквиста-Михайлова.  

 

 
1.14 Лекция №18 (2 часа).  
Тема: «Первые интегралы» 
 
1.14.1 Вопросы лекции: 
1. Определение производной Ли и первого интеграла системы. 

2. Метод интегрируемых комбинаций. 

3. Симметричная форма системы дифференциальных уравнений. 
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1.14.2 Краткое содержание вопросов: 
1. Определение производной Ли и первого интеграла системы. 
Рассмотрим систему n-го порядка 

 
где  fi (t, x1, x1,..., xn)  являются непрерывно дифференцируемыми действительными функциями, 

заданными в некоторой области D ∈R
n+1

. В векторной форме данная система записывается как 

 
Пусть в области D определена также непрерывно дифференцируемая векторная 

функция U(t, X). Производная векторной функции U(t, X)  по направлению векторного поля  

f(t, X) (производная Ли) определяется выражением 

 
где grad U − градиент функции U, а (grad U, f) обозначает скалярное произведение 

векторов grad U и f.  

 

Введенная производная по направлению векторного поля (производная Ли) является 

обобщением понятия производной по постоянному направлению, которая широко используется 

при исследовании функций нескольких переменных.  

 

Если непостоянная функция U(t, X) удовлетворяет соотношению 

 
для всех X ∈ D, то она называется первым интегралом системы.  

 

В случае автономных систем (когда правые части уравнений fi не зависят явно от 

переменной t), первый интеграл определяется более простым выражением: 

 
где C − постоянное число. Далее мы ограничимся рассмотрением автономных систем.  

 

Как видно, первый интеграл остается постоянным вдоль любого решения X(t). Другими 

словами, фазовые траектории X(t) системы лежат на одной из поверхностей уровня первого 

интеграла U(X). В случае системы второго порядка это будут линии уровня первого интеграла. 

 

Предположим, что для автономной системы порядка n найдено k первых интегралов: 

 
Можно показать, что композиция 

 
где Φ − произвольная непрерывно дифференцируемая функция, также будет являться первым 

интегралом системы. В общем случае существует бесконечное множество первых интегралов. 

Из этого множества можно выделить функционально независимые первые интегралы.  

 

Первые интегралы  U1(X), U2(X),..., Uk(X), определенные в области D ∈R
n
, называются 

 функционально независимыми, если для всех X∈D ранг матрицы Якоби равен количеству 

функций k: 
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Для автономной системы 2-го порядка существует один независимый первый интеграл, 

который определяет решение системы в неявном виде. Для системы n-го порядка всего 

существует n − 1 независимых интегралов. Если известно k первых интегралов такой системы, 

то ее порядок можно понизить до (n−k). Нахождение первых интегралов представляет собой 

один из основных методов решения нелинейных автономных систем. 

 
2. Метод интегрируемых комбинаций. 
Для того, чтобы найти первые интегралы, уравнения системы с помощью подходящих 

арифметических операций преобразуются к виду 

 
где левая часть представляет собой производную Ли от некоторой функции U(X), а правая часть 

равна нулю. Первый интеграл U(X) находится в результате интегрирования данного выражения. 

Каждая интегрируемая комбинация позволяет определить один первый интеграл. 

 
3. Симметричная форма системы дифференциальных уравнений. 
Для нахождения первых интегралов иногда удобно записать исходную систему в 

т.н. симметричной форме: 

 
Здесь предполагается, что функции f1, f2, ..., fn в знаменателях не равны нулю в области 

определения D ∈R
n
.  

 

В такой записи некоторые пары отношений могут допускать интегрирование, например, 

методом разделения переменных. Другой способ решения системы в симметричной форме 

заключается в использовании свойства равных дробей 

 
где предполагается, что  λ1b1 + λ2b2 + ... + λnbn ≠ 0, а числа  λ1, λ2, ..., λn  выбираются таким 

образом, чтобы числитель представлял собой дифференциал знаменателя или был равен нулю.  
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2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 
 
2.1 Практическое занятие №1 (2 часа) 
Тема: «Линейные однородные дифференциальные уравнения п-го порядка с постоянными 

коэффициентами» 
 
2.1.1 Задание для работы: 
1. Линейное однородное дифференциальное уравнение n-го порядка с постоянными 

коэффициентами. 

2. Решение уравнений с различным набором корней характеристического уравнения. 

 
2.1.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение линейного однородного дифференциального уравнения n-го порядка с 

постоянными коэффициентами. 

2. Определение общего решения дифференциального уравнения n-го порядка. 

3. Определение частного решения дифференциального уравнения n-го порядка. 

4. Определение характеристического уравнения. 

5. Как зависит решение дифференциального уравнения от корней характеристического 

уравнения? 

 

Решение задач: 

1. Найти общее решение линейного однородного дифференциального уравнения с 

постоянными коэффициентами:  

016 =− yy IV
. 

022 =+′−′′−′′′ yyyy . 

03 =′′− yy IV
.  

012165 =−′+′′−′′′ yyyy . 

2. Найти частное решение линейного однородного дифференциального уравнения с 

постоянными коэффициентами:  

067 =′+′′−′′′ yyy ,  30)0(,0)0(,0)0( =′′=′= yyy . 

09 =′′′− yyV
,  0)0(,0)0(,0)0(,1)0(,1)0( ==′′′=′′−=′= IVyyyyy . 

09 =′+′′′ yy ,  18)0(,9)0(,0)0( −=′′=′= yyy . 

035 =+′−′′+′′′ yyyy ,  14)0(,1)0(,0)0( −=′′=′= yyy . 

 

2.1.3 Результаты и выводы: 
На данном практическом занятии студенты приобрели умения логически мыслить, употреблять 

математические понятия и символы для выражения количественных и качественных 

отношений. 

 

2.2 Практическое занятие №2 (2 часа) 
Тема: «Линейные однородные системы дифференциальных уравнений с постоянными 

коэффициентами» 
 
2.2.1 Задание для работы: 
1. Нормальная линейная система дифференциальных уравнений с постоянными 

коэффициентами n-го порядка. 

2. Решение методом исключения. 

 
2.2.2 Краткое описание проводимого занятия: 
Вопросы: 
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1. Определение линейной однородной системы дифференциальных уравнений с постоянными 

коэффициентами. 

2. Определение нормальной линейной системы дифференциальных уравнений. 

3. Суть метода исключения. 

 

Решение задач: 

1. Решить систему дифференциальных уравнений методом исключения: 

       

2. Решить систему уравнений методом исключения: 

       

3. Найти общее решение системы уравнений 

       

4. Решить систему дифференциальных уравнений методом исключения: 

       

5. Решить систему дифференциальных уравнений: 

       

 

2.2.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

 

2.3 Практическое занятие №3,4 (4 часа) 
Тема: «Метод собственных значений и собственных векторов» 
 
2.3.1 Задание для работы: 
1. Нахождение собственных значений и собственных векторов линейного преобразования. 

2. Нахождение фундаментальной системы решений однородной линейной системы. 

3. Решение уравнений с различным набором корней характеристического уравнения. 

 
2.3.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение собственных значений матрицы. 

2. Определение собственных векторов матрицы. 

3. Определение фундаментальной системы решений однородной линейной системы. 

4. Виды решений уравнений с различным набором корней характеристического уравнения. 

 

Решение задач: 

1. Найти общее решение системы дифференциальных уравнений методом собственных 

значений и собственных векторов 

       

2. Найти общее решение системы дифференциальных уравнений методом собственных 

значений и собственных векторов 

       

3. Найти общее решение системы дифференциальных уравнений методом собственных 

значений и собственных векторов 
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4. Найти общее решение системы дифференциальных уравнений методом собственных 

значений и собственных векторов 

       

5. Найти общее решение системы уравнений методом собственных значений и собственных 

векторов 

       

6. Найти общее решение системы дифференциальных уравнений методом собственных 

значений и собственных векторов 

       

 

2.3.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

 

2.4 Практическое занятие №5 (2 часа) 
Тема: «Построение общего решения системы уравнений методом неопределенных 

коэффициентов» 
 
2.4.1 Задание для работы: 
1. Решение линейных однородных систем  n  дифференциальных уравнений с постоянными 

методом неопределенных коэффициентов. Метод Эйлера.  

 
2.4.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение общего решения системы дифференциальных уравнений. 

2. Определение линейных однородных систем  n  дифференциальных уравнений. 

3. Суть метода неопределенных коэффициентов для линейных однородных систем  n  

дифференциальных уравнений. 

4. Суть метода Эйлера. 

 

Решение задач: 

1. Найти общее решение линейной системы уравнений  

       

2. Найти общее решение системы уравнений  

       

3. Найти общее решение системы дифференциальных уравнений  

       

 

2.4.3 Результаты и выводы: 
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На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

2.5 Практическое занятие №6,7 (4 часа) 
Тема: «Построение общего решения системы уравнений с помощью жордановой формы» 
 
2.5.1 Задание для работы: 
1. Жорданова форма матрицы. 

2. Присоединенные векторы и жордановы цепочки. 

3. Общее решение системы для матриц 2x2 и 3x3. 

4. Вычисление собственных и присоединенных векторов при различных размерностях матриц и 

собственных значений и построение общего решения. 

 
2.5.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение общего решения системы дифференциальных уравнений. 

2. Понятие жордановой формы матрицы. 

3. Определение присоединенных векторов. 

4. Определение жордановых цепочек. 

5. В чем состоят отличия в общем решении системы для матриц 2x2 и 3x3. 

 

Решение задач: 

1. Решить систему уравнений 

       

2. Найти общее решение системы уравнений 

       

3. Найти общее решение системы уравнений 

       

4. Решить систему уравнений 

       

5. Найти общее решение системы дифференциальных уравнений 

       

6. Найти общее решение системы уравнений 

       

7. Найти общее решение системы линейных дифференциальных уравнений 

       

8. Решить систему линейных однородных уравнений 

       

 

2.5.3 Результаты и выводы: 
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На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

 

2.6 Практическое занятие №8 (2 часа) 
Тема: «Метод матричной экспоненты» 
 
2.6.1 Задание для работы: 
1. Определение и свойства матричной экспоненты. 

2. Применение матричной экспоненты для решения однородных линейных систем с 

постоянными коэффициентами. 

3. Алгоритм решения системы уравнений методом матричной экспоненты. 

 

2.6.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение матричной экспоненты. 

2. Свойства матричной экспоненты. 

3. Алгоритм решения системы уравнений методом матричной экспоненты. 

 

Решение задач: 

1. Найти общее решение системы уравнений, используя матричную экспоненту: 

       

2. Решить систему уравнений методом матричной экспоненты: 

       

3. Решить систему уравнений с помощью матричной экспоненты: 

       

4. Решить систему уравнений с помощью матричной экспоненты: 

       

 

2.6.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

2.7 Практическое занятие №9 (2 часа) 
Тема: «Линейные неоднородные системы дифференциальных уравнений с постоянными 

коэффициентами» 
 
2.7.1 Задание для работы: 
1. Нормальная линейная неоднородная система n уравнений с постоянными коэффициентами. 

2. Метод исключения. 

3. Метод неопределенных коэффициентов. 

4. Метод вариации постоянных. 

 

2.7.2 Краткое описание проводимого занятия: 
Вопросы: 
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1. Определение линейной неоднородной системы дифференциальных уравнений с 

постоянными коэффициентами. 

2. Определение нормальной линейной неоднородной системы n уравнений с постоянными 

коэффициентами. 

3. Суть метода исключения. 

4. Суть метода неопределенных коэффициентов. 

5. Суть метода вариации постоянных. 

 

Решение задач: 

1. Решить систему уравнений методом исключения. 

       

2. Решить систему уравнений методом неопределенных коэффициентов: 

       

3. Решить систему уравнений методом неопределенных коэффициентов: 

       

4. Решить систему линейных дифференциальных уравнений методом неопределенных 

коэффициентов: 

       

5. Решить систему уравнений методом вариации постоянных: 

       

6. Решить линейную неоднородную систему методом вариации постоянных. 

       

 

2.7.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

 

2.8 Практическое занятие №10 (2 часа) 
Тема: «Линейные системы дифференциальных уравнений с переменными коэффициентами» 
 
2.8.1 Задание для работы: 
1. Нормальная линейная система дифференциальных уравнений с переменными 

коэффициентами . 

2. Фундаментальная система решений и фундаментальная матрица. 

3. Определитель Вронского и формула Лиувилля-Остроградского. 

4. Метод вариации постоянных (метод Лагранжа). 

 

2.8.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Определение линейной системы дифференциальных уравнений с переменными 

коэффициентами. 

2. Определение нормальной линейной неоднородной системы n уравнений с переменными 

коэффициентами. 

3. Определение фундаментальной системы решений и фундаментальной матрицы. 
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4. Определение определителя Вронского. 

5. Формула Лиувилля-Остроградского. 

6. Суть метода вариации постоянных (метод Лагранжа). 

 

Решение задач: 

1. Составить линейную систему уравнений, имеющей решения 

       

2. Найти фундаментальную матрицу системы дифференциальных уравнений 

       

убедившись в том, что матрица коэффициентов A(t) перестановочна со своим интегралом.  

3. Найти общее решение системы 

       

если известно одно решение: 

       

4. Найти общее решение линейной неоднородной системы уравнений 

       

 

2.8.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными уравнениями; приобрели 

умения логически мыслить, употреблять математические понятия и символы для выражения 

количественных и качественных отношений. 

 

 

2.9 Практическое занятие №11,12 (4 часа) 
Тема: «Основные понятия теории устойчивости» 
 
2.9.1 Задание для работы: 
1. Устойчивость по Ляпунову. 

2. Асимптотическая и экспоненциальная устойчивость. 

3. Орбитальная устойчивость. 

4. Структурная устойчивость. 

5. Редукция к задаче об устойчивости нулевого решения 

6. Устойчивость линейных систем. 

7. Устойчивость по первому приближению. 

 

2.9.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Понятие устойчивости по Ляпунову. 

2. Определение асимптотическая устойчивости.  

3. Определение экспоненциальной устойчивости. 

4. Определение орбитальной устойчивости. 

5. Определение структурной устойчивости. 

6. Понятие устойчивости по первому приближению. 

 

Решение задач: 
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1. Используя определение устойчивости по Ляпунову, показать, что нулевое решение системы 

устойчиво. 

       

2. Исследовать на устойчивость и асимптотическую устойчивость нулевое решение системы, 

общее решение которой имеет вид 

       

3. Определить, при каких значениях параметров  a, b  нулевое решение системы 

       

является асимптотически устойчивым. 

4. Исследовать на устойчивость и асимптотическую устойчивость нулевое решение системы, 

общее решение которой имеет вид 
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5. Исследовать на устойчивость и асимптотическую устойчивость нулевое решение системы, 

общее решение которой имеет вид 
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6. Определить, при каком значении параметра  b нулевое решение системы 
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является асимптотически устойчивым. 

7. Определить, при каком значении параметра a нулевое решение системы 
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является асимптотически устойчивым. 

8. Используя определение устойчивости по Ляпунову, показать, что нулевое решение системы 

устойчиво 


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2.9.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными и разностными 

уравнениями; основных приемах и методах анализа систем на устойчивость их 

функционирования; приобрели умения логически мыслить, употреблять математические 

понятия и символы для выражения количественных и качественных отношений. 

 

 

 

2.10 Практическое занятие №13,14 (4 часа) 
Тема: «Положения равновесия линейных автономных систем» 

 
2.10.1 Задание для работы: 
1. Основные типы точек равновесия. 

2. Устойчивый и неустойчивый узел. 

3. Дикритический узел. 

4. Вырожденный узел 

5. Седло. 
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6. Устойчивый и неустойчивый фокус 

7. Центр 

8. Вырожденная матрица 

9. Бифуркационная диаграмма. 

10. Алгоритм построения фазового портрета. 

 

2.10.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Основные типы точек равновесия. 

2. Определение устойчивого и неустойчивого узла. 

3. Определение  дикритического узла. 

4. Определение вырожденныого узла. 

5. Определение седла. 

6. Определение устойчивого и неустойчивого фокуса. 

7. Определение центра. 

8. Вырожденная матрица 

9. Понятие бифуркационной диаграммы. 

10. Алгоритм построения фазового портрета. 

 

Решение задач: 

1. Исследовать положения равновесия линейной автономной системы и начертить ее фазовый  

портрет. 

       

2. Исследовать положения равновесия динамической системы и схематически изобразить ее 

фазовый портрет. 

       

3. Исследовать точки равновесия и начертить фазовый портрет следующей системы: 

       

4. Исследовать устойчивость системы в зависимости от параметра a: 

       

5. Исследовать положения равновесия динамических систем и схематически изобразить их 

фазовые портреты. 
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2.10.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными и разностными 

уравнениями; основных приемах и методах анализа систем на устойчивость их 

функционирования; применении методов теории бифуркаций при анализе динамических 

систем; приобрели умения логически мыслить, употреблять математические понятия и 

символы для выражения количественных и качественных отношений. 
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2.11 Практическое занятие №15 (2 часа) 
Тема: «Устойчивость в первом приближении. Метод функций Ляпунова» 

 
2.11.1 Задание для работы: 
1. Система  уравнений первого приближения. 

2. Отыскание точек равновесия. 

3. Теоремы об устойчивости. 

4. Теоремы о неустойчивости. 

 

2.11.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Понятие устойчивости в первом приближении. 

2. Понятие система  уравнений первого приближения. 

3. Алгоритм отыскание точек равновесия. 

4. Алгоритм метода функций Ляпунова. 

5. Теоремы об устойчивости. 

6. Теоремы о неустойчивости. 

 

Решение задач: 

1. Исследовать на устойчивость по первому приближению нулевое положение равновесия 

системы 

       

2. Найти положение равновесия системы и исследовать его устойчивость по первому 

приближению. 

       

3. Определить положения равновесия системы и исследовать их на устойчивость. Построить 

схематический фазовый портрет соответствующей линеаризованной системы. 

       

4. Исследовать нулевое решение системы на устойчивость по первому приближению. 

       

5. Используя метод первого приближения, исследовать на устойчивость положение равновесия 

системы 

       

6. Используя систему уравнений первого приближения, исследовать на устойчивость нулевое 

решение системы 

       

7. Исследовать на устойчивость нулевое решение системы 

       

8. Исследовать на устойчивость нулевое решение системы 

       

9. Исследовать на устойчивость нулевое решение нелинейной системы 
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10. Исследовать на устойчивость нулевое решение системы, используя метод функций 

Ляпунова: 

       

11. Используя функцию Ляпунова, исследовать на устойчивость нулевое решение системы 

       

12. Исследовать на устойчивость нулевое решение системы 

       

 

2.11.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными и разностными 

уравнениями; основных приемах и методах анализа систем на устойчивость их 

функционирования; применении методов теории бифуркаций при анализе динамических 

систем; приобрели умения логически мыслить, составлять типовые математические модели 

для решения инженерных задач, употреблять математические понятия и символы для 

выражения количественных и качественных отношений; сформировали навыки на практике 

применения методов решения указанных задач с использованием проблемно-ориентированных 

прикладных программ. 

 

 

2.12 Практическое занятие №16 (2 часа) 
Тема: «Критерий Рауса – Гурвица» 

 
2.12.1 Задание для работы: 
1. Суть метода. 

2. Проверка критерия устойчивости для систем 2-го, 3-го и 4-го порядков. 

 

2.12.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Суть метода Рауса – Гурвица. 

2. Проверка критерия устойчивости для систем 2-го порядка. 

3. Проверка критерия устойчивости для систем 3-го порядка. 

4. Проверка критерия устойчивости для систем 4-го порядка. 

 

Решение задач: 

1. Исследовать устойчивость нулевого решения уравнения 

       

2. Исследовать на устойчивость нулевое решение дифференциального уравнения 

       

3. При каких значениях параметров α и β нулевое решение уравнения 

       

является асимптотически устойчивым?  

4. Исследовать, при каких значениях параметров α и β нулевое решение системы является 

асимптотически устойчивым: 

       

5. Исследовать на устойчивость нулевое решение дифференциальних уравнений. 
0226 =+′+′′+′′′ xxxx . 

0432 =+′+′′+′′′ xxxx . 
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064 =+′+′′+′′′+ xxxxx IV . 
0532 =+′+′′+′′′+ xxxxx IV . 

 

2.12.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными и разностными 

уравнениями; основных приемах и методах анализа систем на устойчивость их 

функционирования; приобрели умения логически мыслить, составлять типовые 

математические модели для решения инженерных задач, употреблять математические понятия 

и символы для выражения количественных и качественных отношений; сформировали навыки 

на практике применения методов решения указанных задач с использованием проблемно-

ориентированных прикладных программ. 

 

 

2.13 Практическое занятие №17 (2 часа) 
Тема: «Первые интегралы» 

 
2.13.1 Задание для работы: 
1. Производная Ли и первые интегралы системы. 

2. Решение методом интегрируемых комбинаций. 

3. Симметричная форма системы дифференциальных уравнений. 

 

2.13.2 Краткое описание проводимого занятия: 
Вопросы: 

1. Суть метода Рауса – Гурвица. 

2. Проверка критерия устойчивости для систем 2-го порядка. 

3. Проверка критерия устойчивости для систем 3-го порядка. 

4. Проверка критерия устойчивости для систем 4-го порядка. 

 

Решение задач: 

1. Исследовать устойчивость нулевого решения уравнения 

       

2. Исследовать на устойчивость нулевое решение дифференциального уравнения 

       

3. При каких значениях параметров α и β нулевое решение уравнения 

       

является асимптотически устойчивым?  

4. Исследовать, при каких значениях параметров α и β нулевое решение системы является 

асимптотически устойчивым: 

       

5. Исследовать на устойчивость нулевое решение дифференциальних уравнений. 
0226 =+′+′′+′′′ xxxx . 

0432 =+′+′′+′′′ xxxx . 
064 =+′+′′+′′′+ xxxxx IV . 
0532 =+′+′′+′′′+ xxxxx IV . 

 

2.13.3 Результаты и выводы: 
На данном практическом занятии студенты получили знания о основах теории динамических 

систем на плоскости и на прямой, описываемых дифференциальными и разностными 

уравнениями; основных приемах и методах анализа систем на устойчивость их 

функционирования; приобрели умения логически мыслить, составлять типовые 
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математические модели для решения инженерных задач, употреблять математические понятия 

и символы для выражения количественных и качественных отношений; сформировали навыки 

на практике применения методов решения указанных задач с использованием проблемно-

ориентированных прикладных программ. 

 

 


