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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 
 

1.1. Организационно-методические данные дисциплины 

№ 

п.

п. 

Наименование 

тем 

Общий объем часов по видам самостоятельной 

работы  

(из табл. 5.1 РПД) 
подготов

ка 

курсовой 

работы 

(проекта

) 

подготов

ка 

реферата

/ 

эссе 

Индивидуаль

ные 

домашние 

задания 

(ИДЗ) 

Самостоятель

ное изучение 

вопросов 

(СИВ) 

подготов

ка к 

занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1 

Численные 

методы решений 

алгебраических 

уравнений и 

систем 

алгебраических 

уравнений.  

Интерполирован

ие функций 

- - - 10 10 

2 

Численное 

дифференциров

ание и 

интегрирование. 

Численное 

решение 

дифференциаль

ных уравнений 

- -  8- 8 
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2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  САМОСТОЯТЕЛЬНОМУ 
ИЗУЧЕНИЮ ВОПРОСОВ 

2.1. Численные методы решений алгебраических уравнений и систем 

алгебраических уравнений.   

1. Произведение матриц. Элементарные преобразования над строками 

матрицы. 

2. Методы решения СЛАУ. 
3. Численные методы решения алгебраических уравнений. 

Наиболее распространенным методом решения СЛАУ является метод Гаусса, в основе 

которого лежит идея последовательного исключения неизвестных. Существуют 

различные схемы, реализующие данный метод. Рассмотрим одну из них – схему 

единственного деления. 

Для простоты ограничимся рассмотрением СЛАУ с четырьмя неизвестными: 

 
Пусть a11 не равно 0 (ведущий элемент). Разделив первое уравнение на a11, получим 

первую главную строку:  

 

где      (j = 2,3,4,5). 

Используя уравнение  можно исключить неизвестные x1 из 2-го, 

3-го и 4-го уравнений системы . Для этого последовательно умножаем уравнение на a21; 

a31; a41 и вычитаем результат из 2-го, 3-го и 4-го уравнений системы соответственно. 

В результате получим систему из трех уравнений: 

где коэффициенты       вычисляются по формуле 

(i = 2, 3, 4; j = 2, 3, 4, 5). Далее первое уравнение системы   делим на 

ведущий элемент и получаем 

где       , (j = 3, 4, 5). 

Аналогично предыдущему шагу, исключая x2, как и x1, получим систему 

 

Здесь     (i = 3, 4; j = 3, 4, 5). 

Разделив первое уравнение системы на , получим: 

 

где       (j = 4, 5). 

Теперь с помощью уравнения   исключим x3 из второго уравнения системы (,окончательно 

получим:  

где       (j=4, 5). 
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Таким образом, исходную систему  привели к составленной из главных строк  

эквивалентной системе с треугольной матрицей:  

Из последовательно находим  

Итак, решение СЛАУ распадается на два этапа: 

• прямой ход  

• обратный ход . 

 
Прямой ход: 

 

Из выражений вычислим коэффициенты : 

 

Аналогично вычислим коэффициенты при (i = 3, 4) и составим систему 

 
Разделив первое уравнение системы на , получим 

 

Значит,  

Из   вычислим для i = 3 и j = 3, 4, 5: 

 
Аналогично, вычислив коэффициенты для i = 4, получим: 

 
Разделив первое уравнение на a

(2)
33 = 16.425, получим: 

 

где  

По формуле находим коэффициенты : 

 
и записываем одно уравнение с одним неизвестным: 

1.1199786x4 = -1.1199768. 
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x1 + 0.5x2 - 0.05x3 + 0.5x4 = 1.35; 

x2 + 13.4x3 - 29x4 = 71.2; 

x3 - 1.72298x4 = 4.72298; 

1.11998x4 = -1.11998. 

На этом закончен прямой ход. 

Обратный ход: 

x4 = -1.000; 

x3 = 4.72298 - 1.72298 = 3; 

x2 = 71.2 - 13.4 * 3-29 = 2; 

x1 = 1.35 - 0.5 * 2 + 0.05 * 3 + 0.5 = 1. 

 Схема Гаусса с выбором главного элемента 
Рассмотрим СЛАУ 

 
Запишем расширенную прямоугольную матрицу коэффициентов системы: 

. Среди элементов матрицы aij (i,j = 1, ...n) выберем наибольший 

по модулю, называемый главным элементом. Пусть им будет, например, элемент apq. 

Строка, содержащая главный элемент, называется главной строкой. 

Далее вычисляем множители mi = aiq / apq для всех i неравных p.Затем преобразуем 

матрицу (3.18) следующим образом: из каждой i-ой неглавной строки вычитаем почленно 

главную строку, умноженную на mi. В результате получим матрицу, у которой все 

элементы q-го столбца за исключением apq, равны 0. Отбрасывая этот столбец и главную 

строку, получим новую матрицу M1 с числом строк и столбцов на 1 меньше. 

Над матрицей М1 повторяем те же операции, после чего получим матрицу M2 и т.д. Таким 

образом продолжаем до тех пор, пока не получим матрицу, содержащую одну строку из 

двух элементов, которую тоже считаем главной. 

Затем объединим все главные строки, начиная с последней. После некоторой 

перестановки они образуют треугольную матрицу, эквивалентную исходной. На этом 

заканчивается этап вычислений, называемый прямым ходом. Решив систему с 

полученной треугольной матрицей коэффициентов, найдём последовательно значения 

неизвестных xi (i = 1, 2, ..., n). На этом заканчивается обратный ход. 

Смысл выбора главного элемента состоит в том, чтобы сделать возможно меньшими 

числа mi и тем самым уменьшить погрешность вычислений. 

Пример Рассмотрим СЛАУ, состоящую из трех уравнений. Запишем расширенную 

матрицу 

  m2 = -1/6; m3 = -2/3. 

  m2 = -5/16. 

M2 = [ 87/96 174/32].  

x3 = 6; x1 = 3; x2 = -2. 

  Вычисление обратной матрицы методом Гаусса 
Пусть дана неособенная матрица A = [aij] (i,j = 1,2, ..., n).  
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Необходимо найти её обратную матрицу  A
-1

 = [xij] (i,j = 1,2, ..., n).  

Вспомним основное соотношение линейной алгебры:   A·A
-1

 = E,  

где Е – единичная матрица. 

Перемножая матрицы A и A
-1

, получаем n
2
 уравнений относительно n

2
 неизвестных xij: 

(i,j = 1, 2, ..., n),  где  

Таким образом, получим n систем линейных уравнений для j = 1, 2, ..., n, имеющих одну и 

ту же матрицу коэффициентов A и различные столбцы - свободные члены, которые можно 

одновременно решить методом Гаусса. 

Рассмотрим это подробнее, вычислив матрицу, обратную : 

 
Разделив все коэффициенты первой строки на a11 = 2, получим первую главную строку 

(обратите внимание, что с n столбцами свободных членов проводятся те же действия, 

что и с одним): 

1.0 0.5 -0.05 0.5 0.5 0 0 0 

 
1.0 13.4 -29 -0.6667 3.333 0 0 

 

 

. 

Для проверки перемножим полученную обратную матрицу и исходную (должны получить 

единичную): 

. 

Благодаря округлению, убеждаемся, что обратная матрица вычислена неточно. В 

дальнейшем можно показать, как методом простой итерации можно уточнить A
-1

. 
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2.2. Интерполирование функций 

1. Метод наименьших квадратов 

2.Интерполирование сплайнами. 

3. Интерполяционные многочлены 

При интерполировании многочленами с увеличением числа узлов интерполяции 

увеличивается и степень интерполяционного многочлена. При увеличении узлов 

интерполяции точность вычислений растет, но при этом величины производных 

увеличиваются еще быстрее, и в точках отличных от узлов интерполяции возрастает 

ошибка вычисления. В последние годы появилась идея интерполировать сплайнами. 

Сплайн в переводе на русский язык рейка. Можно интерполировать отрезками прямых, 

соединяющих узлы, но при этом интерполянтом является недостаточно гладкая кривая 

(имеет изломы). Появилась идея интерполировать кусками полиномов невысокой степени 

(второй или третьей). Так чтобы получилась непрерывная гладкая кривая, производные на 

стыках кусков должны совпадать.  

Будем говорить о приближении функции f(x) на 

отрезке [a, b]. Пусть на отрезке заданы узлы 

интерполяции a= x0< x1 <… < xn = b, в которых 

известны значения функции f(x) . Задача 

интерполирования сплайнами формулируется 

следующим образом: 

Найти функцию Sm(x), удовлетворяющую 

требованиям: 

1) Sm(x) на каждом из отрезков [xk-1, xk ], k = 1,…, n, 

является многочленом Pmk(x) m - й степени:  

Pmk(x) = amk x
m
 + am-1k x

m-1
+ …+ a1k x + a0k ; 

2) в узлах интерполяции xk имеет место равенство 

Sm(xk) = f(xk); k = 0, 1, …, n; 

3) Sm(x) на [a, b] имеет непрерывные производные до m - 1 -го порядка включительно, т.е. 

выполняются равенства 

Pmk(xk). 

Функция называется сплайном m - го порядка. 

В нашем распоряжении (m +1)n неизвестных коэффициентов ami искомых многочленов 

Pmk(x). Условия 2) и 3) дают нам 2 n + (m - 1)(n -1) = (m - 1)n + n +1 уравнений для 

определения этих коэффициентов. Недостающие m - 1 уравнений дописывают, 

накладывая краевые условия. Если m >1 , то для единственности Sm(x) следует задавать 

еще  условий, которые задаются на концах отрезка либо произвольно, либо из 

дополнительной информации о поведении функции . 

При m =1 получаем интерполяцию отрезками (метод ломаных). При этом Sm(x) 

равномерно сходится к непрерывной функции f(xk) на [a, b], если при n 

→ ∞. 

При m =2получаем интерполяцию дугами парабол (квадратичный сплайн). 

Наиболее часто используется кусочно-кубическая интерполяция, т.е. интерполяция 

кубическими сплайнами. 
Заметим, что при увеличении порядка m сплайна скорость сходимости повышается с 

увеличением порядка сплайна и гладкости f(x). 

Рассмотрим построение кубического сплайна S3(x) на отрезке [a, b], на котором заданы 

значения функции f(xk) в узлах x0, x1,… , xn. По определению S3(x) на отрезке [xk-1, xk ], k = 

1,…, n, является кубическим многочленом. Тогда имеем 

1) P3k(x) = a3k x
3
 + a2k x

2
+ a1k x + a0k ; x ∈ [xk-1, xk ]; k = 1,…, n; 

2) S3(xk) = f(xk); k = 0, 1, …, n; т.е. должны выполнятся условия: 

P3k(xk) = P3k+1(xk) = f(xk), k = 1, …, n-1; 
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P31(x0) =  f(x0), P3n(xn) =  f(xn); 

(всего 2n соотношений), или учитывая вид P3k(x): 

a3k xk
3
 + a2k xk

2
+ a1k xk + a0k  = f(xk), k = 1, …, n-1; 

a3k+1 xk
3
 + a2k+1 xk

2
+ a1k +1xk + a0k+1  = f(xk), k = 1, …, n-1; 

a31 xk
3
 + a21 xk

2
+ a11 xk + a01  = f(x0), 

a3n xk
3
 + a2n xk

2
+ a1n xk + a0n  = f(xn); 

3)  

 
т.е 

3a3k xk
2
 + 2a2k xk+ a1k  = 3a3k+1 xk

2
 + 2a2k+1 xk+ a1k +1, k = 1, …, n-1;  

6a3k xk + 2a2k   = 6a3k+1 xk + 2a2k+1 , k = 1, …, n-1. 

Наложим еще два краевые условия: 

 
Или 6a31x0 + 2a21   = 0, 

6a3n x n + 2a2n  = 0. 

Получим СЛАУ, для решения которой применим следующий прием. Обозначим через Mk 

вторую производную S3(x) во внутренней точке xk, т.е. 

Mk  = S3"( x k); k = 1, …, n-1. 

Учитывая непрерывность вторых производных Sm(x) в точках x k ; k = 1, …, n-1, для Mk 

имеем 

Mk  =6a3k x k + 2a2k , 

и 

Mk  =6a3k +1 x k + 2a2k+1. 

Так как S3"( x ) на каждом из интервалов (x k-1, x k) является линейной функцией от x: 

S3"( x ) = 6a3k x + 2a2k , x  ∈(x k-1, x k), 

и, следовательно, S3"( x ) может  быть представлена через значения Mk -1 и Mk  на концах 

 
или 

. 

Тогда 

. 

Дважды интегрируя полученное выражение для S3"( x ) и учитывая, что S3(x k-1) = f(xk-1), 

S3(x k) = f(xk), для S3 (x) при x ∈[x k-1, x k] получим следующее выражение: 

 
Дифференцируя S3(x) и учитывая непрерывность первых производных в точках x k ; k = 1, 

…, n-1, т.е. условия получим систему из n-1 уравнений 

относительно M0, M1, …, Mn: 

 
Учитывая, что M0 = 0, Mn = 0, приходим к системе  из n-1 уравнений с n-1 неизвестными 

M1, M2 …, Mn-1, матрица которой симметрична и трехдиагональна. 
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Решая, полученную СЛАУ, методом Гаусса или методом прогонки, получим значения M1, 

M2 …, Mn-1. Подставив эти значения в (5.1) определим многочлены P3k(x), k = 1, …, n, т.е. 

определим сплайн S3(x). 

Теорема 4.1. Из всех функций, удовлетворяющих условиям 2)-3) сплайн -го порядка дает 

минимум для функционала  

.Алгоритм интерполяции функции кубическими сплайнами. 

Ввод: Узлы интерполяции X[i], Y[i]' i = 0,1,…, n. Точка x. 

Вывод: Вычислить c:= S3(x). 

Цикл по j:= 1… n выполнить; 

       если  i =1, то A[i]:= X[i]/6,B[i]:= (X[i+1])/3;C[i]:= (X[i+1]-X[i])/6;D[i]:= (Y[i+1]-Y[i])/ 

(X[i+1]-X[i]) - Y[i]/ Y[i]; 

иначе если  i =n, то A[i] := (X[i]-X[i-1])/6,B[i]:= (-X[i-1])/3;C[i]:=(-X[i])/6; D[i]:= Y[i]/ X[i] - 

(Y[i]-Y[i-1])/ (X[i]-X[i-1]); 

иначе A[i] := (X[i]-X[i-1])/6; B[i]:= (X[i+1] -X[i-1])/3; C[i]:= (X[i+1]-X[i])/6; D[i]:= (Y[i+1]-

Y[i])/ (X[i+1]-X[i]) -- (Y[i]-Y[i-1])/ (X[i]-X[i-1]); 

конец цикла по i; 

Цикл по j:= 1… n выполнить; 

если j=1 то P[j]:= -C[j]/B[j]; L[j]:= -D[j]/B[j]; 

иначе P[j]:= -C[j]/(B[j]+A[j]*P[j-1]; L[j]:= (D[j]-A[j]*L[j-1])/(B[j]+A[j]*P[j-1]); 

конец цикла по j; 

M[0]:=0; M[n]:=0; 

Цикл по j:= n-1… 1 выполнить; 

если j=n-1, то M[j]:= L[j]; 

иначе M[j]:= P[j]*M[j+1]+l[j]; 

конец цикла по j; 

Цикл по k:= 1… n выполнить; 

если x>=X[k-1] и x<=X[k] , то  

          если k=1, то с:= M[k-1]*( X[k]-x)* ( X[k]-x)* ( X[k]-x)/ ((X[k]-X[k-1])*6); 

c:=c+ M[k]*( x- X[k-1])* (x- X[k-1])* (x- X[k-1])/ ((X[k]-X[k-1])*6); 

c:=c+ (Y[k-1]-M[k-1]*( X[k]- X[k-1])* (x- X[k])* (X[k]-x))/ ((X[k]-X[k-1])*6); 

c:=c+ (Y[k]-M[k]*( X[k]- X[k-1])* (x- X[k-1])* (x-X[k-1]))/ ((X[k]-X[k-1])*6); конец 

конец цикла по k; 
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2.3. Численное дифференцирование и интегрирование. 

1. Задача численного дифференцирования и её решение. 

2. Основные квадратурные формулы. Методы трапеций, Симпсона, Ньютона.  

3.Оценка точности численного интегрирования. Выбор оптимального шага при численном 

дифференцировании и интегрировании.  

Задача численного интегрирования состоит в замене исходной подинтегральной 

функции f(x), для которой трудно или невозможно записать первообразную в аналитике, 

некоторой аппроксимирующей функцией φ(x). Такой функцией обычно является полином 

(кусочный полином) . То есть: ,  

 где – априорная погрешность метода на интервале интегрирования,  

а r(x) – априорная погрешность метода на отдельном шаге интегрирования. 

Обзор методов интегрирования. 

Методы вычисления однократных интегралов называются квадратурными (для кратных 

интегралов – кубатурными). 

1. Методы Ньютона-Котеса. Здесь φ(x) – полином различных степеней. Сюда 

относятся метод прямоугольников, трапеций, Симпсона.  

2. Методы статистических испытаний (методы Монте-Карло). Здесь узлы сетки 

для квадратурного или кубатурного интегрирования выбираются с помощью 

датчика случайных чисел, ответ носит вероятностный характер. В основном 

применяются для вычисления кратных интегралов.  

3. Сплайновые методы. Здесь φ(x) – кусочный полином с условиями связи между 

отдельными полиномами посредством системы коэффициентов.  

4. Методы наивысшей алгебраической точности. Обеспечивают оптимальную 

расстановку узлов сетки интегрирования и выбор весовых коэффициентов ρ(x) в 

задаче . Сюда относится метод Гаусса-Кристоффеля (вычисление 

несобственных интегралов) и метод Маркова.  

Метод прямоугольников. 

Различают метод левых, правых и средних прямоугольников. Суть метода ясна из 

рисунка. На каждом шаге интегрирования функция аппроксимируется полиномом 

нулевой степени – отрезком, параллельным оси абсцисс. 

 

Выведем формулу метода прямоугольников из анализа разложения функции f(x) в ряд 

Тейлора вблизи некоторой точки x = xi. 

… 
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Рассмотрим диапазон интегрирования от xi до xi+h, где h – шаг интегрирования. 

Вычислим …= 

=  = . Получили формулу правых (или левых) 

прямоугольников и априорную оценку погрешности r на отдельном шаге интегрирования. 

Основной критерий, по которому судят о точности алгоритма – степень при величине 

шага в формуле априорной оценки погрешности. 

В случае равного шага h на всем диапазоне интегрирования общая формула имеет вид 

. 

Здесь n – число разбиений интервала интегрирования, 

. Для справедливости существования этой оценки 

необходимо существование непрерывной f'(x). 

Метод средних прямоугольников. Здесь на каждом интервале значение функции считается 

в точке , то есть . Разложение функции в ряд Тейлора 

показывает, что в случае средних прямоугольников точность метода существенно выше: 

. 

Аппроксимация в этом методе осуществляется полиномом первой степени. Суть метода 

ясна из рисунка. 

На единичном интервале 

.  

В случае равномерной сетки (h = const ) 

 

При этом , а . 

Погрешность метода трапеций в два раза выше, чем у метода средних прямоугольников! 

Однако на практике найти среднее значение на элементарном интервале можно только у 

функций, заданных аналитически (а не таблично), поэтому использовать метод средних 
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прямоугольников удается далеко не всегда. В силу разных знаков погрешности в 

формулах трапеций и средних прямоугольников истинное значение интеграла обычно 

лежит между двумя этими оценками. 

Особенности поведения погрешности. 
Казалось бы, зачем анализировать разные методы интегрирования, если мы можем 

достичь высокой точности, просто уменьшая величину шага интегрирования. Однако 

рассмотрим график поведения апостериорной погрешности R результатов численного 

расчета в зависимости от числа n разбиений интервала (то есть при шаг . На 

участке (1) погрешность уменьшается в связи с уменьшением шага h. 

Но на участке (2) начинает доминировать вычислительная 

погрешность, накапливающаяся в результате многочисленных 

арифметических действий. Таким образом, для каждого метода 

существует своя Rmin, которая зависит от многих факторов, но прежде 

всего от априорного значения погрешности метода R. 

Уточняющая формула Ромберга. 

Метод Ромберга заключается в последовательном уточнении значения интеграла при 

кратном увеличении числа разбиений. В качестве базовой может быть взята формула 

трапеций с равномерным шагом h. 

Обозначим интеграл с числом разбиений n = 1 как . 

Уменьшив шаг в два раза, получим . 

Если последовательно уменьшать шаг в 2
n
 раз, получим рекуррентное соотношение для 

расчета . 

Пусть мы вычислили четыре раза интеграл с n от 1 до 4. Представим следующий 

треугольник: 

R(1;1) 

R(2;1) R(2;2) 

R(3;1) R(3;2) R(3;3) 

R(4;1) R(4;2) R(4;3) R(4;4) 

В первом столбце стоят значения интеграла, полученные при последовательном удвоении 

числа интервалов. Следующие столбцы – результаты уточнения значения интеграла по 

следующей рекуррентной формуле: 

. 
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2.4. Приближённое вычисление обыкновенных дифференциальных уравнений. 

1. Методы решения линейной краевой задачи для уравнений второго порядка: методы 

прогонки, коллокации, Галеркина-Ритца.  

2. Решение ДУ с помощью рядов. 

Метод коллокаций  

Пусть необходимо определить функцию  удовлетворяющую линейному 

дифференциальному уравнению 

(2.50) 

и линейными краевыми условиями 

(2.51) 

причем  

Выберем некоторую совокупность линейно независимых функций 

(2.52) 

которую назовем системой базисных функций. 

Пусть функция удовлетворяет неоднородным краевым условиям 

(2.53) 

 

а остальные функции удовлетворяют соответствующим однородным краевым условиям: 

. (2.54) 

Если краевые условия (2.51) однородны (A = B = 0) то можно положить и 

рассматривать лишь систему функций .  

Будем искать приближенное решение краевой задачи (2.50) (2.51) в виде линейной 

комбинации базисных функций 

. (2.55) 

Тогда функция y удовлетворяет краевым условиям (2.51). В самом деле в силу линейности 

краевых условий имеем 

 

и аналогично  

Составим функцию . Подставляя сюда вместо y выражение (2.55) будем 

иметь 

.(2.56) 

Если при некотором выборе коэффициентов ci выполнено равенство 

при  

то функция y является точным решением краевой задачи (2.50) (2.51). Однако подобрать 

так удачно функции и коэффициенты ci в общем случае не удается. Поэтому 

ограничиваются тем что требуют чтобы функция обращалась в нуль в 
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заданной системе точек из интервала [a b ] которые называются точками 

коллокации. Сама функция R называетсяневязкой уравнения (2.50). Очевидно что в 

точках коллокации дифференциальное уравнение (2.50) будет удовлетворено точно и 

невязка в этих точках равна нулю. 

Итак метод коллокации приводит к системе линейных уравнений 

. (2.57) 

Из системы (2.57) в случае ее совместности можно определить коэффициенты 

после чего приближенное решение краевой задачи дается формулой (2.55). 

Пример .Методом коллокации и методом сеток решить краевую задачу 

(2.58) 

1. Метод коллокаций. 

В качестве базисных функций выберем полиномы 

. 

Эти полиномы удовлетворяют краевым условиям: За точки коллокации 

возьмем следующие абсциссы: 

 
Ограничиваясь двумя базисными функциями положим 

 

Найдем функцию  

(2.59) 

В точках коллокации получим 

. 

Подставляя сюда (2.59) найдем 

(2.60) 

Решив эту систему определим коэффициенты : 

= 0.957 = − 0.022. 

Следовательно приближенное решение будет иметь вид 

.  

Например при x = 0получим y (0)= 0.957. 

2. Метод сеток. 

Для грубого решения выбираем шаг h = 1/2 (см. рис. 2).  
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Рис. 2. Иллюстрация к методу сеток  

Полагая ввиду симметрии уравнения и краевых 

условий будем иметь: 

(2.61) 

Таким образом нужно определить лишь две ординаты y 0 и . Полагая x = 0и пользуясь 

симметричными формулами для производных 

 
получим: 

 
Аналогично при x = 1/2 то есть при i = 1 получаем 

 
Учитывая теперь (2.61) найдем систему 

 
Решая эту систему отыщем y 0 = 0.967 y 1 = 0.721. Итак сравним: метод коллокации дает y 

0 = 0.957 а метод сеток y 0 = 0.967. 

Метод Галеркина  
Пусть дано дифференциальное уравнение с линейными краевыми условиями 

(2.62) 

(2.63) 

 

Будем искать приближенное решение этой краевой задачи в виде суммы 

(2.64) 

где – некоторая непрерывная функция удовлетворяющая неоднородным краевым 

условиям (2.63) а – какая-то система линейно 

независимых функций удовлетворяющих однородным краевым условиям 

(2.65) 

и кроме того функции при образуют в классе функций c 2 [a b ] 
удовлетворяющих условиям (2.65) полную систему. 

Заметим что свойство полноты понимается следующим образом. 

Обозначим через G класс функций y ( x ) принадлежащих c 2 [a b ](то есть дважды 

непрерывно дифференцируемых на [a b ]) и удовлетворяющих граничным условиям 

(2.65). Говорят что система функций полна в классе G если для любого и 
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любой функции можно указать такое n и такие параметры что имеет 

место неравенство 

 

где  

Это означает что для любой допустимой функции найдется такая функция 

которая на [a b ]будет сколь угодно точно приближать функцию y ( x ) вместе с ее 

производными и . 

Докажем что если для некоторой функции F ( x ) и полной системы функций 

выполняется соотношение ортогональности 

(2.66) 

то функция . Для этого из полной системы последовательной 

ортогонализацией построим полную ортогональную систему  

 

причем иначе были бы линейно зависимы. Разлагая по новой системе 

функцию F ( x ) найдем 

 
Подставляя это разложение в соотношение ортогональности (2.66) придем к равенству 

(2.67) 

Вычислим последний интеграл: 

 

 

так как  

Таким образом уравнение (2.67) принимает вид 

. 

Полагая здесь k = 1 получим и так как то . Полагая k = 2 

получим и так далее. Следовательно все коэффициенты в разложении функции 

F ( x ) равны нулю и поэтому F ( x ) тождественно равна нулю что и требовалось доказать. 

Возвращаясь теперь к задаче (2.62) (2.63) видим что если бы мы нашли такую функцию y ( 

x ) удовлетворяющую условиям (2.63) и чтобы было ортогонально 

при любых то это означало бы что и задача (2.62) (2.63) 

была бы решена. Если же ортогональность есть только при то в разложении 
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по системе входят и более старшие коэффициенты то есть 

 
Метод Галеркина состоит в том что решение задачи (2.62) (2.63) ищется в виде (2.64) 

причем требуют ортогональности к функциям полной системы для 

то есть 

(2.68)   где  

Это дает алгебраическую систему уравнений для определения коэффициентов a k . Найдя 

из нее коэффициенты получим приближенное решение. 

Если оператор нелинейный то система (2.68) тоже будет нелинейной и решение ее 

весьма затруднительно. Если же оператор линейный то система (2.68) также будет 

линейной и можно решать задачу с большим числом коэффициентов. 

В методе Галеркина функция должна удовлетворять краевым условиям (2.63). 

Поэтому можно выбрать в виде 

 

и коэффициенты найти как решение системы уравнений 

 

Таким же образом отыскиваются функции . Выберем например полную систему 

в виде многочленов последовательных степеней: 

. 

Коэффициенты найдем из однородных краевых условий (2.65) 

 при всех . 

Так для и условия (2.65
а
 ) принимают вид: 

 

В этой системе из двух уравнений три неизвестных: и . Одну из них можно 

выбрать произвольно положив например . Аналогично отыскивают 

коэффициенты для . 

Для простых условий вида то есть функции 

можно вычислять по правилу 

Или    

Отметим что при нелинейном краевом условии вида например линейная 

комбинация (2.64) с произвольными коэффициентами ak уже не будет удовлетворять 

этому краевому условию. Поэтому метод Галеркина применим только к задачам с 

линейными краевыми условиями хотя допустим и нелинейный оператор L . 
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3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 
 

3.1 Практические занятия по теме «Численные методы решений 

алгебраических уравнений и систем алгебраических уравнений».   

1.Источник ошибок. Распространение ошибок.  

2.Графы вычислительных процессов. 

3.Округление чисел. Значащие и верные цифры. Общая формула погрешностей. 

4.Простейшие операции над матрицами, векторами и определителями в среде 

Mathcad 

5.Методы решения СЛАУ. 

6. Метод простых итераций. 

7. Решение СЛАУ методом Зейделя. 

8.Численные методы решения алгебраических уравнений.  

При подготовке к вопросам акцентировать внимание необходимо на следующем:  

1. Произведение матриц. Элементарные преобразования над строками матрицы. 

2. Методы решения СЛАУ. 

3. Численные методы решения алгебраических уравнений. 

4.К какому типу методов — прямым или итерационным — относится метод Гаусса? 

5.В чем заключается прямой и обратный ход в схеме единственного деления? 

6.Как организуется контроль над вычислениями в прямом и обратном ходе? 

7.Как строится итерационная последовательность для нахождения решения системы 

линейных уравнений с неизвестными?  

8.Как формулируются достаточные условия сходимости итерационного процесса? Как эти 

условия связаны выбором метрики пространства? 

9.В чем отличие итерационного процесса метода Зейделя от аналогичного процесса 

метода простой итерации? 

10.Какие преимущества дает применение метода ортогонализации для решения системы 

линейных уравнений? 

11.В чём заключается этап отделения корней при исследовании численных методов 

решения уравнения? 

12.Каким образом графическое отделение корней уточняется с помощью вычислений? 

3.2 Практические занятия по теме «Интерполирование функций» 

1. Общая задача и алгоритмы приближения.  

2.Метод наименьших квадратов.  

3.Степенной и ортогональные базисы. Линейный вариант МНК 

4. Приближение и интерполяция функций 

При подготовке к вопросам акцентировать внимание необходимо на следующем:  
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1. . В чем особенность приближения таблично заданной функции методом 

интерполирования? 

2. Как обосновывается существование и единственность интерполяционного многочлена? 

Как связана его степень с количеством узлов интерполяции? 

3. Как  строятся  интерполяционные  многочлены  Лагранжа  и Ньютона? В чем 

особенности этих двух способов интерполяции? 

4. Как производится оценка погрешности метода интерполяции в случае, когда:  

а)  интерполируемая функция задана аналитически;  

б) интерполируемая функция задана таблицей? 

5. Как используется  метод интерполирования для уточнения таблиц функций? 

3.3. Практические занятия по теме «Численное дифференцирование и 
интегрирование» 

1.Задача численного дифференцирования и её решение.  

2.Численное интегрирование. 

3.Основные квадратурные формулы. Методы трапеций, Симпсона, Ньютона. 

4.Оценка точности численного интегрирования. Выбор оптимального шага при 

численном дифференцировании и интегрировании.  

При подготовке к вопросам необходимо акцентировать внимание на следующем: 

1. В чем особенность задачи численного дифференцирования?  

2. Как влияет на точность численного интегрирования величина шага h ? Каким 

способом можно прогнозировать примерную величину шага для достижения 

заданной точности интегрирования?  

3. Можно ли добиться неограниченного уменьшения погрешности интегрирования 

путем последовательного уменьшения шага? 

 


