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1.1 Организационно-методические данные дисциплины 

 

 

№ 

п.п. 

 

Наименование 

темы 

Общий объем часов по видам 

самостоятельной работы 

Самостоятельное 

изучение вопросов 

(СИВ) 

Подготовка к 

занятиям (ПкЗ) 

1. Введение в теорию линейных систем 2 7 

1.1 Дифференциальные уравнения 1 3 

1.2 Системы дифференциальных уравнений 1 4 

2. Системы уравнений. Методы их решения 2 7 

2.1 Линейные однородные системы 

дифференциальных уравнений 
1 4 

2.2 Линейные неоднородные системы 

дифференциальных уравнений 
1 3 

3. Теория устойчивости 2 6 

3.1 Устойчивость линейных систем 2 6 

4. Теория устойчивости. Первые интегралы 2 6 

4.1 Устойчивость в первом приближении 1 4 

4.2 Первые интегралы 1 2 

 

 

 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ 
ВОПРОСОВ 

 

2.1 Введение в теорию линейных систем 
 
2.1.1 Дифференциальные уравнения 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Решение линейных однородных дифференциальных уравнений п-го порядка с постоянными 

коэффициентами зависит от  набора корней характеристического уравнения. 

 
2.1.2 Системы дифференциальных уравнений 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Нормальная линейная система дифференциальных уравнений с постоянными 

коэффициентами n-го порядка может быть стационарной или автономной системой 

дифференциальных уравнений. 

2. Решение систем дифференциальных уравнений можно проводить различными методами: 

методом исключения, метод собственных значений и собственных векторов. 

3. Последовательность составления фундаментальной системы решений однородной линейной 

системы n дифференциальных уравнений. 

4. Понятие особых точек. 

5. Построение общего решения системы уравнений методом неопределенных коэффициентов. 

6. Решение линейных однородных систем n дифференциальных уравнений с постоянными 

можно проводить различными методами: методом неопределенных коэффициентов, методом 

Эйлера.  

 

 
2.2 Системы уравнений. Методы их решения 
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2.2.1 Линейные однородные системы дифференциальных уравнений 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Построение общего решения системы уравнений можно проводить с помощью жордановой 

формы. 

2. Рассмотреть все случаи жордановых форм, которые могут встретиться в системах, и 

соответствующие им формулы общего решения. 

3. Вычисление собственных и присоединенных векторов при различных размерностях матриц 

(2x2 и 3x3) и собственных значений и построение общего решения. 

4. Метод матричной экспоненты. Определение и свойства матричной экспоненты. 

5. Применение матричной экспоненты для решения однородных линейных систем с 

постоянными коэффициентами. 

6. Алгоритм решения системы уравнений методом матричной экспоненты. 

  
2.2.2 Линейные однородные системы дифференциальных уравнений 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Понятие линейных неоднородных систем дифференциальных уравнений с постоянными 

коэффициентами. 

2. Наиболее распространенными способами решения неоднородных систем являются метод 

исключения, метод неопределенных коэффициентов и метод вариации постоянных.  

3. Алгоритм метода исключения. 

4. Алгоритм метода неопределенных коэффициентов. 

5. Алгоритм метода вариации постоянных. 

6. Линейные системы дифференциальных уравнений с переменными коэффициентами. 

7. Понятие нормальной линейной системы дифференциальных уравнений с переменными 

коэффициентами. 

8. Понятие фундаментальной системы решений и фундаментальной матрицы. 

9. Определитель Вронского удобно использовать для проверки линейной независимости 

решений (правила). Формула Лиувилля-Остроградского для определителя Вронского. 

10. Алгоритм метода вариации постоянных (метода Лагранжа). 

 

2.3 Теория устойчивости 
 
2.3.1 Устойчивость линейных систем 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Основные понятия теории устойчивости: устойчивость по Ляпунову, асимптотическая и 

экспоненциальная устойчивость, орбитальная устойчивость, структурная устойчивость. 

2. Редукция к задаче об устойчивости нулевого решения. 

3. Понятие устойчивости линейных систем. 

4. Понятие устойчивости по первому приближению. 

5. Положения равновесия линейных автономных систем 

6. Основные типы точек равновесия: устойчивый и неустойчивый узел, дикритический узел, 

вырожденный узел, седло, устойчивый и неустойчивый фокус, центр, вырожденная матрица. 

7. Бифуркационная диаграмма. 

8. Алгоритм построения фазового портрета. 

 

2.4 Теория устойчивости. Первые интегралы. 
 
2.4.1 Устойчивость в первом приближении. 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Понятие устойчивости в первом приближении. 

2. Система уравнений первого приближения. 

3. Алгоритм отыскания точек равновесия. 

4. Алгоритм метода функций Ляпунова. 

5. Теоремы об устойчивости. 
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6. Теоремы о неустойчивости. 

7. Критерий Рауса – Гурвица, суть метода. 

8. Проверка критерия устойчивости для систем 2-го, 3-го и 4-го порядков. 

 

2.4.2 Первые интегралы. 
При изучении вопроса необходимо обратить внимание на следующие особенности: 

1. Понятие первых интегралов 

2. Понятие производной Ли и первых интегралов системы. 

3. Алгоритм метода интегрируемых комбинаций. 

4. Симметричная форма системы дифференциальных уравнений. 

 

 

3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 
 

3.1 Практическое занятие 1 (ПЗ-1). Линейные однородные дифференциальные уравнения 
п-го порядка с постоянными коэффициентами. 
1. Линейное однородное дифференциальное уравнение n-го порядка с постоянными 

коэффициентами. 

При подготовке к занятию необходимо обратить внимание на следующие моменты: 

Линейное однородное дифференциальное уравнение n-го порядка с постоянными 

коэффициентами записывается в виде 

                                                    
где a1, a2,..., an − постоянные числа, которые могут быть действительными или комплексными.  

2. Решение уравнений с различным набором корней характеристического уравнения. 

- корни характеристического уравнения действительные и кратные 
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3.2 Практическое занятие 2 (ПЗ-2). Линейные однородные системы дифференциальных 
уравнений с постоянными коэффициентами. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Нормальная линейная система дифференциальных уравнений с постоянными 

коэффициентами n-го порядка. 

Нормальная линейная система дифференциальных уравнений с постоянными коэффициентами 

n-го порядка записывается в виде 

                     
где  x1(t), x2(t), ..., xn(t) − неизвестные функции переменной t 

Систему дифференциальных уравнений можно переписать в матричной форме: 

 
2. Решение методом исключения. 

Используя метод исключения, нормальную линейную систему n уравнений можно привести к 

одному линейному уравнению n-го порядка. Этот метод удобно использовать для решения 

простых систем − прежде всего, для систем 2-го порядка. 

Метод исключения можно применять не только к однородным линейным системам. Его можно 

использовать также для решения неоднородных систем дифференциальных уравнений или 

систем уравнений с переменными коэффициентами.  
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3.3 Практическое занятие 3,4 (ПЗ-3,4). Метод собственных значений и собственных 
векторов. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Нахождение собственных значений и собственных векторов линейного преобразования. 

Собственные значения λ должны удовлетворять уравнению 

 
которое называется  характеристическим уравнением  линейного преобразования. Многочлен в 

левой части уравнения называется  характеристическим многочленом  линейного 

преобразования (или линейного оператора). Множество всех собственных значений λ1, λ2,..., λn 

образует спектр оператора.  

Подставляя каждое собственное значение λi в систему уравнений 

 
и решая ее, находим собственные векторы, соответствующие данному собственному значению  

λi. Заметим, что после подстановки собственных значений система становится  вырожденной, 

т.е. некоторые уравнения будут одинаковыми. Это следует из того, что определитель такой 

системы равен нулю. В результате система уравнений будет иметь бесконечное множество 

решений, т.е. собственные векторы можно определить с точностью до постоянного 

коэффициента. 

2. Нахождение фундаментальной системы решений однородной линейной системы. 

Вид общего решения однородной системы существенно зависит от кратности собственных 

значений. Рассмотрим возможные случаи, которые здесь возникают. 

3. Решение уравнений с различным набором корней характеристического уравнения. 

- Все корни характеристического уравнения действительны и различны: 

Каждому собственному значению λi один собственный вектор Vi. Эти векторы образуют 

множество линейно независимых решений 

 
т.е. фундаментальную систему решений однородной системы уравнений.  

- Характеристическое уравнение имеет кратные корни, у которых геометрическая и 

алгебраическая кратности равны: 

Общее решение системы n дифференциальных уравнений представляется в виде 

 
Здесь полное число слагаемых равно n, Cij − произвольные числа. 

- Характеристическое уравнение имеет кратные корни, у которых геометрическая кратность 

меньше алгебраической кратности: 

В этом случае вместо недостающих собственных векторов определяются так 

называемые присоединенные векторы, так чтобы в результате получить множество  n  линейно 

независимых векторов и построить соответствующую  фундаментальную систему  решений.   

 

3.4 Практическое занятие 5 (ПЗ-5). Построение общего решения системы уравнений 
методом неопределенных коэффициентов. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Решение линейных однородных систем  n  дифференциальных уравнений с 

постоянными методом неопределенных коэффициентов. Метод Эйлера.  

Линейная однородная система  n  дифференциальных уравнений с постоянными 

коэффициентами имеет вид: 
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Здесь X(t) − n-мерный вектор,  A − квадратная матрица с постоянными коэффициентами 

размера n x n.  

Решение данной системы можно найти методом неопределенных коэффициентов. Решение 

системы уравнений находят в виде вектор-функций 

 
где λ − собственное значение матрицы A, а  V − собственный вектор этой матрицы.  

Фундаментальная система решений и, соответственно, общее решение системы существенно 

зависят от алгебраической и геометрической кратности чисел λi. 

В случае  комплексных корней  характеристического уравнения α±iβ, решение будет 

представляться комплекснозначной векторной функцией [exp(α+iβ)t]V(t). Экспоненциальную 

функцию можно разложить по формуле Эйлера: 

 
В случае кратных корней  λi, каждому собственному числу  λi  будет соответствовать  ki  

линейно-независимых решений вида 

 
Собственно говоря, метод неопределенных коэффициентов нужен только в случае кратных 

корней λi, когда число линейно-независимых собственных векторов меньше алгебраической 

кратности корня λi. 

 

Чтобы найти векторы  A0, A1, ..., Aki−si  для каждого такого собственного числа λi, надо 

подставить вектор-функцию Xi (t) в исходную систему уравнений. Приравнивая коэффициенты 

при членах с одинаковыми степенями в левой и правой частях каждого уравнения, получим 

алгебраическую систему уравнений для нахождения неизвестных векторов A0, A1, ..., Aki−si.  

 

Описанный здесь способ построения общего решения системы однородных дифференциальных 

уравнений иногда называют также методом Эйлера.  

 

3.5 Практическое занятие 6, 7 (ПЗ-6, 7). Построение общего решения системы уравнений с 
помощью жордановой формы. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Жорданова форма матрицы. 

Структура жордановой матрицы: 

 
Собственные значения матрицы λi находятся на главной диагонали, причем каждое собственное 

число λi встречается столько раз, какова его алгебраическая кратность ki. В каждой клетке 

размером более 1 имеется параллельный ряд над главной диагональю, состоящий из единиц. 

Все остальные элементы жордановой матрицы равны нулю. 

2. Присоединенные векторы и жордановы цепочки. 
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Рассмотрим жорданову клетку размером k с собственным значением λ. Такой клетке 

соответствует k базисных векторов  V1, V2,..., Vk. Вектор V1  (V1 ≠0) среди них является 

 собственным  и  удовлетворяет уравнению 

 
Вектор V2  (V2 ≠ 0) определяется из уравнения 

 
и называется присоединенным вектором первого порядка. Аналогично находятся другие 

 присоединенные векторы более высокого порядка: 

 
Цепочка векторов V1, V2, ..., Vk, состоящая из собственного вектора V1 и присоединенных 

векторов V2, ..., Vk, является линейно-независимой и называется жордановой цепочкой.  

3. Общее решение системы для матриц 2x2 и 3x3. 

 
4. Вычисление собственных и присоединенных векторов при различных размерностях матриц и 

собственных значений и построение общего решения. 

Матрица 2x2. Два различных собственных значения λ1, λ2. Общее решение выражается 

формулой 
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Матрица 2x2. Одно собственное значение λ1 (k1=2, s1=2). Общее решение системы имеет вид: 

 
Матрица 2x2. Одно собственное значение λ1 (k1=2, s1=1). Общее решение системы 

представляется в виде: 

 
Матрица 3x3. Три различных собственных значения λ1, λ2, λ3. Общее решение системы 3-х 

дифференциальных уравнений записывается в виде: 

 
Матрица 3x3. Два собственных значения λ1 (k1=2, s1=2), λ2 (k2=1, s2=1). Общее решение системы 

выражается формулой 

 
Матрица 3x3. Два собственных значения λ1 (k1=2, s1=1), λ2 (k2=1, s2=1). Общее решение системы 

имеет вид: 

 
Матрица 3x3. Одно собственное значение λ1 (k1=3, s1=2). Общее решение системы описывается 

выражением 

 
Матрица 3x3. Одно собственное значение λ1 (k1=3, s1=1). Общее решение имеет вид: 

 
 

3.6 Практическое занятие 8 (ПЗ-8). Метод матричной экспоненты. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Определение и свойства матричной экспоненты. 

Рассмотрим квадратную матрицу A размером nxn, элементы которой могут быть как 

действительными, так и комплексными числами.  

Составим бесконечный матричный степенной ряд 

 
Сумма данного бесконечного ряда называется матричной экспонентой и обозначается как 

 exp(tA): 

 
Этот ряд является абсолютно сходящимся.  

2. Применение матричной экспоненты для решения однородных линейных систем с 

постоянными коэффициентами.  

Система линейных однородных уравнений в матричной форме записывается в виде 

 
Общее решение такой системы представляется через матричную экспоненту в виде 

 
где C=(C1, C2, ..., Cn)

 T
 − произвольный  n-мерный вектор. Символ  

T
  обозначает операцию 

транспонирования. Для задачи с начальными условиями (задачи Коши) компоненты 

вектора C выражаются через начальные условия. В этом случае решение однородной системы 

записывается в виде 
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Таким образом, решение однородной системы уравнений становится известным, если 

вычислена соответствующая матричная экспонента. 

3. Алгоритм решения системы уравнений методом матричной экспоненты. 

1) Находим собственные значения λi матрицы (линейного оператора) A;  

2) Вычисляем собственные и (в случае кратных собственных значений) присоединенные 

векторы; 

3) Составляем невырожденную матрицу линейного преобразования H. Вычисляем 

соответствующую обратную матрицу H
 −1

; 

4) Находим нормальную жорданову форму J для заданной матрицы A, используя формулу               

 
5) Зная жорданову форму J, составляем матрицу exp(tJ). Соответствующие формулы для такого 

преобразования выводятся из определения матричной экспоненты. 

6) Вычисляем матричную экспоненту exp(tA) по формуле 

 
7) Записываем общее решение системы, которое имеет следующий вид: 

 
8) В случае систем дифференциальных уравнений 2-го порядка общее решение выражается 

формулой 

 
где C1, C2 − произвольные постоянные. 

 

3.7 Практическое занятие 9 (ПЗ-9). Линейные неоднородные системы дифференциальных 
уравнений с постоянными коэффициентами. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Нормальная линейная неоднородная система n уравнений с постоянными коэффициентами. 

Нормальную линейную неоднородную систему n уравнений с постоянными коэффициентами  

можно записать в виде 

 
где t − независимая переменная (часто t означает время),  xi(t) − неизвестные функции, fi (t) − 

заданные функции переменной t, непрерывные на [a,b].  

Систему уравнений можно представить в  матричной форме: 

 
Общее решение  X(t) неоднородной системы представляет собой сумму общего решения  X0(t) 

соответствующей однородной системы и частного решения  X1(t)  неоднородной системы: 

 
2. Метод исключения. 

Данный метод позволяет свести нормальную неоднородную систему n уравнений к одному 

уравнению n-го порядка. Этот способ удобно использовать для решения систем 2-го порядка. 

3. Метод неопределенных коэффициентов. 

Метод неопределенных коэффициентов хорошо подходит для решения систем уравнений, 

неоднородная часть которых представляет вектор-функция вида 

 
где  α,  β − заданные действительные числа, а Pm(t),  Qm(t) − векторные многочлены степени m. 

Например, если неоднородная функция равна 

 
то частное решение системы следует искать в виде 
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где k=0 в нерезонансном случае, т.е. когда показатель α  в экспоненциальной функции не 

совпадает ни с одним из собственных значений λi. Если же показатель α совпадает с каким-либо 

собственным значением λi, т.е. в так называемом резонансном случае, то значение k полагается 

равным длине жордановой цепочки для данного собственного числа λi. На практике в 

качестве k можно брать алгебраическую кратность собственного значения λi. 

4. Метод вариации постоянных. 

Общее решение однородной системы находится в виде 

 
где Φ(t) − фундаментальная система решений, т.е. матрица размером  nxn, столбцы которой 

образованы линейно независимыми решениями однородной системы,  С=(C1, C2,..., Cn)
 T

 − 

вектор произвольных постоянных чисел Сi (i=1,...,n). 

Тогда общее решение неоднородной системы можно записать как 

 
Отсюда видно, что частное решение неоднородного уравнения представляется формулой 

 
 

3.8 Практическое занятие 10 (ПЗ-10). Линейные системы дифференциальных уравнений с 
переменными коэффициентами. 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Нормальная линейная система дифференциальных уравнений с переменными 

коэффициентами. 

Нормальная линейная система дифференциальных уравнений с переменными коэффициентами  

записывается в виде 

 
где  xi (t) − неизвестные функции, которые являются непрерывными и дифференцируемыми на 

некотором интервале [a,b]. 

Используя векторно-матричные обозначения, данную систему уравнений можно записать как 

 
соответствующая однородная система с переменными коэффициентами в векторной форме 

имеет вид 

 
2. Фундаментальная система решений и фундаментальная матрица. 

Любая система n линейно независимых решений  x1(t), x2(t),..., xn(t)  называется  

фундаментальной  системой  решений.  

Квадратная матрица Φ(t), столбцы которой образованы линейно независимыми решениями 

x1(t), x2(t),..., xn(t), называется фундаментальной матрицей системы уравнений.  Она имеет 

следующий вид: 

 
где xij (t) − координаты линейно независимых векторных решений  x1(t), x2(t),..., xn(t). 

Общее решение однородной системы выражается через фундаментальную матрицу в виде 

 
где C − n-мерный вектор, состоящий из произвольных чисел. 

3. Определитель Вронского и формула Лиувилля-Остроградского. 

Определитель фундаментальной матрицы Φ(t) называется определителем Вронского  или  

вронскианом системы решений x1(t), x2(t),..., xn(t): 
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Определитель Вронского удобно использовать для проверки линейной независимости решений.  

Для определителя Вронского системы решений  x1(t), x2(t),..., xn(t)  справедлива формула 

Лиувилля-Остроградского: 

 
где  tr(A(τ)) − след матрицы A(τ), т.е. сумма всех диагональных элементов: 

 
Формула Лиувилля-Остроградского может применяться для построения общего решения 

однородной системы, если известно одно частное решение этой системы. 

4. Метод вариации постоянных (метод Лагранжа). 

При использовании этого метода вместо постоянного вектора C мы рассматриваем вектор C(t), 

компоненты которого являются непрерывно дифференцируемыми функциями независимой 

переменной t, т.е. полагаем 

 
Подставляя это выражение в неоднородную систему, находим неизвестный вектор C(t): 

 
После интегрирования получаем вектор  C(t).  

 

3.9 Практическое занятие 11, 12 (ПЗ-11, 12). Основные понятия теории устойчивости 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Устойчивость по Ляпунову. 

Предположим, что некоторое явление описывается системой  n  дифференциальных уравнений 

 
Решение φ(t) системы дифференциальных уравнений 

 
с начальными условиями 

 
устойчиво (в смысле Ляпунова), если для любого ε > 0 найдется число δ=δ(ε)>0, такое, что если 

 
для всех значений t ≥ 0. В противном случае решение φ(t) называется неустойчивым.  

2. Асимптотическая и экспоненциальная устойчивость. 

Если решение φ(t) системы дифференциальных уравнений не только устойчиво в смысле 

Ляпунова, но и удовлетворяет соотношению 

 
при условии 

 
то говорят, что решение φ(t) является асимптотически устойчивым. 

3. Орбитальная устойчивость. 

Орбитальная устойчивость описывает поведение замкнутой траектории (орбиты) под 

действием малых внешних возмущений. 

Если для любого  ε > 0  найдется постоянное число  δ=δ(ε)>0, такое, что траектория всякого 

решения  X(t), начинающегося в  δ-окрестности траектории  φ(t), остается в  ε-окрестности 

траектории φ(t) при всех t ≥ 0, то такая траектория  φ(t) называется  орбитально устойчивой. 
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4. Структурная устойчивость. 

Дана автономная система, которая в невозмущенном и возмущенном состоянии описывается, 

соответственно, двумя уравнениями: 

 
Если для любой ограниченной и непрерывно-дифференцируемой векторной функции g(X) 

существует числоε > 0, такое, что траектории невозмущенной и возмущенной системы 

являются орбитально топологически эквивалентными, то такая система называется  структурно  

устойчивой. 

5. Редукция к задаче об устойчивости нулевого решения. 

Анализ устойчивости упрощается, если рассмотреть возмущения 

 
для которых получается дифференциальное уравнение 

 
Таким образом, исследование устойчивости решения φ(t) можно заменить на исследование  

устойчивости функции Z(t)  вблизи точки Z=0. 

6. Устойчивость линейных систем. 

Поэтому при изучении устойчивости в классе линейных систем достаточно ограничиться 

анализом однородных дифференциальных систем. В наиболее простом случае, когда матрица 

коэффициентов A является постоянной, условия устойчивости формулируются в 

терминах собственных значений матрицы A.  

Линейная однородная система с постоянными коэффициентами устойчива в смысле Ляпунова 

тогда и только тогда, когда все собственные значения  λi  матрицы  A  удовлетворяют 

соотношению 

 
Линейная однородная система с постоянными коэффициентами является асимптотически 

устойчивой тогда и только тогда, когда все собственные значения  λi  имеют отрицательные 

действительные части: 

 
7. Устойчивость по первому приближению. 

Возвращаясь к векторно-матричной записи, получаем: 

 
где якобиан J определяется формулой 

 
Значения частных производных в этой матрице вычисляются в точке разложения в ряд. 

• Если все собственные значения якобиана  J  имеют  отрицательные действительные 

части, то нулевое решение X=0 исходной системы и линеаризованной  

является асимптотически устойчивым. 

• Если хотя бы одно собственное значение якобиана  J  имеет положительную 

действительную часть, то нулевое решение X=0 исходной системы и линеаризованной 

системы является  неустойчивым. 
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3.10 Практическое занятие 13, 14 (ПЗ-13, 14). Положения равновесия линейных 
автономных систем 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Основные типы точек равновесия. 

В общем случае, когда матрица A является невырожденной, существует 4 различных типа точек 

равновесия: 

Точка равновесия Собственные значения  λ1, λ2   

1. Узел λ1, λ2  – действительные числа одного знака ( 021 >⋅λλ ) 

2. Седло λ1, λ2  – действительные числа разного знака ( 021 <⋅λλ ) 

3. Фокус λ1, λ2  – комплексные числа; действительные части равны и 

отличны от нуля ( 0ReRe 21 ≠= λλ ) 

4. Центр λ1, λ2  – чисто мнимые числа ( 0ReRe 21 == λλ ) 

2. Устойчивый и неустойчивый узел. 

Собственные значения λ1, λ2 точек типа "узел" удовлетворяют условиям: 

 
Здесь могут возникнуть следующие частные случаи. 

Корни λ1, λ2 различны (λ1 ≠ λ2) и отрицательны (λ1 < 0, λ2 < 0), то решение  X=0  является  

асимптотически устойчивым. 

Корни λ1, λ2 различны (λ1 ≠ λ2) и положительны (λ1 > 0,  λ2 > 0). В этом случае точка  X=0  

называется неустойчивым узлом. 

3. Дикритический узел. 

Пусть характеристическое уравнение имеет один нулевой корень кратности 2, т.е. рассмотрим 

случай λ1=λ2=λ≠0. 

Случай λ1 = λ2 = λ <0. Такое положение равновесия называется  устойчивым дикритическим  

узлом. 

Случай λ1 = λ2 = λ >0. Данная комбинация собственных значений соответствует неустойчивому  

дикритическому  узлу. 

4. Вырожденный узел. 

Пусть собственные значения матрицы A снова являются совпадающими:  λ1=λ2=λ≠0. В отличие 

от предыдущего случая дикритического узла предположим, что геометрическая кратность 

собственного значения равна теперь 1. 

В случае λ1 = λ2 = λ <0 точка равновесия называется  устойчивым вырожденным узлом.  

При λ1 = λ2 = λ >0 положение равновесия называется  неустойчивым вырожденным узлом. 

5. Седло. 

Положение равновесия является седлом при условиях 

 
6. Устойчивый и неустойчивый фокус. 

Собственные значения  λ1,  λ2  являются комплексными числами, действительные части 

которых не равны нулю. 

Фазовые траектории представляют собой спирали. При α < 0 спирали будут закручиваться, 

приближаясь к началу координат. Такое положение равновесия называется устойчивым 

фокусом. Соответственно, при α > 0 мы имеем неустойчивый фокус. 

7. Центр. 

Если собственные значения матрицы A являются число мнимыми числами, то такое положение 

равновесия называется центром. . В случае центра фазовые траектории формально получаются 

из уравнения спиралей при α =0 и представляют собой эллипсы. 

8. Вырожденная матрица. 

Если матрица является вырожденной, то у нее одно или оба собственных значения равны нулю. 

Случай λ1 ≠ 0, λ2 = 0. Фазовые траектории представляют собой лучи, параллельные другому 

собственному вектору V1. 
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Случай λ1 = λ2 = 0, dim ker A = 2. Любая точка плоскости является положением равновесия 

системы. 

Случай λ1 = λ2 = 0, dim ker A = 1. Фазовые траектории представляют собой прямые, 

параллельные V1. 

9. Бифуркационная диаграмма. 

Выше мы рассмотрели классификацию положений равновесия линейной системы, основанную 

на собственных значениях. Однако тип точки равновесия можно определить и без вычисления 

собственных значений λ1, λ2, а зная лишь только определитель матрицы det A и ее след tr A. 

 
10. Алгоритм построения фазового портрета. 

- Найти собственные значения матрицы, решив характеристическое уравнение 

- Определить тип положения равновесия и характер устойчивости. 

- Найти уравнение изоклин. 

- Если положение равновесия является узлом или седлом, то необходимо вычислить 

собственные векторы и начертить параллельные им асимптоты, проходящие через начало 

координат. 

- Схематически начертить фазовый портрет. 

- Показать направление движения по фазовым траекториям (это зависит от устойчивости или 

неустойчивости точки равновесия). В случае фокуса следует определить направление 

закручивания траекторий. 

 

3.11 Практическое занятие 15 (ПЗ-15). Устойчивость в первом приближении. Метод 
функций Ляпунова 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Система  уравнений первого приближения. 

При исследовании на устойчивость вместо исходной нелинейной системы мы можем 

рассматривать линеаризованную систему 

 
которая называется системой уравнений первого приближения по отношению к исходной 

системе.  

Теорема Ляпунова об устойчивости по первому приближению.  

Если все собственные значения  λi  якобиана  J  имеют отрицательные действительные части, то 

нулевое решение  X=0  исходной системы и линеаризованной системы является 

 асимптотически устойчивым.  

Теорема Ляпунова о неустойчивости по первому приближению.  

Если хотя бы одно собственное значение  λi  якобиана  J  имеет  положительную 

действительную часть, то нулевое решение  X=0  исходной системы и линеаризованной 

системы является неустойчивым.  

2. Отыскание точек равновесия. 

Положение равновесия  X=0 автономной системы n-го порядка 

 
называется грубым, если соответствующий якобиан  J  имеет ровно n попарно различных 

собственных значений с ненулевой действительной частью.  

 

Заметим, что в случае системы 2-го порядка только следующие 3 типа точек равновесия 

являются грубыми: узел, фокус, седло. 
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3. Теоремы об устойчивости. 

Функция V(X), непрерывно дифференцируемая в некоторой окрестности U начала координат, 

называется функцией Ляпунова автономной системы 

 
если выполнены следующие условия: 

1. V(X) > 0 для всех X ∈ U \{0}; 

2. V(0) = 0; 

3. dV/dt ≤ 0 для всех X ∈ U. 

Теорема об устойчивости в смысле Ляпунова. Если в некоторой окрестности U нулевого 

решения  X=0 автономной системы существует функция Ляпунова V(X), то положение 

равновесия  X=0  является устойчивым по Ляпунову.  

 

Теорема об асимптотической устойчивости. Если в некоторой окрестности U нулевого 

решения  X=0 автономной системы существует функция Ляпунова V(X) с отрицательно 

определенной производной dV/dt < 0 для всех X ∈ U \{0}, то положение равновесия 

 X=0 является  асимптотически устойчивым. 

4. Теоремы о неустойчивости. 

Теорема Ляпунова о неустойчивости. Пусть в окрестности U нулевого решения  X=0  

существует непрерывно дифференцируемая функция V(X), такая, что 

1. V(0) = 0; 

2. dV/dt > 0. 

Если в окрестности U имеются точки, в которых V(X) > 0, то нулевое решение X=0  является  

неустойчивым.  

 
3.12 Практическое занятие 16 (ПЗ-16). Критерий Рауса – Гурвица 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Суть метода. 

Рассмотрим характеристическое уравнение 

 
описывающее динамическую систему. Заметим, что необходимое условие 

устойчивости выполняется, если все коэффициенты уравнения ai > 0. Поэтому далее считаем, 

что коэффициент a0 > 0. Запишем так называемую матрицу Гурвица. 

 
Главные диагональные миноры ∆i матрицы Гурвица определяются формулами 

 
Для того, чтобы все корни характеристического уравнения имели отрицательные 

действительные части, необходимо и достаточно, чтобы все главные диагональные миноры 

матрицы Гурвица были положительны при условии a0 > 0, ∆1 > 0, ∆2 > 0, ..., ∆n > 0. 

Поскольку ∆n = an ∆n −1, то последнее неравенство можно записать как an > 0. 

2. Проверка критерия устойчивости для систем 2-го, 3-го и 4-го порядков. 

Для системы 2-го порядка условие устойчивости выглядит так: 
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Для системы 3-го порядка: 

 
Лля системы 4-го порядка : 

 
Критерий устойчивости Рауса-Гурвица относится к семейству алгебраических критериев. Его 

удобно применять для анализа устойчивости систем низкого порядка. 

 

 

3.13 Практическое занятие 17 (ПЗ-17). Первые интегралы 
При подготовке к занятию необходимо обратить внимание на следующие моменты: 

1. Производная Ли и первые интегралы системы. 

Производная векторной функции U(t, X)  по направлению векторного поля  f(t, X) (производная 

Ли) определяется выражением 

 
где grad U − градиент функции U, а (grad U, f) обозначает скалярное произведение 

векторов grad U и f.  

Если непостоянная функция U(t, X) удовлетворяет соотношению 

 
для всех X ∈ D, то она называется первым интегралом системы.  

2. Решение методом интегрируемых комбинаций. 

Для того, чтобы найти первые интегралы, уравнения системы с помощью подходящих 

арифметических операций преобразуются к виду 

 
где левая часть представляет собой производную Ли от некоторой функции U(X), а правая часть 

равна нулю. Первый интеграл U(X) находится в результате интегрирования данного выражения. 

Каждая интегрируемая комбинация позволяет определить один первый интеграл. 

3. Симметричная форма системы дифференциальных уравнений. 

Для нахождения первых интегралов иногда удобно записать исходную систему в 

т.н. симметричной форме: 

 
Здесь предполагается, что функции f1, f2, ..., fn в знаменателях не равны нулю в области 

определения D ∈R
n
.  

 


