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1. Организация самостоятельной работы 

1.1 Организационно-методические данные дисциплины 

п/п 
Наименование разделов, 

тем 

Количество часов по видам самостоятельной 

работы 

подго-

товка 

курсо-

вого 

проек-

та (ра-

боты) 

подго-

товка 

рефера

та/эссе 

инди-

виду-

альные 

домаш-

ние за-

дания 

(ИДЗ) 

само-

стоя-

тельное 

изуче-

ние во-

просов 

(СИВ) 

подго

товка 

к за-

няти-

ям 

(ПкЗ) 

1 2 3 4 5 6 7 

3 

Тема 1 

Структура курса. Аксиомы 

статики. Силовые факторы. 

 х  2 2 

4 

Тема 2 

 Основная теорема статики. 

Уравнения равновесия. 

 х  1 1 

5 

Тема 3 

 Частные случаи приведе-

ния систем сил. 

 х 2   

6 

Тема 4 

 Использование уравнений 

равновесия. Статическая 

определимость. Сочленѐн-

ные конструкции. 

 х  2 2 

7 

Тема 5 

 Центр тяжести. Способы 

определения положения 

ЦТ. 

 х  3 4 

9 

Тема 6 

Трение скольжения и каче-

ния 

 х 2 2 2 

11 

Тема 7 

 Кинематика. Скорости и 

ускорения точек при раз-

личных способах задания 

движения. 

 х  4 2 

16 

Тема 8 

 Простейшие движения 

твѐрдого тела. Плоское 

движение 

 х 2 2 4 

17 

Тема 9 

 Составное движение точ-

ки. 

 х 2 2 2 
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Тема 10 

Составление дифференци-

альных уравнений движе-

ния точки. 

 х  1  

 

Тема 11 

 Способы решения 2-й за-

дачи динамики. 

 х 2  1 

 

Тема 12 

 Свободные, затухающие и 

вынужденные колебания 

 х  1 1 

 

Тема 13 

 Общие свойства системы. 

Моменты инерции. 

 х  1 1 

 

Тема 14 

 Теорема об изменении ко-

личества движения. Теоре-

ма о моменте количества 

движения .Принцип Да-

ламбера. Силы инерции. 

 х  1 1 

 

Тема 15 

Теорема о движении цен-

тра масс системы. Теорема 

о кинетической энергии 

системы 

 х 2   

 

Тема 16 

Принцип Даламбера. Силы 

инерции. 

 х    

 

Тема 17 

Принцип возможных пере-

мещений. 

 х  2 2 

 
Тема 18 

Общее уравнение динамики. 
 х 2  - 

 

2. Методические рекомендации по подготовке к занятиям 

2.1 Статика 

При подготовке к вопросам акцентировать внимание необходимо на следующем:  

- Понятие равнодействующей системы сил. 

- Понятие момента силы относительно центра и оси. 

- Инвариантность главного вектора и скалярного произведения главного вектора на главный 

момент. 

- Условия равновесия системы сил. 

2.2 Кинематика 

При подготовке к вопросам акцентировать внимание необходимо на следующем:  

- Векторный, координатный и естественный способы задания движения. Определение кине-

матических характеристик в каждом из способов. 

- Виды движений твѐрдого тела. Кинематические характеристики в каждом из движений. 

- Составное движение. 

2.3 Динамика 

При подготовке к вопросам акцентировать внимание необходимо на следующем: 
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- Дифференциальные уравнения движения в координатной и естественной формах. 

- Применение общих теорем динамики для точки, твѐрдого тела и механической системы. 

- Применение принципов динамики для решения первой и второй задач динамики.  

 

3. Методические рекомендации по выполнению индивидуальных домашних заданий 

3.1   С-3  Определение реакций опор составной  конструкции. 
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 7 

 



  

 8 

 



  

 9 
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2.2     С-7.     Определение реакций опор твѐрдого тела. 
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 14 

 
 



  

 15 
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2.3  К-1.    Определение скоростей и ускорений точек. 
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2.4  К-3  Кинематический анализ плоского механизма. 
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2.5 Д-1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся 

под действием постоянной силы.      
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2.6  Д-10. Применение теоремы об изменении кинетической энергии к изучению движения механиче-

ской системы 
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4. Методические рекомендации по самостоятельному изучению вопросов 

4.1. Рассматриваемые вопросы 

 

1. Понятие силы, момента силы относительно точки и оси, пары сил 

1)Моментом силы называется векторное произведение радиус вектора на силы, где радиус вектор 

кратчайшее расстояние от оси вращения до точки приложения силы 

2) Моментом силы называется векторное произведение плеча силы на значение силы, перпендику-

лярное оси вращения, где Р-плечо силы -  это кратчайшее расстояние от оси вращения до прямой, 

вдоль которой действует сила 

3) Моментом силы называется векторное произведение, где радиус вектор кратчайшее расстояние от 

оси вращения до точки приложения силы, а Ft проекция F_ на направление, перпендикулярное ради-

ус-вектору 

Если тело имеет неподвижную ось, т. е. закрепленную в неподвижных подшипниках, то при любой 

системе действующих сил тело может вращаться лишь около этой оси. Но не всякая сила может вы-

звать вращение. Например, сила, параллельная оси (Fy) не вызовет вращения; она лишь стремится 

сдвинуть тело вдоль оси и в конечном счете уравновешивается реакцией подшипников. Но вот сила, 

находящаяся в плоскости, перпендикулярной к оси, может при некоторых условиях вызвать враще-

ние. 

Две антипараллельные силы одинаковой величины, приложенные к разным точкам, но направлен-

ные не по одной прямой, называют парой сил. Пара не имеет равнодействующей и представляет со-

бой самостоятельный динамический элемент. 

 Момент силы  относительно центра 

Моментом силы F относительно некоторого неподвижного  центра О называется вектор, рас-

положенный перпендикулярно к плоскости, проходящей через вектор силы и центр О, направ-

ленный в ту сторону, чтобы смотря с его конца можно было видеть поворот силы F относи-

тельно центра О против часовой стрелки. 

Свойства момента силы относительно центра: 

  

  

1)   Модуль момента силы относительно 

центра может быть выражен удвоенной 

площадью треугольника ОАВ 

      (1.1) 

  

2)   Момент силы относительно центра 

равен нулю в том случае, если линия дей-

ствия силы проходит через эту точку, то 

есть h = 0. 

  

  

  

  

3)   Если из точки О в точку приложения 

силы А провести радиус вектор , то вектор 

момента силы можно выразить векторным 

произведением 

  

           (1.2) 
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4)   При переносе силы по линии ее дейст-

вия вектор ее момента относительно дан-

ной точки не изменяется. 

  

  

  

  

  

5)   Если через центр О провести оси коорди-

нат   Охуz   то   выражение 

(4.2) позволяет вычислить момент МО анали-

тически относительно координатных осей. 

  

  

  

          (1.3) 

  

  

 Если к твердому телу приложено несколько сил, лежащих в одной плоскости, можно вычислить ал-

гебраическую сумму моментов этих сил относительно любой точки этой плоскости 

  

            Момент МО, равный алгебраической сумме моментов данной системы относительно какой-

либо точки в той же плоскости, называют главным моментом системы сил относительно этой точки. 

  

Момент силы относительно оси 

Чтобы определить момент силы относительно оси необходимо: 

1)     провести плоскость, перпендикулярную к оси Z; 

2)     определить точку О  пересечения оси с плоскостью; 

3)     спроецировать ортогонально силу F на эту плоскость; 

4)     найти момент проекции силы F относительно точки О пересечения оси с плоскостью. 

Правило знаков: 

  

Момент силы относительно оси считается положительным, если,  смотря навстречу оси Z, можно ви-

деть проекцию , стремящейся вращать плоскость I вокруг оси Z в сторону, противоположную 

вращению часовой стрелки. 

  Свойства момента силы  

относительно оси 
1) Момент силы относительно оси изобража-

ется отрезком, отложенным  по оси Z  от точ-

ки О в положительном направлении, если 

> 0 и в отрицательном направлении, если 

< 0.  

2) Значение момента силы относительно оси 
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может быть выражено удвоенной площадью 

Δ  

      (1.5) 

  

3) Момент силы относительно оси равен ну-

лю в двух случаях: 

 если F1 = 0, то есть линия действия 

силы параллельна оси; 

 eсли h1 = 0, то есть линия действия 

силы пересекают ось. 

  

  

Пара сил. Векторный и алгебраический момент пары сил 

 Система двух равных по модулю, параллельных и противоположно направленных сил  и , 

называется парой сил. 

Плоскость, в которой находятся линии действия сил  и , называется плоскостью действия 

пары сил. 
Кратчайшее расстояние hмежду линиями действия сил, составляющих пару, называется плечом па-

ры сил. 

Момент пары сил определяется произведением модуля одной из сил пары на плечо. 

  

                              (1.6) 

  

  

  

 

 

Правило знаков 

Вектор момента М пары  и  направляют перпендикулярно к плоскости действия пары сил в 

такую сторону, что бы смотря навстречу этому вектору, видеть пару сил стремящейся вращать плос-

кость ее действия в сторону, обратную вращению часовой стрелки. 

1. 4.     Свойства пар сил на плоскости 

  

Свойство 1. Вектор-момент M  пары  по модулю и направлению равен векторному произве-

дению радиуса вектора АВ на ту из сил этой пары, к началу которой направлен радиус-вектор АВ, то 

есть  

                                         (1.7) 
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Если пары сил лежат в одной плоскости 

  

  

  

 
Свойство 2. Главный момент сил, составляющих пару относительно произвольной точки на плоско-

сти действия пары, не зависит от положения этой точки и равняется моменту этой пары сил. 

  

  

  

  

  

 

2. Равновесие системы произвольных сил 

Из основных аксиом статики следуют элементарные операции над силами: 

1) силу можно переносить вдоль линии действия; 

2) силы, линии действия которых пересекаются, можно складывать по правилу параллелограмма (по 

правилу сложения векторов); 

3) к системе сил, действующих на твѐрдое тело, можно всегда добавить две силы, равные по величи-

не, лежащие на одной прямой и направленные в противоположные стороны. 

Элементарные операции не изменяют механического состояния системы. 

Назовѐм две системы сил эквивалентными, если одна из другой может быть получена с помощью 

элементарных операций (как в теории скользящих векторов). 

Система двух параллельных сил, равных по величине и направленных в противоположные стороны, 

называется парой сил (рис.12). 
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Момент пары сил  - вектор, по величине равный площади параллелограмма, построенного на век-

торах пары, и направленный ортогонально к плоскости пары в ту сторону, откуда вращение, сооб-

щаемое векторами пары, видно происходящим против хода часовой стрелки. 

, то есть момент силы  относительно точки В. 

Пара сил полностью характеризуется своим моментом. 

Пару сил можно переносить элементарными операциями в любую плоскость, параллельную плоско-

сти пары; изменять величины сил пары обратно пропорционально плечам пары. 

Пары сил можно складывать, при этом моменты пар сил складываются по правилу сложения (сво-

бодных) векторов. 

Приведение системы сил, действующих на твѐрдое тело, к произвольной точке (центру приведения) 

- означает замену действующей системы более простой: системой трѐх сил, одна из которых прохо-

дит через наперѐд заданную точку, а две другие представляют пару. 

Доказывается с помощью элементарных операций (рис.13). 

 
Рис.13. 

  Система сходящихся сил  и система пар сил . 

   

 - результирующая сила . 

 - результирующая пара .Что и требовалось показать. 

  

Две системы сил будут эквивалентны тогда и только тогда, когда обе системы приводятся к одной 

результирующей силе и одной результирующей паре, то есть при выполнении условий: 

  

 

,  
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Общий случай равновесия системы сил, действующих на твѐрдое тело 

  

 
   

Рис.14. 

  

Приведѐм систему сил к (рис.14): 

 - результирующая сила через начало координат; 

 - результирующая пара, причѐм,  через точку О. 

 

То есть привели к  и  - две силы, одна из которых  проходит через заданную точку О. 

Равновесие, если  и  на одной прямой, равны, направлены противоположно (аксиома 2). 

Тогда  проходит через точку О, то есть . 

Далее: , так как остаѐтся только эта сила. 

  

Итак, общие условия равновесия твѐрдого тела: 

,   . 

Эти условия справедливы для произвольной точки пространства. 

 

3. Методы преобразования систем сил 

Особенности метода преобразования систем сил как способа раскрытия статической неопределимо-

сти стержневых и рамных систем. Некорректные преобразования заданной системы в основные мо-

гут быть  по причине кинематической изменяемости. Примером служит  расчет рамы, суммарной 

эпюры изгибающих моментов.  

 

4. Условия и уравнения равновесия твердых тел под действием различных систем сил. 

РАВНОВЕСИЕ ТВЕРДОГО ТЕЛА ПОД ДЕЙСТВИЕМ ПЛОСКОЙ СИСТЕМЫ СИЛ 

Для равновесия плоской системы сил, приложенных к твердому телу и не пересекающихся в одной 

точке, необходимо и достаточно, чтобы главный вектор R этих сил и их главный момент относитель-

но произвольной точки О, лежащей в плоскости действия этих сил, были равны нулю, т. е.  

 
В координатной форме эти условия выражаются следующими тремя уравнениями:  

 
Условия равновесия плоской системы сил, расположенных как угодно на плоскости, можно выразить 

еще в двух других видах.  

- Алгебраическая сумма моментов сил относительно трех произвольных точек А, В, С, не лежащих 

на одной прямой, равна нулю, т. е.  

 
- Алгебраическая сумма моментов всех сил относительно двух произвольных точек А и В равна нулю 

и сумма проекций этих сил на какую-либо ось, не перпендикулярную к прямой, соединяющей точки 

А и В, равна нулю, т. е.  

http://stu.sernam.ru/book_stm.php?id=18
http://sernam.ru/lect_math1.php?id=14
http://stu.sernam.ru/book_stm.php?id=18
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В частном случае, если все силы плоской системы параллельны, то условия равновесия (20) таких 

сил выражаются не тремя, а двумя уравнениями:  

 

причем ось параллельна данным силам.  

Условия равновесия плоской системы параллельных сил можно выразить и в другой форме:  

 
причем прямая АВ не параллельна данным силам.  

Задачи на равновесие плоской системы сил можно разбить на два основных типа, а именно:  

1) задачи на равновесие плоской системы параллельных сил;  

2) задачи на равновесие плоской системы сил, расположенных как угодно.  

Задачи второго типа можно еще классифицировать по характеру связей, наложенных на рассматри-

ваемое тело, подразделяя их на следующие две группы:  

а) задачи, в которых линии действия реакций всех связей известны;  

б) задачи, в которых линия действия реакции одной из связей неизвестна.  

Общие указания, сделанные в § 6. гл. I, о направлении реакций связей и решении задач на равновесие 

несвободного твердого тела, остаются такими же и при решении задач этого параграфа.  

Чтобы задача была статически определима, число неизвестных реакций должно быть не больше трех, 

так как при равновесии твердого тела под действием плоской системы сил в общем случае можно со-

ставить три уравнения равновесия.  

При составлении уравнений равновесия за центр моментов следует выбирать такую точку, через ко-

торую проходят линии действия двух неизвестных сил, тогда в уравнение моментов относительно 

этой точки войдет только одна неизвестная сила и ее легко будет определить из этого уравнения.  

Если данное тело находится в равновесии под действием плоской системы параллельных сил, то чис-

ло неизвестных реакций не должно быть больше двух, так как в этом случае мы имеем только два 

уравнения равновесия.  

 

 

5.Центр тяжести твердого тела и его координаты 

 

На каждую частицу тела, находящегося вблизи поверхности Земли, действует направленная верти-

кально вниз сила, которая называется силой тяжести. Силы тяжести каждой частицы тела, строго 

говоря, направлены по радиусам к центру Земли и не являются параллельными. Но для тел, размеры 

которых малы по сравнению с размерами Земли, непараллельность настолько незначительна, что в 

расчетах с большой точностью силы тяжести их частиц можно считать параллельными, сохраняю-

щими свои значения, точки приложения и параллельность при любых поворотах тела. Поэтому, обо-

значив силу тяжести частицы через Рк , можно, согласно формулам и 

, найти точку С, которая неизменно связана с те-

лом и называется центром системы параллельных сил тяжести. Таким образом, центром тяжести 

твердого тела называется центр системы параллельных сил тяжести частиц данного тела. Точка С — 

это геометрическая точка, она может и не принадлежать телу, но она всегда с ним связана, например 

центр тяжести баскетбольного мяча, кольца и др. Выразим силу тяжести (вес) частицы тела через ее 

http://stu.sernam.ru/book_stm.php?id=18
http://alnam.ru/book_tm1.php?id=25
http://alnam.ru/book_tm1.php?id=25
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объем V. Тогда величина называется удельным весом, а величина - плотно-

стью тела в данной точке. ("гамма"-Н/м3) ("ро"-Н*с2/м4) 

Методы нахождения центра тяжести. 

1) Метод симметрии.  

Покажем, что если однородное тело имеет плоскость, ось или центр материальной симметрии, то его 

центр тяжести находится соответственно в плоскости, на оси или 

в центре симметрии. 

а. Пусть тело симметрично относительно плоскости Оху 

 

Тогда вследствие симметрии каждому элементу К тела объемом ( , , ) будет соответство-

вать элемент К' того же объема с координатами ( , ,- ). Поэтому статический момент объема 

и координата . Следовательно, центр тяжести тела будет лежать в плос-

кости симметрии Оху. 

б. Пусть тело симметрично относительно оси Oz.  

 

Тогда всякому элементу К тела объемом с координатами ( , , ) будет соответствовать та-

кой же по объему элемент К', расположенный симметрично относительно оси Oz и имеющий коор-

динаты (- ,- , ). Поэтому статические моменты и, 

следовательно, координаты . Таким образом, 

центр тяжести будет находится на оси симметрии. 

в. Пусть тело имеет центр симметрии, который примем за начало координат. Тогда всякой частице 

тела объемом , определяемой радиус-вектором rк, будет соответствовать частица такого же объ-

ема с радиус-вектором (-rк), симметричная ей относительно центра О. Поэтому . Следо-

вательно, центр тяжести будет находиться в центре симметрии. Например, центры тяжести однород-
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ных куба, сферы, кольца, прямоугольной 

или круглой пластины лежат в геометрическом центре этих тел. 

2) Метод разбиения.  

Этот метод основан на применении формул и 

. Его используют, когда тело можно разбить на ряд 

частей, центры тяжести которых известны из условий симметрии. Метод разбиения можно наглядно 

проиллюстрировать с помощью рисунка. 

 
Расположив тело в системе координат, разделив его мысленно на отдельные части, веса которых Р1, 

Р2, Р3, Р4, а центры тяжести известны, вычислим вес тела и, согласно формулам 

, координаты центра тяжести С всего тела. Если 

тело имеет вырез, причем известны центр тяжести тела без выреза и центр тяжести вырезанного тела, 

то для определения координат центра тяжести используют метод отрицательных масс (частный слу-

чай метода разбиения). 

 
На рисунке изображена квадратная пластина, сторона которой а. В пластине выполнено круглое от-

верстие с радиусом r=0,2а и координатами центра x2=-0,3а; у2=0. Координаты центра тяжести С, 

пластины без отверстия x1=0, у1=0. Рассмотрим два тела: пластину без отверстия и диск, соответст-

вующий вырезанному отверстию. При использовании формул 

вес диска будем считать отрицательным. То-

гда , где р — вес единицы площади пластины. 

 

6.Трение 

 

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. 

Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональ-
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на силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. За-

коны трения связаны с электромагнитным взаимодействием, которое существует между телами.  

       Различают трение внешнее и внутреннее.  

       Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел 

(трение скольжения или трение покоя).  

       Внутреннее трение наблюдается при относительном перемещении частей одного и того же 

сплошного тела (например, жидкость или газ).  

       Различают сухое и жидкое (или вязкое) трение.  

       Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.  

       Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой 

или ее слоями.  

       Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения.  

Рассмотрим законы сухого трения (рис. 4.5).  

 
Рис. 4.5   

Рис. 4.6  

       Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно уве-

личивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила урав-

новешивается некоторой силой , направленной по касательной к трущейся поверхности, противо-

положной силе . В этом случае и есть сила трения покоя.  

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и 

приблизительно пропорциональна модулю силы нормального давления  N:  

 
μ0 – коэффициент трения покоя, зависящий от природы и состояния трущихся поверхностей.  

       Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение 

 F0, тело начнет скользить по опоре – трение покоя  Fтр.пок  сменится трением скольжения  Fск  (рис. 

4.6):  

  Fтр = μ N,  (4.4.1)   

где  μ  – коэффициент трения скольжения.  

       Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. 

Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент 

трения  μ ; здесь значительно меньше.  

       Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).  

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести 

 , нормальная сила реакции опоры    и сила сухого трения  . Сила   есть равнодействующая 

сил    и  ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что  

F = mg sin α,         N = mg cos α.  
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Рис. 4.7  

       Если   – тело остается неподвижным на наклонной плоскости. Максимальный 

угол наклона  α  определяется из условия  (Fтр)max = F  или  μ mg cosα = mg sinα, следовательно, 

 tg αmax = μ, где  μ  – коэффициент сухого трения.  

Fтр = μN = mg cosα,  

F = mg sinα.  

       При  α > αmax  тело будет скатываться с ускорением  

a = g ( sinα - μ cosα ),  

Fск = ma = F - Fтр.  

 

       Если дополнительная сила  Fвн, направленная вдоль наклонной плоскости, приложена к телу, то 

критический угол  αmax  и ускорение тела будут зависеть от величины и направления этой внешней 

силы. 

 

7. Предмет кинематики. Способы задания движения точки. Скорость и ускорение точки. 

Вращения твердого тела вокруг неподвижной оси. Поступательное движение твердого тела. 

 

1. Поступательное движение твердого тела 

 Поступательным называется такое движение твердого тела, при котором любая прямая прове-

денная в этом теле, перемешается, оставаясь параллельной самой себе. 

 Поступательное движение не значит прямолинейное: 

    

ТЕОРЕМА: при поступательном движении все точки тела описывают одинаковые (при наложении 

совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению 

скорости и ускорения.  

  

 

 (3. 1) 

 

     (3. 2) 
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2. Вращение твердого тела вокруг неподвижной оси. 

 

Вращательным называется такое движение твердого тела, при котором во все время движения 

какие-либо две точки тела остаются неподвижными (проходящая через эти неподвижные точки пря-

мая называется осью вращения), а все остальные точки описывают траектории, представляющие со-

бой окружности, плоскости которых перпендикулярны к оси вращения, а центры лежат на этой оси. 

  

 
 

 

 

 

              φ = f (t)          (3. 3) 

 

  или       (3. 4) 

 

      или 

(3. 5) 

  

Примеры: 

Равномерное вращение 

(ω = const) 

Равнопеременное вращение 

( = const) 

d  = dt 

= t 

 = /t 

 

 

     

3. Скорости и ускорения точек вращающегося твердого тела 

  

Вращательная скорость точки 

  

 
  

v = R ω      (3. 6) 
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Модуль вращательной скорости точки твердого тела равен произведению расстояния от точки до 

оси вращения на угловую скорость тела 

  

Ускорение точки 

 

 

или       (3.7) - вращательное ускорение     

   (3.8) – центростремительное ускорение   

  

(3.9) – полное ускорение 

  

 
  

         (3.10) 

  

 4. Векторные выражения вращательной скорости, вращательного  и центростремительного ускоре-

ний. 

Формулы Эйлера. 

  

 

  

 (3.11) 

  

 
  

 
  

  

 

  

 (3.12) 

  

- формулы Эйлера 

  

  

Векторные выражения вращательного и центростремительного ускорения точки 
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 - полное ускорение точки 

  

 - вращательное ускорение точки 

  

 
  

- центростремительное ускорение точки 

  

 

 

  

 

8. Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Абсолютное и 

относительное движение точки. Сложное движение твердого тела. 

 

Основной задачей кинематики сложного движения твердого тела является установление соотноше-

ний между характеристиками абсолютного и относительного движений.Сложное движение твердого 

тела может состоять из поступательных движений, вращательных движений, или может быть полу-

чено в результате сложения поступательного и вращательного движений.В некоторых задачах кине-

матики заданное сложное движение твердого тела раскладывают на составляющие движения (ана-

лиз); в других — требуется определить сложное движение твердого тела как результат сложения бо-

лее простых движений (синтез). Как при анализе, так и при синтезе движений речь идет о разложе-

нии и сложении движений, рассматриваемых в данный момент (мгновенных движений).Сложение 

поступательных движений твердого тела. 

Теорема. В результате сложения мгновенных поступательных движений твердого тела получается 

результирующее мгновенно поступательное движение. 

Доказательство. Пусть твердое тело одновременно участвует в двух мгновенных поступательных 

движениях, из которых одно является относительным со скоростью υ1 а второе — переносным со 

скоростью υ2.По теореме о параллелограмме скоростей имеем для любой точки твердого телаυа = υr + 

υe = υ1+ υ2, 
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а так как и относительное, и переносное движения твердого тела являются мгновенно 

поступательными, то относительные, переносные и, следовательно, согласно формуле (II.98), 

абсолютные скорости всех точек тела соответственно между собой равны в каждый момент времени, 

т.е. абсолютное движение тела также является мгновенно поступательным. Теорема доказана. 

 

Очевидно, что данная теорема применима к сложному движению твердого тела, состоящему из трех 

и более мгновенно поступательных движении; тогда в общем случае  

Заметим, что мгновенно поступательное твердого тела отличается от поступательного тем, что во 

втором случае в каждый момент времени равны между собой скорости и ускорения всех точек тела, 

между тем, как в первом случае в данный момент времени равны между собой только скорости всех 

точек тела. 

 

 ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА 

Плоско-параллельным (или плоским) движением твердого тела называется такое движение, при ко-

тором все точки тела движутся в плоскостях, параллельных некоторой неподвижной плоско-

сти.  

Из определения плоско-параллельного движения следует, что движения точек тела, расположенных 

на перпендикуляре к неподвижной плоскости, одинаковы. Поэтому, вместо движения всего тела в 

пространстве, можно рассмотреть движение плоской фигуры S, являющейся проекцией тела на непо-

движную плоскость. Нетрудно показать, что, зная движение некоторого отрезка плоской фигуры S, 

можно определить движение всей фигуры. Пусть отрезок АВ плоской фигуры занимает положение, 

указанное на рис. 68. Положение произвольной точки М плоской фигуры определим, соединив эту 

точку с точками А и В отрезка. Если отрезок АВ изменит свое положение и перейдет в новое поло-

жение А1В1, то для определения нового положения этой точки достаточно построить треугольник 

А1В1М1, равный треугольнику АВМ. Так как стороны треугольников, как расстояния между двумя 

точками абсолютно твердого тела, остаются неизмененными, то А1В1 = АВ; АМ= А1М1; ВМ =В1М1. 

Таким образом, кинематика плоско-параллельного движения тела сводится к кинематике движения 

отрезка прямой на плоскости. 

Кинематические уравнения плоско-параллельного движения 

 
Допустим, что плоская фигура движется в неподвижной плоскости Оху. Выбрав, например, точку А 

плоской фигуры за полюс, неизменно свяжем с этой фигурой подвижную систему координат Аξη с 

началом в полюсе А (рис. 70). Для определения положения подвижной системы координат Аξη отно-

сительно неподвижной нужно знать координаты точки А (т. е. хA и уA), а также угол поворота φ во-

круг полюса (т. е. угол, образованный осью Аξη с осью Ох). Следовательно, кинематические уравне-

ния плоско-параллельного движения твердого тела имеют видxA= xA(t) . yA = yA (t). φ = φ (t),где xA(t) 

yA (t), φ (t)— конечные, однозначные, непрерывные и дифференцируемые функции време-

ни.Пользуясь формулами преобразования координат, можно получить уравнения движения любой 

точки М плоской фигурыx = xA + ξcos φ —ηsin φ,y = yA + ξsin φ + ηcos φ -Скорости точек тела 
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Теорема. При плоско-параллельном движении твердого тела скорость любой его точки равна 

векторной сумме скорости полюса и скорости во вращательном движении вокруг полюса. 

Доказательство. Пусть полюс О движется со скоростью υ0, а плоская фигура вращается вокруг 

полюса с угловой скоростью ω (рис. 71). Требуется определить скорость произвольной точки М этой 

фигуры. Так как переносным здесь является поступательное движение вместе с полюсом О, то 

переносные скорости всех точек плоской фигуры будут одинаковыми, равными скорости полюса:  

υMe= υ0 

 
 

Относительным движением является вращательное движение вокруг полюса. Поэтому, обозначая 

радиус-вектор точки ^ М относительно полюса О через rOM , согласно формуле Эйлера, для 

относительной скорости точки М получим   υMr= ω x rOM. 

Относительную скорость точки при плоско-параллельном движении тела обозначают двойным 

индексом, т. е. υMr = υOM. Первый индекс указывает полюс О, вокруг которого происходит вращение, 

а второй — обозначает рассматриваемую точку М. Следовательно, 

υMr= υOM= ω x rOM 

По теореме о сложении скоростей получим 

υa=υe+υr.  Следовательно, υM=υO+υOM. 

 

9. Предмет динамики. Законы механики Галилея-Ньютона. Задачи динамики. 

 

Динамика – раздел теоретической механики, который изучает движение материальных тел под дей-

ствием приложенных к ним сил. Классическая динамика базируется на 3 основных законах, называе-

мых законами Ньютона. Приведем формулировки этих законов:  

 

Закон 1. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямоли-

нейного движения, пока оно не понуждается приложенными силами изменить это состояние.  

 

Закон 2. Изменение количества движения пропорционально приложенной силе и происходит по на-

правлению прямой, по которой эта сила действует.  

 

Закон 3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия 

двух тел друг с другом равны и направлены в противоположные стороны.  

 

В соответствии с принципом относительности Галилея , существует бесконечное множество рав-

ноправных инерциальных систем, движение которых одна относительно другой не может быть уста-

новлено никаким образом путѐм наблюдения любых процессов и явлений, происходящих только в 

этих системах. Прямая траектория движения объекта в одной системе будет выглядеть также прямой 

в любой другой инерциальной системе.  

Если же в некоторой системе отсчѐта свободное тело двигается по криволинейной траектории и/или 

с переменной скоростью, то такая система является неинерциальной.  

Преобразования Галилея — в классической механике преобразования координат и времени при пе-

реходе от одной инерциальной системы отсчета к другой.  

 



  

 62 

В динамике рассматриваются две основные задачи : нахождение сил, под действием которых может 

происходить данное движение тела, и определение движения тела, когда известны действующие на 

него силы.  

 

Если подвижная система отсчета движется параллельно неподвижной системе отсчета с постоянной 

скоростью, то динамическое уравнение прямолинейного ускоренного движения тела в этой системе 

отсчѐта инвариантно динамическому уравнению ускоренного движения этого же тела относительно 

неподвижной системы отсчета. Это доказывает физическую и математическую инвариантность 

второго закона Ньютона преобразованиям Галилея. Главным является то, что описанные явления и 

их закономерности не зависят от скорости движения подвижной системы координат.  

 

10. Прямолинейные  колебания  материальной точки. 

 

Прямолинейное колебание материальной точки. 

Колебания являются одним из распространѐнных видов движения. 

Колебания возникают при наличии так называемой восстанавливающей си-

лы (это обязательное условие). Т.е. сила, которая стремится вернуть точку в 

положение равновесия. В роли восстанавливающей силы могут выступать 

силы различной физической природы, например силы упругости, состав-

ляющей силы тяжести, электромагнитные. 

В зависимости от действующих сил, различают следующие виды колеба-

ния:  

свободные или собственные 

свободно затухающие колебания 

вынужденные колебания. 

Свободные колебания. Сопротивление материалов Расчет валов Рассмотрим расчет вала на проч-

ность и жесткость. 

Рассмотрим прямолинейное движение точки.  

Точка О в положении равновесия, F – восстанавливающая сила. 

Рассмотрим простой, но часто встречающийся случай, когда сила F пропорциональна отклонению от 

положения равновесия. Пусть x – отклонение от положения равновесия: , где c – постоянная 

пропорциональности. В случае пружины, эта постоянная называется коэффициентом упругости. 

 
Уравнение (1) – дифференциальное уравнение свободных колебаний. 

 

При мнимых корнях, характеристическое решение уравнения (1): , где  - 

произвольные постоянные. 

Введѐм новые постоянные: 
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– амплитуда колебаний;  - фаза колебаний;  - начальная фаза колебаний;   - круговая 

частота (определяет число колебаний за  секунд). 

Таким образом, под действием одной только восстанавливающей силы, точка совершает гармониче-

ские колебания по синусоиде. 

 Колебания являются периодическими, т.е. . Пе-

риодом  колебаний, называется время между двумя амплиту-

дами колебаний (движение точки полностью повторяется). 

 

Круговая частота  и период колебаний , от начальных условий не зависят, а определяются только 

параметрами системы, поэтому частота свободных колебаний называется собственной частотой. От 

начальных условий зависит амплитуда . 

Свободные колебания. Пусть мат. точка М массой m отклоняется от положения равновесия О на рас-

стояние х. В результате растяжения пружины на неѐ будет действовать восстанавливающая сила Fb, 

стремящаяся вернуть точку в положение равновесия. Наличие восстанавливающей силы - необходи-

мое условие возникновения свободных колебаний  

 

 

 

11. Механическая система. Дифференциальные уравнения движения механической системы. 

 

Механической системой материальных точек или тел называется такая их совокупность, в кото-

рой положение и движение каждой точки (или тела) зависит от положения и движения остальных.  

     Материальное тело рассматривается, как система материальных точек (частиц), которые образуют 

это тело. 

     Внешними силами   называют такие силы, которые действуют на точки или тела механической 

системы со стороны точек или тел, которые не принадлежат данной системе. 

       Внутренними силами , называют такие силы, которые действуют на точки или тела механиче-

ской системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной сис-

темы взаимодействуют между собой.  

      Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными 

     Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном 

поле тяжести, для которого  , вес любой частицы тела пропорционален ее массе. Поэтому распреде-

ление масс в теле можно определить по положению его центра тяжести – геометрической точки С, 

координаты которой  называют центром масс или центром инерции механической системы 

    Теорема о движении центра масс механической системы:  центр масс механической системы 

движется как материальная точка, масса которой равняется массе системы, и к которой приложены 

все внешние силы, действующие на систему 

    Выводы: 

1. Механическую систему или твердое тело можно рассматривать как материальную точку в за-

висимости от характера ее движения, а не от ее размеров. 
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2. Внутренние силы не учитываются теоремой о движении центра масс. 

3. Теорема о движении центра масс не характеризует вращательное движение механической 

системы, а только поступательное 

 

Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы 

в инерциальной системе отсчета справедлив второй закон Ньютона: 

  

(3.1) 

где 

– масса точки с номером ; 

– ее радиус–вектор; 

– равнодействующая всех внешних сил как активных, так и реакций связей, действующих на точ-

ку с номером ; 

– равнодействующая всех внутренних сил, действующих на точку с номером . 

Систему уравнений (3.1) называют системой дифференциальных уравнений движения точек механи-

ческой системы. Одна из основных задач механики состоит в том, чтобы, зная активные силы и свя-

зи, наложенные на систему, определить движение всех точек системы и определить реакции связей. 

Решение такой задачи связано с интегрированием системы уравнений (3.1) при заданных начальных 

условиях. Однако, прямое интегрирование системы (3.1) весьма сложно, что связано как с возможно 

большим числом этих уравнений, так и, в основном, с неопределенностью информации о внутренних 

силах. 

Во многих практически интересных случаях нет необходимости определять все интегралы системы 

(3.1), достаточно получить лишь некоторые из них. Это позволяют сделать общие теоремы динамики. 

Являясь прямым следствием уравнений (3.1), общие теоремы динамики связывают основные дина-

мические величины, характеризующие движение системы, с приложенными к ней внешними силами. 

 

12. Количество движения материальной точки и механической системы. Момент количества 

движения материальной точки относительно центра и оси. Кинетическая энергия материаль-

ной точки и механической системы. Общие теоремы динамики. Понятие о силовом поле. 

 

Количество движения материальной точки – векторная величина  , которая равняется произведе-

нию массы точки на вектор ее скорости. 

    Единицей измерения количества движения есть (кг м/с). 

Количество движения механической системы – векторная величина  , равняющаяся геометриче-

ской сумме (главному вектору) количества движения всех точек системы.или количество движения 

системы равняется произведению массы всей системы на скорость ее центра масс 

    Когда тело (или система) движется так, что ее центр масс неподвижен , то количество движения 

тела равняется нулю   (пример, вращение тела вокруг неподвижной оси, которая проходит через 

центр масс тела).  

    Если движение тела сложное, то   не будет характеризовать вращательную часть движения при 

вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное дви-

жение системы (вместе с центром масс). 

      Импульс силы характеризует действие силы за некоторый промежуток времени. 

   Импульс   силы   за конечный промежуток времени   определяется как интегральная сумма соответ-

ствующих элементарных импульсов 

     Теорема об изменении количества движения материальной точки: 

(в дифференциальной форме): Производная за временем от количества движения материальной точ-

ки равняется геометрической сумме действующих на точки сил 

(в интегральной форме): Изменение количества движения материальной точки за некоторый проме-

http://bcoreanda.com/ShowObject.aspx?ID=80
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жуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же 

промежуток времени. 

    Теорема об изменении количества движения механической системы  
(в дифференциальной форме): Производная по времени от количества движения системы равняется 

геометрической сумме всех действующих на систему внешних сил. 

(в интегральной форме): Изменение количества движения системы за некоторый промежуток време-

ни равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же 

промежуток времени. 

     Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы. 

    Теорема об изменении количества движения механической системы и теорема о движении центра 

масс являются двумя разными формами одной теоремы. 

      Закон сохранения количества движения системы. 

1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количест-

ва движения системы будет постоянным по направлению и по модулю.       

2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется 

нулю, то проекция количества движения на эту ось является величиной постоянной. 

      Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количе-

ство движения системы. 

Кинетической энергией механической системы называется сумма кинетических энергий всех точек 

этой системы: 

T = ∑ mkvk
2
 / 2 , 

где mk и vk - масса и скорость k-й материальной точки, принадлежащей данной системе. 

На основании теоремы Кѐнига кинетическая энергия произвольной механической системы опреде-

ляется по формуле 

 T = MvC
2
/2 + ∑ mkvkr

2
 / 2 , 

где  M - масса всей системы; 

   vC - скорость центра масс системы; 

   mk - масса k-й точки системы; 

   vkr - относительная скорость k-й точки при движении еѐ вокруг центра масс  

(т.е. vk= vC ⊕ vkr). 

Из этой формулы можно получить следующие частные случаи для твѐрдого тела: 

- при поступательном движении тела vk= vC , vkr= 0, 

T =  mvC
2
 / 2; 

 

- при вращении тела вокруг оси, проходящей через его центр масс, 

vC=0 , vkr= ω ⊗ rk, 

T = ∑ mkvkr
2
 / 2 = Jω

2
/2  , 

где  J - момент инерции тела относительно оси, проходящей в данный момент времени через центр 

масс; 

ω - угловая скорость вращения тела; 

 

- в случае произвольного движения тела (например при плоскопараллельном движении) 

 T =  mvC
2
 / 2 + Jω

2
/2. 

Основные (общие) теоремы динамики систем свободных материальных точек являются уравнениями 

движения систем свободных материальных точек, т. е. математически дифференциальными уравне-

ниями изменений основных мер движения. 

1. Для точки  уравнение движения относительно инерциальной системы отсчѐта: 

 
Перенесѐм все векторы, не изменяя их направления, в центр масс и сложим геометрически: 

. 
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Производная по времени от количества движения системы свободных материальных точек 

равна геометрической сумме внешних сил. Это теорема об изменении количества движения сис-

темы. 

Так как  то 

. 

Это уравнение движения центра масс системы  материальных точек с массой, равной массе 

всей системы, к которой приложена сумма всех внешних сил (главный вектор внешних сил ) 
или теорема о движении центра масс. 

2. Умножим уравнение движения точки  слева векторно на  и геометрически сложим, перено-

ся векторы в центр масс: 

. 

Теорема об изменении кинетического момента системы: 

Производная по времени от кинетического момента системы свободных материальных точек 

равна сумме моментов всех внешних сил (главному моменту всех внешних сил). 
Существенно: моменты количества движения и моменты сил вычисляются относительно общего не-

подвижного начала. 

3. Умножая скалярно уравнение движения точки  на  и суммируя: 

 
или 

. 

Теорема об изменении кинетической энергии системы: 

Дифференциал кинетической энергии системы свободных материальных точек равен сумме элемен-

тарных работ всех внешних и внутренних сил. 

Интегралы уравнений движения системы: 

1) Если равен нулю главный вектор внешних сил, то = const, то есть центр масс системы свобод-

ных материальных точек движется равномерно и прямолинейно. 

2) Если главный момент внешних сил равен нулю, то сохраняется кинетический момент системы 

свободных материальных точек: 

. 

3) Если внешние и внутренние силы консервативны, то  

  

Здесь: 
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 - потенциал внешнего силового поля; 

 - потенциал взаимодействия точек; 

 - потенциальная энергия системы точек во внешнем поле; 

 - потенциальная энергия взаимодействующих точек. 

  

 

13. Принцип Даламбера для материальной точки и механической системы. Метод кинетоста-

тики. Определение динамических реакций подшипников при вращении твердого тела вокруг 

неподвижной  оси 

 

Принцип Даламбера 

1.Вал 1, установленный вертикально, вращается с постоянной угловой скоростью ω. В точке О 

вала с помощью цилиндрического шарнира, ось которого перпендикулярна оси вала 1, прикреплен 

невесомый стержень 2, с которым соединен цилиндрическим шарниром тяжелый однородный стер-

жень 3. Оси шарниров А и О  параллельны. При движении системы стержни 2 и 3 располагаются в 

вертикальной плоскости, проходящей через ось О1О,  0 <α < 0,5π . Указать, какое из соотношений 

(β<α, β=α, β>α) справедливо для состояния относительного равновесия системы. Ответ аргументиро-

вать.                                                                                                                                                        

 
2 Чему должен быть равен вес груза G3 , чтобы груз 3 был неподвижен в механической системе, 

у которой G1=G2=G . Массами блоков и нитей и трением пренебрегаем. 

 
 

3  Идеально гладкий тонкий стержень 1 вращается равномерно вокруг вертикальной оси z с угло-

вой скоростью ω. Вдоль стержня  скользит кольцо 2 массой m.В начальный момент x0=a, x  =0. 

Кольцо принять за материальную точку. 

Найти силу, с которой кольцо давит на стержень, в зависимости от координаты x. 
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4 (Тонкий однородный стержень массы m и длины r скользит, оставаясь все время в одной верти-

кальной плоскости, по внутренней поверхности гладкого цилиндра радиуса r. Найти реакции цилин-

дра в точке А   для произвольного угла , если в начальный момент этот угол был равен 30° и стер-

жень покоился. 

 
 

 

14. Связи и их уравнения. Принцип возможных перемещений. Обобщенные координаты систе-

мы. Дифференциальные уравнения движения механической системы в обобщенных координа-

тах или уравнение Лагранжа второго рода. Явления удара. Теорема об изменении кинетиче-

ского момента механической системы при ударе. 

 

Пусть система состоит из точек и, следовательно, ее положение в пространстве в каждый момент 

времени определяется координатами точек системы, например декартовыми . 

Предположим, что на систему наложены голономные связи, уравнения которых в общем случае мо-

гут содержать и производные от координат точек, но после их интегрирования они свелись к геомет-

рическим и имеют форму 

, . (222) 

Освобождающие связи, выражающиеся неравенствами, не рассматриваются. Таким образом, ко-

ординат связаны уравнениями и независимых координат будет . 

Любые декартовых координат можно задать независимо друг от друга. Остальные координаты оп-

ределятся из уравнений связей. Вместо независимых декартовых координат можно выбрать любые 

другие независимые параметры , зависящие от всех или части декартовых координат то-

чек системы. Эти независимые параметры, определяющие положение системы в пространстве, на-

зываются обобщенными координатами системы. В общем случае они могут зависеть от всех декар-

товых координат точек системы, т. е. 

, (223) 

где изменяется от 1 до . Задание обобщенных координат полностью определяет положение точек 

системы относительно выбранной системы отсчета, например декартовых осей координат. 

У свободной точки три обобщенные координаты. Если точка должна двигаться по заданной поверх-

ности, то обобщенных координат только две и т.д. Используя уравнения связей (222) и выражения 

обобщенных координат через декартовы (223), можно выразить декартовы координаты через обоб-

щенные, т.е. получить 

, 

, 

. 

Соответственно, для радиуса-вектора каждой точки системы , получим 

. (224) 

В случае стационарных связей время явно не входит в уравнения связей. Для голономных систем 

вектор возможного перемещения точки в соответствии с (224) можно выразить в форме 
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. (225) 

Система, имеющая независимых обобщенных координат, характеризуется также независимыми 

возможными перемещениями или вариациями , если связи голономны. Для голономных 

систем число независимых возможных перемещений совпадает с числом независимых обобщенных 

координат. Следовательно, число степеней свободы голономной системы равно числу независимых 

обобщенных координат этой системы, т. е. . Для неголономных систем в уравнения свя-

зей могут входить производные от декартовых координат точек и даже могут быть такие уравнения 

связей, в которые входят только одни производные. Такие уравнения связей наложат ограничения на 

вариации , и, следовательно, уменьшат число независимых вариаций, не связывая 

функциональной зависимостью сами обобщенные координаты . Число степеней свободы 

неголономной системы, равное числу независимых возможных перемещений, меньше числа обобщен-

ных координат системы. В дальнейшем рассматриваются только голономные системы, т. е. системы 

с голономными связями. 

Перейдем к составлению уравнений Лагранжа 2 рода.  

Общее уравнение динамики материальной системы:  

Общее уравнение динамики системы материальных точек в обобщенных координатах имеет вид: 

 
Так как  в случае системы, подчиненной голономным связям, являются незави-

симыми обобщенными возможными перемещениями, то общее уравнение динамики удовлетворяется 

лишь при условии, что коэффициенты, стоящие при возможных перемещениях, равны нулю, т. Е. 

  
Эти уравнения называются уравнениями Лагранжа второго рода.  

При наличии голономных связей, наложенных на систему, число уравнений Лагранжа равно числу 

независимых обобщенных координат, т. е. числу степеней свободы. Система состоит из обыкновен-

ных дифференциальных уравнений второго порядка.  

 

Если задаваемые силы системы потенциальны, то уравнения Лагранжа можно записать в виде: 

 
 

Явления удара.  

Взаимодействие тел, при котором за малый промежуток времени скорости точек изменяются на ко-

нечную величину, называется ударом.  Силы, возникающие при таком взаимодействии, называются 

ударными. Из теоремы об изменении количества движения следует, что импульс этих сил за время 
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удара есть конечная величина. Импульс  обычных (неударных) сил имеет тот же порядок малости, 

что и время удара. Этот же порядок малости имеет и перемещение точки за время удара.    

  

В связи с этим, в теории удара принимают следующие основные допущения: 

Скорости точек изменяются практически мгновенно на конечную величину. 

Импульсами неударных сил пренебрегают.  

Точки системы за время удара не перемещаются.  

 Пусть   скорость материальной точки  до удара,   скорость этой точки после удара.  

  

Применяя теорему об изменении количества движения, находим: 

Основное уравнение теории удара. Изменение количества движения материальной точки за время 

удара равно сумме ударных импульсов, действующих на точку. . 

  

Теорема об изменении количества движения механической системы при ударе.  

Изменение количества движения механической системы за время удара равно сумме внешних 

ударных импульсов, действующих на точки системы.  

 
Доказательство.  Разделим ударные силы, действующие на каждую точку механической системы, 

на внешние и внутренние.  Запишем основное уравнение удара для каждой точки системы   

,   , 

где ,   равнодействующие внешних и внутренних ударных импульсов. Суммируя получен-

ные равенства, с учетом свойства внутренних сил находим:   

. 

  

Следствие. При действии на механическую систему лишь внутренних ударных импульсов количест-

во движения системы не изменяется. 

Теорема об изменении кинетического момента механической системы при ударе. Изменение 

кинетического момента механической системы относительно любого неподвижного центра за 

время удара равно сумме моментов всех внешних ударных импульсов, приложенных к точкам 

системы, относительно этого же центра.  

  .    

Основное уравнение удара для каждой точки системы   ,   

.  Так как положение точек системы за время удара не изменяется, то умножая на ради-

ус-вектор -ой точки  (рис. 18.1), можно записать 

, .   

Суммируя полученные равенства, 
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  . 

                             
   

Следствие. Внутренние ударные импульсы не влияют на изменение кинетического момента систе-

мы. 

  

Теорема об изменении кинетического момента  в скалярной форме. Изменение кинетического 

момента механической системы относительно неподвижной оси за время удара равно сумме 

моментов всех внешних ударных импульсов, приложенных к точкам системы, относительно 

той же оси.  

. 

 этот результат получается проектированием предыдущего равенства на ось . 

  

Коэффициент восстановления при ударе 

Импульсы ударных сил зависят не только от масс и скоростей, но и от свойств соударяющихся тел. 

Рассмотрим падение шара на неподвижную плиту (рис. 18.2). При этом    − импульс реакции за 

время удара. 

Разделим удар на две фазы: 

1. От соприкосновения шара с плоскостью до его полной остановки. Кинетическая энергия шара пе-

реходит при этом  в потенциальную энергию упругой деформации , частично теряясь на не-

обратимое изменение его формы и рассеиваясь в виде тепла. 

2. Скорость меняет направление и величину от  до . При этом накопленная потенциальная энер-

гия переходит в кинетическую энергию  . 

Величина, равная отношению скорости точки после удара к ее скорости до удара, называется коэф-

фициентом восстановления при ударе о неподвижную плиту      ,  .   Если , то 

удар  абсолютно упругий , если , то удар абсолютно неупругий . Коэффициент 

восстановления определяется экспериментально и в зависимости от материала соударяющихся тел 

может принимать различные значения:   дерево о дерево … ,   сталь о сталь … ,  стек-

ло о стекло … . 

  

Одним из способов определения коэффициента восстановления при ударе может служить определе-

ние высоты отскока шара от неподвижной поверхности, падающего на нее с высоты  без началь-

ной скорости (рис. 18.3). Скорость шара в начале удара    .   В конце удара   ,   

где  − высота, на которую шар поднимется после удара. Тогда   
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. 

      

Удар о неподвижную поверхность. Удар двух тел 

  

 Рассмотрим прямой удар тела массы  о неподвижную поверхность (рис. 18.4). Скорость тела до 

удара , коэффициент восстановления . Определим скорость тела после удара и величину удар-

ного импульса.  Из основного уравнения теории удара в проекции на 

нормаль .   При этом   ,   .   Тогда  

   Ударный импульс достигает максимального 

значения в случае абсолютно упругого удара и минимального  в случае 

абсолютно неупругого.    

  

Рассмотрим косой удар тела массы 

 о гладкую (!)  неподвижную по-

Скорость тела до удара  и со-верхность (рис. 18.5). 

ставляет угол  с нор- малью к поверхности, коэффициент 

восстановления . Опре- делим скорость тела после удара и 

величину ударного им- пульса.   Из основного уравнения 

теории удара в проекциях на нормаль и касательную  

,   .  При этом  

 и      

. 

  

Тогда   , .  Кроме того,   ,   где   − 

угол падения,    − угол отражения.  

 Рассмотрим прямой центральный удар двух тел (шаров) массы , движущихся до удара посту-

пательно  со скоростями  (рис. 18.6). Коэффициент восстановления . Определим скорости 

тел после удара и величину ударного импульса.       Так как отсутствуют внешние ударные 

импульсы, для системы двух тел количество движения не изменяется    

.    

 Кроме того,    .    Решая полученную систему уравнений, находим: 

,   . 
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Для определения ударного импульса запишем теорему об изменении количества движения за время 

удара для одного из тел в проекции на направление движения  .  

 Откуда 

. 

 При абсолютно упругом ударе ударный импульс в два раза больше, чем при абсолютно 

неупругом. 

  

Теорема об изменении кинетической энергии  (теорема Карно) 

Теорема. При неупругом ударе в механической системе потеря кинетической энергии равна кинети-

ческой энергии данной системы, если бы она двигалась с потерянными скоростями.   

  

Доказательство.  Рассмотрим прямой центральный неупругий удар двух шаров  массы  и ,  , 

 − скорости тел до удара,  − скорость тел после удара.   По следствию из теоремы об 

изменении количества движения системы    

где ось  совпадает с направлением движения.  То есть   . 

Кинетическая энергия до удара равна   ,   

 после удара    . 

Рассмотрим дополнительное соотношение:    

. 

 

или   . 

В случае упругого удара: 

. 

Рассмотрим действие ударного импульса на твердое тело, 

вращающееся вокруг неподвижной оси (рис. 18.7).  Восполь-

зуемся теоремой об изменении кинетического момента меха-

нической системы в скалярной форме  ,  или   

.  Откуда  . При дей-

ствии ударного импульса на вращающееся тело угловая ско-

рость изменяется на величину, равную отношению момента 

этого импульса относительно оси вращения к моменту инер-

ции тела относительно той же оси.  Для определения импуль-

сов ударных реакций в подшипниках введем подвижную сис-

тему координат, проведя плоскость  через центр масс 

(рис. 18.8), а ось  − через точку приложения ударного 
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импульса, и воспользуемся теоремами об изменении количества движения     и об 

изменении кинетического момента .   

При этом    

, , 

,    . 

 В проекциях на оси координат: 

             

 
или 

, , , 

, , 

. 

Эти шесть уравнений позволяют определить импульсы ударных реакций и угловую скорость после 

удара. 

Центр удара 

 Центр удара  это точка вращающегося тела, при действии на 

которую ударного импульса, не возникают ударные реакции.  Если 

что такая точка существует. 

.  Из первых трех уравне-

ний для определения импульсов реакций в подшипниках следует, 

что приложенный к телу импульс направлен вдоль оси  и равен   

.  Обозначим расстояние от точки прило-

жения  ударного импульса до оси вращения через  (рис. 

18.9). Из последнего уравнения находим  .  

Откуда  .  Для системы координат с началом в точке  и 

направлением оси  таким образом, чтобы она проходила через 

точку приложения ударного импульса, то для обращения в ноль импульсов реакций необходимо 

, т.е. ось  должна быть главной осью инерции для точки .  

  

Для того чтобы при действии ударного импульса на вращающееся тело в подшипниках не возникали 

ударные реакции, надо, чтобы выполнялись условия:   

Центр удара лежит в плоскости, проходящей через центр масс и ось вращения, на расстоянии  

от оси.  

Ударный импульс  направлен перпендикулярно этой плоскости.   

Ось вращения является главной для точки ее пересечения с плоскостью действия ударного импульса. 
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