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1. КОНСПЕКТ ЛЕКЦИЙ 

1. 1 Лекция № 1 (2 часа). 

Тема: «Основные законы теплопроводности»                      
1.1.1 Вопросы лекции: 

1. Способы передачи теплоты. 
2. Основные определения  
2.1 Температурное поле.  
2.2 Температурный градиент. 
2.3 Тепловой поток. 
3. Закон Фурье. Коэффициент теплопроводности. 
4. Дифференциальное уравнение теплопроводности. 
5.  Краевые условия для процессов теплопроводности. 

 

1.1.2 Краткое содержание вопросов:  
1. Способы передачи теплоты 

В соответствие со вторым законом термодинамики самопроизвольный процесс 
переноса теплоты в пространстве возникает под действием разности температур и 
направлен в сторону уменьшения температуры. Самопроизвольный необратимый процесс 

переноса теплоты в пространстве с неоднородным распределением температуры 

называется теплообменом. 
Теплообмен в общем случае может осуществляться тремя различными способами: 

теплопроводностью, конвекцией и тепловым излучением (радиацией). 
Теплопроводность – это процесс распространения теплоты за счет 

непосредственного соприкосновения тел (частиц тела) друг с другом. Теплопроводность 
обусловлена движением микрочастиц (атомов, молекул) и возможна в твердых, жидких и 
газообразных средах. 

Конвекция – это перенос теплоты движущимися макроскопическими объемами 

жидкости или газа. В инженерных расчетах часто определяют конвективный теплообмен 
между потоками жидкости или газа и поверхностью твердого тела; этот процесс 
называется конвективной теплоотдачей или просто теплоотдачей. 

Тепловое излучение (радиация) – это распространение теплоты в пространстве 

посредством электромагнитных волн. Тепловое излучение может происходить в вакууме, 
а также в средах, полностью или частично пропускающих излучение. 

 
2. Основные определения 
 2.1 Температурное поле 

Всякое физическое явление в общем случае сопровождается изменением в 
пространстве и времени существенных для данного явления физических величин. Для 
процесса передачи теплоты такой существенной физической величиной является 
температура, которая при осуществлении теплообмена изменяется как в пространстве, так 
и во времени. 

Аналитическое исследование любого процесса теплообмена сводится к изучению 
пространственно-временного изменения температуры, то есть к нахождению уравнения 
вида: 

( )τ,z,y,xft = , 

которое представляет собой математическое описание температурного поля. 
Температурное поле – это совокупность значений температуры во всех точках 

изучаемого пространства для каждого момента времени. 



 
 

Различают стационарное и нестационарное температурные поля. Представленное 
уравнение является записью наиболее общего вида температурного поля, когда 
температура изменяется как от одной точки к другой, так и с течением времени. Такое 
поле отвечает неустановившемуся тепловому режиму теплопроводности и называется 
нестационарное температурное поле. 

Если тепловой режим является установившемся, то температура в каждой точке 
поля с течением времени остается неизменной и такое температурное поле называется 
стационарным. 

В этом случае температура является функцией только координат: 

( )z,y,xft 1= ;  0=
∂
∂
τ
t

. 

Представленные выражения, характеризуют трехмерные температурные поля, то 
есть температура изменяется вдоль трех координат. Если температура изменяется вдоль 
двух координат, то поле называется двухмерным: 

( )τ,y,xft 2= ;  0=
∂
∂

z

t . 

Если температура изменяется только вдоль одной координаты, то температурное 
поле называется одномерным: 

( )τ,xft 3= ;   0=
∂
∂

=
∂
∂

z

t

y

t
. 

Наиболее простой вид имеет уравнение одномерного стационарного 
температурного поля: 

( )xft 4= ;   0=
∂
∂

=
∂
∂

z

t

y

t
; 0=
∂
∂
τ
t

. 

 2.2 Температурный градиент 

Если соединить точки тела, имеющие одинаковую температуру, получим 
поверхность равных температур, которая называется изотермической. Итак, 
изотермической поверхностью называется геометрическое место точек в 

температурном поле, имеющих одинаковую температуру. 
Пересечение изотермических поверхностей плоскостью дает на этой плоскости 

семейство изотерм. Изобразим изотермические линии со значения-  

 

ми температур: t + ∆t, t, t – ∆t. Очевидно, 
температура в теле изменяется только в 
направлениях, пересекающих 
изотермические поверхности. 

Возьмем на изотермической линии 
некоторую точку Р. Проведем из точки Р 
нормаль n

r
 к изотермической поверхности. 

Возрастание температуры в направлении 
нормали к изотермической поверхности 
характеризуется градиентом температуры. 

Градиент температуры – это вектор, направленный по нормали к 

изотермической поверхности в сторону возрастания температуры и численно равный 

производной от температуры по этому направлению, т.е.: 

n

t
ngradt o ∂
∂

=
r

, 

где on
r

– единичный вектор, нормальный к изотермической поверхности и 

направленный в сторону возрастания температуры. 



 
 

Производная 
n

t

∂
∂

 в направлении убывания температуры отрицательна. 

 2.3 Тепловой поток 
Количество теплоты, проходящее в единицу времени через произвольную 

поверхность F, называется тепловым потоком и обозначается буквой Q. Единицей 
измерения теплового потока обычно служит Дж/с, т.е. Вт. 

Количество теплоты, передаваемое за произвольный промежуток времени τ через 

произвольную поверхность F, называется полным тепловым потоком и обозначается Qτ. 
Интенсивность переноса теплоты характеризуется плотностью теплового потока – 

это количество теплоты, проходящее в единицу времени через единицу площади 

произвольной поверхности. Эта величина обозначается через q и измеряется в Вт/м2: 

τ
τ

F

Q

F

Q
q == . 

 
3. Закон Фурье. Коэффициент теплопроводности 
Фурье установил, что количество теплоты dQτ, проходящее через элемент 

поверхности dF за промежуток времени dτ, пропорционально температурному градиенту 

n

t

∂
∂

: 

τλτ dFd
n

t
ndQ o ∂
∂

−=
r

. 

Так как q
dFd

dQ r
=

τ
τ (плотность теплового потока), то 

gradt
n

t
nq o λλ −=
∂
∂

−=
rr

 ⇒ gradtq λ−=r . 

Полученное уравнение является математической записью основного закона 
теплопроводности, который формулируется следующим образом: плотность теплового 

потока прямо пропорциональна градиенту температуры. 

Опытным путем установлено, что коэффициент пропорциональности в уравнении 
Фурье есть физический параметр вещества. Он характеризует способность вещества 
проводить теплоту и называется коэффициентом теплопроводности, Вт/(м⋅К). 

Вектор плотности теплового потока q
r

 направлен по нормали к изотермической 

поверхности. Его положительное направление совпадает с направлением убывания 
температуры, так как теплота всегда передается от более горячих частей тела к холодным. 
Таким образом, векторы q

r
 и gradt  лежат на одной прямой, но направлены в 

противоположные стороны. Это и объясняет наличие знака «минус» в уравнении Фурье. 

 

Скалярная величина вектора плотности 
теплового потока будет равна: 

n

t
q

∂
∂

−= λ . 

Плотность теплового потока ql в любом 
другом направлении l равна проекции вектора 
q
r

 на это направление l: 

ϕcosqq ⋅=
l

. 

 
Тепловой поток Q в единицу времени через элементарную площадку dF будет 

равен: 



 
 

∫∫ ∂
∂

−==
FF

dF
n

t
qdFQ λ . 

Полный тепловой поток Qτ за время τ  через элементарную площадку dF равен, Дж: 

τλ
τ

τ ddF
n

t
Q

F

∫ ∫ ∂
∂

−=
0

. 

Количество теплоты, проходящее через элементарную площадку dFl за время dτ, 
будет равно: 

ττϕττ qdFdddFcosqddFqdQ =⋅⋅==
lll

, 

так как ϕcosdFdF
l

= . 

Таким образом, для определения количества теплоты, проходящего через какую-
либо поверхность твердого тела, необходимо знать температурное поле внутри 
рассматриваемого тела. Нахождение температурного поля и является главной задачей 
аналитической теории теплопроводности. 

Коэффициент теплопроводности. 
Как было сказано, коэффициент теплопроводности является физическим 

параметром вещества, характеризующим его способность проводить теплоту. Значения 
коэффициента теплопроводности обычно определяется опытным путем и приводится в 
теплофизических справочниках. 

Из закона Фурье: 

gradt

q
r

=λ . 

Анализируя это выражение, можно установить физический смысл коэффициента 
теплопроводности: коэффициент теплопроводности – это количество теплоты, 

которое проходит в единицу времени через единицу изотермической поверхности при 

температурном градиенте, равном единице. 
В общем случае коэффициент теплопроводности является функцией рода 

вещества, температуры и давления. Понять влияние различных факторов можно на 
основании рассмотрения механизма переноса теплоты в веществе. 

В газах носителями тепловой энергии являются хаотически движущиеся молекулы. 
Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах 
зависит в основном от скорости движения молекул. Скорость движения молекул, как 
известно, увеличивается с увеличением температуры и уменьшением массы молекул. От 
давления коэффициент теплопроводности газов практически не зависит. 

Коэффициент теплопроводности газов лежит в пределах от 0,006 до 0,6 Вт/(м⋅К). 
Наибольшей теплопроводностью обладает самый легкий газ - водород, так как его 
молекулы как самые легкие двигаются с большой средней скоростью. 

Механизм распространения теплоты в жидкостях можно представить как перенос 
энергии путем нестройных упругих колебаний. Коэффициент теплопроводности 
жидкостей лежит в пределах λ = 0,07…0,7 Вт/(м⋅К); с увеличением температуры он, как 
правило, уменьшается (кроме воды и глицерина), а с повышением давления 
увеличивается. 

В металлах теплопроводность обеспечивается за счет теплового движения 
электронов («электронного газа»), которые в три тысячи раз легче молекул самого легкого 
газа – водорода. Соответственно и теплопроводность металлов много выше, чем газов. 
Коэффициент теплопроводности металлов находится в пределах 3…450 Вт/(м⋅К). 

Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: 
λ = 400 Вт/(м⋅К). В сплавах коэффициент теплопроводности резко снижается вследствие 



 
 

того, что искажение примесями кристаллической решетки препятствует движению 
электронов. Например, у чистого железа     λ = 70 Вт/(м⋅К), для углеродистых сталей λ = 
50 Вт/(м⋅К), а для высоколегированных сталей – немногим больше 10 Вт/(м⋅К). С 
увеличением температуры коэффициент теплопроводности чистых металлов убывает, а 
сплавов – растет. 

Многие строительные и теплоизоляционные материалы имеют пористое строение 
(кирпич, бетон, шлак и др.) и применение закона Фурье к таким телам является условным. 
Наличие пор в материале не позволяет рассматривать такие тела как сплошную среду. 

Условным является также коэффициент теплопроводности пористого материала. 
Для строительных и теплоизоляционных материалов он находится в пределах от 0,023 до 
2,9 Вт/(м⋅К). 

 
4. Дифференциальное уравнение теплопроводности 
При решении задач, связанных с нахождением температурного поля, необходимо 

иметь дифференциальное уравнение теплопроводности. Для облегчения вывода этого 
уравнения сделаем следующие допущения: 

- тело однородно и изотропно; 
- физические параметры постоянны; 
- внутренние источники теплоты в теле распределены равномерно. 
В основу вывода дифференциального уравнения теплопроводности положен закон 

сохранения энергии, который в рассматриваемом случае может быть сформулирован 
следующим образом: количество теплоты, введенное в элементарный объем извне за 

время dτ вследствие теплопроводности, а также от внутренних источников, равно 

изменению внутренней энергии вещества, содержащегося в элементарном объеме: 
dQdQdQ =+ 21 , 

где dQ1 – количество теплоты, введенное в элементарный объем; 
dQ2 – количество теплоты, которое выделилось в элементарном объеме dυ за 

счет внутренних источников; 
dQ – изменение внутренней энергии вещества. 

Для нахождения составляющих записанного уравнения выделим в теле 
элементарный параллелепипед со сторонами dx, dy, dz (рис.). 

Количество теплоты, которое подводится к граням элементарного объема за время 
dτ в направлении осей Ох, Oy, Oz, обозначим соответственно dQx, dQy, dQz. Количество 
теплоты, которое будет отводиться через противоположные грани в тех же направлениях, 
обозначим соответственно dQx+dx, dQy+dy, dQz+dz. 

 

Количество теплоты, подведенное к 
грани dy ⋅ dz в направлении оси Ох за время 
dτ, составляет: 

τdzddyqdQ xx ⋅= , 

где qx – проекция плотности теплового 
потока на направление нормали к указанной 
грани. 
 
 

Количество теплоты, отведенное через противоположную грань равно: 
τdzddyqdQ dxxdxx ⋅= ++ . 

Разница между количеством теплоты, подведенного к элементарному объему, и 
количеством теплоты отведенного от него за время dτ представляет собой количество 
теплоты введенное в параллелепипед в направлении оси Ох: 



 
 

dxxxx dQdQdQ +−=1 , 

( ) τττ dydzdqqdzddyqdzddyqdQ dxxxdxxxx ++ −=⋅−⋅=1 . 

Функция qx+dx является непрерывной в рассматриваемом интервале dx и может 
быть разложена в ряд Тейлора: 

...
!

dx

x

q
dx

x

q
qq xx

xdxx +⋅
∂
∂

+⋅
∂
∂

+=+ 2

2

2

2

 

Если ограничиться двумя первыми членами ряда, то получим: 

τυτ dd
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q
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−=1 . 

Аналогичным образом можно найти количество теплоты, подводимое к 
элементарному объему и в направлении двух других осей Oy и Oz. Тогда, количество 
теплоты dQ1, подведенное в результате теплопроводности, к рассматриваемому объему, 
будет равно: 
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Определим вторую составляющую рассматриваемого закона сохранения энергии. 
Обозначим количество теплоты, выделяемое внутренними источниками в единице объема 
среды в единицу времени через qυ – это мощность внутренних источников теплоты, 
Вт/м3: 

τυυ ddqdQ =2 . 

И наконец,  третья составляющая рассматриваемого уравнения. При рассмотрении 
изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на 
изменение внутренней энергии вещества dU: 

τ
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cddUdQ
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⋅⋅⋅== , 

где ρυ ⋅d – масса параллелепипеда, кг; 

сυ – удельная изохорная теплоемкость, Дж/(кг⋅К); 

τ
τ

d
t

∂
∂

– изменение температуры во времени, К. 

Таким образом, закон сохранения энергии может быть записан в следующем виде: 
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В твердых телах можно принять ccc p ==υ , кроме того, перенос теплоты 

осуществляется по закону Фурье: 

n

t
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−= λ . 

Проекции вектора теплового потока на координатные оси Ох, Oy, Oz определяются 
выражениями: 
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Подставляя проекции вектора теплового потока в уравнение (1), получим: 
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Полученное выражение является дифференциальным уравнением 
теплопроводности в наиболее общем виде, когда теплофизические характеристики λ, с, ρ 
будут переменными (зависящие от координат и температуры). Если принять 
теплофизические характеристики постоянными, то это выражение принимает следующий 
вид: 
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Полученное дифференциальное уравнение теплопроводности устанавливает связь 
между временными и пространственными изменениями температуры в любой точке тела, в 
котором происходит процесс теплопроводности. 

Запись этого уравнения можно упростить, введя следующие обозначения: 
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=∇ – оператор Лапласа. 

При указанных обозначениях дифференциальное уравнение теплопроводности 
принимает вид: 

ρτ
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q
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t
+∇=

∂
∂ 2 , 

где а – коэффициент температуропроводности, м2/с. 
Коэффициент температуропроводности является мерой теплоинерционных свойств 

тела. Очевидно, изменение температуры во времени 
τ∂
∂t

 в любой точке тела будет тем 

больше, чем больше коэффициент температуропроводности а. Этот коэффициент зависит 
от природы вещества. Наибольший коэффициент температуропроводности имеют 
металлы, поэтому они обладают малой тепловой инерционностью. 

Выражение t2∇  в цилиндрической системе координат имеет вид: 
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Если система тел не содержит внутренних источников теплоты (qυ = 0), то 
дифференциальное уравнение теплопроводности принимает форму уравнения Фурье: 

tа
t 2∇=
∂
∂
τ

. 

Если температурное поле стационарно, то есть t = f(x, y, z), то дифференциальное 
уравнение теплопроводности превращается в уравнение Лапласа: 
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5. Краевые условия для процессов теплопроводности 

Общий интеграл дифференциального уравнения теплопроводности представляет 

собой совокупность бесконечного множества частных решений. Для выделения из этой 

совокупности того или иного частного решения, описывающего конкретный процесс 

теплопроводности, необходимо задать дополнительные условия, которые называются 

условиями однозначности или краевыми условиями. 

Условия однозначности включают в себя: 

1) геометрические условия, характеризующие форму и размеры тела, в которых 

протекает процесс теплопроводности; 

2) физические условия, определяющие физические параметры тела (λ, а, с, ρ и др.), 

закон распределения внутренних источников теплоты; 

3) начальное условие, задающее температурное поле в момент начала процесса; 

4) граничные условия, определяющие условия теплового взаимодействия тела с 

окружающей его средой. 

Граничные условия могут быть заданы несколькими способами. 

Граничные условия первого рода. Задается распределение температуры на 

поверхности тела tс в любой момент времени:   tс = f(x, y, z, τ). 
В частном случае, когда температура на поверхности является постоянной на 

протяжении всего времени протекания процессов теплообмена, уравнение упрощается и 

принимает вид:  tс = const. 

Граничные условия второго рода. Задаются значения плотности теплового потока 

для каждой точки поверхности тела и любого момента времени:  q = f(x, y, z, τ). 
В простейшем случае плотность теплового потока по поверхности и во времени 

остается постоянной:  q = q0 = const. 

Граничные условия третьего рода. При этом задаются температура окружающей 

среды tж и закон теплообмена между поверхностью тела и окружающей средой. 

Согласно закону Ньютона-Рихмана количество теплоты, отдаваемое единицей 

поверхности тела в единицу времени, пропорционально разности температур поверхности 

тела tс и окружающей среды tж (tс > tж): 

q = α(tс – tж),  

где α – коэффициент пропорциональности, называемый коэффициентом 

теплоотдачи, Вт/(м2⋅К). Он характеризует интенсивность теплообмена между 

поверхностью тела и окружающей средой. 

Согласно закону сохранения энергии количество теплоты, которое отводится с 

единицы поверхности в единицу времени вследствие теплоотдачи, должно равняться 

количеству теплоты, подводимому к единице поверхности в единицу времени вследствие 

теплопроводности из внутренних объемов тела, то есть: 

α(tс – tж) = 
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Индекс «с» указывает на то, что температура и градиент относятся к поверхности 

тела. 

Окончательно граничное условие третьего рода можно записать в виде: 
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1. 2 Лекция № 2,3 (4 часа). 

Тема: «Стационарная теплопроводность»      
                 

1.2.1 Вопросы лекции: 

1. Передача теплоты через плоскую стенку и граничных условиях I рода. 
2. Передача теплоты через многослойную плоскую стенку и граничных условиях I 
рода. 
3. Передача теплоты через плоскую однослойную и многослойную стенки и 
граничных условиях III рода. 
4. Передача теплоты через цилиндрическую стенку и граничных условиях I и III рода. 
5. Критический диаметр цилиндрической стенки. 
6. Передача теплоты через ребристую стенку. 
7. Теплопроводность при наличии внутренних источников теплоты. 

 
1.2.2 Краткое содержание вопросов:  
1. Передача теплоты через плоскую стенку и граничных  

условиях I рода 

 

Рассмотрим однородную и 

изотропную стенку толщиной δ с 

постоянным коэффициентом 

теплопроводности λ. На наружных 

поверхностях стенки поддерживаются 

постоянными температуры tc1 и tc2. 

Следовательно, температура будет 

изменяться только в направлении оси Ох, а 

температура в направлении осей Oy и Oz 

будет оставаться постоянной: 
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t
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t . 

В связи с этим температура будет функцией только одной координаты х (t = f(x)) и 

дифференциальное уравнение теплопроводности запишется в виде: 

02

2

=
dx

td
. 

Граничные условия в рассматриваемой задаче задаются следующим образом: 

t = tc1 при х = 0; 

t = tc2 при х = δ. 



 
 

В результате решения поставленной задачи найдем распределение температуры в 

плоской стенке, то есть t = f(x), а также получим формулу для определения плотности 

теплового потока. 

Первое интегрирование дает: 

1С
dx

dt
= . 

После второго интегрирования получим: 

21 CxCt += – уравнение прямой линии. 

Следовательно, при  λ = const закон изменения температуры при прохождении 

теплоты через плоскую стенку будет линейным. 

Постоянные интегрирования С1 и С2 определяем из граничных условий: 

при х = 0 t = tc1 ⇒  С2 = tc1; 

при х = δ  t = tc2   
δ

21
1

cc tt
С

−
−= . 

Тогда закон распределения температуры в рассматриваемой плоской стенке имеет 

следующую запись: 

x
tt

tt cc
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Для определения плотности теплового потока в направлении оси Ох, 

воспользуемся законом Фурье, согласно которому: 
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Так как 1С
x

t
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δ
21 cc tt −

−= , то 

( )21 cc ttq −=
δ
λ . 

Из полученного уравнения следует, что количество теплоты, проходящее через 

единицу поверхности в единицу времени, прямо пропорционально коэффициенту 

теплопроводности λ, разности температур поверхностей стенки и обратно 

пропорционально толщине стенки δ. 
Величина, численно равная отношению разности температур между двумя 

изотермическими поверхностями тела к плотности теплового потока в какой-либо 

точке на одной из этих поверхностей, называется внутренним термическим 

сопротивлением, м2⋅К/Вт: 

λ
δ

λ =
−

−=
q

tt
R cc 21 . 

Общее количество теплоты Qτ, которое передается через поверхность стенки F за 

промежуток времени τ: 

( ) τ
δ
λττ FttqFQ cc 21 −== . 



 
 

Кроме того, уравнение температурного поля может быть записано в виде: 

x
q

tt c λ
−= 1

. 

Из этого выражения следует, что при прочих равных условиях температура в стенке 

убывает тем быстрее, чем больше плотность теплового потока. 

Полученные выражения справедливы, когда λ = const.  

В действительности λ является переменной величиной. Для многих материалов 

зависимость коэффициента теплопроводности от температуры близка к линейной: 

( )bt+= 10λλ , 

где λ0 – значение коэффициента теплопроводности при 0 °С. 

Тогда плотность теплового потока будет равна: 

( )21
210

2
1 cc

cc tt
tt

bq −



 +
+=

δ
λ . 
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где λср – среднеинтегральное значение коэффициента теплопроводности. 

Выражение для температурного поля имеет вид: 
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2. Передача теплоты через многослойную плоскую стенку и  

граничных условиях I рода 

Рассмотрим стенку, состоящую из слоев различной толщины (δ1, δ2,…, δn). 

Теплопроводность отдельных слоев обозначим λ1, λ2,…, λn. Примем, что контакт между 

слоями совершенный и температура на соприкасающихся поверхностях двух слоев 

одинакова. 

 

 

При стационарном режиме тепловой 

поток, проходящий через любую 

изотермическую поверхность неоднородной 

стенки, один и тот же: 
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При заданных условиях можно составить систему уравнений: 
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Сложив правые и левые части полученных уравнений, будем иметь: 
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Тогда плотность теплового потока равна: 
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δ

λ – полное термическое сопротивление плоской многослойной стенки, 

м2⋅К/Вт. Полное термическое сопротивление многослойной стенки равно сумме 

термических сопротивлений составляющих ее слоев. 

Иногда многослойную стенку рассчитывают как однородную, вводя в 

представленное выражение эквивалентный коэффициент теплопроводности: 
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Эквивалентный коэффициент теплопроводности многослойной стенки равен 

коэффициенту теплопроводности однородной стенки той же толщины, с теми же 

температурами поверхности и пропускающей тот же тепловой поток. 

Температуры на границах соприкосновения двух соседних слоев равны: 
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3. Передача теплоты через плоскую однослойную и многослойную стенки и 

граничных условиях III рода 

 

Рассмотрим однородную и 

изотропную стенку толщиной δ с 

постоянным коэффициентом 

теплопроводности λ. Заданы также 

температуры окружающей среды tж1 и tж2, а 

также коэффициенты теплоотдачи α1 и α1, 

причем все эти параметры также постоянны и 

не меняются вдоль поверхности. 

Следовательно, температура будет 

изменяться только в направлении, 

перпендикулярном плоской стенки. 

Необходимо найти тепловой поток от горячей жидкости к холодной и температуры 

на поверхности стенки. 

Плотность теплового потока от горячей жидкости к стенке определяется по 

уравнению Ньютона-Рихмана: 

q = α1(tж1 – tс1). 

При стационарном тепловом режиме та же плотность теплового потока, 

обусловленная теплопроводностью через твердую стенку будет равна: 

( )21 cc ttq −=
δ
λ . 

Тот же тепловой поток передается от второй поверхности стенки к холодной 

жидкости за счет теплоотдачи: 

q = α2(tс2 – tж2). 

Представленные выражения можно записать в виде: 

( )11
1

1
cж ttq −=

α
, 

( )21
1

cс ttq −=
λ

, 

( )22
2

1
жс ttq −=

α
. 

Складывая почленно полученные равенства, получим: 

21
21

11
жж ttq −=








++
αλ

δ
α

. 

Отсюда плотность теплового потока равна: 

21

21

11

αλ
δ

α
++

−
= жж tt

q . 



 
 

Обозначим k=
++

21

11
1

αλ
δ

α

. 

Тогда ( )21 жж ttkq −= , 

где k – коэффициент теплопередачи, Вт/(м2⋅К). 

Коэффициент теплопередачи k характеризует интенсивность передачи теплоты от 

одной жидкости к другой через разделяющую их стенку и численно равен количеству 

теплоты, которое передается через единицу поверхности стенки в единицу времени при 

разности температур между жидкостями в один градус. 

Величина, обратная коэффициенту теплопередачи, называется полным 

термическим сопротивлением теплопередачи, (м2⋅К)/Вт: 

21

111

αλ
δ

α
++==

k
R , 

где 
1

1

α
и 

1

1

α
 - внешние термические сопротивления, 

λ
δ

 - термическое сопротивление стенки. 

Для многослойной стенки нужно учитывать термическое сопротивление каждого 

слоя. Если стенка состоит из n слоев, то полное термическое сопротивление 

теплопередачи через такую стенку будет равно: 

22

2

1

1

1

111

αλ
δ

λ
δ

λ
δ

α
+++++==

n

n...
k

R  

211

11

αλ
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++= ∑
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ni

i i

iR , 

отсюда 

211

11
1

αλ
δ

α
++

=

∑
=

=

ni

i i

i

k . 

Плотность теплового потока через многослойную стенку, состоящую из n слоев, 

будет равна: 

211

21

11

αλ
δ

α
++

−
=

∑
=

=

ni

i i

i

жж tt
q . 

Тепловой поток Q через поверхность F твердой стенки равен: 

( )21 жж ttkFqFQ −== . 

Температуры поверхностей однородной стенки можно найти из уравнений: 

1
11

1

α
qtt жc −= ;  








+−=
λ
δ

α1
12

1
qtt жc

 или 
2

22
1

α
qtt жc += . 



 
 

Температура на границе любых двух слоев i и i + 1 при граничных условиях 

третьего рода может быть определена по уравнению: 

( ) 







+−= ∑

=
+

i

i i

i
жic qtt

11
11

1

λ
δ

α
. 

4. Передача теплоты через цилиндрическую стенку и граничных условиях I и 
III рода. 

 

 Передача теплоты через цилиндрическую стенку и граничных условиях I рода 

 

Подвод теплоносителя к потребителю 

обычно осуществляется по трубам, а сами 

потребители часто имеют цилиндрический 

корпус. В связи с этим возникает необходимость 

расчета тепловых потоков через 

цилиндрическую оболочку.  

Рассмотрим стационарный процесс 

теплопроводности в цилиндрической стенке 

(трубе) с внутренним диаметром d1 = 2r1 и 

наружным диаметром d2 = 2r2. На поверхности 

стенки заданы 

постоянные температуры tc1 и tc2. В заданном интервале температур λ=const. 

Необходимо найти распределение температур в цилиндрической стенке и тепловой поток 

через нее. 

В рассматриваемом случае дифференциальное уравнение теплопроводности 

удобно записать в цилиндрической системе координат: 

0
11

2

2

2

2

22

2
2 =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=∇
z
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rr

t

rr

t
t

ϕ
.  

При этом ось Oz совмещена с осью трубы. 

При заданных условиях температура изменяется только в радиальном направлении 

и температурное поле будет одномерным, поэтому: 

0=
∂
∂
z

t
 и 0

2

2

=
∂
∂
z

t . 

Кроме того, так как температуры на наружной и внутренней поверхностях трубы 

неизменны, изотермические поверхности являются цилиндрическими. Тогда температура 

не должна изменяться вдоль ϕ, то есть: 

0=
∂
∂
ϕ
t

 и 0
2

2

=
∂
∂
ϕ

t . 

Следовательно, дифференциальное уравнение теплопроводности примет вид: 

0
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=
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+
∂
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rr

t
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Граничные условия задаются следующим образом: 

t = tc1 при r = r1; 

t = tc2 при r = r2. 

Для решения дифференциального уравнения введем новую переменную: 

dr

dt
u =  ⇒ 

2

2

dr

td

dr

du
= . 

Тогда дифференциальное уравнение примет вид: 

0=+
r

u

dr

du
. 

Интегрируя, получаем: 

1nCnrnu lll =+  ⇒ ( ) 1nCrun ll =⋅ . 

Потенцируя и переходя к первоначальным переменным, получаем: 

1Cr
dr

dt
=  ⇒ 

r

dr
Cdt 1= . 

После интегрирования находим: 

21 CnrCt += l . 

Подставим в полученное выражение граничные условия: 

2111 CnrCtc += l , 

2212 CnrCtc += l  
⇒ ( )21121 nrnrCtt cc ll −=−  
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Тогда температурное поле будет равно: 
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1
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tttt ccc

l
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−−= . 

Полученное выражение представляет собой уравнение логарифмической кривой. 

Криволинейное распределение температуры в цилиндрической стенке объясняется 

следующим. Для плоской стенки плотность теплового потока q остается одинаковой для 

всех изотермических поверхностей. Для цилиндрической стенки q через любую 

изотермическую поверхность зависит от радиуса. 

Для нахождения количества теплоты, проходящего через цилиндрическую 

поверхность площадью F в единицу времени, воспользуемся законом Фурье: 

F
dr

dt
Q λ−= . 



 
 

Очевидно, 

2

1

211

r

r
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C

dr

dt cc

l

−
== ;  lrF π2= . 

Тогда Q равно: 

( )

1

2

212

d

d
n

tt
Q cc

l

l −
=
πλ . 

Из полученного выражения видно, что так же, как и для плоской стенки, тепловой 

поток через цилиндрическую оболочку прямо пропорционален разности температур 

поверхностей стенки. 

Тепловой поток может быть отнесен либо к единице длины трубы, либо к единице 

внутренней или внешней поверхности. При этом расчетные формулы для плотности 

теплового потока, принимают вид: 

( )

1

2
1

21
1

1

2

d

d
nd

tt
q

d

Q cc

l
l

−
==
λ

π
- тепловой поток через единицу внутренней поверхности; 

( )

1

2
2

21
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2

2
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d
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tt
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Q cc

l
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−
==
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π
- тепловой поток через единицу наружной поверхности; 

( )

1
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21
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d

d
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Q cc

l
l

l

λ

π −
== - поток теплоты, проходящий через единицу длины трубы. 

ql также называется линейной плотностью теплового потока (Вт/м). 

Как видно из первых двух уравнений плотности теплового потока q1 и q2 

(отнесенные к внутренней и внешней поверхности) при передаче теплоты через трубы 

неодинаковы, причем всегда q1 > q2. 

Связь между величинами q1, q2 и ql следующая: 

2211 qdqdq ππ ==
l

. 

Передача теплоты через многослойную цилиндрическую стенку и граничных 

условиях I рода 

Рассмотрим цилиндрическую стенку, состоящую из трех плотно прилегающих друг 

к другу слоев. Теплопроводность отдельных слоев обозначим λ1, λ2, λ3, диаметры слоев d1, 

d2, d3, d4. Температура каждого слоя стенки изменяется по логарифмической кривой. 

Общая температурная кривая представляет собой ломанную логарифмическую кривую. 

При стационарном режиме через все слои проходит один и тот же тепловой поток. Для 

каждого слоя тепловой поток равен: 
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Сложив правые и левые части полученных уравнений, будем иметь: 
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Для многослойной цилиндрической стенки, имеющей n слоев: 
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Температуры между слоями находим из следующих уравнений: 
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  Передача теплоты через однослойную и многослойную цилиндрические стенки и 

граничных условиях III рода 

 

 

Рассмотрим однородную цилиндрическую стенку (трубу) с постоянным 

коэффициентом теплопроводности  λ. . Заданы постоянные температуры подвижных сред 

tж1 и tж2 и постоянные значения коэффициентов теплоотдачи на внутренней и наружной 

поверхностях трубы α1  и α2.. 

Будем считать, что длина трубы велика по сравнению с толщиной стенки, поэтому 

потерями теплоты с торцов трубы можно пренебречь, и будет проходить через стенку и 

отдаваться от стенки к холодной жидкости одно и тоже количество теплоты. 



 
 

Следовательно, можно записать: 

( )1111 cжl ttdq −= πα , 

( )
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2
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= , 

( )2222 жcl ttdq −= πα . 

 

Представим эти уравнения следующим 

образом: 
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Складывая уравнения, входящие в систему получим: 
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Отсюда следует: 
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Обозначим: 
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Тогда плотность теплового потока, проходящего через цилиндрическую стенку, 

будет равна: 

( )21 жжll ttkq −= π , 

где kl – линейный коэффициент теплопередачи, Вт/(м⋅К). 

Он характеризует интенсивность передачи теплоты от одной среды к другой через 

разделяющую стенку. Значение kl численно равно количеству теплоты, которое проходит 

через стенку длиной 1 м в единицу времени от одной среды к другой при разности 

температур между ними 1 К. 

Величина, обратная линейному коэффициенту теплопередачи, называется 

линейным термическим сопротивлением теплопередачи, м⋅К/Вт: 
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Тепловой поток через цилиндрическую стенку определяется по выражению: 

( )21 жжl ttlkQ −= π . 

Плотность теплового отнесенного, к внутренней или наружной поверхности, 

определяется по уравнениям: 
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При переносе теплоты через многослойную цилиндрическую стенку, имеющую n 

слоев, линейная плотность теплового потока будет равна: 
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или ( )21 жжll ttkq −= π . 

Тогда полное термическое сопротивление многослойной цилиндрической стенки 

будет равно: 
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Температуру внутренней поверхности трубы определяем по формуле: 
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−= . 

Температуру наружной поверхности трубы определяем по формуле: 
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Температура на границе любых двух слоев i и i + 1 при граничных условиях 

третьего рода может быть определена по уравнению: 
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5. Критический диаметр цилиндрической стенки 

Тепловой изоляцией называется всякое покрытие горячей поверхности, которое 

способствует снижению потерь теплоты в окружающую среду. Для тепловой изоляции 

могут быть использованы любые материалы с низким коэффициентом теплопроводности 

– асбест, пробка, слюда, шлаковая или стеклянная вата, шерсть, опилки и т.д. 

Запишем выражение для определения линейного термического сопротивления 

теплопередачи цилиндрической стенки: 
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d
Rl αλα

++= l . 

Анализ этого выражения показывает, что тепловые потери трубопроводов зависят 

от наружного диаметра трубопровода. Причем в зависимости от материала, применяемого 

для изоляции трубы, тепловые потери при изменении диаметра теплоизоляционного слоя 

могут либо увеличиваться, либо уменьшаться. 



 
 

  

Рассмотрим цилиндрическую трубу 

покрытую однослойной изоляцией. 

Установим как при постоянных α1, α2, d1, d2, 

λ1, λ2, t1 и t2 будет изменяться полное 

термическое сопротивление при изменении 

толщины изоляции. 

Запишем выражение для определения 

общего термического сопротивления 

теплопередачи двухслойной цилиндрической 

стенки: 
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При увеличении внешнего диаметра изоляции d3 увеличивается сопротивление 

слоя изоляции
2

3

22

1

d

d
nRlс l

λ
= , но одновременно уменьшается сопротивление теплоотдачи 

на наружной поверхности изоляции 
32

2
1

d
Rl α

= .  

Чтобы выяснить, как будет изменяться Rl при изменении толщины изоляционного 

слоя (d3), исследуем Rl как функцию d3. Беря первую производную от правой части 

уравнения по d3 и приравнивая ее нулю, получаем: 
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Исследовав кривую Rl = f(d3) любым из известных способов на максимум и 

минимум, увидим, что в экстремальной точке имеет место минимум. Таким образом, при 

найденном значении d3 термическое сопротивление теплопередачи будет минимальным, а 

тепловой поток будет иметь максимальное значение. 

Значение внешнего диаметра трубы, соответствующего минимальному полному 

термическому сопротивлению теплопередачи, называется критическим диаметром и 

обозначается dкр. Рассчитывается он по формуле: 

2

22

α
λ

=крd . 

Из этого уравнения следует, что критический диаметр будет тем меньше, чем 

меньше коэффициент теплопроводности изоляции и чем больше коэффициент 

теплоотдачи от наружной поверхности изоляции к окружающей среде. 

Рассмотрим зависимость линейной плотности теплового потока от диаметра 

изоляции. Из графика видно, что если наружный диаметр изоляции dиз увеличивается, но 

остается меньше dкр, то тепловые потери возрастают и будут больше теплопотерь голого 

трубопровода (кривая АК). При равенстве dиз = dкр получаются максимальные 

теплопотери в окружающую среду (точка К). При дальнейшем увеличении наружного 

диаметра изоляции dиз > dкр теплопотери будут меньше, чем при dиз = dкр. 



 
 

 

 

Только при dиз = d3 тепловые потери вновь станут такими же, как и для 

неизолированного трубопровода. 

Значит для эффективной работы изоляции необходимо, чтобы критический 

диаметр был меньше внешнего диаметра оголенного трубопровода, то есть dкр ≤ d2. 

Следовательно, 

2
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2

α
λизd ≥  ⇒ 

2
22d
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αλ ≤ . 

6. Передача теплоты через ребристую стенку 

Ребристые поверхности применяют для выравнивания термических сопротивлений 

теплоотдачи с обеих сторон стенки, когда одна поверхность стенки омывается капельной 

жидкостью с большим коэффициентом теплоотдачи, а другая поверхность омывается 

газом с малым коэффициентом теплоотдачи, создающим большое термическое 

сопротивление. 

Температура ребер изменяется по высоте ребра, если tж1 > tж2; у основания ребра 

она равна температуре поверхности стенки tс1, а температура у вершины ребра будет 

значительно меньше – tс2. Поэтому участки поверхности ребра у основания будут 

передавать больше теплоты, чем участки ребра у вершины.  

Отношение количества теплоты Qp, передаваемой поверхностью ребер в 

окружающую среду, к теплоте Qпp, которую эта поверхность могла бы передать при 

постоянной температуре у основания ребер, равной температуре у основания ребер, 

называется коэффициентом эффективности ребер: 

пр

p

э
Q

Q
=η . 

Коэффициент эффективности ребер всегда меньше единицы.  

 

Рассмотрим плоскую стенку толщиной 

δ, на одной стороне которой имеются ребра. 

Температура гладкой поверхности ребер и 

простенков между ними принимается в 

первом приближении равной постоянной 

величине tc2. Стенка и ребра выполнены из 

одного материала с коэффициентом 

теплопроводности λ. 



 
 

Коэффициент теплоотдачи на гладкой стороне α1, на ребристой α2. Площадь гладкой 

поверхности F1, площадь поверхности ребер и промежутков между ними F2. Температура 

горячего теплоносителя tж1, холодного tж2. Тогда для стационарного режима можно 

написать три уравнения теплового потока: 

Q = α1F1(tж1 – tс1), 

( )211 cc ttFQ −=
δ
λ

, 

Q = α2 F2(tс2 – tж2). 

Решая эти уравнения относительно разности температур и складывая, получаем: 
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Если тепловой поток отнести к оребренной поверхности стенки, то: 
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где 
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- коэффициент теплопередачи через ребристую стенку 

при отнесении теплового потока к оребренной поверхности. 

Если тепловой поток отнести к неоребренной поверхности стенки, то: 
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где 
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= - коэффициент теплопередачи через ребристую стенку при 

отнесении теплового потока к неоребренной поверхности стенки. 

Отношение оребренной поверхности F2 к гладкой F1 называется коэффициентом 

оребрения. 

7. Теплопроводность при наличии внутренних источников теплоты 

В ряде случаев внутри объектов исследования могут протекать процессы, в 

результате которых будет выделяться или поглощаться теплота. Выделение теплоты в 

этом случае характеризуется мощностью источников теплоты qυ, Вт/м3. 

Для стационарного режима теплопроводности дифференциальное уравнение 

теплопроводности при наличии внутренних источников теплоты имеет вид: 

02 =+∇
λ
υq

t . 

Теплопроводность однородной пластины. 



 
 

 

Рассмотрим длинную пластину, 

толщина которой 2δ мала по сравнению с 

двумя другими размерами. 

Источники теплоты равномерно 

распределены по объему и равны qυ=const. 

Заданы коэффициенты теплоотдачи α и 

температура жидкости tж, причем α = const и 

tж = const. Благодаря равномерному 

охлаждению температуры обеих 

поверхностей пластины  

одинаковы. При указанных условиях температура пластины будет изменяться 

только вдоль оси х. Температуру на оси пластины обозначим t0, на ее поверхности – tс. 

Необходимо определить температуры t0 и tс, распределение температуры в пластине и 

количество теплоты, отданное в окружающую среду. 

Дифференциальное уравнение в рассматриваемом случае принимает вид: 
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λ
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Граничные условия: 

при х = ±δ имеем ( )жc
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Поскольку граничные условия для обеих сторон пластины одинаковы, 

температурное поле внутри пластины должно быть симметричным относительно 

плоскости х = 0. Это означает, что можно далее рассматривать лишь одну половину 

пластины, например, правую и записать граничные условия для нее в виде: 
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После интегрирования дифференциального уравнения получим: 
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Постоянные интегрирования С1 и С2 определяются из граничных условий по 

выражению для первой производной: 

при х = 0 получаем С1 = 0; 

при х = δ  получаем 
λ
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Подставим это значение в исходное значение для граничного условия х=δ 
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Подставив это выражение в уравнение полученное после второго интегрирования 

при х = δ получим: 
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Подставив значения постоянных С1 и С2 в исходное выражение, найдем уравнение 

температурного поля: 
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Из полученного уравнения следует, что температура в плоской стенке в случае 

симметричной задачи распределяется по параболическому закону. 

В рассматриваемой задаче тепловой поток изменяется вдоль оси х: 

xqq υ= . 

При х = 0 плотность теплового потока q = 0. 

Тепловой поток с единицы поверхности пластины при х = δ   

( ) δα υqttq жc =−= . 

Общее количество теплоты, отданное всей поверхностью в единицу времени (вся 

поверхность F равна двум боковым поверхностям F1): 

12 FqqFQ δυ== . 

Теплопроводность однородного цилиндрического стержня. 

 

Рассмотрим круглый цилиндр, радиус 
которого мал по сравнению с длиной 
цилиндра. При этих условиях температура  
будет изменяться только вдоль радиуса. 

Внутренние источники теплоты 
равномерно распределены по объему тела. 
Заданы температура окружающей среды tж = 
const и постоянный по всей поверхности 
коэффициент теплоотдачи.  

Для цилиндра, как и для пластины, задача одномерна и симметрична. 
Дифференциальное уравнение теплопроводности при этом имеет вид: 
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Граничные условия: 



 
 

при r = 0  0
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Необходимо найти уравнение температурного поля и тепловой поток, а также 
значения температур на оси t0 и на поверхности tc. 

Проинтегрируем дифференциальное уравнение теплопроводности. При этом 
произведем замену  

u
dr

dt
= . 

Тогда уравнение теплопроводности запишется в виде: 
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После интегрирования получим: 

r

Crq
u 1

2
=+

λ
υ  ⇒ 

r

Crq

dr

dt 1

2
=+

λ
υ . 

После второго интегрирования получим: 

21

2

4
CnrC

rq
t ++−= l

λ
υ . 

Постоянные интегрирования С1 и С2 определяются из граничных условий 
при r = 0 получаем С1 = 0; 

при r = r0 получаем 
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Подставив последнее выражение в граничные условия, получим: 
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Подставив это выражение в уравнение полученное после второго интегрирования 
при r = r0 получим: 
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Подставив значения постоянных С1 и С2 в исходное выражение, найдем уравнение 
температурного поля: 
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Полученное выражение показывает, что распределение температуры в круглом 
стержне подчиняется параболическому закону. 

Из полученного уравнения при r = 0 найдем температуру на оси цилиндра: 
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Плотность теплового на поверхности цилиндра равна: 

( )
2
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Полный тепловой поток с поверхности цилиндра равна: 
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1. 3 Лекция № 4 (2 часа). 

Тема: «Нестационарная теплопроводность.»  
1.3.1 Вопросы лекции: 

1. Охлаждение (нагревание) неограниченной пластины.  
2. Определение количества теплоты, отданного пластиной в процессе 

охлаждения. 
3.  Регулярный режим охлаждения (нагревания) тел. 

1.3.2 Краткое содержание вопросов:  
1. Охлаждение (нагревание) неограниченной пластины 
Если температурное поле меняется во времени, то тепловые процессы, 

протекающие в таких условиях, называются нестационарными. 
Аналитическое описание процесса теплопроводности включает в себя 

дифференциальное уравнение и условия однозначности.  
Дифференциальное уравнение теплопроводности при отсутствии внутренних 

источников теплоты имеет вид: 
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Условия однозначности задаются в виде: 
- физических параметров λ, с, ρ; 
- формы и геометрических размеров объекта l0, l1, l2, …,ln; 
- температуры тела в начальный момент времени τ = 0  t = t0 = f(x, y, z). 
Граничные условия могут быть заданы в виде граничных условий третьего рода: 
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Решение дифференциального уравнения теплопроводности с учетом условий 
однозначности позволяет определить функцию температурного поля: 

 ( )nж l,...l,l,t,t,а,,,z,y,xft 100ατ= . 

Рассмотрим подробно решение задачи об охлаждении плоской однородной стенки 
и получим для этого случая конкретный вид функции температурного поля. Изучив этот 
метод решения задачи для пластины, можно понять принцип решения задач и для тел 
другой геометрической конфигурации. 

 

Дана пластина толщиной 2δ. Если толщина пластины 
мала по сравнению с длиной и шириной, то такую пластину 
обычно считают неограниченной. 

Изменение температуры происходит только в одном 
направлении оси Ох, в двух других направлениях температура 

не изменяется 0=
∂
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=
∂
∂

z

t

y

t
. Охлаждение происходит в среде с 

постоянной температурой tж = const. Коэффициенты 
теплоотдачи и теплопроводности с течением времени не 
изменяются. Отсчет температуры пластины для любого 

момента времени будем вести от температуры окружающей 

среды, то есть ϑ=− жtt . 



 
 

Так как задача в пространстве одномерная, то дифференциальное уравнение 
теплопроводности принимает вид: 
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Начальные условия: 
при τ = 0 ( ) ( )xFtxf ж =−== 0ϑϑ . 

При заданных условиях охлаждения задача становится симметричной и начало 
координат удобно поместить на оси пластины. Тогда граничные условия на оси и на 
поверхности пластины запишутся так: 

- на оси пластины при х = 0 0
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Дифференциальное уравнение совместно с начальными и граничными условиями 
однозначно формирует поставленную задачу. 

Решение дифференциального уравнения теплопроводности имеет вид: 
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Уравнению температурного поля целесообразно придать безразмерную форму. Для 
этого разделим правую и левую части уравнения на 0ϑ , получим: 
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Введем обозначения, которые имеют следующий смысл: 
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 - безразмерная температура; 
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Fo =  - число Фурье, представляющее собой безразмерное время; 

- 
nnn

n
n

cossin

sin
D

µµµ
µ
⋅+

=
2

- безразмерный коэффициент. 

С учетом последних обозначений уравнение температурного поля запишется в 
виде: 

( ) ( )∑
∞→

=

−⋅⋅=Θ
n

n

nnn FoexpXcosD
1

2µµ , 

где µn – корни характеристического уравнения: 

Bi
сtg

µµ = , 

где Bi  - безразмерный комплекс, называемый числом Био. Оно представляет собой 
отношение внутреннего термического сопротивления теплопроводности к внешнему 
термическому сопротивлению теплоотдачи: 



 
 

α
λδ

/

/
Bi

1
= . 

 

Наиболее просто характеристическое уравнение 
можно решить графическим способом. Обозначим 
левую часть характеристического уравнения через 

µctgy =1 , а правую – через Bi/y µ=2 . Пересечение 

котангенсоиды y1 с прямой y2 дает нам значение корней 
характеристического уравнения, то есть µn, причем 
каждое последующее больше предыдущего: 

...... n <<<<< µµµµ 321  

При Bi → ∞ прямая Bi/y µ=2  совпадает с осью абсцисс и корни уравнения будут 

равны: 

21
πµ = ; πµ

2

3
2 = ; πµ

2

5
2 = ;…; ( )

2
12
πµ −= nn . 

При Bi → 0 прямая Bi/y µ=2  совпадает с осью ординат и тангенс угла наклона 

прямой стремится к бесконечности, при этом корни характеристического уравнения равны: 
01 =µ ; πµ =1 ; πµ 21 = ;…;  ( )πµ 11 −= n . 

Так как n,..., µµµ 21  представляет собой ряд возрастающих чисел, то чем больше µ, 

тем меньше роль последующего члена ряда по сравнению с предыдущим. Кроме того, чем 
больше число Fo, тем быстрее будут убывать члены ряда с увеличением номера n. 

Многочисленные исследования показали, что уже при Fo ≥ 0,3 ряд становится 
настолько быстросходящимся, что распределение температуры достаточно точно можно 
описать первым членом ряда: 

( ) ( )FoexpXcosD 2
111 µµ −⋅⋅=Θ , 

где 
111

1
1

2

µµµ
µ

cossin

sin
D

⋅+
= . 

Величина D1 является только функцией числа Bi и заранее может быть рассчитана 
и табулирована. Кроме того, если рассматривать температуру для определенного значения 
Х, то и cos(µ1Х) является функцией числа Bi. Рассчитаем эту функцию для оси и 
поверхности пластины: 

- для оси пластины Х = 0 и cos(µ1 ⋅ 0) = 1; 
- для поверхности пластины  Х = 1 и cos(µ1 ⋅ 1) = cosµ1. 
Введем функции от числа Bi: 
- для оси пластины D1 ⋅ cos(0) = N(Bi); 
- для поверхности пластины  D1 ⋅ cosµ1 = Р(Bi). 
Тогда уравнение температурного поля можно записать в следующем виде: 

- для оси пластины ( ) ( )FoexpBiNХ
2
10 µ−⋅=Θ = ; 

- для поверхности пластины  ( ) ( )FoexpBiPХ
2
11 µ−⋅=Θ = . 

Функции N(Bi) и Р(Bi) в полученных уравнениях табулированы и для расчета могут 
быть взяты из справочников. Кроме того, из этих уравнений следует, что при заданной 
координате безразмерная температура является функцией только двух безразмерных 
параметров – Bi и Fo: 



 
 

( )Fo,BifХ 10 =Θ =   и ( )Fo,BifX 21 =Θ = . 

Логарифмируя уравнения температурного поля получаем: 

- для оси пластины ( ) FoBiNlnln Х
2
10 µ−=Θ = ; 

- для поверхности пластины  ( ) FoBiPlnln Х
2
11 µ−=Θ = . 

Из полученных уравнений следует, что при заданном значении координаты и при 
заданном Bi натуральный логарифм безразмерной температуры линейно зависит от 
времени.  

 

Кроме того, из общего уравнения 
температурного поля следует, что в условиях 
охлаждения (нагревания) пластины для любого 
момента времени при заданных граничных условиях 
поле температуры имеет вид симметричной кривой с 
максимумом на оси пластины (Х = 0). Для каждого 
последующего момента времени будет своя кривая, 
монотонно убывающая к поверхности пластины.  

При этом касательные ко всем температурным кривым в точке пересечения с 

поверхностью пластины и при неизменных граничных условиях всегда будут проходить 

через точку А. Сказанное справедливо не только для пластины, но и для цилиндра, шара и 
тел других геометрических форм. 

Направляющие точки +А и –А расположены от поверхности пластины на 
расстоянии: 

Bi
X

1
0 = . 

Это свойство температурных кривых дает возможность определить характер 
изменения температуры в теле при заданном значении числа Bi. Рассмотрим при этом два 
частных случая. 

1. Bi → ∞ (практически Bi > 100).  

Если Bi стремится к бесконечности, то температура поверхности пластины сразу 
становится равной температуре окружающей среды. Это видно из последнего уравнения: 
при Bi → ∞ Х0 = 0. Это означает, что точка пересечения касательных к температурным 
кривым находится на поверхности пластины.  

Из определения числа Био 
α
λδ

/

/
Bi

1
=  следует, что Bi → ∞ при заданных 

физических параметрах и толщине пластины, если α → ∞, то есть имеет место очень 
большая интенсивность отвода теплоты от поверхности. В этих случаях процесс 
охлаждения определяется физическими свойствами и размерами тела.  



 
 

 

В этих условиях уравнение температурного поля 
примет вид (µ1=π/2): 

















−⋅






⋅=Θ FoexpXcos

2

22

4 ππ
π

. 

А температуры на оси и поверхности пластины равны: 

- на оси пластины 















−⋅=Θ = FoexpХ

2

0 2

4 π
π

; 

- на поверхности пластины  01 =Θ =Х . 

Если первое уравнение прологарифмировать и решить относительно числа Fo, то 
получим: 









Θ

=
=0

2

144

X

lnFo
ππ

. 

Учитывая, что Fo = аτ/δ2 можно определить время, необходимое для прогрева 
середины пластины до заданной температуры, по формуле: 









Θ







=

=0

2
1412

X

ln
а ππ

δτ . 

 

2. Очень малые числа Bi (практически Bi < 0,1).  

Из выражения 
α
λδ

/

/
Bi

1
=  видно, что малые значения числа Bi могут иметь место 

при малых размерах толщины пластины, при больших значениях коэффициента 
теплопроводности λ и малых значениях коэффициента теплоотдачи α.  

В этом случае µ1 → 0, а D1 = 1. Кроме того, при малых значениях µ1 функции tgµ1 и 
sinµ1 можно заменить через их аргументы, и тогда характеристическое уравнение 
запишется в виде: 

Bi

1

1

1 µ
µ
=  ⇒ Bi=1µ . 

Тогда уравнение температурного поля примет вид: 

( ) ( )FoBiexpXBicos ⋅−⋅=Θ . 

Найдем температуры на оси и на поверхности пластины: 
при Х = 0 ( )FoBiexpX ⋅−=Θ =0 ; 

при Х = 1 ( ) ( )FoBiexpBicosX ⋅−⋅=Θ =1 . 

Отношение температур на оси и поверхности пластины: 
( )

( ) ( )
1

1

0 →
⋅−⋅

⋅−
=

Θ
Θ

=

=

FoBiexpBicos

FoBiexp

Х

X . 



 
 

 

При малых Bi температура на поверхности 
пластины незначительно отличается от температуры 
на оси. Это указывает на то, что температура по 
толщине пластины распределяется равномерно и 
кривая температур остается почти параллельной оси 
Ох для любого момента времени. 

Таким образом, в рассматриваемом случае 
процесс нагрева и охлаждения тела определяется 
интенсивностью теплоотдачи на поверхности 
пластины. Иначе говоря, процесс выравнивания 
температуры в теле происходит существенно 
интенсивнее, чем отвод теплоты с поверхности. 

 
2. Определение количества теплоты, отданного пластиной в процессе 

охлаждения 
За промежуток времени от τ = 0 до τ1 пластина отдает или воспринимает 

следующее количество теплоты: 

( )11 Θ−= пQQ , 

где Qп – количество  теплоты, которое пластина отдает или воспринимает за 
период ее полного охлаждения; 

1Θ  - средняя безразмерная температура по толщине пластины в момент 

времени τ1. 
Количество  теплоты, которое пластина отдает или воспринимает за период ее 

полного охлаждения должно равняться изменению внутренней энергии пластины за этот 
же период: 

( )жn ttcFQ −= 02 δρ . 

Из представленных соотношений следует, что расчет количества теплоты, 
отданного или воспринятого пластиной, сводится к нахождению средней безразмерной 
температуры в интересующий нас момент времени. Средняя безразмерная температура 
для слоя пластины от оси симметрии до плоскости Х находится следующим образом: 

∫Θ=Θ
X

dX
Х 0

1
. 

Если в это выражение подставить под знак интеграла уравнение температурного 
поля и проинтегрировать его от нуля до единицы, то получим: 

( )Foexp
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n

n

n nnnn

n 2
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при Bi → ∞ это уравнение принимает вид: 

( ) 
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; 

при Bi → 0 уравнение принимает вид: 

( )BiFoexp −=Θ . 

Множитель 
nnnn

n

cossin

sin

µµµµ
µ
⋅+2

22
 зависит только от числа Bi и может быть 

представлен как функция М(Bi), которая заранее рассчитана и затабулирована, тогда: 

( ) ( )FoexpBiM n
2µ−=Θ . 



 
 

3. Регулярный режим охлаждения (нагревания) тел 
Решения дифференциального уравнения теплопроводности при нестационарном 

температурном поле для тел различной геометрической формы имеют одинаковую 
структуру, то есть представляют собой сумму бесконечного ряда, члены которого 
расположены по быстро убывающим экспоненциальным функциям. Например, для 
безграничной пластины при ее охлаждении в среде с постоянной температурой tж и 
постоянным коэффициентом теплоотдачи α на ее поверхности получено: 

2
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δ
τµ

δ
µϑ

a

n

n

n

n

n
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x
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−∞→

=






= ∑ . 

В этом уравнении: 
An – постоянный коэффициент (не зависящий ни от координат, ни от времени), он 
найден из начальных условий; 









δ
µ x

cos n  - функция только координаты х, и ее можно обозначить Un; 

2

2

δ
µ an - постоянное вещественное положительное число, обозначим его mn. 

С учетом введенных обозначений выражение для пластины можно представить 
следующим образом: 

τϑ nm
n

n

nn eUA
−

∞→

=
∑=

1

. 

Для тел других геометрических форм температурное поле будет описываться 
уравнением аналогичного вида. Специфика геометрической формы учитывается 
различным видом множителей Аn и Un. Для тел одной и той же формы различным 
начальным распределениям температуры будут соответствовать разные совокупности 
чисел Аn. 

 

Анализ представленного выражения показывает, что при малых значениях τ от τ = 
0 до τ = τ1 процесс охлаждения (нагревания) зависит от начальных условий охлаждения и 
имеет случайный характер, не связанный с условиями охлаждения. Этот период 
охлаждения будет определяться не только первым, но и последующими членами ряда 
рассматриваемого уравнения. Эта стадия охлаждения называется неупорядоченной 

стадией. 
С увеличением времени τ ряд быстро сходится и все его члены, кроме первого, 

стремятся к нулю. При τ, превышающем некоторое определенное значение τ > τ1, 
начальные условия начинают играть второстепенную роль, и процесс полностью 
определяется только условиями охлаждения на поверхности тела, его физическими 
свойствами, геометрической формой и размерами. Вторая стадия охлаждения называется 
регулярным режимом и описывается первым членом уравнения, то есть: 

τϑ 1
11

m
eUA
−= . 

Логарифмируя последнее уравнение и опуская индексы, имеем: 
( ) τϑ mAUlnln −=   или ( )z,y,xCmln +−= τϑ . 

Из уравнения видно, что натуральный логарифм избыточной температуры для всех 
точек тела изменяется во времени по линейному закону. При длительном охлаждении (τ 
→ ∞) все точки тела в конце концов принимают одинаковую температуру, равную tж, то 
есть наступает стационарное состояние. 



 
 

Если полученное выражение продифференцировать по времени, то будем иметь:   

τ
ϑ

ϑ ∂
∂

−=
1

m , 1/с 

Полученное выражение, позволяет определить относительную скорость изменения 
температуры в единицу времени, которая в любой точке тела не зависит от координат и 
времени. Величина m называется темпом охлаждения. 

Темп охлаждения зависит от физических свойств тела, процесса охлаждения на его 
поверхности, геометрической формы и размеров тела. Согласно теории регулярного 
режима теплопроводности, разработанной Г.М. Кондратьевым, темп охлаждения m 
определяется из уравнения: 

C

F
m

αψ= . 

Следовательно, темп охлаждения прямо пропорционален коэффициенту 

теплоотдачи α (если α не → ∞) поверхности тела F и обратно пропорционален его 

полной теплоемкости С = cρV. Безразмерный коэффициент пропорциональности ψ 
характеризует неравномерность распределения температуры в теле и зависит от числа 
Био. 

Если коэффициент теплоотдачи α → ∞, то величина m прямо пропорциональна 

коэффициенту температуропроводности охлаждающегося тела: 

K

a
m =∞ , 

где К – коэффициент пропорциональности, зависящий от геометрических размеров 
и формы тела, м2. 

1.2. Решение поставленной задачи 

Решение дифференциального уравнения теплопроводности будем искать в виде 
произведения двух функций, из которых одна является функцией только τ, а другая – 
только х (метод разделения переменных): 

( ) ( ) ( )хх, ψτϕτϑϑ ⋅== . 
После подстановки последнего выражения в дифференциальное уравнение 

получим: 

( ) ( ) ( ) ( )τϕψψ
τ
τϕ

2

2

х

х
ах
∂
∂

=
∂
∂

 или ( ) ( ) ( ) ( )τϕψψτϕ хах ′′=′ . 

Разделив переменные запишем уравнение в виде: 
( )
( )

( )
( )х

х
а
ψ
ψ

τϕ
τϕ ′′
=

′
. 

Если зафиксировать аргумент х и менять только τ , то при любом его значении 
правая часть уравнения будет оставаться постоянной, то есть: 

( )
( ) const=
′
τϕ
τϕ

. 

Аналогично при фиксации τ и изменении х правая часть уравнения для любого 
значения х должна равняться постоянной левой части, которая зависит только от τ, то 
есть: 

( )
( ) const
х

х
а =

′′
ψ
ψ

. 



 
 

Так как уравнение теплопроводности должно иметь место при любых значениях х 
и τ, то обе его части должны быть равны одной и той же постоянной величине. 
Постоянную обозначим через –k

2, тогда: 
( )
( )

( )
( )

21
kconst

х

х

а
−==

′′
=

′
ψ
ψ

τϕ
τϕ

. 

Постоянную k определим из граничных условий, а знак минус выбираем из 
физических соображений. Для тепловых процессов, стремящихся к тепловому 
равновесию, может быть только знак минус. 

В результате сделанной подстановки получаем систему обыкновенных 
дифференциальных уравнений: 

( ) ( ) 02 =+′ τϕτϕ аk ; 

( ) ( ) 02 =+′′ хkх ψψ . 

Первому уравнению удовлетворяет функция: ( ) ττϕ
2

1
akеС −= . 

Второму уравнению: ( ) ( ) ( )kxcosCkxsinCx 32 +=ψ . 

Произведение этих двух функций дает искомое искомую функцию температурного 
поля: 

( ) ( )[ ] τϑ
2

132
akеСkxcosCkxsinC −+= . 

Чтобы полученное уравнение было решением поставленной задачи, его нужно 
подчинить начальным и граничным условиям. Подчиняя уравнение граничным условиям 
при х = 0, находим: 
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или ( ) ( )00 32 sinCcosC =  ⇒ С2 = 0. 

Если обозначить С1С2 = А, то функцию температурного поля можно записать в 
виде: 

( )kxcosАе
ak τϑ

2−= . 
Подчинив это уравнение второму граничному условию: 
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 получим: ( ) ( )δ

λ
αδ ττ kcosАеksinkAе akak 22 −− −=− . 

Откуда после простейших преобразований получим характеристическое 

уравнение:      ( )

λ
αδ
δδ k

kсtg = . 

Введем обозначение kδ = µ, Bi=
λ
αδ

 - безразмерный комплекс, называемый 

числом Био. Оно представляет собой отношение внутреннего термического сопротивления 

теплопроводности к внешнему термическому сопротивлению теплоотдачи:   
α
λδ

/

/
Bi

1
= . 

Тогда последнее выражение можно записать следующим образом: 

Bi
сtg

µµ = . 



 
 

Из анализа этого тригонометрического уравнения следует, что при каждом 
значении Bi существует бесконечное множество решений, а общее выражение функции 
температурного поля будет представлять собой сумму бесконечного ряда: 
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Постоянную An находим из начальных условий (без вывода): 
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Подставляя значение An, полученное для случая равномерного распределения 
температуры в пластине в начальный момент времени в уравнение температурного поля, 
получим: 
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1. 4 Лекция № 5 (2 часа). 

Тема: «Основы конвективного теплообмена»  
1.4.1 Вопросы лекции: 

1. Основной закон конвективного теплообмена. Физические свойства тел. 
2. Теория пограничного слоя.  
3. Основы теории подобия.  
4. Приведение дифференциальных уравнений конвективного теплообмена и 
условий однозначности к безразмерному виду. 
 

1.4.2 Краткое содержание вопросов:  
 
1. Основной закон конвективного теплообмена 
Понятие конвективного теплообмена охватывает процесс теплообмена при 

движении жидкости или газа. При этом перенос теплоты осуществляется одновременно 
конвекцией и теплопроводностью. Под конвекцией теплоты понимается процесс 

переноса теплоты при перемещении макрочастиц жидкости или газа в пространстве из 

области с одной температурой в область с другой температурой. Конвекция возможна 
только в текучей среде, в которой перенос теплоты неразрывно связан с переносом самой 
среды.  

Конвективный теплообмен между потоками жидкости или газа и поверхностью 

соприкасающегося с ним тела называется конвективной теплоотдачей или просто 

теплоотдачей.  
При расчетах теплоотдачи используется закон Ньютона-Рихмана: тепловой поток в 

процессе теплоотдачи пропорционален площади поверхности теплоотдачи и разности 
температур между поверхностью тела и жидкости: 

Q = αF tc - tж. 
В процессе теплоотдачи независимо от направления теплового потока Q (от стенки 

к жидкости или наоборот) значение его принято считать положительным, поэтому 
разность температур, которая называется температурным напором tc - tж берется по 
абсолютной величине. 

Коэффициент пропорциональности α называется коэффициентом теплоотдачи, 
он характеризует интенсивность процесса теплоотдачи. Численное значение его равно 



 
 

тепловому потоку от единичной поверхности теплообмена при разности температур 

поверхности и жидкости в 1 К. 
Коэффициент теплоотдачи зависит от большого количества факторов: 
- формы и размеров тела, 
- режима движения, 
- скорости и температуры жидкости, 
- физических параметров жидкости. 
Различают свободную (естественную) и вынужденную конвекции (движение). 

Естественная конвекция возникает в жидкости с неоднородным распределением 
температуры и, как следствие, с неоднородным распределением плотности. В результате 
под действием поля земного тяготения возникает свободное гравитационное движение в 
жидкости. Вынужденное движение жидкости или газа создается внешним источником 
(насосом, вентилятором, ветром). 

Большое влияние на теплообмен оказывают следующие физические параметры: 
коэффициент теплопроводности λ, удельная теплоемкость с, плотность ρ, коэффициент 
температуропроводности а, которые были рассмотрены ранее. Для каждого вещества эти 
параметры имеют определенные значения и являются функциями параметров состояния 
(температуры и давления, прежде всего температуры).  

Кроме этих параметров для конвективного теплообмена большое значение имеют 
вязкость и тепловое расширение жидкости. 

Все реальные жидкости обладают вязкостью; между частицами или слоями, 
движущимися с различными скоростями, всегда возникает сила внутреннего трения 
(касательное усилие), противодействующая движению. Согласно закону Ньютона эта 
касательная сила s, отнесенная к единице поверхности, пропорциональна изменению 

скорости (градиенту скорости) в направлении нормали к плоскости, ориентированной по 

течению: 

dn

dw
s µ= . 

Коэффициент пропорциональности, зависящий от природы жидкости и ее 
температуры, называется динамическим коэффициентом вязкости, или коэффициентом 

внутреннего трения, Па ⋅ с. 
Чем больше µ, тем меньше текучесть жидкости. Вязкость капельной жидкости с 

увеличением температуры уменьшается и почти не зависит от давления. У газов с 
увеличением температуры и давления вязкость увеличивается. Коэффициент вязкости 
идеальных газов не зависит от давления. 

В уравнения гидродинамики и теплопередачи часто входит кинематический 
коэффициент вязкости ν, представляющий собой отношение динамического 
коэффициента вязкости к плотности жидкости, м2/с: 

ρ
µν = . 

Тепловой расширение жидкости характеризуется температурным коэффициентом 
объемного расширения, который представляет собой относительное изменение объема 
при изменении температуры на один градус (при постоянном давлении): 

pT
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. 

Температурный коэффициент объемного расширения капельных жидкостей 
значительно меньше, чем газов. Для идеального газа температурный коэффициент 
объемного расширения есть величина, обратная абсолютной температуре: 

Т/1=β . 



 
 

 
 
2.Теория пограничного слоя 

 

Рассмотрим процесс продольного омывания какого-либо тела безграничным 
потоком жидкости с постоянной скоростью течения wж, имеющей постоянную 
температуру tж. Частицы жидкости, непосредственно соприкасающиеся с 
поверхностью, адсорбируются («прилипают») к ней.  

Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от 
поверхности слои жидкости. 

 Зона потока, в которой наблюдается уменьшение скорости (w < wж), вызванное 

вязким взаимодействием жидкости с поверхностью, называется гидродинамическим 

пограничным слоем. За пределами пограничного слоя течет невозмущенный поток.  
На начальном участке (при малых значениях х) гидродинамический слой очень 

тонок (в лобовой точке с координатами х = 0 толщина равна нулю). При удалении от 
лобовой точки толщина пограничного слоя растет. Кроме того, с увеличением вязкости 
толщина гидродинамического слоя также возрастает.  

Толщина гидродинамического пограничного слоя зависит и от характера движения 
жидкости. Течение в гидродинамическом пограничном слое может быть, как 
турбулентным, так и ламинарным.  

При ламинарном течении жидкости все частицы движутся только по параллельным 
между собой траекториям, не перемешиваясь. В турбулентном потоке непрерывно 
происходит перемешивание всех слоев жидкости. Каждая частица потока совершает 
различные движения, в том числе перпендикулярно станкам канала.  

Характер движения жидкости в круглой трубе определяется числом Рейнольдса: 

v

wd
Re = , где w – средняя скорость жидкости, м/с; d – диаметр круглого 

трубопровода, м; v – коэффициент кинематической вязкости жидкости, м2/с. 
Следует отметить, что даже при турбулентном гидродинамическом пограничном 

слое непосредственно у стенки имеется очень тонкий слой жидкости, движение в котором 
имеет ламинарный характер. Этот слой называется вязким, или ламинарным, подслоем. 

Аналогичным образом осуществляется и тепловое взаимодействие потока с 
пластиной. Частицы жидкости, «прилипшие» к поверхности, иемют температуру, равную 
температуре поверхности tс. Соприкасающиеся с этими частицами движущиеся слои 
жидкости охлаждаются, отдавая им свою теплоту. От соприкосновения с этими слоями 
охлаждаются следующие более удаленные от поверхности слои потока – так формируется 
тепловой пограничный слой, в пределах которого температура меняется от tс на 
поверхности до tж в невозмущенном потоке. 

С удалением от лобовой точки количество охлаждающейся у пластины жидкости 
увеличивается, и толщина теплового пограничного слоя возрастает аналогично 
возрастанию δг. В общем случае толщины теплового и гидродинамического слоев не 
равны, но часто достаточно близки друг к другу, особенно в газах. 

Механизм и интенсивность переноса теплоты зависит от характера движения 
жидкости в пограничном слое. При ламинарном течении тепловой поток от 
охлаждающейся в пограничном слое жидкости переносится к поверхности пластины 
только за счет теплопроводности. При турбулентном течении в тепловом пограничном 
слое перенос теплоты в направлении к стенке в основном обусловлен конвекцией за счет 
турбулентного перемешивания жидкости, то есть более интенсивно. Однако 
непосредственно у стенки, в ламинарном подслое, перенос теплоты к стенке 
осуществляется обычной теплопроводностью. 



 
 

Очень большое значение для теплообмена имеют форма и размер поверхностей; в 
зависимости от них может резко меняться характер движения жидкости и толщина 
пограничного слоя. 

 
 
 
 
3. Основы теории подобия 
Теория подобия – это учение о подобных явлениях. Она позволяет на основе 

отдельных опытов получить обобщенную зависимость, то есть не прибегая к 
интегрированию можно сделать ряд выводов из дифференциальных уравнений и условий 
однозначности. 

 
Термин «подобие» заимствован из геометрии, в которой изучается подобие 

геометрических фигур. У подобных геометрических фигур пропорциональны 
сходственные линейные элементы (длины сторон треугольника, граней призм и т.д.). 

Так условия подобия двух геометрических фигур можно записать: 
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где Сl – константа геометрического подобия.  
Следовательно, группу подобных фигур можно получить, если стороны основной 

фигуры умножить на величину Сl, которой можно придавать любые произвольные 
значения. 

Константы подобия имеют одинаковое значение для конечных и бесконечно малых 
величин.  

Для осуществления подобия физических явлений необходима пропорциональность 
не только геометрических элементов системы, в которых протекает явление, но также и 
других физических характеристик, определяющих эти явления (скоростей, температур, 
плотностей и т.п.). 

Для изучения подобных величин вводятся понятия одноименных (однородных) 
величин, сходственных точек и сходственных моментов времени. 

Однородными называются физические величины, имеющие одинаковый физический 

смысл и одинаковую размерность. Сходственными называются такие точки системы, 

координаты которых удовлетворяют геометрическому подобию. 

Сходственные моменты времени наступают по истечении периодов времени τ′ и τ″, 
имеющих общее начало отсчета и связанных между собой константой подобия по 
времени: 

ττ
τ

С=
′
′′

. 

Подобными называются физические явления, протекающие в геометрически 

подобных системах, если у них во всех сходственных точках и сходственные моменты 

времени отношения одноименных величин есть постоянные числа. Эти постоянные числа 
называются константами подобия. 

Рассмотрим правило выбора констант подобия на конкретном примере. Запишем 
уравнения теплоотдачи для сходственных точек двух подобных между собой явлений: 
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Обозначим константы подобия: 
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где l – характерный размер системы. 
Из определения констант подобия следует, что: 

αα α ′=′′ С ; λλ λ ′=′′ С ; tCt t
′∆=′′∆ ; tCt t

′=′′ ; nCn l
′=′′ . 

Подставим эти выражения в уравнение теплоотдачи для второго случая: 
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Полученное уравнение тождественно уравнению 
n

t

t ′∂
′∂

⋅
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−=′
λα , так как они 

выражают связь между параметрами процесса, обусловленную дифференциальным 
уравнением теплоотдачи для одной и той же системой. Из условия тождественности 
уравнений следует, что: 

1=
⋅ lCC
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Это и есть связь между константами подобия, полученная из уравнения 
теплоотдачи. Из этого соотношения видно, что выбор комплекса констант подобия 
ограничен условием: любая их комбинация должна быть равна единице. 

Если заменить константы подобия физическими параметрами, получим: 

λ
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. 

 
Следовательно, существуют такие безразмерные соотношения параметров, 

характеризующих процесс, которые у подобных явлений в сходственных точках имеют 
численно одинаковые значения. Такие безразмерные соотношения называются числами 

(критериями) подобия.  
Числа подобия принято называть именами крупных ученых. Записанное 

уравнением число называется числом Нуссельта и обозначается Nu. 

λ
αl

Nu = . 

Произведение чисел и частное от их деления также представляют собой числа 
подобия.  

Таким образом, для характеристики подобия явлений можно использовать 
константы подобия и числа подобия. Константы подобия сохраняют числовое значение 
только для двух подобных явлений, но они остаются одинаковыми для всех сходственных 
точек рассматриваемых систем. Числа подобия сохраняют свое числовое значение в 
сходственных точках всех подобных между собой систем, но в различных точках одной и 
той же системы они могут иметь разные числовые значения.  

Поэтому константами подобия удобно пользоваться при моделировании устройств, 
когда необходимо получить подобие только между двумя явлениями, а числами подобия – 
при обработке опытных данных, когда на основании изучения единичных явлений 
необходимо получить обобщенную зависимость, пригодную для всех подобных между 
собой явлений. 

Основу теории подобия физических явлений составляют три теоремы. 
Первую теорему формулируют так: у подобных явлений одноименные критерии 

подобия численно одинаковы. 

Первая теорема подобия устанавливает связь между константами подобия и 
позволяет вывести уравнения для чисел подобия. Теорема указывает, что при выполнении 
опытов необходимо и достаточно измерять лишь те величины, которые входят в числа 
подобия изучаемого явления. 



 
 

Вторая теорема гласит: интеграл дифференциального уравнения (или системы 
уравнений) может быть представлен как функция чисел подобия дифференциального 

уравнения.  
На основании этой теоремы любая зависимость между переменными, 

характеризующими какое-либо явление, может быть представлена в виде зависимости 
между числами подобия: 

( ) 0321 =nK...,K,K,Kf . 

4. Приведение дифференциальных уравнений конвективного теплообмена и 
условий однозначности к безразмерному виду. 

Явление теплоотдачи определяется факторами теплового и гидродинамического 
происхождения, поэтому для аналитической оценки этого явления необходимо 
рассмотреть систему дифференциальных уравнений, которая описывала бы тепловые и 
гидродинамические условия протекания процессов. 

Система дифференциальных уравнений состоит из уравнений теплоотдачи, 
теплопроводности, движения и сплошности. 

Дифференциальное уравнение теплоотдачи выражает условия теплообмен на 
границе твердого тела и жидкости: 
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Дифференциальное уравнение теплопроводности (уравнение энергии) 
устанавливает связь между пространственным и временным изменением температуры в 
любой точке движущейся жидкости: 
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Дифференциальное уравнение движения вязкой жидкости представлено 
уравнением Навье-Стокса: 

для оси х 
xxz

x
y

x
x

xx w
x

p
gw

z

w
w

y

w
w

x

ww 2∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ µρ
τ

ρ ; 

для оси y 
yyz

y

y

y

x

yy
w

y

p
gw

z

w
w

y

w
w

x

ww 2∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

µρ
τ

ρ ; 

для оси z 
zzz

z
y

z
x

zz w
z

p
gw

z

w
w

y

w
w

x

ww 2∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ µρ
τ

ρ . 

Дифференциальное уравнение сплошности или непрерывности, для сжимаемой 
жидкости имеет вид: 
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Для получения из множества решений системы дифференциальных уравнений 
одного частного, необходимо дополнительно ввести условия однозначности. Условия 
однозначности должны содержать все особенности данного конкретного явления. 

Следовательно, дифференциальные уравнения и четыре условия однозначности 
определяют конкретное единичное явление. Однако в большинстве случаев найти 
решение, удовлетворяющее дифференциальным уравнениям и условиям однозначности, 
невозможно. Поэтому для решения задач конвективного теплообмена необходимо 
воспользоваться теорией подобия. 

На основе анализа дифференциальных уравнений получены следующие числа 
(критерии) подобия: 



 
 

- из уравнения теплоотдачи число Нуссельта 
λ
αl

Nu = ; 

- из уравнения теплопроводности 

число Фурье 
2l

a
Fo

τ
= ; 

число Пекле 
a

wl
Pe = ;  

- из уравнения движения 

число гомохронности 
l

w
Ho

τ
= ; 

число Эйлера 
2w

p
Eu

ρ
= ; 

число Рейнольдса 
v

wl
Re = ; 

число Грасгофа 
2

3

v

gl
Gr

β
= . 

Число Нуссельта характеризует конвективный теплообмен между жидкостью и 
поверхностью твердого тела. Число Нуссельта определяется теми же величинами, что и 
число Био, но в число Nu входит теплопроводность теплоносителя, а в число Bi – 
теплопроводность твердого тела. 

Число Фурье характеризует связь между скоростью изменения температурного 
поля, физическими параметрами и размерами тела, то есть отражает влияние 
нестационарности. 

Число Пекле, число подобия конвективного теплообмена. 
Число подобия гидродинамической гомохронности (Но) характеризует скорость 

изменения поля скоростей движущейся жидкости во времени. Число Эйлера (Eu) 
характеризует соотношение между силами давления и силами инерции. Число Рейнольдса 
(Re) представляет собой отношение сил инерции к силам вязкости и определяет характер 
течения жидкости. Число Грасгофа (Gr) характеризует соотношение подъемной силы, 
возникающей вследствие разности плотностей жидкости и силы молекулярного трения. 

Если разделить число Ре на число Re, то получим новое число Прандтля, зависящие 

только от физических свойств жидкости:  
a

v
Pr = . 

Уравнением подобия называется зависимость между каким-либо определяемым 

числом подобия и другими определяющими числами подобия. 
При расчете тепловых аппаратов искомыми величинами являются коэффициент 

теплоотдачи α и гидравлическое сопротивление ∆р. Конвективный теплообмен 
характеризуется пятью числами подобия – Nu, Eu, Pr, Gr, Fo и Re. Число Nu содержит 
неизвестный коэффициент теплоотдачи α, а число Eu – искомую величину ∆р, 
характеризующую гидравлическое сопротивление при движении жидкости. Поэтому 
числа Nu и Eu являются определяемыми числами подобия, а числа Pr, Gr и Re – 
определяющими.  

Тогда при конвективном теплообмене уравнения подобия могут быть представлены в 
следующем виде: 

( )Pr,GrRe,,FofNu 1=  ( )Pr,GrRe,,FofEu 2= .О 

Зависимость между числами подобия в основном определяется опытным путем. 
Критерии подобия, входящие в правую часть уравнения, учитывают влияние 

различных факторов на коэффициент теплоотдачи. Критерий Фурье отражает влияние 



 
 

нестационарности, критерий Рейнольдса – влияние вынужденной конвекции, критерий 
Грасгофа влияние свободной конвекции и критерий Прандтля – влияние физических 
свойств жидкости на коэффициент теплоотдачи. 

В большинстве случаев изучаются стационарные процессы теплоотдачи и поэтому 
критерий Фурье, исключается из уравнения подобия. 

Свободная конвекция всегда сопровождает явление теплоотдачи, но при развитом 
турбулентном движении она имеет второстепенное значение и не отражается на величине 
коэффициента теплоотдачи. Поэтому для таких задач уравнение теплоотдачи упрощается: 

( )PrRe,fNu 1= . 

Для некоторых газов величина числа Прандтля в процессе конвективного 
теплообмена почти не изменяется с температурой, поэтому уравнение подобия принимает 
более простой вид, (среднее значение числа Прандтля войдет в постоянную уравнения): 

( )RefNu 1= . 

При свободном движении жидкости, когда вынужденная конвекция отсутствует, 
вместо числа Рейнольдса в уравнение подобия теплоотдачи необходимо ввести число 
Грасгофа: 

( )Pr,GrfNu 1= . 

Общее уравнение подобия для конвективного теплообмена представляют в виде 
степенной функции: 
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направление теплового потока. 
Количественная связь между числами подобия и является предметом 

экспериментальных исследований конвективного теплообмена. 
 
 
1. 5 Лекция № 6 (2 часа). 

Тема: «Критериальные уравнения конвективного теплообмена»  
1.5.1 Вопросы лекции: 

1. Теплоотдача при вынужденном движении теплоносителя.  
2. Продольное обтекание пластины.  
3. Поперечное обтекание одиночной трубы и пучка труб.  
4. Течение теплоносителя внутри труб. Теплоотдача при естественной 

конвекции. 
 

1.5.2 Краткое содержание вопросов:  
1. Теплоотдача при вынужденном движении теплоносителя 
При расчетах коэффициентов теплоотдачи по эмпирическим формулам, 

необходимо знать какими принимались определяющая температура и определяющий 
размер. 

Определяющей температурой называется температура, при которой 

выбираются значения физических свойств жидкости в уравнениях подобия. В качестве 
определяющей можно выбрать среднюю температуру жидкости, среднюю температуру 
стенки или среднюю температуру пограничного слоя. 

Определяющим размером называется характерный размер системы, входящий в 

число подобия. При теплоотдаче от пластины это длина в направлении течения потока, 
при теплоотдаче от труб – это диаметр теплоотдающей поверхности. 

2.Продольное обтекание пластины. 
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многих теплообменниках трубы располагаются в виде шахматных или коридорных 
пучков. Первый ряд труб омывается нвозмущенным потоком жидкости, и поэтому данный 
ряд имеет наименьший коэффициент теплоотдачи. В следующих рядах труб теплоотдача 
протекает более интенсивно, но в третьем и последующих рядах она считается 
одинаковой. Коэффициент теплоотдачи при поперечном обтекании таких пучков в 
интервале Re = 103…105 можно рассчитать по формуле: 
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жж PrReСuN εεϕ
330= , 

для шахматных пучков С = 0,41; т = 0,6. 
для коридорных пучков С = 0,26; т = 0,65. 
 
Поправочный коэффициент sε  учитывает влияние поперечного s1 и продольного s2 

шагов.  
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для коридорных пучков 

150

2

,

s
s

d








=ε . 

Определяющим размером в формуле является наружный диаметр труб, 
определяющей температурой является температура перед соответствующим рядом 
пучков. В число Рейнольдса входит скорость потока в самом узком сечении ряда.  

Коэффициенты теплоотдачи первого и второго рядов подсчитываются через 
коэффициенты теплоотдачи третьего ряда: 

для шахматных пучков 31 60 αα ,= ; 32 90 αα ,=  

для коридорных пучков 31 60 αα ,= ; 32 70 αα ,= . 

4.Течение теплоносителя внутри труб. 
Для случая течения жидкости в гладких прямых трубах круглого поперечного 

сечения или в каналах некруглого сечения справедливы зависимости: 
при ламинарном вязкостно-гравитационном режиме (Re < 2000): 
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при турбулентном режиме (Re = 104…5 · 106): 
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Определяющая температура в этих уравнениях – средняя температура жидкости в 
трубе, определяющий размер – внутренний диаметр трубы d. Если это не круглая труба, а 
канал произвольной формы, то эти формулы тоже применимы, только определяющим 
размером будет эквивалентный диаметр канала: 

П

F
dэкв

4
= , 

где  F – площадь поперечного сечения канала; 



 
 

П – внутренний периметр этого сечения. 
Эти формулы позволяют рассчитывать коэффициент теплоотдачи при длинных 

трубах, когда l/d ≥ 50. При l/d < 50 полученный коэффициент теплоотдачи нужно 
умножить на поправку εl.  

5. Теплоотдача при естественной конвекции 
Для расчета коэффициентов теплоотдачи в условиях естественной конвекции 

обычно пользуются зависимостью вида: 
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Значения коэффициента С и показателя степени n в зависимости от произведения 
( )жж PrGr  приведены ниже. 

Определяющей температурой является средняя температура теплоносителя в 
объеме и у стенки: 

2
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Условия  
теплоотдачи 

С n 
Определяющий 

размер 
Вертикальные 
пластина и труба: 
GrPr = 103…109 0,8 0,25 

Длина трубы, 
пластины 

GrPr > 109 0,15 0,33 
Горизонтальная 
труба: 

10-3 ≤ GrPr ≤ 103 0,18 0,125 
Диаметр трубы 

103 ≤ GrPr ≤ 108 0,5 0,25 
Горизонтальная 
пластина при 
ламинарном режиме 
течения: 

охлаждение сверху 0,54 0,25 

Короткая сторона  
пластины 

охлаждение снизу 0,27 0,25 
 

 
1. 6 Лекция № 7 ( 2 часа). 

Тема: «Теплообмен при фазовых переходах»  
1.6.1 Вопросы лекции: 

1.Теплообмен при конденсации пара.  
2.Теплообмен при кипении жидкости. Пузырьковый режим кипения. 
3. Теплообмен в двухкомпонентных средах.  
4. Пленочное кипение и конденсация. 
.  

1.6.2 Краткое содержание вопросов:  
1.Теплообмен при конденсации пара. 

Определение и классификация процессов конденсации. Теплообмен при конденсации 

чистых паров 

Конденсация представляет собой процесс перехода пара (газа) в жидкое или 
твердое состояние (фазовый переход первого рода). На практике пар конденсируется на 
охлаждаемых трубах в конденсаторах паровых турбин, в некоторых опреснительных 



 
 

установках и многочисленных теплообменных аппаратах; образование жидких и 
кристаллических частиц воды происходит в облаках или инверсионном следе за 
самолетом. При конденсации пара происходит выделение тепла фазового перехода, 
поэтому процесс конденсации неразрывно связан с теплообменом . 

Конденсация возможна только при докритических состояниях газа (пара) и может 
быть осуществлена путем его охлаждения или в результате такого сжатия, чтобы при 
достигнутых значениях температуры и давления конденсированная фаза была 
термодинамически более устойчивой, чем газообразная. Если при этом температура и 
давление больше их значений, соответствующих тройной точке для данного вещества, то 
образуется жидкая конденсированная фаза, если меньше - пар переходит в твердое 
состояние. 

Конденсация может проходить как в объеме пара, так и на охлаждаемой 
поверхности теплообмена. В зависимости от условий конденсации рассматриваемый 
процесс имеет свои особенности и описывается различными законами. В энергетике чаще 
всего имеет место поверхностная конденсация паров в жидкое состояние на охлаждаемых 
поверхностях теплообмена. Будем полагать, что конденсирующийся пар не содержит 
примесей других паров или газов, т. е. является чистым. Конденсация насыщенного или 
перегретого пара на твердой поверхности теплообмена происходит, если температура по-
верхности меньше температуры насыщения при данном давлении. 

При первичном соприкосновении охлаждаемой стенки с паром поверхность тела 
покрывается адсорбированным мономолекулярным слоем пара, который затем 
уплотняется в тонкую жидкую пленку. По мере роста толщина пленки неправильно 
изменяется (флуктуирует), пока не достигнет некоторой критической величины, после 
чего дальнейшее увеличение толщины пленки происходит более или менее монотонно. 
Обычно образовавшаяся пленка конденсата растекается или стекает под действием силы 
тяжести и восполняется за счет непрерывно идущего процесса конденсации. Как 
показывают визуальные наблюдения и теоретические расчеты, ход процесса конденсации 
может усложниться неустойчивостью пленки в некотором интервале ее толщин. При 
некоторой критической толщине очень тонкая пленка (~ 1 мкм) может самопроизвольно 
расщепиться на большое количество капелек. После своего образования капли 
продолжают расти, достигнув определенных размеров, скатываются под действием силы 
тяжести. Одновременно продолжаются процесс утолщения пленки и образование новых 
капелек. 

Первый вид конденсации, когда жидкая конденсированная фаза образуется на 
поверхности теплообмена в виде сплошной устойчивой пленки, называется пленочной 
конденсацией, она имеет место, если конденсат смачивает данную поверхность 
теплообмена. Второй вид конденсации, когда происходит образование капель, - 
капельной, она имеет место, если конденсат не смачивает поверхность теплообмена. 
Эффект смачивания или несмачивания связан с действием сил поверхностного натяжения. 

Как показывают наблюдения, при установившейся работе конденсационных 
устройств конденсат, как правило, смачивает поверхности теплообмена и в них идет 
пленочная конденсация пара. Капельная конденсация наблюдается при пуске 
теплообменного аппарата, когда на поверхности стенок имеются различные, в том числе и 
масляные, загрязнения; при конденсации ртутного пара. Она может быть вызвана 
искусственно с помощью специальных веществ, называемых лиофобизаторами (при 
конденсации водяного пара -гидрофобизаторами), которые наносятся на поверхность 
теплообмена или вводятся в пар или питательную воду. 

При капельной конденсации водяного пара теплоотдача в 5-10 раз больше, чем при 
пленочной, так как пленка конденсата обладает большим термическим сопротивлением 
передаче освобождающегося тепла фазового перехода от поверхности конденсации к 
стенке. При капельной конденсации в силу разрыва пленки это термическое 
сопротивление гораздо меньше. 



 
 

2.Теплообмен при кипении жидкости. Пузырьковый режим кипения. 
 Условия зарождения паровой фазы в объеме перегретой жидкости и на твердой 

поверхности. Динамика паровых пузырьков при кипении 

Процессы кипения имеют большое значение в теплотехнике, атомной энергетике, 
химической технологии и ряде других областей современной техники. К настоящему 
времени выполнено большое количество работ, посвященных исследованию условий 
протекания кипения жидкостей и соответствующих закономерностей переноса тепла. 

Кипение возможно во всем температурном интервале между тройной и 
критическими точками для данного вещества. В процессе фазового превращения 
поглощается теплота парообразования, поэтому процесс кипения всегда связан с 
подводом тепла к кипящей системе. 

Различают кипение жидкости на твердой поверхности теплообмена, к которой 
извне подводится тепло, и кипение в объеме жидкости. 

При кипении на твердой поверхности образование паровых пузырьков 
наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза 
возникает непосредственно в объеме жидкости в виде отдельных пузырьков пара. 
Объемное кипение может происходить лишь при значительном перегреве жидкой фазы 
относительно температуры насыщения при данном давлении. Значительный перегрев 
может быть получен, например, при быстром сбросе давления в системе. Объемное 
кипение может иметь место при наличии в жидкости внутренних источников тепла. 

В современной энергетике и технике обычно встречаются процессы кипения на 
твердых поверхностях нагрева (поверхности труб, стенки каналов и т.д.). Этот вид 
кипения и будет в основном рассматриваться далее. 

Механизм теплообмена при пузырьковом кипении отличается от теплоотдачи при 
конвекции однофазной жидкости наличием переноса массы вещества и тепла паровыми 
пузырями из пограничного слоя в объем кипящей жидкости. Для возникновения процесса 
кипения необходимо выполнение двух условий: наличие перегрева жидкости 
относительно температуры насыщения и наличие центров парообразования. 

Перегрев жидкости имеет максимальную величину непосредственно у 
обогреваемой поверхности теплообмена. На ней же находятся центры парообразования в 
виде отдельных неровностей стенки, пузырьков воздуха, пылинок и т. д. Поэтому 
образование пузырьков пара происходит преимущественно непосредственно на 
поверхности теплообмена. 

При пузырьковом кипении жидкости основной поток тепла от поверхности нагрева 
передается жидкой фазе, так как она обладает значительно большей теплопроводностью, 
чем паровая фаза. Поэтому, как и в случае конвекции однофазной жидкости, основным 
тепловым сопротивлением при кипении является тепловое сопротивление пограничного 
слоя жидкости. Однако периодический процесс роста и отрыва отдельных паровых 
пузырьков от стенки, а также всплывание их вызывает сильное движение, турбулизацию 
жидкости, частично разрушающие пристеночный слой, что приводит к значительному 
увеличению интенсивности теплоотдачи по сравнению с конвекцией однофазной 
жидкости. 

Чтобы паровой пузырек мог возникнуть в перегретой жидкости и существовать в 
дальнейшем, необходимо, чтобы давление пара p1 в нем было не меньше суммы всех сил, 
действующих на паровой пузырек. В момент образования пузырька на него действуют две 
основные силы: сила давления окружающей его жидкости p и поверхностное натяжение 
самой поверхности пузырька. Условие равновесия определяется уравнением Лапласа:  
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Так как температура стенки больше, чем температура жидкости, то на стенке 
значение критического радиуса меньше. Кроме того, на стенке больше центров кипения. 

Кривая кипения 

Хотя процесс кипения зависит от большого количества факторов, качественная 
зависимость коэффициента теплоотдачи и плотности теплового потока от температурного 
напора остается идентичной в большом диапазоне условий. На рис. 6.1 эта зависимость 
приведена для воды при давлении 1 бар. 

При низком температурном напоре (область 1) наблюдается слабое кипение. В этой 
области теплоотдача осуществляется в основном за счет конвекции однофазной жидкости. 
Коэффициент теплоотдачи здесь является степенной функцией температуры а ≈  tn

 с n = 0-
1/3. При увеличении температурного напора на поверхности усиливается 
парообразование: благодаря увеличению перегрева жидкости начинают действовать 
новые центры парообразования. Отрывающиеся от поверхности и всплывающие пузырьки 
активно перемешивают пристенный слой жидкости, что увеличивает коэффициент 
теплоотдачи. 

По мере развития кипения теплоотдача начинает осуществляться именно за счет 
парообразования, что соответствует области 2 -  развитого пузырькового кипения. В этой 
области коэффициент теплоотдачи растет гораздо быстрее, а «  tn

 с n = 2. При повышении 
температурного напора рост парообразования приводит к образованию возле поверхности 
нагрева области повышенного паросодержания; при больших тепловых потоках 
наблюдается практически сплошной пристенный слой пара, при этом на поверхности 
сохраняется тонкая пленка перегретой жидкости. В этом режиме наблюдается 
максимальное значение коэффициента теплоотдачи. На пристенной границе пленки 
температура равна температуре стенки, а на внешней границе происходит интенсивное 
испарение и температура равна температуре пара. Толщина пленки для воды при 
атмосферном давлении составляет порядка d ~ 10 мкм, таким образом, характерное 

значение коэффициента теплоотдачи здесь 410
d

λα =   Вт/(м-°С). Рост теплового потока 

продолжается до того, как температурный напор достигнет значения, называемого первым 

критическим ( )1крt t∆ = ∆ , а поток тепла, соответственно, значения 1крq q= . 



 
 

 
Рис. 7.1 Зависимость коэффициента теплоотдачи и плотности теплового потока от 

температурного напора «Кривая кипения» 
 

При дальнейшем повышении температурного напора на поверхности начинают 
образовываться так называемые «сухие пятна» - области, не смачиваемые жидкостью. 
Смачивание сухих пятен предотвращается интенсивным выделением пара при контакте 
жидкости с поверхностью, в результате которого на жидкость начинает действовать 
отталкивающая сила. На сухих пятнах тепловой поток на 2 порядка ниже, чем на 
смоченных участках, поэтому по мере того, как температурный напор увеличивается и 
область сухих пятен растет, средний тепловой поток снижается. Этот режим кипения 
носит название переходного (область 3 на рис. 7.1). Смачивание поверхности полностью 
исчезает при величине температурного напора, называемого вторым критическим 

( )2крt t∆ = ∆ . Отсутствие смачивания жидкостью нагретого твердого тела в результате 

интенсивного парообразования носит название эффекта Лейденфроста, а минимальная 
температура поверхности, при которой наблюдается этот эффект, называется 
температурой Лейденфроста. Таким образом, второй критический температурный напор 
равен разности температуры Лей-денфроста и температуры кипения жидкости. С момента 
полного прекращения смачивания кипение переходит в режим пленочного (область 4 на 
рис. 7.1). 

В пленочном режиме жидкость отделена от поверхности устойчивой пленкой пара. 
Перенос тепла через пленку осуществляется за счет теплопроводности и конвекции, а при 
больших температурных напорах - излучения. Образование и отрыв пузырьков пара в 
этом режиме происходит не на стенке, а на внешней границе паровой пленки. 
Коэффициент теплоотдачи в этом режиме зависит от температурного напора достаточно 
слабо, вплоть до температур порядка 1000 К, начиная с которых преобладающим 
становится теплообмен излучением, для которого а ~ Т3

ст. 
При увеличении или уменьшении температурного напора плотность теплового 

потока последовательно проходит в обоих направлениях все точки графика зависимости 
теплового потока от температурного напора (см. рис. 7.1). Таким образом, если 
постепенно снижать температурный напор, кипение из пленочного перейдет в режим 
переходного, далее - пузырькового. 

 Пузырьковый режим кипения.  

Механизм теплообмена и расчетные соотношения для теплоотдачи при 

пузырьковом кипении жидкостей 

Кипение - сложное явление, включающее в себя следующие параллельно 
протекающие процессы: передачу тепла от стенки к жидкости напрямую или при 
пленочном кипении через слой пара; образование и рост в перегретой жидкости паровых 
пузырьков; отделение от поверхности нагрева и всплытие пузырьков. Протекание 



 
 

перечисленных процессов определяется следующими факторами: теплопроводностью и 
вязкостью жидкости, динамическим напором потока пара, поверхностным натяжением, 
силой тяжести. В связи с этим коэффициент теплоотдачи при кипении должен 
определяться следующим набором теплофизических параметров: плотность жидкой и па-
ровой фазы, удельная теплота парообразования, коэффициент теплопроводности 
жидкости (при пленочном кипении) и пара (при пленочном кипении), коэффициент 
вязкости жидкости, ускорение свободного падения. В результате анализа уравнений 
динамики двухфазной среды методами теории размерностей и обработки опытных данных 
Д. А. Лабунцовым было получено соотношение для определения коэффициента 
теплоотдачи при пузырьковом кипении неподвижной жидкости в большом объеме: 
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где ν, λ, σ - кинематический коэффициент вязкости, коэффициент 
теплопроводности, коэффициент поверхностного натяжения жидкости при температуре 
насыщения; p' и p" - плотности жидкости и пара при температуре насыщения; Тн - 
температура насыщения. Для функции b (p'/p"), на основании опытных данных выведено 
эмпирическое выражение 
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Выражения проверены для многих жидкостей в широком диапазоне условий. В 
частном случае, для воды, из них может быть получено следующее расчетное 
соотношение: 
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,
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в котором давление выражено в барах, остальные величины - в единицах СИ. 
При вынужденном движении кипящей жидкости в трубах в условиях, когда 

жидкость нагрета до температуры насыщения, коэффициент теплоотдачи а может быть 
подсчитан по следующим формулам: 
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где αк - коэффициент теплоотдачи при развитом пузырьковом кипении в большом 

объеме, определяемый по формулам α = αw  и α = αк; αw  - коэффициент теплоотдачи при 
турбулентном движении однофазной жидкости в трубах. 

3. Теплообмен в двухкомпонентных средах 
Тепло- и массоотдача. Коэффициент массоотдачи 

В движущейся однокомпонентной среде тепло переносится теплопроводностью и 
конвекцией. Этот процесс называется конвективным теплообменом. По аналогии процесс 
совместного молекулярного и молярного переноса вещества в движущейся 
многокомпонентной среде называют конвективным массообменом. При наличии 



 
 

массообмена процесс конвективного теплообмена усложняется. Перенос тепла 
дополнительно осуществляется за счет диффузии. 

Практический интерес представляют процессы теплообмена и массообмена при 
испарении, сублимации (возгонке), конденсации, сорбции, десорбции и др. В этом случае 
система тел является гетерогенной. Под гетерогенной системой обычно понимают 
неоднородную систему, состоящую из однородных частей, разделенных поверхностями 
раздела. Однородные части гетерогенной системы должны иметь размеры, достаточно 
большие по сравнению с молекулами или средним расстоянием между ними. При этом 
микроскопическая неоднородность не принимается во внимание. Поверхность жидкой 
(или твердой) фазы в этом случае играет роль, аналогичную роли твердой стенки в 
процессах теплоотдачи без сопутствующей диффузии. Например, при испарении 
жидкости образующийся пар переносится путем диффузии в окружающую парогазовую 
смесь и одновременно имеет место теплопередача между парогазовой смесью и 
поверхностью жидкости. 

Аналогично теплоотдаче конвективный массообмен между жидкостью или твердой 
поверхностью и окружающей средой называют массоотдачей. 

В рассматриваемых случаях тепло- и массоотдача идут одновременно. Для 
практических расчетов теплоотдачи используют закон Ньютона-Рихмана 

( )c жq t tα= −  

Для практических расчетов массоотдачи используют уравнение 

( )0cj β ρ ρ= ⋅ −  

где β  - коэфицент массоотдачи, отнесенный к разности концентраций диф-
фундирующего вещества; p c -  концентрация диффундирующего вещества на жидкой 
(твердой) поверхности раздела фаз; p0- концентрация диффундирующего вещества вдали 
от жидкой (твердой) поверхности раздела фаз. 

Используя уравнение состояния идеального газа, можно записать  следующее: 

( )0p cj p pβ= ⋅ −  

Здесь β р - коэффициент массоотдачи, отнесенный к разности парциальных дав-
лений 0cp p p∆ = − ,  где рс- парциальное давление диффундирующего вещества на 

жидкой (твердой) поверхности; р0 - парциальное давление этого же компонента вдали от 
поверхности раздела фаз. Это уравнение впервые было получено Э.Дальтоном (1788 г.) 

Из уравнения ( )0p cj p pβ= ⋅ −  следует, что 

( )0 0
p

c c

dJ j

p p dF p p
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− ⋅ −
 

Тождество следует рассматривать как определение коэффициента массоотдачи, 
отнесенного к разности парциальных давлений. Коэффициенты β и βр связаны 
соотношением 

p
RT

ββ = . 

Уравнение конвективной тепло- и массоотдачи 

Поток массы на поверхности испарения определяется с помощью уравнения 
суммарного потока. Этот же поток может быть определен другим уравнением , в котором 
градиент парциального давления пара и парциальное давление газа берутся на 
поверхности жидкости. Если приравнять правые части этих уравнений то получим: 
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Это уравнение по аналогии с уравнением 
0nс n
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можноназвать дифференциальным уравнением массоотдачи. 

Рассмотренный процесс испарения жидкости в парогазовую смесь соответствует 
условиям полупроницаемой поверхности, т.е. поверхности, проницаемой для одного 
(активного) компонента смеси (пара) и непроницаемой для другого (инертного) 
компонента (газа). Полупроницаемая поверхность наблюдается при конденсации пара из 
парогазовой смеси. 

В случае полностью проницаемой поверхности через нее проходят оба компонента. 
Последнее, например, имеет место при некоторых химических реакциях на поверхности 
тела. Поверхность является полностью проницаемой и при конденсации обоих 
компонентов бинарной паровой смеси. Такой же эффект может иметь место и при 
испарении некоторых растворов. 

При наличии массообмена непосредственно на границе раздела фаз имеется 
нормальная составляющая скорости испаряющегося или конденсирующегося компонента 

(пара) П .С
У .П .С

П .С

j
w

ρ
=  

Эта скорость является условной величиной, она вызвана молекулярной диффузией 
и стефановым потоком непосредственно в пристеночном слое. 

Общее количество тепла q, отдаваемого или воспринимаемого жидкостью и 
парогазовой смесью, равно сумме тепла qa, переданного конвективным теплообменом, и 
тепла  qβ, переносимого диффундирующей массой в виде энтальпии. 

При полупроницаемой поверхности в условиях стационарного процесса стефанов 
поток компенсирует встречный молекулярный поток газа и реально возникает лишь 
поперечный поток пара. В этом случае 

( ) П .Р П .Сc
q q q t j iλ= + = − ∇ + ⋅  

Общее количество тепла qu может распределяться между qa и qβ поразному. 

По определению а = ( )
c

c ж c ж

q
t

t t t t

α λα ≡ = − ⋅ ∇
− −

, здесь то же, но тем не менее 

наличие поперечного потока массы j приводит к тому, что величина коэффициента 
теплоотдачи α может быть иной, чем при теплоотдаче без массообмена. 

Из ряда теоретических работ следуют выводы: поток вещества направленный 
перпендикулярно поверхности от поверхности (испарение, сублимация, десорбция, 
вдувание газа через пористую стенку) приводит к увеличению толщины пограничного 
слоя, при этом grad wx (вдоль поверхности) 

уменьшается, отсюда коэффициент теплоотдачи уменьшается. В противоположном 
случае, когда поток вещества направлен перпендикулярно поверхности к поверхности 
(конденсация, сорбция, отсос газа), величина пограничного слоя уменьшается, grad wx 

увеличивается и коэффициент теплоотдачи увеличивается. 
4. Пленочное кипение и конденсация. 
Теплообмен при пленочном кипении жидкостей 

Пленочное кипение наблюдается при закалке металлов в жидкой среде, в ряде 
быстродействующих перегонных аппаратов, при кипении криогенных жидкостей. 



 
 

Пленочный режим кипения имеет место при охлаждении жидкостью ракетных двигателей 
на химическом топливе и атомных ракетных двигателей. При высоких давлениях 
абсолютная величина коэффициента теплоотдачи при пленочном кипении становится 
значительной, поэтому пережога котельной трубы не происходит, хотя температурный 
напор между стенкой и жидкостью заметно повышается. Это делает допустимым 
использование процессов теплообмена с пленочным кипением также в некоторых 
парогене-рирующих устройствах. 

На теплоотдачу при пленочном кипении влияют давление, физические свойства 
жидкости, а также лучистый теплообмен между поверхностью теплообмена и жидкостью 
через паровую пленку. Обе формы переноса тепла -теплопроводностью и излучением - не 
являются независимыми друг от друга. Взаимное влияние обоих процессов проявляется в 
том, что пар, образующийся благодаря излучению, приводит к утолщению паровой 
пленки и соответствующему уменьшению интенсивности переноса тепла за счет 
теплопроводности. 

При пленочном кипении насыщенной жидкости тепловой поток, отводимый от 
поверхности нагрева, расходуется не только на испарение слоев жидкости, 
расположенных на границе паровой пленки. Часть отводимого тепла идет также на 
перегрев пара в пленке, так как средняя температура пара внутри пленки всегда выше, чем 
температура насыщения. 

Теплоотдача при ламинарном движении паровой пленки. Расчетные данные можно 
получить теоретическим путем. Используется модель, аналогичная пленочной 
конденсации (7.2). Предположим, что сплошная пленка перегретого пара (1) ламинарно 
движется под действием подъемной силы вверх по обогреваемой вертикальной стенке, 
имеющей температуру tc (3). Вдали от стенки неподвижная жидкость имеет температуру 
tн  (2). Предположения такие же, как в случае пленочной конденсации, и уравнения тоже. 

Краевые условия следующие: на границе раздела фаз (4) t  = tн . Для скорости может 
быть два типа условий - первый:     wгр = 0 для неподвижной жидкости вдали от стенки; 

второй - 0
гр

w

y

 ∂
= ∂ 

 для жидкости и пара, движущихся на границе с одинаковой 

скоростью. 

 
Рис. 7.2 Модель пленочной конденсации. 
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где С = 0,677 для первого типа условий и С = 0,943 для второго. 
Средний коэффициент теплоотдачи на наружной поверхности горизонтального 

цилиндра выражается зависимостью  
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где С1 = 0,53 для первого типа условий и С1 = 0,72 для второго. Во всех формулах 
все параметры, кроме плотности р относятся к пару. 

Теплоотдача при турбулентном движении паровой пленки. При вертикальном 
расположении стенки более вероятным является турбулентный, а не ламинарный характер 
движения пленки. . Характер распределения скорости и температуры в пограничном слое 
при кипении является сходным с соответствующими профилями в пограничном слое при 
свободной конвекции однофазной жидкости. Поэтому теплоотдачу при пленочном 
кипении можно представить формой зависимости, которая применяется при конвекции 
однофазной жидкости: 

( )
1

3
T T

Nu C Ra= . 

Применительно к пленочному кипению подъемная сила g β  р  ∆ t, входящая в 
критерий Релея, заменяется силой, определяющей движение пара в пленке, равной g (ρ-

ρп); постоянная С = 0,25. Физические свойства относятся к средней температуре паровой 
пленки. Область применимости: Ra >2⋅ 107. 

 Пленочная и капельная конденсация, связь расхода конденсата и теплового 

потока на стенке 

Интенсивность конденсации пара и происходящего при этом переноса тепла 
зависит от скорости протекания отдельных процессов, на которые можно расчленить 
общее явление: а) собственно процесс конденсации и б) отвод выделившейся теплоты 
парообразования от поверхности конденсации через слой конденсированной фазы. 

Будем полагать в дальнейших рассуждениях, что поверхность конденсации плоская 
(или достаточно близка к плоской) и толщина слоя конденсата, находящегося на стенке, 
намного больше радиуса действия межмолекулярных сил (рис. 7.3) Термическое 
сопротивление передачи тепла от пара к стенке можно представить в виде суммы двух 
слагаемых: 

1п ct t
R R R

q
δ ϕα

−
≡ ≡ = + , 

где tп и tс - соответственно, температуры пара и поверхности стенки; q -плотность 
теплового потока; а  - коэффициент теплоотдачи от пара к стенке 

 
 

 
Рис. 7.3 

Первое слагаемое Rδ в уравнении представляет собой термическое сопротивление 
пленки конденсата. Второе слагаемое Rϕ, которое назовем термическим сопротивлением 
фазового перехода, определяется результирующей скоростью притока пара к поверхности 



 
 

конденсации. Второе сопротивление не является термическим сопротивлением в его 
обычном понимании, предполагающем перенос тепла. 

Согласно кинетической теории материи на поверхности раздела фаз должен иметь 
место скачок температуры, потому что количество молекул пара, ударяющихся о 
поверхность жидкости и захватываемых ею (конденсирующихся), превосходит 
количество молекул, отрывающихся (испаряющихся) за то же время от поверхности 
жидкости вследствие теплового движения. Превышение количества захватываемых 
молекул над количеством испускаемых и приводит к видимому процессу конденсации. 
Кроме того, не все молекулы, достигшие поверхности, захватываются жидкостью, часть 
из них отражается. Для чистого водяного пара с достаточным приближением можно 
считать, что температурный скачок на границе раздела фаз отсутствует, т.е. все молекулы, 
подошедшие к поверхности, захватываются жидкостью, поэтому термическое 
сопротивление фазового перехода равно нулю. Для других веществ данных о процессе 
конденсации недостаточно, поэтому для них допускается это же предположение. 

Термическое сопротивление пленки конденсата зависит от режима течения. 
Поперек ламинарно-текущей пленки теплота переносится за счет теплопроводности, через 

турбулентную - дополнительно и конвекцией. Критическое число Рейнольдса
ж

w
Re

δ
ν
= , 

определяющее границу ламинарного и турбулентного режимов, разными авторами из 
опыта дается в интервале 60 < Re < 500 . Наиболее вероятным считается Re = 400 . 

Ламинарное течение жидкой пленки может сопровождаться волновым движением. 
Возникшее под действием случайных возмущений волновое движение приводит к 
снижению эффективной толщины пленки конденсата, что в свою очередь вызывает 
уменьшение термического сопротивления и, следовательно, увеличение количества 
передаваемого при конденсации тепла. Из эксперимента следует, что волновой режим 
наблюдается при Re ~ 5 . 

В процессе конденсации расход конденсата тесно связан с тепловым потоком. При 
конденсации сухого насыщенного пара последним отдается теплота фазового перехода r. 
Кроме того, поскольку температура поверхности стенки tс меньше температуры 
поверхности конденсата tпов, соприкасающейся с паром, стенке отдается и часть тепла 
конденсата. Происходит переохлаждение конденсата в среднем до температуры, которая 
лежит между tс и tпов. Во многих практически важных случаях теплота переохлаждения 
пренебрежимо мала по сравнению с теплом фазового перехода, тогда Q = r G. 

В дальнейшем при рассмотрении конкретных задач теплообмена будем различать 
случаи конденсации движущегося и неподвижного пара. При движении пара силы трения, 
возникающие на границе раздела фаз, могут как подтормаживать, так и ускорять пленку 
конденсата в зависимости от взаимного направления движения конденсата и пара. В 
результате может изменяться толщина пленки и, как следствие, термическое 
сопротивление и теплоотдача. 

При конденсации пар не может быть абсолютно неподвижным, если плотность 
жидкой фазы рж отличается от плотности паровой фазы рп. При состояниях, далеких от 
критических, рж >> рп. Объемы пара, конденсирующиеся у стенки, сейчас же 
восполняются новыми порциями пара, притекающими из основной массы последнего, 
поэтому пар всегда находится в движении. При конденсации неограниченного объема 
пара на плоской стенке пар перемещается нормально к ней со средней скоростью wIi = q 

/(rp п),  тогда при атмосферном давлении и q = 3 ⋅ 105 Вт/м2 будет w = 0,23 м/с для 
насыщенного водяного пара. Эта скорость еще не оказывает заметного динамического 
воздействия на пленку конденсата и поэтому пар может считаться неподвижным. В этом 
смысле и будет в дальнейшем употребляться термин «неподвижный пар». 
 
 



 
 

1. 7 Лекция № 8 ( 2 часа). 

Тема: «Теплообмен излучением»  
1.7.1 Вопросы лекции: 

1. Особенности теплообмена излучением.  
2. Основные законы лучистого теплообмена.  
3. Теплообмен излучением в системе тел, разделенных диатермической средой.  
4. Теплообмен излучением между произвольно расположенными элементами 
поверхности нагрева. 
 

1.7.2 Краткое содержание вопросов:  
1. Особенности теплообмена излучением 
Процессы лучистого теплообмена получили широкое распространение в различных 

областях техники, в частности в теплотехнике, ядерной энергетике, ракетной технике, 
металлургии, сушильной технике, химической технологии, светотехнике и др . 

Тепловое излучение представляет собой процесс распространения внутренней 
энергии излучающего тела путем электромагнитных волн. Электромагнитными волнами 
называют электромагнитные возмущения, исходящие от излучающего тела и 
распространяющиеся в вакууме со скоростью света, равной 3 ⋅ 10 м/с. При поглощении 
электромагнитных волн какими-либо другими телами они вновь превращаются в 
тепловую энергию. Возбудителями электромагнитных волн являются заряженные 
материальные частицы, т. е. электроны и ионы, входящие в состав вещества. При этом 
колебания ионов соответствуют излучению низкой частоты; излучение, обусловленное 
движением электронов может, иметь высокую частоту, если они входят в состав атомов и 
молекул и удерживаются около положения своего равновесия значительными силами. 

В металлах многие электроны являются свободными. Поэтому здесь нельзя 
говорить о колебаниях около центров равновесия. Электроны движутся и при этом 
испытывают нерегулярное торможение. Вследствие этого излучение металлов 
приобретает характер импульсов и имеет волны различной частоты и том числе волны 
низкой частоты. Помимо волновых свойств, излучение обладает также и 
корпускулярными свойствами, которые состоят в том, что лучистая энергия испускается и 
поглощается материальными телами не непрерывно, а отдельными дискретными 
порциями - квантами света или фотонами. Испускаемый фотон - частица материи, 
обладающая энергией, количеством движения и электромагнитной массой. Поэтому 
тепловое излучение можно рассматривать как фотонный газ. Прохождение фотонов через 
вещество есть процесс поглощения и последующего испускания энергии фотонов атомами 
и молекулами этого вещества. 

Таким образом, излучение имеет двойственный характер, поскольку оно обладает 
свойствами непрерывного поля электромагнитных волн и свойствами дискретности, 
типичными для фотонов. Синтезом обоих свойств является представление, согласно 
которому энергия и импульс сосредоточиваются в фотонах, а вероятность нахождения их 
в том или ином месте пространства - в волнах. Все виды электромагнитного излучения 
имеют одинаковую природу и различаются лишь длиной волн. 

Тепловому излучению соответствуют частоты примерно от 3 ⋅ 103 до 3 ⋅ 105 ГГц 
или длины волн от 0,8 мкм до 0,8 мм. Для данного диапазона характерно проявление как 
квантовых, так и волновых свойств, которые проявляются по-разному в зависимости от 
длины волн. Квантовые (корпускулярные) свойства проявляются наиболее существенно в 
коротковолновом излучении. Наоборот, характерные волновые свойства наиболее 
отчетливо наблюдаются у радиоволн. 

Большинство твердых и жидких тел имеет сплошной спектр излучения, т. е. 
излучает энергию всех длин волн от нуля до бесконечности. К числу твердых тел, 



 
 

имеющих сплошной спектр излучения, относятся диэлектрики, полупроводники и окислы 
металлов. Некоторые тела излучают энергию только в определенных интервалах длин 
волн, т.е. испускают энергию прерывистым спектром. К ним относятся чистые металлы и 
газы, которые характеризуются селективным или выборочным излучением. Излучение 
различных тел различно зависит от природы тела, его температуры и состояния 
поверхности, а для газов от толщины слоя и давления. Применительно к твердым телам, а 
также к жидкостям тепловое излучение в ряде случаев приближенно можно рассматривать 
как поверхностное явление. В излучении газов участвуют все его частицы, и процесс 
теплового излучения носит объемный характер. 

Излучение всех тел зависит от температуры. С увеличением температуры 
излучение увеличивается, так как увеличивается внутренняя энергия тела. Изменение 
температуры тела вызывает не только изменение абсолютной величины интенсивности 
излучения, но сопровождается еще изменением спектрального состава или «цвета» 
излучения. С повышением температуры повышается интенсивность коротковолнового 
излучения и уменьшается интенсивность длинноволновой части спектра. Зависимость 
излучения от температуры значительно большая, чем процессов теплопроводности и 
конвекции.  

 

Виды лучистых потоков. Спектральная плотность потока излучения. 

Интегральная плотность потока излучения 

Q - интегральный или полный лучистый поток - суммарное излучение с 
поверхности твердого тела в единицу времени по всем направлениям полусферического 
пространства и по всем длинам волн. 

Qλ  - поток монохроматического, спектрального или однородного излучения - 
излучение с поверхности твердого тела в единицу времени, относящееся к узкому 
интервалу изменений длин волн от λ до λ+dλ. 

dQ
Е

dF
=  - интегральная плотность полусферического излучения или 

излучательная способность тела - интегральный лучистый поток, испускаемый с 
единицы поверхности тела по всем направлениям полусферического пространства. 
Лучистый поток по всей поверхности можно выразить как 

F

Q EdF= ∫ . Если E = const, то Q = E 
.
 F. Здесь F- полная поверхность тела. 

dE
J

d
λ λ
= спектральная интенсивность излучения - отношение плот- 

ности лучистого потока, испускаемого в бесконечно малом интервале длин волн, к 
величине этого интервала длин волн. В этом случае имеет место излучение энергии 
одного цвета с единицы поверхности по всем направлениям полусферического 
пространства, т. е. интенсивность излучения изменяется с длиной волны. 

Угловая интенсивность или яркость излучения - количество энергии, испускаемое в 
определенном направлении единицей площадки, расположенной перпендикулярно 
направлению излучения, отнесенное к единице элемен- 

тарного телесного угла: спектральная 
dJ

B
d

λ
λ ω
= или интегральная 

dE
B

dω
= . 

Величина яркости, как и интенсивности излучения, в общем случае может 
изменяться в зависимости от места расположения элементарной излучающей площадки, а 
также по различным направлениям излучения. 

Для направленного излучения плотности лучистых потоков должны быть отнесены 
к проекции элементарной площадки на плоскость, ортогональную к направлению 



 
 

излучения (рис. 8.1), и тогда для направленного излучения указанные зависимости примут 
следующий вид (ψ - угол, составленный нормалью к площадке и направлением 
излучения): 

 для спектрального ,

,

dJ dJ
B cos

d d

λ ψ λ
λ ψ ψ

ω ω
= = ,  

для интегрального
dE dE

B cos
d d

ψ
ψ ψ

ω ω
= = ⋅ . 

 
Рис. 8.1 
Понятие абсолютно черного тела и его характеристики излучения. 

Собственное излучение (Q, Е) определяется природой данного тела и его 
температурой. Обычно тело участвует в теплообмене с другими телами, энергия 
излучения которых, попадая на данное тело, частично им поглощается, частично 
отражается, а часть ее проходит сквозь тело. 

Падающее излучение (QПАД или ЕПАД) - количество лучистой энергии, падающее на 
данное тело. 

Поглощенная энергия - часть падающей энергии излучения, поглощенная данным 
телом и преобразованная им во внутреннюю энергию: QПОГЛ = AQПАД или EПОГЛ = A  EПАД, где 
A - коэффициент поглощения. Тела, которые поглощают всю падающую на них энергию 
теплового излучения, называются абсолютно черными (A = 1,). В то же время, если 
поверхность поглощает все лучи, кроме световых, она не кажется черной, хотя по 
лучистым свойствам близка к абсолютно черному телу из-за высокой поглощательной 
способности, например, лед и снег, для которых A = 0,95-0,98. Аналогично определяется 
коэффициент поглощения A% для монохроматического излучения, который в общем 
случае может зависеть от длины волны. Тела, для которых коэффициент моно-
хроматического поглощения не зависит от длины волны, называются серыми телами. Они 
поглощают не всю падающую на них лучистую энергию. 

Часть падающей энергии, которую тело отражает обратно окружающим его телам, 
носит название отраженного излучения: Qо тр ,  = RQПАД  или ЕОТР = R ЕПАД, где R - 
коэффициент отражения. Если R = 1 и процессы отражения подчиняются законам геомет-
рической оптики, то поверхность называется зеркальной; при диффузном отражении (т.е. 
энергия испускается телом равномерно во всех направлениях) поверхность называют 
абсолютно белой. 

Часть падающей энергии излучения, проходящая сквозь тело, называется 
пропускательным излучением: Qпроп=D или ЕПРОП=D ЕПАД, где D -коэффициент 
проницаемости. Тела, у которых D = 1, называются проницаемыми, прозрачными или 
диатермичными телами . Для твердых и жидких тел принимается D = 0, так как они 
поглощают лучистую энергию в тонком поверхностном слое. 



 
 

Лучистый теплообмен - это совокупные процессы взаимного испускания, 
поглощения, отражения и пропускания энергии излучения в системах различных тел, 
причем эти тела могут иметь одинаковую температуру. Для тела, участвующего в 
лучистом теплообмене с другими телами, согласно закону сохранения энергии можно 
составить следующие уравнения теплового баланса: Qп а д  = Qп о г л  + Qотр  + Qп р оп ;  Eп а д  = 
Eпогл+Еотр+ Eп р оп  или A + R + D = 1. 

Эффективное излучение - сумма собственного излучения и отраженного излучения, 
испускаемого поверхностью данного тела, лучистый поток которого выражается 
зависимостями Qэ ф  = Q + R Qп а д ,  Eэ ф  = E + R Eпад. Эффективное излучение зависит не 
только от физических свойств и температуры данного тела, но и от физических свойств и 
температуры окружающих его тел, от формы, размеров и относительного расположения 
тел в пространстве, поэтому физические свойства эффективного и собственного 
излучений различны. Различными оказываются и спектры их излучения. 

Результирующее излучение представляет собой разность между лучистым 
потоком, получаемым данным телом, и лучистым потоком, испускаемым в окружающее 
его пространство. Результирующее излучение может быть определено двумя способами: 
qрез = E – Eп о гл= E - A Eпад или  

qрез =Eэф - Eпад. Тогда эффективное излучение может быть определено как 

( )1
1эф резE E A q

A
 = − −   

Из изложенного следует: все виды полусферического излучения, кроме 
собственного, являются линейными функциями падающего излучения. Собственное 
излучение объединяется и увязывается с другими видами излучения через эффективное 
излучение. 

2. Основные законы лучистого теплообмена 
В силу общей природы электромагнитных волн основные законы, которым 

подчиняется излучение, являются для них общими. Эти законы получены применительно 
к идеальному телу, которым является абсолютно черное тело, и равновесному излучению, 
при котором все тела, входящие в данную излучающую систему, имеют одинаковую 
температуру. 

Закон Планка. Правило смещения Вина 

Используя статистические методы и гипотезу о квантовом характере теплового 
излучения, Планк вывел формулу для спектральной плотности потока излучения 
абсолютно черного тела 
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Здесь с1 = 0,374 ⋅10-15 Вт ⋅ м2 — первая постоянная Планка; с2 = 1,4388 ⋅10-2 м⋅К — 
вторая постоянная Планка; λ — длина волны, м; Т — абсолютная температура, К. 

Рассмотрим некоторые предельные случаи закона Планка. Если энергия кванта 
очень мала по сравнению с энергией теплового движения, то есть hv<<  kT, или λT>>  c2, 
то при этом имеем 

2 21
c c

exp
T Tλ λ

  ≈ + 
 

 

и тогда закон Планка переходит в закон Релея - Джинса: 

1
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= , 

который был выведен с использованием методов классической физики. 
Если hv>>  kT, или λT<<  c2 ,   тогда получим второй предельный случай - закон 

Вина: 
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Чтобы установить зависимость от температуры длины волны λ м а к с ,  при которой 
функция J λ  достигает максимального значения, исследуем на максимум функцию 
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Имеем: 
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Введя обозначение 2c
x

Tλ
=  получим следующее уравнение: 

( )5 1 0x xe xe− − + =  

Решая это трансцендентное уравнение, получим х = 4,965 и, следовательно, закон 

смещения Вина имеет вид 
32 898 10maxT ,λ −= ⋅ м⋅К. 

Таким образом, значение величины λм а к с  смещается в сторону более коротких 
волн с ростом температуры. 

Закон Стефана - Больцмана 

Австрийские физики Й. Стефан в 1879 г. экспериментально и Л. Больцман в 1884 г. 
теоретически открыли закон, который устанавливает связь плотности интегрального 
полусферического излучения абсолютно черного тела с его абсолютной температурой 

4
0E Tσ= ⋅ (Вт/м2), 

где σ = 5,67 10-8 Вт/(м К ) - постоянная Стефана - Больцмана. 
Для удобства практических расчетов эта зависимость обычно представляется в 

виде 
4

0 5 67
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. 

Для серых тел, излучательная способность которых меньше, чем для черных тел, а 
собственное излучение также пропорционально четвертой степени температуры, закон 
принимает вид 

0E Eε= ⋅ , 

где ε - интегральная или средняя степень черноты серого тела. 
Таким образом, закон Стефана - Больцмана является теоретической основой для 

вычисления потока энергии, излучаемой всяким нагретым телом, если известны его 
температура и радиационные характеристики. 

Закон Стефана - Больцмана может быть получен из закона Планка с 
С О  

учетом того, что 0

0

E J dλ λ
∞

= ∫ . 

Закон Кирхгофа 



 
 

Закон Кирхгофа описывает одно из наиболее общих свойств равновесного 
теплового излучения. Он устанавливает связь между способностью тела испускать и 
поглощать энергию излучения. В соответствии с условиями термодинамического 
равновесия выполняется требование равенства испускаемого и поглощаемого потоков 
излучения. В условиях термодинамического равновесия отношение спектральной 
интенсивности испускаемого потока излучения к спектральной поглощательной 
способности тела является одинаковым для всех тел и равным спектральной интен-
сивности потока излучения абсолютно черного тела при той же температуре: 

( )0

J
J ,T

A

λ
λ

λ

λ= , 

Сформулированный закон, известный как закон Кирхгофа, относится к излучению 
в узком спектральном интервале. 

Для излучения в полном спектре при термодинамическом равновесии также 

справедливо ( )0

E
E T

A
= . 

Из закона Кирхгофа вытекает ряд следствий, имеющих важное практическое 
значение. 

Первое следствие: из всех тел в природе наибольшей излучательной способностью 
обладает абсолютно черное тело. 

Второе следствие: при равновесном излучении коэффициент поглощения 
численно равен степени черноты: A = ε. 

Третье следствие: если тело в каком-то интервале длин волн не поглощает 
энергию излучения, то оно в этом интервале длин волн и не излучает ее. 

Закон Ламберта 
Закон Ламберта определяет угловое распределение равновесного излучения. 

Наибольшей интенсивностью обладает поток излучения по нормали к излучающей 
поверхности, его называют яркостью излучения: 

E
B

π
= .  

Интенсивность излучения в общем случае зависит от направления и является 
величиной, пропорциональной косинусу угла между направлением излучения и нормалью 
к поверхности тела: 

E B cosϕ= . 
Закон Ламберта строго справедлив лишь для поверхности абсолютно черного тела 

в состоянии равновесия. 
Угловые коэффициенты излучения 
В случае, если излучающая система состоит из нескольких тел, произвольно 

расположенных в пространстве, то только часть потока излучения от одного тела попадает 
на другое. Доля потока излучения одного тела, попадающая на другое, зависит от формы, 
размеров тел, их взаимного расположения, расстояния между ними и т.д. Для учета той 
части потока излучения от поверхности одного тела, которая попадает на поверхность 
другого тела, используется понятие углового коэффициента излучения. Когда 
рассматривается поток излучения от элементарной площадки, находящейся на 
поверхности одного тела, на всю поверхность другого тела, угловой коэффициент 
излучения называется локальным, а когда — от всей поверхности одного тела на всю по-
верхность другого, угловой коэффициент излучения называется средним. 

Угловые коэффициенты излучения характеризуют только геометрические 
особенности излучающей системы, т.е. ими учитывается только «прямое» попадание 
энергии излучения от одного тела на другое, а попадание посредством отражения от 
других тел никак не учитывается. Поэтому далее при выводе выражений для угловых 



 
 

коэффициентов излучения для простоты будем полагать, что тела, которые участвуют в 
теплообмене излучением, являются абсолютно черными. 

3. Теплообмен излучением в системе тел, разделенных диатермической средой.  
Методы исследования процессов лучистого теплообмена 

Существует два метода исследования процессов лучистого теплообмена: метод 
многократных отражений и метод сальдо. 

Метод многократных отражений основан на зависимостях, характеризующих 
изменение величины лучистой энергии какого-либо тела по отдельным стадиям 
затухающих поглощений и отражений в процессе лучистого теплообмена с окружающими 
его телами. Этот метод наглядно вскрывает механизм протекания лучистого переноса 
тепла в конкретных излучающих системах. Однако, будучи весьма детальным, связан с 
громоздкими вычислениями, которые затруднительны для сложных геометрических 
систем. 

Метод сальдо состоит лишь в количественном анализе этих лучистых процессов, 
причем оперируют величинами, характеризующими конечные эффекты теплообмена 
между телами, составляющими данную излучающую систему. Не обладает наглядностью, 
но и не содержит громоздких вычислений. 

Примем следующие допущения: 
1) все тела, входящие в излучающую систему, подчиняются закону Ламберта в 

отношении как собственного, так и отраженного излучений; 
2) тела непрозрачные (D = 0) имеют изотермические поверхности, и вся лучистая 

энергия, поглощаемая ими, переходит в тепловую энергию, причем перенос тепла за счет 
теплопроводности и конвекции отсутствует; 

3) коэффициенты поглощения и степени черноты не зависят от температуры, 
процесс лучистого теплообмена - стационарный. 

Теплообмен излучением в системе тел с плоскопараллельными поверхностями 

Рассмотрим излучающую систему, которая состоит из двух тел, имеющих очень 
большие размеры по сравнению с расстоянием между ними (7.2). Температура, 
коэффициент поглощения и излучательная способность поверхностей этих тел, 
соответственно, равны T1, A\, E1 и T2, A2, E2, причем для определенности примем T1 > T2. 
Применим метод многократных отражений. Для этого проследим движение лучистой 
энергии, испускаемой 

телом 1: 
тело 1 излучает E1; (а) 
тело 2 поглощает E1 A2; (б) 
тело 2 отражает обратно E1(1 - A2); (в) 
тело 1 поглощает из отраженного 2 E1(1 - A2)A1; (г) 
тело 1 отражает из отраженного 2 E1(1 - A2)(1 - A1); (д) 
тело 2 поглощает из отраженного 1 E1(1 - A2)(1 - A1)A2; (е) 
тело 2 отражает из отраженного 1 E1(1 - A2)(1 - A1) (1 - A2); (ж) 
тело 1 снова поглощает из отраженного 2 E1(1 - A2)(1 - A1) (1 - A2)A1      (з) и т. д. 
Для тела 2 имеют место аналогичные соотношения, в которых только 
меняются местами индексы 1 и 2: 
тело 2 излучает E2; (а') 
тело 1 поглощает E2 A1; (б') 
тело 1 отражает обратно E2(1 - A1); (в') 
и т. д. 



 
 

 
 

Рис. 8.2 Излучающая система из двух тел 
 
Результирующий тепловой поток может быть представлен как разность 

собственного излучения тела 1 и поглощенного от собственного и излучения тела 2 
согласно зависимости qрез = E –Eпогл = E – AEпад. 

Количество энергии, поглощенное телом из собственного  излучения, определяется 
суммой (г), (з) и т. д. 

Из ( а ′ )  и  ( б ′ )  тело 1 поглощает из излучения тела 2 количество энергии 

( ) ( )
2 2 1

2 11
1

E A
E k k ... A

k
+ + + =

−
, 

 Тогда результирующий поток, который получает тело 1, представится 
зависимостью 

1 2 2 1
1 2

1 2 1 2
,

E A E A
q q

A A A A

−
= =

+ −
 

Последнюю зависимость можно представить через приведенную по-глощательную 
способность или приведенный коэффициент излучения рассматриваемой системы 
твердых тел, если излучательную способность их представить по закону Стефана - 
Больцмана и приближенно считать ε = A (что, вообще говоря, имеет место только при 
равновесном излучении): 

4 4

1 1
1 0 1 0 1100 100

T T
E c c Aε    = =   

   
; 

 
4 4

2 2
2 0 2 0 2100 100

T T
E c c Aε    = =   

   
. 

С учетом этих соотношений результирующий поток представится зависимостями 
(после деления числителя и знаменателя на величину A1A2): 

4 4 4 4

1 2 1 2
1 2 0 0

1 2

1 1
1

100 100 100 100, пр

T T T T
q c / c A

A A

           = − + − = −           
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или 
 

4 4

1 2
1 2 100 100, пр

T T
q c

    = −    
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, Вт⁄ м2 

где приведенный коэффициент поглощения системы 

1 2

1
1 1

1
прA

A A

=
+ −

 

и ее приведенный коэффициент излучения 



 
 

1 2 0

1
1 1 1прc

c c c

=
+ −

, Вт⁄ (м2 ⋅К4). 

Полученные зависимости показывают, что результирующий поток пропорционален 
приведенному коэффициенту излучения (поглощения) системы и разности температур в 
четвертых степенях тел, составляющих эту систему. 

Рассмотрим применение второго метода исследования лучистого теплообмена - 
метода сальдо. 

Согласно зависимости qрез = Еэф - Епад результирующий лучистый поток для 
первого тела составит величину 

qрез = Еэф1 – Еэф2  
так как и для второго тела принимается, что падающее излучение 
Епад2 = Еэф2  
Эффективное излучение каждого из рассматриваемых тел можно представить 

соотношениями: 

1
1 1 2

1 1

1
1эф ,

E
Е q

A A

 
= − + 

 
; 

 

2
2 2 1

2 2

1
1эф ,

E
Е q

A A

 
= − + 

 
. 

При установившемся тепловом режиме 1 2 2 1, ,q q= − . Тогда после подстановки 

получим 

1 2
1 2 1 2 1 2

1 1 2 2

1 1
1 1, , ,

E E
q q q

A A A A

   
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После подстановки значений собственного излучения обоих тел получим ранее 
найденные зависимости, но более коротким путем, чем по методу многократных 
отражений. 

Полный результирующий поток 
4 4

1 2
1 2 1 2 1 1 100 100, , пр

T T
Q q F c F

    = = −    
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Если коэффициент излучения c
2 ≡ с0 , то приведенный коэффициент излучения 

равен коэффициенту излучения тела 1 спр = с1. 
Теплообмен излучением при наличии экранов для плоскопараллельных тел 

Лучистый теплообмен может быть уменьшен за счет применения экранов (рис. 8.3), 
которые устанавливаются ортогонально к направлению распространения теплового 
излучения и выполняются из материалов с малой поглощательной и большой 
отражательной способностями (полированные тонкие листы алюминия, меди и др.). В 
результате переизлучения экранами в направлении, обратном направлению 
распространения тепла, величина результирующего теплового потока уменьшается. 



 
 

 
Рис. 8.3 Лучистый теплообмен при использовании экранов  
 
Рассмотрим предыдущий случай системы, состоящей из двух тел с 

плоскопараллельными поверхностями. Установим между ними экран. Для простоты 
положим, что коэффициенты излучения всех тел одинаковы, или 
А1  = A2  = А и T1  > T2 .  Пренебрежем тепловым сопротивлением экрана  

Rэк = (δ  /λ ) э к =  0  .  Температура экрана Тэк не задана. Найдем эту температуру.  
При стационарном режиме qэк1 = qэк 2 . Следовательно, искомая температура 

экрана 
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При использовании одного экрана результирующий тепловой поток снижается 
вдвое по сравнению с тепловым потоком в отсутствии экранов. 

При использовании п последовательно установленных экранов при аналогичных 
условиях результирующий поток может быть представлен n+1. 
Получим следующее 

( )

4 4

1 2
0 1 21 2

1 1

1 100 100 1пр ,, эк

T T
q c A q

n n
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Следовательно, при наличии п экранов результирующий поток уменьшится в п + 1 
раз. Неизвестные температуры экранов могут быть найдены из следующего выражения: 

( )
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Если коэффициенты излучения тел и экранов различны, то при установке п 

защитных от теплового излучения экранов тепловой поток 
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4.Теплообмен излучением между  произвольно расположенными элементами 

поверхности нагрева.   
Рассмотрим два черных тела, которые имеют изотермические поверхности с 

температурами Т1  и Т2 .  Самооблучение этих тел отсутствует, т.е. 

11 2 2 0, ,ϕ ϕ= = . Тела произвольно расположены в пространстве. Требуется оп-

ределить результирующий тепловой поток. Для этого выделяются на каждом из 
рассматриваемых тел элементарные площадки dF1  и dF2 , бесконечно малые по 
сравнению с расстоянием между ними r (рис. 7.4). Принимается, что тела являются 
однородными и изотропными, яркость излучения одинакова по всем направлениям. 



 
 

Лучистый поток, падающий с элементарной площадки dF1  на площадкуdF2  , 
2

1 1 1 1 1падd Q B d cos dFω ψ=  

Тепловой поток, падающий с площадки dF2   на площадку dF1, 
2

2 2 2 2 2падd Q B d cos dFω ψ=  

Элементарные телесные углы согласно
2

dF
d

r
ω =  можно представить 

соотношениями:    2 2
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Рис. 8.4Теплообмен излучением между произвольно расположенными телами.   
 
Яркость излучения каждой из площадок выражается через плотность 

полусферического излучения как B = E / π . Тогда 
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Введем обозначения 
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где dϕ 1,2   и dϕ2 ,1  - элементарные угловые коэффициенты излучения площадок 

dFL на dF2 и dF2 на dFL.  
Тогда 

2
1 1 1 1 2 1 1 2пад , ,d Q E dF d dQ dϕ ϕ= = ,   2

2 2 2 2 1 2 2 1пад , ,d Q E dF d dQ dϕ ϕ= = . 

Из последних зависимостей следует, что: 
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Здесь dQL и dQ2 - полные лучистые потоки, испускаемые площадками dFL    и dF2  во 

всех направлениях. 
Таким образом, элементарный угловой коэффициент излучения характеризует 

долю лучистой энергии, которая попадает с элементарной площадки одного тела на 



 
 

элементарную площадку другого тела, по отношению к полному лучистому потоку, 
испускаемому площадкой первого тела. 

Произведение элементарного углового коэффициента излучения на величину 
соответствующей элементарной площадки тела носит название элементарной взаимной 
поверхности излучения. В соответствии с этим уравнения принимают вид 
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где 2
1 2 1 2 1, ,d H d dFϕ=  и 2

2 1 2 1 2, ,d H d dFϕ=  - элементарные взаимные поверхности 

излучения. 
Введем местные (локальные) значения угловых коэффициентов излучения или 

местные коэффициенты облученности: 
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Следовательно, местный угловой коэффициент излучения характеризует долю 

лучистой энергии, испускаемую элементарной площадкой dF1 (dF2) на тело с поверхностью 
F2 (F1), по отношению к полной энергии dQ1 (dQ2),излучаемой площадкой dF1 (dF2) в 
полусферу. Он зависит от расположения тел в пространстве, расстояния между ними, а 
также от формы этих тел. Для системы черных тел угловой коэффициент излучения 
является чисто геометрической характеристикой. Для системы реальных тел угловой 
коэффициент может зависеть от поглощательной способности, поэтому не является чисто 
геометрической характеристикой. 

Взаимные поверхности излучения 2
1 2 1 2 1, ,d H d dFϕ=  и 2

2 1 2 1 2, ,d H d dFϕ=  ха-

рактеризуют излучение площадки dF1 (dF2) на тело с поверхностью F2 (F1). 
Найдем результирующий тепловой поток: 

2 2
1 2 1 2 1 1 1 2 2 2 2 1, пад пад , ,

dQ d Q d Q E dF E dFϕ ϕ= − = − Для равновесного излучения 

температуры тел одинаковы. Этому условию соответствует dQ 1,2 =  0, что    может иметь 

место, когда 1 1 2 2 2 1 0, ,dF dFϕ ϕ− = , откуда получаем 2 2
2 1 1 2, ,d H d H= . Тогда 

 

( ) ( )1 2 1 2 1 2 1 2 2 1, , ,dQ E E dH E E dH= − = −  
 

Подставив значения излучательной способности из закона Стефана Больцмана, 
получаем: 

4 4

1 2
1 2 0 1 2100 100, ,

T T
dQ c dH

    = −    
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Общий результирующий поток представится зависимостью 
4 4
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Здесь

1

1 2 1 21 2 1 1, ,,

F

H d dF Fϕ ϕ= =∫  средняя взаимная поверхность излучения,  

1 2 1
1 2 1 2 1

1 1 1

1 , пад
, ,

H dQ
d dF

F F Q
ϕ ϕ= = =∫  средний угловой коэффициент 

излучения(коэффициент облученности), который показывает, какая часть энергии по-
падает с тела поверхностью F1 на тело с поверхностью F2 по отношению к полному 
излучению первого тела. Аналогичное соотношение имеет место и для второго тела. 

Результирующий поток для системы, состоящей из двух серых тел, может быть 
найден по аналогичному уравнению, если в него вместо потоков собственного излучения 
ввести эффективные потоки излучения: 

2 2
1 1 1 2пад ,d Q E d H= 1 2 2 11 2 1 2, ,, эф эфdQ Q Qϕ ϕ= −  

 
1. 8 Лекция № 9 ( 2 часа). 

Тема: «Теплообменные аппараты»  
1.8.1 Вопросы лекции: 

1. Классификация теплообменных аппаратов.  
2. Метод расчета рекуперативных теплообменных аппаратов. 
3. Методы интенсификации теплообмена. 
 

1.8.2 Краткое содержание вопросов:  
1. Классификация теплообменных аппаратов.  

 Теплообменным аппаратом называют всякое устройство, в котором одна жидкость 
– горячий теплоноситель – передает теплоту другой жидкости – холодному 
теплоносителю. В качестве теплоносителей в тепловых аппаратах используются 
разнообразные капельные и упругие жидкости в самом широком диапазоне давлений и 
температур. По принципу работы аппараты делят на регенеративные, смесительные и 
рекуперативные. 

В регенеративных аппаратах горячий теплоноситель отдает свою теплоту 
аккумулирующему устройству, которое в свою очередь периодически отдает теплоту 
второй жидкости – холодному теплоносителю, т.е. одна и та же поверхность нагрева 
омывается то горячей, то холодной жидкостью. 

В смесительных аппаратах передача теплоты от горячего к холодному 
теплоносителю происходит при непосредственном смешении обоих теплоносителей, 
например в смешивающих конденсаторах. 

Особенно широкое развитие во всех областях техники получили рекуперативные 
аппараты, в которых теплота от горячего к холодному теплоносителю передается через 
разделительную стенку.  

Только такие аппараты будут рассмотрены в дальнейшем. 
Теплообменные аппараты могут иметь самые разнообразные назначения – паровые 

котлы, конденсаторы, пароперегреватели, приборы центрального отопления и т.д. 
Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга 
как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря 
на большое разнообразие теплообменных аппаратов, основные положения теплового 
расчета для них остаются общими. 

В теплообменных аппаратах движение жидкости осуществляется по трем 
основным схемам. 

Если направление движения горячего и холодного теплоносителей совпадают, то 
такое движение называется прямотоком (рис. 9.1, а). Если направление движения 



 
 

горячего теплоносителя противоположно движению холодного теплоносителя, то такое 
движение называется противотоком (рис. 9.1, б). Если же горячий теплоноситель 
движется перпендикулярно движению холодного теплоносителя, то такое движение 
называется поперечным током (рис. 9.1, в). Кроме этих основных схем движения 
жидкостей в теплообменных аппаратах применяют более сложные схемы движения, 
включающие все три основные схемы. 

2. Метод расчета рекуперативных теплообменных аппаратов. 

 Виды теплового расчета теплообменников 

При конструктивном расчете теплообменника известны начальные и конечные 
параметры теплоносителей и необходимо, рассчитать поверхность теплообменника, т. е. 
фактически сконструировать теплообменник. Порядок выполнения такого расчета: 

1. Из балансового уравнения определяют мощность теплового потока ��, 
которую  должен получить холодный теплоноситель от горячего. 

2. Пользуясь рекомендациями специальной литературы, задаются скоростями 
течения теплоносителей и конструктивными особенностями теплообменника (диаметрами 
трубок, проходными сечениями для теплоносителей). 

3. По  определенной методике рассчитывают коэффициенты теплоотдачи, а 
затем - коэффициент  теплопередачи k. 

4. Определяют значение ∆����. 
5. Из уравнения теплопередачи находят площадь F идеального 

теплообменника. 
6. Задаются значением коэффициента использования поверхности теплообмена 

з� и рассчитывают площадь поверхности реального теплообменника F'. 
7. По известной площади F' рассчитывают длину трубок теплообменника. 
При проверочном расчете известна конструкция теплообменника, т. е. задана 

площадь поверхности теплообмена F', кроме того, заданы начальные параметры 
теплоносителей. Необходимо рассчитать конечные параметры, т. е. проверить 
пригодность данного теплообменника для какого-то технологического процесса. 
Сложность расчета заключается в том, что уже в самом его начале необходимо знать 
конечные температуры теплоносителей, поскольку они входят как в уравнение теплового 
баланса, так и в уравнение теплопередачи. При средней температуре, которую не найти 
без знания конечных, берутся параметры теплоносителей в расчетах коэффициентов 
теплоотдачи. 

Одним из методов поверочного расчета является уже упоминавшийся метод 
последовательных приближений. Для этого задаются конечной температурой одного из 
теплоносителей, по уравнению теплового баланса рассчитывают конечную температуру 
второго и проводят конструктивный расчет. Если полученная в результате площадь F' не 
совпадает с площадью поверхности имеющегося теплообменника, расчет проводят вновь, 
задаваясь другим значением температуры теплоносителя на выходе. Большую помощь 
при выполнении поверочного расчета может оказать ЭВМ, резко снижающая 
трудоемкость вариантных расчетов. 

 Основные положения теплового расчета 

При проектировании новых аппаратов целью теплового расчета является 
определение поверхности теплообмена, а если последняя известна, то целью расчета 
является определение конечных температур рабочих жидкостей. Основными расчетными 
уравнениями теплообмена при стационарном режиме являются уравнение теплопередачи 
и уравнение теплового баланса. 

Уравнение теплопередачи: 
Q = kF(t1 – t2). 
где Q – тепловой поток, Вт;  
k – средний коэффициент теплопередачи, Вт/(м2⋅град);  
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Величина ∆tср в представленном уравнении называется среднелогарифмическим 

температурным напором. Здесь τ1 – разность температур теплоносителей на одном конце 
аппарата, а τ2 – на другом конце аппарата. 

Численное значение ∆tср для аппаратов с противотоком при одинаковых условиях 
всегда больше ∆tср  для аппаратов с прямотоком, поэтому аппараты с противотоком имеют 
меньшие размеры. 

Если принять изменение температуры каждого из теплоносителей в аппарате по 
линейному закону (пунктирный температурный график на рис. 8.3), то 
среднеарифметическая разность температур будет несколько больше 
среднелогарифмической.  

 Определение конечных температур теплоносителей 

Иногда в практических расчетах возникает необходимость в определении 
конечных температур рабочих жидкостей при проходе их через теплообменный аппарат. 
В этом случае известными величинами являются поверхность нагрева F, коэффициент 
теплопередачи k, условные эквиваленты W1 и W2 и начальные температуры t1′ и t2′. Тре-
буется найти конечные температуры t1″, t2″ и количество переданной теплоты Q. 

Прямоток. Если предположить, что потери аппарата в окружающую среду равна 
нулю, то количество теплоты, передаваемое через элемент поверхности dF, равно 

dQ = С1(– dt1);  dQ = С2(+ dt2),  

откуда ( )1 2
1 2

1 1
d t t dQ

C C

 
− = − + 

 
. 

Известно, что ( )dFttkdQ 21 −= , 

тогда ( )1 2

1 2 1 2

1 1d t t
kdF

t t C C
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. 



 
 

Интегрируя полученное уравнение по всей поверхности F для аппаратов с 
прямотоком, получаем 
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Чтобы получить конечные температуры рабочих жидкостей, вычтем из единицы 
обе части уравнения: 
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Из уравнения теплового баланса известно, что 

( )1
2 2 1 1

2

C
t t t t

C
′′ ′ ′ ′′− = −  или ( )1

2 2 1 1
2

C
t t t t

C
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Подставляя в полученное уравнение значение t2′ – t2″ получаем:  
 
для горячего теплоносителя 

( ) ( ) ( ) 1 2

1 1

1
1 1 1 1 1 2

2

1
kF

C CC
t t t t t t e

C

 
− + 
 

 
 ′ ′′ ′ ′′ ′ ′− + − = − −
 
 

, 

( ) ( )
1

2 1

1

1
1 1 1 2 1 2

1 2 1

2

1

1

C kF

C C

прям

e C kF
t t t t t t ;

C C C

C

ψ

 
− + 
   −′ ′′ ′ ′ ′ ′− = − = −  

 +
. 

для холодного теплоносителя 
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Количество переданной теплоты определим из уравнения 
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В этом уравнении ψпрям определяется по справочным таблицам. 
Противоток. Аналитический вывод уравнений для определения конечных 

температур при противотоке производится так же, как и при прямотоке. 
Изменение температуры горячего теплоносителя составит 

( ) ( )
1

2 1

1

2 1

1

1
1 1 1 2 1 2

1 2 1
1

2

1

1

C kF

C C

протC kF

C C

e C kF
t t t t t t ;

C CC
e

C

ψ

 
− − 
 

 
− − 
 

 −′ ′′ ′ ′ ′ ′− = − = −  
 

−

 

Изменение температуры холодного теплоносителя будет следующим: 
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2 2 1 2

2 2 1
прот

C C kF
t t t t ;

C C C
ψ

 
′ ′′ ′ ′− = −  

 
 

Количество переданной теплоты равно 
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В этом уравнении ψпрот определяется по справочным таблицам. 
Учет возможных отклонений реальных условий работы теплообменника от  

расчетных 

Все приведенные выше формулы для расчета теплового потока Q (или площади F) 
в теплообменниках пригодны для идеальных условий: чистые теплоносители, строго 
одинаковые условия обтекания поверхностей и т. д. В реальных теплообменниках 
получаются заниженные значения Q, поэтому приходится вводить специальные поправки 
для учета неидеальности теплообменника. 

Наиболее просто, но и наиболее грубо все отклонения можно учесть одним 

коэффициентом использования поверхности теплообмена F

F

F
η =

′
 , где F и F' — площади 

поверхности теплообмена идеального и реального теплообменников соответственно. 
Значение ηF зависит от многих факторов. В справочной литературе [15] можно 

найти рекомендации по выбору значения ηF  , полученные на основе опыта длительной 
эксплуатации теплообменников данного типа на различных теплоносителях и при 
различных режимах. ОбычноηF = 0,75÷0,9. Иными словами, площадь теплообменника 
берут на 10— 25 % больше  расчетной. 

Существуют и более точные методики расчета, в которых вместоηF    вводится 
несколько поправок, причем не обязательно в конечное уравнение Так, при расчете 
прямотока вводятся: коэффициент омывания, учитывающий неодинаковые условия 
обтекания поверхности потоком (неравномерное распределение теплоносителя по 
трубкам, застойные зоны при сложном течении теплоносителя и т.д.); коэффициент, 
учитывающий наличие неконденсирующихся газов в паре. При расчете коэффициента 
теплопередачи зачастую приходится учитывать загрязнение поверхности теплообмена 
пылью, золой, накипью.  

Однако найти рекомендации по выбору всех этих поправок можно только для 
отдельных аппаратов со строго регламентированными условиями работы, например, для 
паровых котлов, конденсаторов турбин. 

При расчете большинства теплообменников можно ограничиться введениемηF ≈ 
0,8 и рекомендовать в процессе эксплуатации периодически очищать трубки 
теплообменника от загрязнений, чтобы предотвратить снижение эффективности его 
работы.  

 

 
 
 
 

 

 

 

 

 

 

 



 
 

2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ВЫПОЛНЕНИЮ  

ЛАБОРАТОРНЫХ РАБОТ 

2.1 Лабораторная работа № ЛР-1,2 (4 часа). 

Тема: «Основные законы теплопроводности» 
                     

2.1.1 Цель работы: Ознакомить с правилами внутреннего распорядка и правилами 
по технике безопасности при выполнении лабораторных работ в учебной лаборатории 
теплотехники. 

 
 2.1.2 Описание (ход) работы: 

1. Общие сведения 

Курс теплотехники изучается в сельскохозяйственном вузе с целью привития 
студентам знаний, умений и навыков, необходимых для выполнения термодинамических 
расчетов, связанных с анализом эффективности различных теплоэнергетических машин и 
установок. Тем самым студент получает основу для усвоения специальных дисциплин 
учебного плана. 

Кафедра Энергообеспечения сельского хозяйства располагает лабораторией для 
выполнения учебных работ по технической термодинамике и теплопередаче. В 
лаборатории проводятся работы, которые дают возможность ознакомиться с методами 
установления зависимости между параметрами состояния рабочего тела в 
термодинамических процессах, определения теплофизических свойств различных 
материалов и работой тепловых аппаратов. 

При выполнении работ по термодинамике и теплопередаче производятся 
измерения температуры, давления, количества тепла, участвующего в процессе, расхода 
жидкости или газа. 

Поэтому выполнению лабораторных работ должно предшествовать тщательное 
ознакомление не только с экспериментальными установками, но и с принципом действия 
и порядком применения соответствующих приборов. 

Крайне важным при изучении физических закономерностей является их 
экспериментальное исследование. Навыки, получаемые в лаборатории (понимание 
наблюдаемых процессов, использование измерительных приборов, обработка полученных 
результатов) необходимы в процессе дальнейшего обучения и самостоятельной работы. 

Подготовка и выполнение лабораторной работы включают следующие этапы. 
I. Подготовка к лабораторному занятию: 
а) изучение по учебникам и другим источникам законов, закономерностей, 

связанных с целью данной лабораторной работы; 
б) ознакомление с инструкцией к данной лабораторной работе, с методикой ее 

выполнения; 
в) оформление конспекта, который должен содержать: 

• название работы; 
• цель работы; 
• основные теоретические сведения и формулы; 
• схему экспериментальной установки; 
• таблицу измерений и таблицу расчетов; 

II. Проведение измерений. 
III. Обработка результатов эксперимента: выполнение необходимых расчетов, 

построение графиков, оценка достоверности полученных результатов. 
IV. Анализ полученных результатов: 



 
 

Расчеты и вывод по работе оформляются в тетради для выполнения лабораторных 
работ. 

Работа считается сданной, когда студент ее выполнил, показал преподавателю 
оформленный отчет с результатами измерений и вычислений и устно ответил на 
контрольные вопросы к данной работе. 

При выполнении лабораторных работ и соответствующих измерений необходимо 
соблюдать правила внутреннего распорядка и инструкции по технике безопасности. 

Руководство предназначено для студентов как очного, так и заочного видов 
обучения. 

 
2. Правила внутреннего распорядка при работе в учебной лаборатории 
1. Не разрешается класть портфели, сумки и прочие вещи на лабораторные столы, 

где смонтированы приборы и установки. При входе в лабораторию все личные вещи 
должны быть сложены на отдельный стол. 

2. Выполнение лабораторных работ без предварительной сдачи специального 
допуска к лабораторным работам не разрешается. 

3. Приступить к лабораторным работам можно только с разрешения лаборанта или 
преподавателя. 

4. При выполнении лабораторных работ необходимо соблюдать дисциплину и 
порядок. Начало и окончание работы, как и при других занятиях, определяются по звонку. 
Приступив к работе, нельзя выходить из лаборатории до перерыва. Во время проведения 
работы студент должен находиться только на своем рабочем месте. Посторонние 
разговоры и шум в лаборатории недопустимы. 

5. В случае нарушения нормальной работы установки, устранение недостатков и 
регулировка без участия лаборанта не разрешается. 

6. О завершении работы поставить в известность преподавателя или лаборанта и 
убрать свое рабочее место. 

7. Лабораторные работы следует оформлять в тетрадке для отчетов,  
чисто и грамотно. 
 
3. Правила по технике безопасности при работе в учебной лаборатории 

теплотехники 
I. Общие правила 

1. Включение и выключение установок может производиться только с 
разрешения лаборанта или преподавателя. 
Запрещается оставлять работающую установку без присмотра. 

2. Студенты, не знающие правила техники безопасности, к выполнению 
лабораторных работ не допускаются. 

 II. Правила работы на установках, находящихся 

Под давлением 

1. Работая на установке, находящейся, под избыточным давлением необходимо 
следить за показаниями манометра. Ни в коем случае не допускать превышения давления, 
указанного для данной работы в настоящем практикуме. В случае, если давление 
превысит допустимый предел, немедленно сообщить об этом преподавателю или 
лаборанту. 

2. При изменениях количества конденсата, а также при контроле уровня воды в 
кипятильниках, следует остерегаться поломки водомерных стёкол, так как при этом 
возможны ожоги горячей водой и паром. 

III. Правила работы на установках, питаемых 

Электрическим током 

Запрещается: 
1. Включать и выключать силовые и осветительные установки без раз- 



 
 

решения лаборанта или преподавателя. 
2. Производить исправления в электросхемах находящихся,  под напряжением. 
3. Оставлять систему, находящуюся под напряжением, без присмотра. 
4. Заходить и протягивать руки за монтажную доску лабораторного стола. 
5. Работать с незаземленным оборудованием. 
6. Касаться неизолированных проводников, металлических клемм, обмоток 

реостатов и других деталей электросхем, находящихся под напряжением. 
7. В случае поражения электротоком, немедленно обесточить установку и 

сообщить преподавателю или лаборанту. 
8. В случае возникновения пожара немедленно вызвать пожарную команду по 

пожарному сигналу или по телефону 01 и приступить к тушению 
своими силами. При этом необходимо: 
а) немедленно обесточить установку; 
б) электропроводку тушить только углекислотными огнетушителями. 
 
IV. Правила работы с ртутными приборами 

1. При выполнении различных работ, связанных с применением ртутных приборов 
(термометров, барометров и др.), следует помнить, что ртуть ядовита и необходимо 
соблюдать, особые меры предосторожности, чтобы избежать разлива ртути. 

2. При пользовании всеми стеклянными ртутными приборами особое внимание 
следует уделять трубке, содержащей ртуть. Случайно пролитая и не убранная ртуть может 
вызвать постепенное отравление исполнителя работ и окружающих сотрудников. 

3. О случайно пролитой ртути немедленно сообщите руководителю работ или 
лаборанту. 

4. При работе с ртутью категорически запрещается брать ртуть руками, 
производить отсасывание ртути или нагнетание воздуха ртом в приборы, заполненные 
ртутью. 

 
4.Правила техники безопасности при выполнении лабораторных работ 

 
При выполнении лабораторных работ необходимо выполнять следующие меры 

безопасности: 
- в начале ознакомится с заданием и инструкцией по выполнению лабораторной 

работы; 
- перед началом работы убедиться, что все приборы отключены и значение 

напряжения на регуляторах установлено на нулевом значении; 
- включение установки осуществлять по разрешению преподавателя в строго 

регламентированной в инструкции последовательности; 
- при работе не прикасаться к токоведущим и нагретым частям оборудования; 
- изменение режимов работы установки и ее отключение осуществлять в 

соответствии с приведенной в методическом указании инструкцией; 
- в процессе выполнения лабораторной работы не загромождать рабочее место 

предметами, не предназначенными для выполнения измерений и вычислений; 
- по окончании измерений выключить установку, значение напряжения на 

регуляторах установить на нулевом значении; 
- в случае обнаружения каких-либо неисправностей в установке, а также в случае травмы 
немедленно сообщить об этом.  
 

 

 

 



 
 

2.2 Лабораторная работа №  ЛР-3,4 (4 часа). 

Тема: «Стационарная теплопроводность»         
                     

2.2.1 Цель работы: ознакомиться с экспериментальным способом определения 
коэффициента теплопроводности материалов 

2.2.2 Описание (ход) работы: 

1. Теоретические основы работы 
 
Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке с 

внутренним радиусом r1 и внешним радиусом r2. На поверхностях стенки заданы 
постоянные температуры tc1 и tc2. В заданном интервале температур коэффициент 
теплопроводности материала стенки постоянен. Температура стенки изменяется только в 
радиальном направлении. Процесс стационарный. При данных допущениях уравнение 
теплопроводности выглядит так: 

 

;       
граничные условия: при r=r1, t=tc1 и при r=r2, t=tc2   

 
 Количество теплоты, проходящего через цилиндрическую поверхность в единицу 

времени, можно найти по закону Фурье: 

S
dr

dt
Q λ−=  , где      

lrS ⋅⋅⋅= π2  – площадь цилиндрической поверхности м2; 

λ – коэффициент теплопроводности, 
Км

Вт

⋅
. 

Тепловой поток через цилиндрическую стенку находится по формуле: 
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Из предыдущего выражения  следует: 
- удельный тепловой поток через внутреннюю поверхность: 
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- удельный тепловой поток через внешнюю поверхность: 
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- линейная плотность теплового потока: 
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2. Схема экспериментальной установки 
 
Схема экспериментальной установки приведена на рис. 2.1, а ее общий вид – на рис. 

2.2. На передней панели находится восьмиканальный измеритель температуры 1 типа 
УКТ-38, подключённый к шести хромель-копелевым термопарам, тумблер 5 включения 
УКТ-38, мультиметр 2 типа MY-67 с автоматическим переключением пределов 
измерений, тумблер электропитания установки 3, разъёмы для подключения мультиметра, 
тумблер 6 для переключения мультиметра на измерение падения напряжения на 
образцовом сопротивлении Uо и напряжения на нагревателе Uн. Регулируемый источник 
питания ЛАТР 4 включается тумблером 7. 

На цилиндрическом нагревателе 8 расположена медная термостатирующая труба 9, 
на наружную поверхность которой надеты шесть исследуемых образцов 10 с 
одинаковыми размерами. Для уменьшения вертикальных конвективных потоков образцы 
разделены тонкими пластинами 11. Для уменьшения тепловых потерь на концах 
нагревателя расположены теплоизолирующие втулки 12 из пенопласта.  

Электропитание к нагревателю подводится от источника питания ЛАТР 4 (рис. 3.1). 
Выход от ЛАТР соединяется с нагревателем электрическим кабелем через заднюю панель. 
Последовательно с нагревателем включено образцовое сопротивление Rо (рис. 3.2) для 
определения величины электрического тока в цепи по измеренному значению падения 
напряжения на Ro. 

На внутренней и наружной поверхности исследуемых образцов расположены шесть 
хромель-копелевых термопар (по 3 термопары на каждой поверхности), которые 

измеряют температуры в точках сечений: 
6

L
, 

2

L
, 

6

5L
, где L – длина рабочего участка. 

Термопары подключены к измерителю температур УКТ-38, который их «опрашивает» и 
показывает измеренные величины в следующей последовательности: 

t11 – температура внутренней поверхности в сечении 
6

5L
; 

t21 – температура внешней поверхности в сечении 
6

5L
; 

t12 – температура внутренней поверхности в сечении 
2

L
; 

t22 – температура внешней поверхности в сечении
2

L
; 

t13 – температура внутренней поверхности в сечении 
6

L
; 

t23 – температура внешней поверхности в сечении 
6

L
. 

 
3. Порядок проведения эксперимента 
 
При проведении эксперимента необходимо измерить следующие величины: 
Uн – напряжение на нагревателе; 
U0 – напряжение на образцовом сопротивлении; 
tij – температура внутренней (i=1) и внешней (j=2) поверхности в трех (j=1,2,3) 

сечениях цилиндрического слоя. 
 
Порядок проведения измерений: 

1. Убедиться, что регулятор напряжения ЛАТРа повернут против часовой стрелке до 
упора. 



 
 

2. Включить тумблер 3 питания установки, тумблер 7 питания нагревателя и тумблер 5 
питания УКТ-38. Включить мультиметр на измерение переменного напряжения (V~). 

3. Установить напряжение на нагревателе Uн ≈  60 В регулятором напряжения ЛАТР. 
4. Подождать несколько минут для получения стационарного режима (показания 

приборов не должны изменяться значительно). 
5. Снять показания Uн и U0 по мультиметру, установив переключатель 6 в 

соответствующее положение. 
6. Снять показания tij . При этом измеритель температуры УКТ-38 автоматически и 

последовательно переключается с одной термопары на другую. 
7. Занести полученные данные в таблицу результатов измерений. 
8. Повторить пункты 3-7 не менее трех раз, изменяя напряжение Uн регулятором 

напряжения ЛАТР, но не более 80 В. 
9. Выключить приборы и установку, повернуть против часовой стрелке до упора 

регулятор напряжения ЛАТРа. 
 
4. Исходные данные для расчетов 
 
Параметры установки: 
длина рабочего участка: l = 0,384 м, 
внутренний диаметр образца: d1 = 22 мм, 
внешний диаметр образца: d2 = 34 мм, 
величина образцового сопротивления: Rо = 0,1 Ом. 

 
Таблица результатов измерений 

 
№ Uн U0 t11 t21 t12 t22 t13 T23 
1         
2         
3         

 
 
5. Результаты расчетов 
 
По результатам измерений выполнить расчеты, используя следующие соотношения: 

0

0

R

U
I н = ; нн IUQ =       

      

      

21

1

2

2

)ln(

cc ttl

d

d
Q

−⋅⋅⋅

⋅
=

π
λ ,     

где 
tС1 и tС2 – усредненные по трем сечениям значения температуры на внешней и 

внутренней поверхности цилиндрического слоя, 
λ – среднее по результатам измерения значение теплопроводности материала 

цилиндрического слоя. 
 

3

 t  t t 131211
1

++
=ct

3

 t  t t 232221
2

++
=ct



 
 

Таблица результатов расчета 
 
 
 
 
 
 
 
 
6. Контрольные вопросы: 
1. Понятие теплопроводности. 
2. Коэффициент теплопроводности, его физический смысл. 
3. Закон Фурье. 
4. Механизм передачи тепловой энергии в металлах. 
5. Механизм передачи тепловой энергии в диэлектриках. 
6. Механизм передачи тепловой энергии в полупроводниках. 
7. Механизм передачи тепловой энергии в жидкостях. 
8. Механизм передачи тепловой энергии в газах. 
9. Зависимость коэффициента теплопроводности от температуры. 
 

 
 

Рис. 2.1       Рис. 2.2 

№ Iн, А Q, Вт tC1, 
0
С tC2, , 

0
С 

λ, 

Км

Вт

⋅
 

1      
2      
3      



 
 

2.3 Лабораторная работа № ЛР-5,6,7 (6 часов). 

Тема: «Нестационарная теплопроводность»    
 
3.1 Цель работы: Ознакомиться с определением   передачи теплоты через 
однослойные и многослойные стенки. 

2.3.2 Описание (ход) работы: 

1. Передача теплоты через плоскую стенку и граничных  
условиях I рода 

 

Рассмотрим однородную и изотропную стенку 
толщиной δ с постоянным коэффициентом 
теплопроводности λ. На наружных поверхностях стенки 
поддерживаются постоянными температуры tc1 и tc2. 
Следовательно, температура будет изменяться только в 
направлении оси Ох, а температура в направлении осей Oy 
и Oz будет оставаться постоянной: 

0=
∂
∂

=
∂
∂

z

t

y

t
. 

 
В связи с этим температура будет функцией только одной координаты х (t = f(x)) и 

дифференциальное уравнение теплопроводности запишется в виде: 

02

2

=
dx

td
. 

Граничные условия в рассматриваемой задаче задаются следующим образом: 
t = tc1 при х = 0; 
t = tc2 при х = δ. 
В результате решения поставленной задачи найдем распределение температуры в 

плоской стенке, то есть t = f(x), а также получим формулу для определения плотности 
теплового потока. 

Первое интегрирование дает: 

1С
dx

dt
= . 

После второго интегрирования получим: 

21 CxCt += – уравнение прямой линии. 

Следовательно, при λ = const закон изменения температуры при прохождении 
теплоты через плоскую стенку будет линейным. 

Постоянные интегрирования С1 и С2 определяем из граничных условий: 
при х = 0 t = tc1 ⇒ С2 = tc1; 

при х = δ t = tc2 
δ

21
1

cc tt
С

−
−= . 

Тогда закон распределения температуры в рассматриваемой плоской стенке имеет 
следующую запись: 

x
tt

tt cc
c δ

21
1

−
−= . 

Для определения плотности теплового потока в направлении оси Ох, 
воспользуемся законом Фурье, согласно которому: 

x

t
q

∂
∂

−= λ . 



 
 

Так как 
1С

x

t
=

∂
∂

δ
21 cc tt −

−= , то 

( )21 cc ttq −=
δ
λ

. 

Из полученного уравнения следует, что количество теплоты, проходящее через 
единицу поверхности в единицу времени, прямо пропорционально коэффициенту 
теплопроводности λ, разности температур поверхностей стенки и обратно 
пропорционально толщине стенки δ. 

Величина, численно равная отношению разности температур между двумя 

изотермическими поверхностями тела к плотности теплового потока в какой-либо 

точке на одной из этих поверхностей, называется внутренним термическим 

сопротивлением, м2⋅К/Вт: 

λ
δ

λ =
−

−=
q

tt
R cc 21 . 

Общее количество теплоты Qτ, которое передается через поверхность стенки F за 
промежуток времени τ: 

( ) τ
δ
λττ FttqFQ cc 21 −== . 

Кроме того, уравнение температурного поля может быть записано в виде: 

x
q

tt c λ
−= 1

. 

Из этого выражения следует, что при прочих равных условиях температура в стенке 
убывает тем быстрее, чем больше плотность теплового потока. 

Полученные выражения справедливы, когда λ = const.  
2. Передача теплоты через многослойную плоскую стенку и  

граничных условиях I рода 
 

 

Рассмотрим стенку, состоящую из слоев 
различной толщины (δ1, δ2,…, δn). 
Теплопроводность отдельных слоев обозначим 
λ1, λ2,…, λn. Примем, что контакт между 
слоями совершенный и температура на 
соприкасающихся поверхностях двух слоев 
одинакова. 

При стационарном режиме тепловой 
поток, проходящий через любую 
изотермическую поверхность неоднородной 
стенки, один и тот же: 

0=
∂
∂

x

q
. 

При заданных условиях можно составить систему уравнений: 

( )21
1

1
cc ttq −=

δ
λ , 

( )32
2

2
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δ
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…………………. 
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1
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λ
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2
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Сложив правые и левые части полученных уравнений, будем иметь: 

 ( )11
2

2

1

1
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






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Тогда плотность теплового потока равна: 
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λ
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i i

iR
1 λ
δ

λ – полное термическое сопротивление плоской многослойной стенки, 

м2⋅К/Вт. Полное термическое сопротивление многослойной стенки равно сумме 
термических сопротивлений составляющих ее слоев. 

Температуры на границах соприкосновения двух соседних слоев равны: 

1

1
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3. Передача теплоты через плоскую однослойную и многослойную стенки и 
граничных условиях III рода 

 

Рассмотрим однородную и 
изотропную стенку толщиной δ с 
постоянным коэффициентом 
теплопроводности λ. Заданы также 
температуры окружающей среды tж1 и tж2, а 
также коэффициенты теплоотдачи α1 и α1, 
причем все эти параметры также постоянны и 
не меняются вдоль поверхности. 
Следовательно, температура будет 
изменяться только в направлении, 
перпендикулярном плоской стенки. 

Необходимо найти тепловой поток от горячей жидкости к холодной и температуры 
на поверхности стенки. 

Плотность теплового потока от горячей жидкости к стенке определяется по 
уравнению Ньютона-Рихмана: 

q = α1(tж1 – tс1). 
При стационарном тепловом режиме та же плотность теплового потока, 

обусловленная теплопроводностью через твердую стенку будет равна: 

( )21 cc ttq −=
δ
λ

. 

Тот же тепловой поток передается от второй поверхности стенки к холодной 
жидкости за счет теплоотдачи: 

q = α2(tс2 – tж2). 
Представленные выражения можно записать в виде: 

( )11
1

1
cж ttq −=

α
, 

( )21
1

cс ttq −=
λ

, 



 
 

( )22
2

1
жс ttq −=

α
. 

Складывая почленно полученные равенства, получим: 

21
21

11
жж ttq −=








++
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δ
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. 

Отсюда плотность теплового потока равна: 

21

21

11

αλ
δ

α
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−
= жж tt

q . 

Обозначим 
k=

++
21

11
1

αλ
δ

α

. 

Тогда ( )21 жж ttkq −= , 

где k – коэффициент теплопередачи, Вт/(м2⋅К). 
Коэффициент теплопередачи k характеризует интенсивность передачи теплоты от 

одной жидкости к другой через разделяющую их стенку и численно равен количеству 

теплоты, которое передается через единицу поверхности стенки в единицу времени при 

разности температур между жидкостями в один градус. 
Величина, обратная коэффициенту теплопередачи, называется полным 

термическим сопротивлением теплопередаче, (м2⋅К)/Вт: 

21

111

αλ
δ
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++==

k
R , 

где 
1

1

α
и 

1

1

α
 - внешние термические сопротивления, 

λ
δ  - термическое сопротивление стенки. 

Для многослойной стенки нужно учитывать термическое сопротивление каждого 
слоя. Если стенка состоит из n слоев, то полное термическое сопротивление 
теплопередачи через такую стенку будет равно: 
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Плотность теплового потока через многослойную стенку, состоящую из n слоев, 
будет равна: 
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Температуры поверхностей однородной стенки находятся из уравнений: 
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Температура на границе любых двух слоев i и i + 1 равна:   
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4. Обобщающие сведения по теплопроводности через плоскую стенку 

Плоская однослойная стенка, граничные условия I рода 

 

( )21 cc ttq −=
δ
λ  

λ
х

qtt c −= 1
 

 

Плоская многослойная стенка, граничные условия I рода 
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Плоская однослойная стенка, граничные условия III рода 
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Плоская многослойная стенка, граничные условия III рода 
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2.4 Лабораторная работа № ЛР-8,9 (4 часа). 

Тема: «Основы конвективного теплообмена»    
 
2.4.1 Цель работы: изучить методику экспериментального определения 
коэффициента температуропроводности металлического образца 

 

2.4.2 Описание (ход) работы: 

1. Теоретические основы работы 
 

Связь между временными и пространственными изменениями температуры в 
любой точке тела, в которых происходит процесс теплопроводности, устанавливается 
уравнением теплопроводности. Для тела, в котором отсутствуют источники тепла, оно 
принимает вид: 

ta
t 2∇=
∂
∂
τ

,      

где  t – температура, 0С; 
τ – время, с; 

a – коэффициент температуропроводности, 
с

м2

. Он является физическим 

параметром вещества и является мерой теплоинерционных свойств тела. При прочих 
равных условиях выравнивание температур во всех точках тела будет происходить тем 
быстрее, чем больше коэффициент температуропроводности. Он вычисляется по 
формуле: 

ρ
λ
c

a = ,      

где λ – коэффициент теплопроводности, 
Км

Вт

⋅
; с – удельная теплоемкость вещества, 

Ккг

Дж

⋅
; ρ – плотность вещества, 

3м

кг
. 

Решение уравнения ta
t 2∇=
∂
∂
τ

 производится с помощью рядов Фурье. Для 

различных краевых условий результаты получаются различными, но методология 
решения в основном одинакова. Искомая функция уравнения  зависит от большого числа 
переменных, но при более глубоком анализе решений оказывается, что эти переменные 
можно сгруппировать в три безразмерных комплекса. Эти комплексы являются 
критериями подобия: 

Bi
l
=

λ
α

 – критерий Био, 

Fo
l

a
=

2

τ
 – критерий Фурье, 

L
l

x
=  – критерий геометрического подобия. 

 
Применение метода регулярного режима для нахождения коэффициента 

теплоотдачи 

При малых Bi температура на поверхности тела незначительно отличается от 
температуры на его оси. Это возможно для металлов, у которых величина 
температуропроводности достаточно велика (медь, дюраль). В этом случае нагрев или 



 
 

охлаждение тела определяется интенсивностью теплоотдачи на его поверхности, а 
процесс выравнивания температуры в теле происходит существенно быстрее, чем подвод 
или отвод теплоты с поверхности тела. 

Решение задачи о нагревании (охлаждении) тел приводит к понятию темпа нагрева 
(охлаждения): 

  

m
t

t
−=

∂
∂
τ

1
      

Левая часть определяет относительную скорость изменения температуры, которая 
при регулярном режиме не зависит от координат и времени и является постоянной 
величиной. Можно показать, что: 

с

S
m

αψ=       

Формула  отражает содержание первой теоремы Кондратьева: темп охлаждения 
(нагревания) однородного и изотропного тела при конечном значении коэффициента 
теплоотдачи пропорционален коэффициенту теплоотдачи, площади поверхности тела и 
обратно пропорционален его теплоемкости. 

Множитель ψ называется коэффициентом неравномерности распределения 
температуры. В случае медленного нагрева металлических образцов ψ=1. 

А.В. Лыковым было показано, что регулярный режим определяется не только 
определенными температурными полями, возникающими в нагреваемом или 
охлаждаемом теле, но и потоками тепла через его поверхность. Поэтому при нагревании 
металлических образцов нет необходимости различать регулярные режимы первого, 
второго и третьего рода. В качестве общего свойства теплового регулярного режима 
можно принять соотношение 

)( ttm
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τ
,     

где  t  – средняя по объему температура тела; 
tс – температура среды. 

Средний коэффициент теплоотдачи может быть найден по формуле: 
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Применение метода регулярного теплового режима первого рода для 

определения коэффициента температуропроводности металлов 

 
Экспериментальный метод определения температуропроводности, требующий 

условия Вi → ∞ не всегда осуществим при исследовании тел с высокой 
теплопроводностью, для которых Вi <10. В этом случае применяется метод двух точек, в 
котором используется важнейшее свойство регулярного режима, состоящее в том, что 
температурное поле в образце при его охлаждении в среде с постоянной температурой 
остается подобным самому себе. Следовательно, отношение температур для двух 
произвольных точек тела будет равно постоянной величине, не зависящей от времени: 

 

b
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t
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1 ,      

где 0 ≤ b ≤ 1. 
Величина b и темп охлаждения m определяются из опыта. Для этого строятся 

графики зависимостей lnθ1 = f1(τ) и lnθ2 = f2(τ), где ctt −= 22θ , ctt −= 11θ . 



 
 

На регулярном участке получаются два отрезка параллельных прямых, угловой 
коэффициент которых определяет темп охлаждения. Значение b определяется из тех же 
графиков по соотношению 

y = lnθ1 - lnθ2,      
тогда 

b = e
-y      

 
Температуропроводность исследуемого образца рассчитывается из соотношения 

2P

mK
a = ,      

где Р – безразмерная величина 

∞

=
ε
ε

P  ≤ 1      

и К – коэффициент формы 
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где: l – высота цилиндра;  R – радиус цилиндра; ε -постоянная определяемая из 
граничных условий при решении уравнения (5.1) для Вi < 10; ε∞ - постоянная, 
определяемая из граничных условий при решении уравнения (5.1) для Вi = ∞ 
(практически ≥ 100). 

В формуле (5.10) величину Р
2 заменяют на функцию Ф(у), которая приведена в 

таблице. 
Следовательно, соотношение (5.10) можно записать в виде: 
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Для расчета темпа охлаждения из экспериментальных данных используется один 
из графиков (например lnθ1 = f1(τ)) 
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а для расчета коэффициента формы соотношение 
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Таблица значений Ф(у) 

 
 у 

 

 Ф(у)  у  Ф(у) 

 0,03  0,023 0,22 0,147 
 0,04  0,030 0,25 0,165 
 0,05  0,037 0,30 0,196 
 0,07  0,051 0.35 0.228 
 0,10  0,072 0.4 0.252 
 0,12  0,0860 1 0.527 
 0.15  0.105 2 0,808 
 0.17  0.118 3 0.927 



 
 

 0.20  0.137 0.5 0.301 
 
Данный метод предполагает предварительное знание коэффициента формы 

образца, но при этом отпадает необходимость измерения координат двух точек в теле, в 
которых измеряется температура. 

2. Схема экспериментальной установки 

Схема экспериментальной установки приведена на рис. 4.1 и 4.2. На передней 
панели находятся два двухканальных измерителя температуры 1,2 типа ТРМ200, 
подключенные к трем хромель-копелевым термопарам. Первый канал измерителя 1 
подключен к термопаре 5, измеряющей температуру t1 цилиндрического образца 11 в 
середине на его оси. Первый канал измерителя температуры 2 подключен к термопаре 3, 
измеряющей температуру t2 внутри цилиндра 11 на расстоянии 15 мм от его оси. Второй 
канал измерителя 2 подключен к термопаре 4, измеряющей температуру t3 воды в 
термостате 12 вблизи цилиндра. На передней панели также находятся тумблер 6 
включения электропитания установки, тумблер 20 включения питания электропечи 19 и 
регулятора мощности 10 электропечи, устройство перемещения 18 образца из печи 19 в 
емкость 12 термостата, тумблер 7 включения вентилятора 8. 

3. Порядок проведения эксперимента 

 
1. С помощью подъёмного устройства 18 осторожно поместить в электропечь 19 образец 
11. 
2. Включить питание установки, регулятор температуры 10 и повернуть диск 
регулирования по часовой стрелке на половину оборота. 
3. Включить вентилятор для ускорения процесса нагревания образца 
4.  Включить измерители температуры. 
5. Произвести нагрев образца до температуры 60-70 оС. 
6. С помощью подъемного устройства 18 переместить образец из печи в емкость 12 с 
водой. 
7. Включить секундомер. 
8. Через каждые 10 секунд производить отсчет показаний измерителей температуры и 
заносить данные в таблицу. 
9. Выключить приборы и установку. 
9. Произвести необходимые расчеты. 
10. Сделать вывод. 
 

4. Исходные данные для расчетов 

Параметры установки: 
диаметр образца d = 35 мм; 
длина образца l = 70 мм; 
расстояние между спаями двух термопар 15 мм; 
материал образца: нержавеющая сталь. 
 

Таблица результатов эксперимента 

№ 
п/п 

t1,
 

оС 
t2,

 оС t3, 
оС 

τ, с 1θ  2θ  1lnθ  2lnθ  

1         
2         



 
 

3         
…         

 

5. Контрольные вопросы: 

1. Нестационарная теплопроводность. 
2. Понятие регулярного режима. 
3. Темп охлаждения. 
4. Коэффициент температуропроводности, его физический смысл. 
5. Критерий Био, его физический смысл. 
6. Методы решения задач теплопроводности при нестационарном режиме теплообмена. 
7. Теоремы Кондратьева. 

 

Рис. 4.1   Рис. 4.2 
 

 

2.5 Лабораторная работа № ЛР-10,11 (4 часа). 

Тема: «Критериальные уравнения конвективного теплообмена»           
                     

2.5.1 Цель работы: ознакомиться с расчетом потери теплоты через цилиндрическую 
стенку 

 

2.5.2 Описание (ход) работы: 



 
 

1.  Передача теплоты через цилиндрическую стенку  

Передача теплоты из одной подвижной среды (жидкости или газа) к другой через 

разделяющую их однородную или многослойную твердую стенку любой формы 

называется теплопередачей. Теплопередача включается в себя теплоотдачу от более 

горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более 

холодной среде. 

1.1 Передача теплоты через цилиндрическую стенку и граничных условиях I рода 

 
Подвод теплоносителя к потребителю обычно осуществляется по трубам, а сами 

потребители часто имеют цилиндрический корпус. В связи с этим возникает необходимость 
расчета тепловых потоков через цилиндрическую оболочку.  

Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке 
(трубе) с внутренним диаметром d1 = 2r1 и наружным диаметром d2 = 2r2. На поверхности 
стенки заданыпостоянные температуры tc1 и tc2. В заданном интервале температур λ=const. 
Необходимо найти распределение температур в цилиндрической стенке и тепловой поток 
через нее. 

Как видно из рисунка распределение температур осуществляется по 
логарифмической кривой. Криволинейное распределение температуры в цилиндрической 
стенке объясняется следующим. Для плоской стенки плотность теплового потока q 
остается одинаковой для всех изотермических поверхностей. Для цилиндрической стенки 
q через любую изотермическую поверхность зависит от радиуса. 

Для нахождения количества теплоты, проходящего через цилиндрическую 
поверхность площадью F в единицу времени, воспользуемся законом Фурье: 
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Из полученного выражения видно, что так же, как и для плоской стенки, тепловой 
поток через цилиндрическую оболочку прямо пропорционален разности температур 
поверхностей стенки. 

Тепловой поток может быть отнесен либо к единице длины трубы, либо к единице 
внутренней или внешней поверхности. При этом расчетные формулы для плотности 
теплового потока, принимают вид: 
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ql также называется линейной плотностью теплового потока  
1.2 Передача теплоты через однослойную и многослойную цилиндрические стенки 

и граничных условиях III рода 

 
 
Рассмотрим однородную цилиндрическую стенку (трубу) с постоянным 

коэффициентом теплопроводности λ,  заданы постоянные температуры подвижных сред 
tж1 и tж2 и постоянные значения коэффициентов теплоотдачи на внутренней и наружной 
поверхностях трубы α1 и α2. 

Будем считать, что длина трубы велика по сравнению с толщиной стенки, поэтому 
потерями теплоты с торцов трубы можно пренебречь, и будет проходить через стенку и 
отдаваться от стенки к холодной жидкости одно и тоже количество теплоты. 

Следовательно, можно записать: 
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Представим эти уравнения следующим образом: 
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Складывая уравнения, входящие в систему получим: 
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Отсюда следует: 
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Обозначим: 
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Тогда плотность теплового потока, проходящего через цилиндрическую стенку, 
будет равна: 



 
 

( )21 жжll ttkq −= π , 

где kl – линейный коэффициент теплопередачи, Вт/(м⋅К). 
Линейный коэффициент теплопередачи называется величина, которая 

характеризует  интенсивность передачи теплоты от одной среды к другой через 
разделяющую их стенку 

Он характеризует интенсивность передачи теплоты от одной среды к другой через 
разделяющую стенку. Значение kl численно равно количеству теплоты, которое проходит 
через стенку длиной 1 м в единицу времени от одной среды к другой при разности 
температур между ними 1 К. 

Величина, обратная линейному коэффициенту теплопередачи, называется 
линейным термическим сопротивлением теплопередачи, м⋅К/Вт: 
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Тепловой поток через цилиндрическую стенку определяется по выражению: 
( )21 жжl ttlkQ −= π . 

Плотность теплового отнесенного, к внутренней или наружной поверхности, 
определяется по уравнениям: 

( )21
11

1 жж
l tt

d

k

d

Q
q −==

lπ
, ( )21

22
2 жж

l tt
d

k

d

Q
q −==

lπ
. 

При переносе теплоты через многослойную цилиндрическую стенку, имеющую n 
слоев, линейная плотность теплового потока будет равна: 
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или ( )21 жжll ttkq −= π . 

Тогда полное термическое сопротивление многослойной цилиндрической стенки 
будет равно: 
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Тогда линейный коэффициент теплопередачи многослойной цилиндрической 
стенки  определяется по следующему выражению: 
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2. Критический диаметр цилиндрической стенки 
Тепловой изоляцией называется всякое покрытие горячей поверхности, которое 

способствует снижению потерь теплоты в окружающую среду. Для тепловой изоляции 
могут быть использованы любые материалы с низким коэффициентом теплопроводности 
– асбест, пробка, слюда, шлаковая или стеклянная вата, шерсть, опилки и т.д. 

Запишем выражение для определения линейного термического сопротивления 
теплопередачи цилиндрической стенки: 
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Анализ этого выражения показывает, что тепловые потери трубопроводов зависят 
от наружного диаметра трубопровода. Причем в зависимости от материала, применяемого 
для изоляции трубы, тепловые потери при изменении диаметра теплоизоляционного слоя 
могут либо увеличиваться, либо уменьшаться. 



 
 

Рассмотрим цилиндрическую трубу покрытую однослойной изоляцией. Установим 
как при постоянных α1, α2, d1, d2, λ1, λ2, t1 и t2 будет изменяться полное термическое 
сопротивление при изменении толщины изоляции. 

Запишем выражение для определения общего термического сопротивления 
теплопередачи двухслойной цилиндрической стенки: 
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При увеличении внешнего диаметра изоляции d3 увеличивается сопротивление 

слоя изоляции
2

3

22
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= , но одновременно уменьшается сопротивление теплоотдачи 

на наружной поверхности изоляции 
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Чтобы выяснить, как будет изменяться Rl при изменении толщины изоляционного 
слоя (d3), исследуем Rl как функцию d3. Беря первую производную от правой части 
уравнения по d3 и приравнивая ее нулю, получаем: 
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Исследовав кривую Rl = f(d3) любым из известных способов на максимум и 
минимум, увидим, что в экстремальной точке имеет место минимум. Таким образом, при 
найденном значении d3 термическое сопротивление теплопередачи будет минимальным, а 
тепловой поток будет иметь максимальное значение. 

Значение внешнего диаметра трубы, соответствующего минимальному полному 

термическому сопротивлению теплопередачи, называется критическим диаметром и 
обозначается dкр. Рассчитывается он по формуле: 
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Из этого уравнения следует, что критический диаметр будет тем меньше, чем 
меньше коэффициент теплопроводности изоляции и чем больше коэффициент 
теплоотдачи от наружной поверхности изоляции к окружающей среде. 

Рассмотрим зависимость линейной плотности теплового потока от диаметра 
изоляции. 



 
 

 

Из графика видно, что если наружный 
диаметр изоляции dиз увеличивается, но 
остается меньше dкр, то тепловые потери 
возрастают и будут больше теплопотерь 
голого трубопровода (кривая АК). При 
равенстве dиз = dкр получаются максимальные 
теплопотери в окружающую среду (точка К). 
При дальнейшем увеличении наружного 
диаметра изоляции dиз > dкр теплопотери 
будут меньше, чем при dиз = dкр. 

Только при dиз = d3 тепловые потери вновь станут такими же, как и для 
неизолированного трубопровода. 

Значит для эффективной работы изоляции необходимо, чтобы критический 
диаметр был меньше внешнего диаметра оголенного трубопровода, то есть dкр ≤ d2. 
Следовательно, 
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Примеры решения задач. 
Задача 1. Паропровод диаметром 160/170 мм покрыт двухслойной изоляцией. 

Толщина первого слоя δ2 = 30 мм и второго δ3 = 50 мм. Коэффициент теплопроводности 
материала трубы и изоляции соответственно равны λ1=50,  λ2 = 0,15 и λ3 = 0,08 Вт/(м⋅К). 
Температура внутренней поверхности паропровода t1 = 300°C и внешней поверхности 
изоляции t4 = 50°C. 

Определить линейную плотность теплового потока ql, Вт/м и температуры t2 и t3 в 
плоскости соприкосновения слоев. 

Решение 

Условие задачи соответствует случаю теплопроводности через  многослойную 
цилиндрическую стенку при граничных условиях I рода. 

Тогда плотность теплового потока определяется по формуле: 
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Ответ: ql=240 Вт/м; tc2 = 299,9 оС;  tс3 = 223оС. 



 
 

Задача 2. Паропровод диаметром 200/216 мм покрыт слоем изоляции толщиной δ = 
120 мм, коэффициент теплопроводности которой λ2 = 0,1 Вт/(м⋅К). Температура пара tж1 = 
300°С и окружающего воздуха tж2 = 25°С. Известны коэффициент теплопроводности 
материала паропровода λ1 = 40 Вт/(м⋅К) и коэффициенты теплоотдачи α1 = 1000 Вт/(м2⋅К) 
и α2 = 10 Вт/(м2⋅К) 

Определить линейную плотность теплового потока ql, Вт/м и температуры t3 в 
месте соприкосновения паропровода и слоя изоляции. 

Решение 

Условие задачи соответствует случаю теплопроводности через многослойную 
цилиндрическую стенку при граничных условиях III рода. 

Тогда линейная плотность теплового потока определяется по формуле: 
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Определим d3 , а затем количество теплового потока 
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Ответ: ql=218 Вт/м; tc2 = 299,6 оС. 
 
Задача для самостоятельного решения. 
 
Задача. Вычислить потерю теплоты с 1 м неизолированного трубопровода 

диаметром d1/d2 = 150/165 мм, проложенного на открытом воздухе, если внутри трубы 
протекает вода со средней температурой tж1 = 90°С и температура окружающего воздуха 
tж2 = (-15 + n)°С. Коэффициент теплопроводности материала трубы λ = 50 Вт/(м⋅К). 
Коэффициент теплоотдачи от воды к стенке трубы α1 = 1000 Вт/(м2⋅К) и от трубы к 
окружающему воздуху α2 = 12 Вт/(м2⋅К). Определить также температуры на внутренней и 
внешней поверхностях трубы. 

 
 
 
 
 
 
 
 
 
 



 
 

3. Обобщающие сведения по теплопроводности через цилиндрическую стенку 

Цилиндрическая однослойная стенка, граничные условия I рода 
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Цилиндрическая многослойная стенка, граничные условия I рода 
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Цилиндрическая однослойная стенка, граничные условия III рода 
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Цилиндрическая многослойная стенка, граничные условия III рода 
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2.6 Лабораторная работа № ЛР-10,11 (4 часа). 

Тема: «Теплообмен при фазовых переходах»           
                     

2.6.1 Цель работы: определить средний коэффициент теплопередачи от жидкости 
к воздуху через гладкую и ребристую стенку при ламинарном течении жидкости в трубе 
круглого сечения и в условиях естественной конвекции окружающего воздуха. 

2.6.2 Описание (ход) работы: 

1. Теоретические основы  
Определяем средний коэффициент теплопередачи от жидкости к воздуху через 

гладкую и ребристую стенку при ламинарном течении жидкости в трубе круглого сечения 
и в условиях естественной конвекции окружающего воздуха. 

Расчет для гладкой  трубы 

Коэффициент теплопередачи через цилиндрическую стенку рассчитывается 
следующим образом: 
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где  α1 – коэффициент теплоотдачи на внутренней поверхности трубы, 
Км

Вт
2

; 

α2 – коэффициент теплоотдачи на внешней поверхности трубы, 
Км

Вт
2

; 

λλ – коэффициент теплопроводности материала стенки (для меди λ=390 
Км

Вт

⋅
); 

d1 – внутренний диаметр трубы, м; 
d2 – внешний диаметр трубы, м. 

Учитывая, что значение ln(
1

2

d

d
), мало, можно записать: 
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При вязком течении средний коэффициент теплоотдачи α1 может быть определен 

из следующих уравнений: 
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где Nu – число Нуссельта, Pe – число Пекле, Re – число Рейнольдса, Pr – число Прандтля, 
νc – кинематическая вязкость жидкости при температуре стенки tc, νж – кинематическая 
вязкость жидкости при температуре t=tc-0,5·∆tср (∆tср – средний температурный напор т.е. 
разность между температурой жидкости и температурой стенки), ε принимается равным 

единице при данном соотношении 
d

l
, d1 – внутренний диаметр трубы, l – длина трубы, ω 

– скорость движения жидкости (ее можно найти как отношение объемного расхода воды в 
секунду к площади сечения трубы); жλ  – коэффициент теплопроводности жидкости. 



 
 

Значение числа Прандтля и кинематических вязкостей берутся из справочных 
таблиц. 

Теплоотдача от трубы к воздуху происходит преимущественно посредством 
естественной конвекции. При малых температурных напорах вокруг трубы образуется 
пленка нагретого воздуха. Этот режим называется пленочным. Теплообмен определяется 
теплопроводностью воздуха. При увеличении температурного напора возможно 
разрушение ламинарного течения вокруг трубы. В этом случае расчет коэффициента 
теплоотдачи α2 производится по формулам: 
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где Gr – критерий Грасгофа, g=9,8
2с

м
 – ускорение свободного падения, β  - коэффициент 

объемного расширения воздуха, ∆t – разность температур трубы и воздуха, d2 – наружный 
диаметр трубы, вν  - кинематическая вязкость воздуха, вλ  - коэффициент 

теплопроводности воздуха. 
Значения числа Прандтля, кинематической вязкости и коэффициента 

теплопроводности берутся из справочных таблиц. 
Для газов коэффициент объемного расширения можно рассчитать по следующему 

выражению: 

T

1
=β ,       

где Т – температура газа, К. 
 
Расчет для оребренной трубы 

Тепловой поток через внутреннюю поверхность трубы равен: 

11 )( SttQ cж −=α ,      

где ldS ⋅⋅= 11 π  – площадь внутренней поверхности трубы;λ 
tс – температура стенки трубы (для медной трубы можно считать, что температура на 

внутренней поверхности приближенно равна температуре на ее внешней поверхности). 
Температуру на внешней поверхности трубы можно принять равной температуре 

на внутренней её поверхности tс, так как величина термического сопротивления 
теплопроводности медной тонкостенной трубы на несколько порядков меньше величины 
термического сопротивления теплоотдачи на внешней её поверхности. 

tж – температура жидкости в трубе. 
Тепловой поток через внешнюю оребренную поверхность трубы равен: 

SttQ вc )(2 −=α ,      

где 
tс – температура стенки трубы; 
tв – температура воздуха около трубы; 
S – суммарная площадь ребер и поверхности трубы между ребрами, равная S = Sгл 

+ Sор), здесь 
Sгл – площадь внешней поверхности гладкой части трубы; 
Sор – площадь поверхности ребер. 
Площадь внешней поверхности гладкой части трубы находится по формуле: 

ndldS гл ⋅⋅⋅−⋅⋅= 22 δππ ,    



 
 

где  n – число ребер; 
δ – толщина ребра. 

Площадь поверхности ребер находится по формуле: 
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где dр – диаметр ребра. 
Средняя по длине температура поверхности ребер определяется из соотношения: 
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Коэффициент теплопередачи через оребренную стенку можно представить в виде: 
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S
 – коэффициент оребрения. 

 
2. Схема экспериментальной установки 
 
Общий вид экспериментальной установки приведен рис 6.1. На передней панели 1 

находится двухканальный измеритель температуры 2 типа ТРМ200, подключенный к 
восьми хромель-копелевым термопарам (t1, t2, t3, t4, t5, t6, t7 через переключатель термопар 
13, соединенный с первым каналом измерителя температур и термопара, измеряющая 
температуру окружающего воздуха, подключенная ко второму каналу прибора.). В 
нижней части панели находятся три выключателя – “Сеть”, “Нагреватель термостата”, 
“Насос термостата”. Рабочим участком являются две медные гладкие 4 и две оребренные 
3 трубы, соединенные последовательно, через которые циркулирует нагретая в 
водоподогревателе (термостате) вода. Объемный расход воды измеряется расходомером 8. 
На входном патрубке водоподогревателя (термостата) находится кран К1, регулирующий 
величину объемного расхода воды в трубах 4 и 3. Циркуляционный насос 10 прокачивает 
нагретую в водоподогревателе (термостате) воду по трубам 4 и 3. 

Температура жидкости в водоподогревателе (термостате) 5 регулируется в 
пределах 25 – 65 оС. Объемный расход воды измеряется расходомером 8 с крыльчаткой и 
регулируется краном К1. 

 
3. Порядок проведения эксперимента 
 
1. Включить электропитание установки переключателем “Сеть”. 
2. Включить электрический водоподогреватель (термостат) переключателем 

“Нагреватель термостата”. Подождать 15-20 минут для нагревания воды. 
3. Включить измеритель температуры 2. 
4. Установить краном К1 расход воды. 
5. Включить циркуляционный насос переключателем “Насос термостата”. 
6. Измерить температуры t1, t2, t3, t4, t5, t6, t7, а также определить объемный расход 

воды. 
Примечание: объемный расход воды определяется следующим образом: 
а) записать начальные показания расходомера при выключенном насосе; 
б) включить насос вместе с секундомером, подождать 2-3 минуты; 
в) выключить насос, записать конечные показания расходомера; 
г) вычислить объемный расход воды, разделив разность конечного и начального 

показаний расходомера на время. 



 
 

7. Определить линейные размеры установки (наружный диаметр трубы, длина 
трубы, число ребер, толщина ребра, диаметр ребра). 

8. Повторить измерения, установив другие значения температур (либо подогреть, 
либо охладить воду в водоподогревателе). 

9. Выключить приборы и установку. 
10. Произвести необходимые вычисления и найти коэффициенты теплопередачи 

гладкой и оребренной труб. 
9. Сравнить коэффициенты теплопередачи гладкой и оребренной труб. Сделать 

вывод. 
 
4. Исходные данные для расчетов 
 
Измеряемые величины: 
t1 – температура воды на входе в оребренную трубу; 
t2 – температура воды на выходе из оребренной трубы; 
t3 – температура воды на входе в гладкую трубу; 
t4 – температура воды на выходе из гладкой трубы; 
t5 – температура на внешней поверхности оребрённой трубы на её середине; 
t6 – температура на внешней стороне ребра на середине трубы; 
t7 – температура воздуха вблизи трубы; 
d2 – наружный диаметр трубы; 
l – длина трубы; 
n –число ребер; 
δ – толщина ребра; 
dр – диаметр ребра. 
 
5. Результаты расчетов 
 
Расчетные величины: 
d1 – внутренний диаметр трубы ( cdd δ221 −= ; cδ =3 мм – толщина стенки трубы); 

G – объемный расход воды; 
к1 и к2 – коэффициенты теплопередачи гладкой и оребренной трубы. 
 
6. Контрольные вопросы: 
 
1. Вынужденное движение жидкости. 
2. Коэффициент теплопередачи, его физический смысл. 
3. Оребрение труб. 
4. Теория подобия, уравнения подобия. 
5. Критерии Нуссельта, Прандтля, Грасгофа, Пекле, Рейнольдса, их смысл. 
6. Почему у оребренной трубы коэффициент теплопередачи больше, чем у 

гладкой? 
7. При каком движении (свободном или вынужденном) коэффициент 

теплопередачи больше? Почему? 
 

 
 
 
 
 
 
 



 
 

 

 
 

Рис. 6.1 
  



 
 

2.7 Лабораторная работа № ЛР-14,15 (4 часа). 

Тема: «Теплообмен излучением»           
                     

2.7.1 Цель работы: определить параметры теплопроводности при нестационарном 
режиме  

2.7.2 Описание (ход) работы: 

1. Теоретические основы  
Нестационарная теплопроводность характеризуется изменением температурного 

поля во времени и связана с изменением энтальии тела при его нагреве или охлаждении. 

Безразмерная температура тела Θ определяется с помощью числа Био 
l

Bi
α
λ

= , числа 

Фурье 
2

a
Fo

l

τ
=  и безразмерной координаты, обозначаемой для пластины 

x
X

δ
= , а для 

цилиндра 
0

r
R

r
= . Охлаждение (нагревание) тел происходит в среде с постоянной 

температурой tж, при постоянном коэффициенте теплоотдачи α, λ и а – теплопроводности 
и температуропроводности материала тела, l - характерный размер тела (l= δ для 
пластины, l=r0 для цилиндра), x  r  текущие координаты соответственно для пластины и 
цилиндра. 

1.1 Тела с одномерным температурным полем. 
Пластина толщиной 2δ.  
Безразмерная температура пластины  

( )
( ) ( ) 2

0

ж

ж

t t a x
f Bi,Fo,X f , ,

t t

αδ τ
λ δ δ

−  Θ = = =  −  
, 

где t – температура в пластине для любого момента времени τ в точке с 
координатой х; t0 - температура пластины в начальный момент времени. 

Распределение температуры в любой точке бесконечной пластины для любого 
момента времени: 

( )
( ) ( ) ( )2

10

2ж n
n n

nж n n n

t t sin
cos X exp Fo

t t sin cos

µ µ µ
µ µ µ

∞

=

−
Θ = = −

− +∑ . 

 Если число Фурье 0 3Fo ,≥ , то ряд становится настолько быстросходящимся, что 
распределение температуры достаточно точно описывается первым членом ряда: 

( ) ( )21
1 1

1 1 1

2sin
cos X exp Fo

sin cos

µ µ µ
µ µ µ

Θ = −
+

. 

Тогда безразмерная избыточная температура  определяется по следующему 
выражению: 

на поверхности пластины (X=1)  

 
( )
( ) ( )2

1
0

пов ж

пов

ж

t t
P exp Fo

t t
µ

−
Θ = = ⋅ −

−
; 

на середине толщины пластины (X=0) 

( )
( ) ( )2

1
0

сер ж

сер

ж

t t
N exp Fo

t t
µ

−
Θ = = ⋅ −

−
; 



 
 

на расстоянии х от середины пластины 

( )2
1 1x

x
N cos exp Foµ µ

δ
 Θ = ⋅ − 
 

, 

Где P, N, µ1, µ1
2  определяются по таблицам приложения для пластины в 

зависимости от числа Bi. 
Температуры Θпов и  Θсер для поверхности и середины пластины можно определить 

по номограммам из приложения по известным числам Bi и Fo. 
Цилиндр радиусом r0. 

Безразмерная температура цилиндра  

( )
( ) ( ) 0

2
0 0 0

ж x

ж

t t r a r
Bi,Fo,R f , ,

t t r r

α τϕ
λ

−  
Θ = = =  −  

, 

где t – искомая  температура в цилиндре для радиуса rx и времени τ 00 xr r≤ ≤ ;  t0 - 

температура цилиндра в начальный момент времени. 
Распределение температуры в любой точке бесконечного цилиндра для любого 

момента времени: 

( )
( ) ( ) ( )

( ) ( )21
02 2

10 0 1

2ж n
n n

nж n n n

t t J
J R exp Fo

t t J J

µ µ µ
µ µ µ

∞

=

−
Θ = = −

−  + 
∑  

 Если число Фурье 0 25Fo ,≥ , то ряд становится настолько быстросходящимся, 
что распределение температуры достаточно точно описывается первым членом ряда: 

( ) ( )
( ) ( )21 1

0 1 12 2
1 0 1 1 1

2J
J R exp Fo

J J

µ µ µ
µ µ µ

Θ = −
 + 

. 

Тогда безразмерная избыточная температура  определяется по следующему 
выражению: 

на поверхности цилиндра (R=1)  

 
( )
( ) ( )2

0 1
0

пов ж

пов

ж

t t
P exp Fo

t t
µ

−
Θ = = ⋅ −

−
; 

на оси цилиндра (R=0) 

( )
( ) ( )2

0 1
0

оси ж

оси

ж

t t
N exp Fo

t t
µ

−
Θ = = ⋅ −

−
; 

внутри цилиндра для радиуса rx 

( )20
0 0 1 1r

x

r
N J exp Fo

r
µ µ
 

Θ = − 
 

, 

Где P0, N0, µ1, µ1
2  определяются по таблицам приложения для цилиндра в 

зависимости от числа Bi; 0
0 1

x

r
J

r
µ
 
 
 

 - функция Бесселя первого рода нулевого порядка 

также по таблицам приложения. 
Температуры Θпов и  Θоси для поверхности и оси цилиндра  можно определить по 

номограммам из приложения по известным числам Bi и Fo. 
2. Регулярный режим охлаждения (нагревания) тел 
Теорию регулярного режима разработал Г.М. Кондратьев. Процесс охлаждения 

тела в среде с постоянной температурой и постоянным коэффициентом теплоотдачи α 
можно разделить на три режима: 



 
 

1) неупорядоченный – на процесс влияет начальное распределение температуры в 
теле; 

2) регулярный – в любой точке тела относительная скорость изменения 
температуры, называемая темпом охлаждения (нагревания), остается постоянной и не 
зависит от времени; 

3) стационарный – температура во всех точках тела равна температуре среды 
(тепловое равновесие) 

В регулярном режиме темп охлаждения (нагревания), т , с-1, определенный по 
двум моментам времени τ 1 и τ 2, равен 

1 2

2 1

ln ln
m const

ϑ ϑ
τ τ
−

= =
−

, 

Где 1 1 жt tϑ = −  и 2 2 жt tϑ = −   -  избыточные температуры в любой точке тела в 

моменты времени τ 1 и τ 2. 
Темп охлаждения т зависит от физических свойств тела, его размеров и формы, 

коэффициента теплоотдачи и не зависит от времени и координат. 
Первая теорема Г.М. Кондратьева. Относительная скорость охлаждения (темп 

охлаждения) однородного и изотропного тела при конечном значении коэффициента 
теплоотдачи α пропорциональна коэффициенту теплоотдачи на поверхности тела и 
обратно пропорциональна его полной теплоемкости: 

1F
m ,

C c

αψ= , 

где ψ - коэффициент неравномерности распределения температуры в теле, 
определяемый следующим образом: 

 ( ) 0 52 1 44 1
,

B , Bψ
−

= + + . Этот коэффициент зависит от условий процесса на 

поверхности тела. 
Вторая теорема Г.М. Кондратьева. При высокой интенсивности теплоотдачи 

темп охлаждения  пропорционален коэффициенту температуропроводности материала 
тела: 

1m K a−=  
Коэффициент пропорциональности  К зависит только от геометрической формы и 

размеров тела: 

для безграничной пластины 
2

1

2

K
π
δ

=
 
 
 

;          для шара 
2

0

1
K

r

π
=
 
 
 

; 

для параллелепипеда 
22 2

1 2 3

1
K

l l l

π π π
=

    
+ +     

     

  

для цилиндра конечной длины 

0

22

1

2 045

r

K

,

l l

π
=

   +        

. 

На основе теории регулярного режима разработаны различные методики 
определения теплофизических характеристик разных материалов – коэффициента 
температуропроводности 	 = ��
и коэффициента теплопроводности 



 
 

0

0 01

r

m m
r ctg r

a a

αλ ⋅
=

 
−  

 

. 

Примеры решения задач 
Задача 1. Резиновый лист толщиной 40 мм, нагретый до температуры 150 оС, 

помещен в воздушную среду с температурой 15 оС. Определите температуры на 
поверхности и в середине лста через 30 минут после начала охлаждения. 
Теплопроводность резины λ = 0,17 Вт⁄(м⋅К), коэффициент теплоотдачи от поверхности 
листа к окружающему воздуху α = 27 Вт⁄(м2⋅К), коэф – т температуропроводности а = 
8,3⋅10-8 м2⁄ с. 

Решение: 

Температуры в середине и на поверхности безграничной пластины или листа при 
охлаждении ( нагревании) в среде с постоянной температурой можно определить с 
помощью номограмм (из приложения для поверхности и середины пластины)  

( )0 1x f Bi,Fo=Θ = ;  ( )2x f Bi,Foδ=Θ = . 

В рассматриваемом случае 

27 0 02
3 18

0 17

,
Bi ,

,

αδ
λ

⋅
= = = ;  

8

2 2

8 3 10 1800
0 37

0 02

a ,
Fo ,

,

τ
δ

−⋅ ⋅
= = =  

При этих значениях критериев Bi и Fo по номограммам (графикам) находим 
безразмерную температуру на поверхности пластины 0 28x ,δ=Θ =  и безразмерную 

температуру на середине пластины 0 0 72x ,=Θ = . 

Безразмерная температура определяется следующим выражением 

( )
( )0

пов ж

пов

ж

t t

t t

−
Θ =

−
=> 

На поверхности пластины или листа 

( ) ( )0 0 28 150 15 15 52 8o

x x ж жt t t t , , Cδ δ= == Θ − + = − + =  

На середине пластины или листа 

( ) ( )0 0 0 0 72 150 15 15 112 2o

x x ж жt t t t , , C= == Θ − + = − + =  

Ответ: 52 8o

xt , Cδ=    0 112 2o

xt , C= = . 

Задача 2. Для условий предыдущей задачи определите температуру на расстоянии 
5 мм от середины пластины. 

Решение: 

Безразмерная температура для любой точки пластины в любой момент времени 
определяется следующим выражением 

( )2

1

2 n
n n

n n n n

sin x
cos exp Fo

sin cos

µ µ µ
µ µ µ δ

∞

=

 Θ = − +  
∑ , 

Так как 0 37Fo ,= >0,3 то при решении можно ограничится первым членом ряда  

( )2
1 1 1

x
N cos exp Foµ µ

δ
 Θ = − 
 

, где    N1=
1

1 1 1

2sin

sin cos

µ
µ µ µ+

. 

Значение N1 и µ1 приведены в таблице приложения для пластины в зависимости от 
критерия Bi. 

При Bi = 3,18 µ1  = 1,211 и N1 = 1,218  



 
 

( )( )2
0 005

0 005
1 218 1 211 1 211 0 37 0 707

0 02x ,

,
, cos , exp , , ,

,
=

 Θ = − ⋅ = 
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( ) ( )0 005 0 005 0 0 707 150 15 15 110 5o

x , x , ж жt t t t , , C= == Θ − + = − + =  

Ответ: 0 005 110 5o

x ,t , C= =  

Задача 3. Для условий задачи 1 определите время, необходимое для того, чтобы 
температура в середине пластины достигла 25оС. 

Решение: 

 Так как температура в середине пластины 0 25o

xt C= =   соответственно, нужно 

определить ( )0 1x f Bi,Fo=Θ = , число Bi и число Fo.   

27 0 02
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⋅
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15 25
0 074

15 150
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− −
 

При этих значениях Bi = 3,18 и Θх=0 = 0,074 определяем число Fo из номограмм Fo 
= 2. 

По определению числа Фурье 
2

a
Fo

τ
δ

= =>  

2 2

8

0 02 2
9638 55

8 3 10

Fo ,
,

a ,

δτ −

⋅
= = ≈

⋅
с = 2,7ч 

Ответ: 2,7 часа необходимо для достижения температуры 25оС в середине 
пластины. 

Задача 4. Длинный стальной вал диаметром 200 мм, имевший начальную 
температуру 15оС,  помещен в печь с температурой 1100оС. Определите время нагрева 
вала, считая процесс законченным при температуре оси вала 850оС. Рассчитайте 
температуру на поверхности вала  в конце нагрева. Коэффициент теплоотдачи от 
поверхности вала к окружающему воздуху α = 120 Вт⁄(м2⋅К), теплопроводность  λ = 18 
Вт⁄(м⋅К),  коэф – т температуропроводности а = 6,12⋅10-6 м2⁄ с. 

Решение: 

Безразмерные температуры на оси и на поверхности вала при охлаждении ( 
нагревании) в среде с постоянной температурой можно определить с помощью номограмм 
(из приложения для оси и  поверхности вала) 

 ( )0 1r f Bi,Fo=Θ = , ( )
0 2r r f Bi,Fo=Θ = . 

Для рассматриваемого случая определяем критерий 

0 120 0 1
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− −
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При этих значениях Bi = 0,67 и Θr=0 = 0,23 определяем число Fo из номограмм Fo = 
1,3. 

Тогда время нагрева вала при температуре оси вала 850оС 
2 2

0
6

0 1 1 3
2124 18

6 12 10

r Fo , ,
, c

a ,
τ −

⋅
= = = ≈

⋅
0,6 часа 

Определяем  безразмерную температуру на поверхности вала из монограмм при Bi  
= 0,67 и  Fo  = 1,3 она равна Θr=r0=0,16  



 
 

Тогда из выражения 
( )
( )

0
0

0

ж r

r

ж

t t

t t

=
=

−
Θ =

−
=> 

( ) ( )
0 0 0 1100 0 16 1100 15 926 4o

r r ж r r жt t t t , , C= == −Θ − = − − =  

Ответ: τ = 0,6 ч 
0

926 4o

r rt , C= =  

 

 
 
Рис. 7.1 Номограмма для середины тонкой пластины. 



 
 

 
 

Рис. 7.2 Номограмма для поверхности тонкой пластины. 
 



 
 

 
 

Рис. 7.3 Номограмма для оси цилиндра. 
 

 

 



 
 

 
 

 
Рис. 7.4 Номограмма для поверхности цилиндра. 

 
 

 

 

 

 



 
 

 
 

 

 
 

 

 
2.8 Лабораторная работа № ЛР-16 (2 часа). 

Тема: «Теплообменные аппараты»           
                     

2.8.1 Цель работы: ознакомится с расчетом отданной (воспринятой) телом 
теплоты 

2.8.2 Описание (ход) работы: 

  



 
 

1. Теоретические основы 
 
1.1 Расчет отданной (воспринятой) телом теплоты. 
Количество теплоты Qτ, Дж, отданной (воспринятой) телом за время τ в процессе 

охлаждения (нагревания), равно 

( )0 1Q Qτ = −Θ , 

где Q – количество теплоты, переданной за время полного охлаждения 

(нагревания), Дж; Θ  - средняя по объему безразмерная температура тела в момент 
времени τ . 

Для пластины толщиной 2δ и площадью поверхности F теплота, отданная 
(полученная) за время  полного охлаждения (нагревания), равна 

( ) ( )0 0 02ж жQ mc t t F c t tδ ρ= − = −  

где m – масса пластины, кг; с – теплоемкость материала пластины, Дж⁄ (кг⋅К); ρ - 
плотность материала, кг⁄ м3. 

Средняя по объему безразмерная температура пластины в момент времени τ  при  
0 3Fo ,≥ равна 

( ) ( )
2

2
12 2 2

1 1

2Bi
exp Fo

Bi Bi
µ

µ µ
Θ = −

+ +
 

Для цилиндра радиусом r0 и длиной l  теплота, отданная (полученная) за время  
полного охлаждения (нагревания), равна  

( )2
0 0 0 жQ r l c t tπ ρ= −  

где r0  – радиус цилиндра, м; с – теплоемкость материала цилиндра , Дж⁄ (кг⋅К); ρ - 
плотность материала, кг⁄ м3. 

Средняя по объему безразмерная температура цилиндра  в момент времени τ  при  
0 3Fo ,≥ равна 

( ) ( )
2

2
12 2 2

1 1

4Bi
exp Fo

Bi
µ

µ µ
Θ = −

+
. 

Средняя  безразмерная температура цилиндра конечной длины: 

( ) ( )1 2r r rf Bi ,Fo f Bi ,Foδ δ δΘ = Θ Θ = , 

где функция f1 определяется по выражению: 

( ) ( )
2

2
12 2 2

1 1

2Bi
exp Fo

Bi Bi
µ

µ µ
Θ = −

+ +
, а f2 – по выражению: 

 

( ) ( )
2

2
12 2 2

1 1

4Bi
exp Fo

Bi
µ

µ µ
Θ = −

+
, 

где µ1 определяется по таблицам приложения для коэффициентов пластины и 
цилиндра в зависимости от числа Bi. 

Для параллелепипеда теплота, отданная (полученная) за время  полного 
охлаждения (нагревания), равна: 

 ( )0 08 x y z жQ c t tδ δ δ ρ= − . 

Параллелепипед образован в результате пересечения трех взаимно 
перпендикулярных безграничных пластин, поэтому для него решение можно представить 
как произведение трех безразмерных температур: 



 
 

( ) ( ) ( )1 2 3x y z x x y y z z
f Bi ,Fo f Bi ,Fo f Bi ,FoΘ = Θ Θ Θ = , 

где функция f1 , f2 , f3 определяется по выражению 

( ) ( )
2

2
12 2 2

1 1

2Bi
exp Fo

Bi Bi
µ

µ µ
Θ = −

+ +
 

Для прямоугольного стержня безразмерное поле температур определится из 
произведения безразмерных температур для двух безграничных пластин соответствующей 
толщины: 

( ) ( )1 2x y x x y yf Bi ,Fo f Bi ,FoΘ = Θ Θ =  

1.2 Регулярный режим охлаждения (нагревания) тел 
Теорию регулярного режима разработал Г.М. Кондратьев. Процесс охлаждения 

тела в среде с постоянной температурой и постоянным коэффициентом теплоотдачи α 
можно разделить на три режима: 

1) неупорядоченный – на процесс влияет начальное распределение температуры в 
теле; 

2) регулярный – в любой точке тела относительная скорость изменения 
температуры, называемая темпом охлаждения (нагревания), остается постоянной и не 
зависит от времени; 

3) стационарный – температура во всех точках тела равна температуре среды 
(тепловое равновесие) 

В регулярном режиме темп охлаждения (нагревания), т , с-1, определенный по 
двум моментам времени τ 1 и τ 2, равен 

1 2

2 1

ln ln
m const

ϑ ϑ
τ τ
−

= =
−

, 

Где 1 1 жt tϑ = −  и 2 2 жt tϑ = −   -  избыточные температуры в любой точке тела в 

моменты времени τ 1 и τ 2. 
Темп охлаждения т зависит от физических свойств тела, его размеров и формы, 

коэффициента теплоотдачи и не зависит от времени и координат. 
Первая теорема Г.М. Кондратьева. Относительная скорость охлаждения (темп 

охлаждения) однородного и изотропного тела при конечном значении коэффициента 
теплоотдачи α пропорциональна коэффициенту теплоотдачи на поверхности тела и 
обратно пропорциональна его полной теплоемкости: 

1F
m ,

C c

αψ= , 

где ψ - коэффициент неравномерности распределения температуры в теле, 
определяемый следующим образом: 

 ( ) 0 52 1 44 1
,

B , Bψ
−

= + + . Этот коэффициент зависит от условий процесса на 

поверхности тела. 
Вторая теорема Г.М. Кондратьева. При высокой интенсивности теплоотдачи 

темп охлаждения  пропорционален коэффициенту температуропроводности материала 
тела: 

1m K a−=  
Коэффициент пропорциональности  К зависит только от геометрической формы и 

размеров тела: 



 
 

для безграничной пластины 2

1

2

K
π
δ

=
 
 
 

; 

для шара 
2

0

1
K

r

π
=
 
 
 

; 

для параллелепипеда 
22 2

1 2 3

1
K

l l l

π π π
=

    
+ +     

     

  

для цилиндра конечной длины 

0

22

1

2 045

r

K

,

l l

π
=

   +        

. 

На основе теории регулярного режима разработаны различные методики 
определения теплофизических характеристик разных материалов – коэффициента 
температуропроводности 	 = ��
и коэффициента теплопроводности 

0

0 01

r

m m
r ctg r

a a

αλ ⋅
=

 
−  

 

. 

 
Задача для самостоятельного решения 
Задача 1 . Определить время τ, необходимое для нагрева листа стали толщиной 2δ 

= 24мм, который имел начальную температуру t0 = 25оС , а затем был помещен в печь с 
температурой �ж = 600	℃. Нагрев считать законченным, когда температура листа 
достигнет значения � = 450	℃. Коэффициент теплопроводности, теплоемкость и 

плотность стали, соответственно, � = 45,4
Вт

м�∗℃
, � = 0.502

кДж

кг∗℃
, " = 7800

кг

м%
,	 а 

коэффициент теплоотдачи к поверхности листа & = 23,3
Вт

м�∗℃
. 

Ответ: τ = 45	мин. 
 


