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1. КОНСПЕКТ ЛЕКЦИЙ 
1. 1 Лекция № 1 (2 часа). 
Тема: «Основные законы теплопроводности»   

                    

1.1.1 Вопросы лекции: 
1. Способы передачи теплоты. 

2. Основные определения  

2.1 Температурное поле.  

2.2 Температурный градиент. 

2.3 Тепловой поток. 

3. Закон Фурье. Коэффициент теплопроводности. 

4. Дифференциальное уравнение теплопроводности. 

5.  Краевые условия для процессов теплопроводности. 

 
1.1.2 Краткое содержание вопросов:  
1. Способы передачи теплоты 
В соответствие со вторым законом термодинамики самопроизвольный процесс 

переноса теплоты в пространстве возникает под действием разности температур и 

направлен в сторону уменьшения температуры. Самопроизвольный необратимый процесс 

переноса теплоты в пространстве с неоднородным распределением температуры 

называется теплообменом. 

Теплообмен в общем случае может осуществляться тремя различными способами: 

теплопроводностью, конвекцией и тепловым излучением (радиацией). 

Теплопроводность – это процесс распространения теплоты за счет 

непосредственного соприкосновения тел (частиц тела) друг с другом. Теплопроводность 

обусловлена движением микрочастиц (атомов, молекул) и возможна в твердых, жидких и 

газообразных средах. 

Конвекция – это перенос теплоты движущимися макроскопическими объемами 

жидкости или газа. В инженерных расчетах часто определяют конвективный теплообмен 

между потоками жидкости или газа и поверхностью твердого тела; этот процесс 

называется конвективной теплоотдачей или просто теплоотдачей. 

Тепловое излучение (радиация) – это распространение теплоты в пространстве 

посредством электромагнитных волн. Тепловое излучение может происходить в вакууме, 

а также в средах, полностью или частично пропускающих излучение. 

 

2. Основные определения 
 2.1 Температурное поле 

Всякое физическое явление в общем случае сопровождается изменением в 

пространстве и времени существенных для данного явления физических величин. Для 

процесса передачи теплоты такой существенной физической величиной является 

температура, которая при осуществлении теплообмена изменяется как в пространстве, так 

и во времени. 

Аналитическое исследование любого процесса теплообмена сводится к изучению 

пространственно-временного изменения температуры, то есть к нахождению уравнения 

вида: 

( )τ,z,y,xft = , 

которое представляет собой математическое описание температурного поля. 

Температурное поле – это совокупность значений температуры во всех точках 

изучаемого пространства для каждого момента времени. 

Различают стационарное и нестационарное температурные поля. Представленное 

уравнение является записью наиболее общего вида температурного поля, когда 
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температура изменяется как от одной точки к другой, так и с течением времени. Такое 

поле отвечает неустановившемуся тепловому режиму теплопроводности и называется 

нестационарное температурное поле. 

Если тепловой режим является установившемся, то температура в каждой точке 

поля с течением времени остается неизменной и такое температурное поле называется 

стационарным. 

В этом случае температура является функцией только координат: 

( )z,y,xft 1= ;  0=
∂
∂
τ
t

. 

Представленные выражения, характеризуют трехмерные температурные поля, то 

есть температура изменяется вдоль трех координат. Если температура изменяется вдоль 

двух координат, то поле называется двухмерным: 

( )τ,y,xft 2= ;  0=
∂
∂

z

t . 

Если температура изменяется только вдоль одной координаты, то температурное 

поле называется одномерным: 

( )τ,xft 3= ;   0=
∂
∂

=
∂
∂

z

t

y

t
. 

Наиболее простой вид имеет уравнение одномерного стационарного 

температурного поля: 

( )xft 4= ;   0=
∂
∂

=
∂
∂

z

t

y

t
; 0=
∂
∂
τ
t

. 

 
 2.2 Температурный градиент 

Если соединить точки тела, имеющие одинаковую температуру, получим 

поверхность равных температур, которая называется изотермической. Итак, 

изотермической поверхностью называется геометрическое место точек в 

температурном поле, имеющих одинаковую температуру. 

Пересечение изотермических поверхностей плоскостью дает на этой плоскости 

семейство изотерм. Изобразим изотермические линии со значения-  

 

ми температур: t + ∆t, t, t – ∆t. 

Очевидно, температура в теле изменяется 

только в направлениях, пересекающих 

изотермические поверхности. 

Возьмем на изотермической линии 

некоторую точку Р. Проведем из точки Р 

нормаль n
r

 к изотермической поверхности. 

Возрастание температуры в направлении 

нормали к изотермической поверхности 

характеризуется градиентом температуры. 

Градиент температуры – это вектор, направленный по нормали к 

изотермической поверхности в сторону возрастания температуры и численно равный 

производной от температуры по этому направлению, т.е.: 

n

t
ngradt o ∂

∂
=
r

, 

где on
r

– единичный вектор, нормальный к изотермической поверхности и 

направленный в сторону возрастания температуры. 
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Производная 
n

t

∂
∂

 в направлении убывания температуры отрицательна. 

 
 2.3 Тепловой поток 
Количество теплоты, проходящее в единицу времени через произвольную 

поверхность F, называется тепловым потоком и обозначается буквой Q. Единицей 

измерения теплового потока обычно служит Дж/с, т.е. Вт. 

Количество теплоты, передаваемое за произвольный промежуток времени τ через 

произвольную поверхность F, называется полным тепловым потоком и обозначается Qτ. 

Интенсивность переноса теплоты характеризуется плотностью теплового потока – 

это количество теплоты, проходящее в единицу времени через единицу площади 

произвольной поверхности. Эта величина обозначается через q и измеряется в Вт/м
2
: 

τ
τ

F

Q

F

Q
q == . 

 

3. Закон Фурье. Коэффициент теплопроводности 
Фурье установил, что количество теплоты dQτ, проходящее через элемент 

поверхности dF за промежуток времени dτ, пропорционально температурному градиенту 

n

t

∂
∂

: 

τλτ dFd
n

t
ndQ o ∂

∂
−=

r
. 

Так как q
dFd

dQ r
=

τ
τ (плотность теплового потока), то 

gradt
n

t
nq o λλ −=

∂
∂

−=
rr

 ⇒ gradtq λ−=r . 

Полученное уравнение является математической записью основного закона 

теплопроводности, который формулируется следующим образом: плотность теплового 

потока прямо пропорциональна градиенту температуры. 

Опытным путем установлено, что коэффициент пропорциональности в уравнении 

Фурье есть физический параметр вещества. Он характеризует способность вещества 

проводить теплоту и называется коэффициентом теплопроводности, Вт/(м⋅К). 

Вектор плотности теплового потока q
r

 направлен по нормали к изотермической 

поверхности. Его положительное направление совпадает с направлением убывания 

температуры, так как теплота всегда передается от более горячих частей тела к холодным. 

Таким образом, векторы q
r

 и gradt  лежат на одной прямой, но направлены в 

противоположные стороны. Это и объясняет наличие знака «минус» в уравнении Фурье. 

 

Скалярная величина вектора плотности 

теплового потока будет равна: 

n

t
q

∂
∂

−= λ . 

Плотность теплового потока ql в любом 

другом направлении l равна проекции вектора 

q
r

 на это направление l: 

ϕcosqq ⋅=
l

. 
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Тепловой поток Q в единицу времени через элементарную площадку dF будет 

равен: 

∫∫ ∂
∂

−==
FF

dF
n

t
qdFQ λ . 

Полный тепловой поток Qτ за время τ  через элементарную площадку dF равен, Дж: 

τλ
τ

τ ddF
n

t
Q

F

∫ ∫ ∂
∂

−=
0

. 

Количество теплоты, проходящее через элементарную площадку dFl за время dτ, 
будет равно: 

ττϕττ qdFdddFcosqddFqdQ =⋅⋅==
lll

, 

так как ϕcosdFdF
l

= . 

Таким образом, для определения количества теплоты, проходящего через какую-

либо поверхность твердого тела, необходимо знать температурное поле внутри 

рассматриваемого тела. Нахождение температурного поля и является главной задачей 

аналитической теории теплопроводности. 

Коэффициент теплопроводности. 

Как было сказано, коэффициент теплопроводности является физическим 

параметром вещества, характеризующим его способность проводить теплоту. Значения 

коэффициента теплопроводности обычно определяется опытным путем и приводится в 

теплофизических справочниках. 

Из закона Фурье: 

gradt

q
r

=λ . 

Анализируя это выражение, можно установить физический смысл коэффициента 

теплопроводности: коэффициент теплопроводности – это количество теплоты, 

которое проходит в единицу времени через единицу изотермической поверхности при 

температурном градиенте, равном единице. 

В общем случае коэффициент теплопроводности является функцией рода вещества, 

температуры и давления. Понять влияние различных факторов можно на основании 

рассмотрения механизма переноса теплоты в веществе. 

В газах носителями тепловой энергии являются хаотически движущиеся молекулы. 

Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах 

зависит в основном от скорости движения молекул. Скорость движения молекул, как 

известно, увеличивается с увеличением температуры и уменьшением массы молекул. От 

давления коэффициент теплопроводности газов практически не зависит. 

Коэффициент теплопроводности газов лежит в пределах от 0,006 до 0,6 Вт/(м⋅К). 

Наибольшей теплопроводностью обладает самый легкий газ - водород, так как его 

молекулы как самые легкие двигаются с большой средней скоростью. 

Механизм распространения теплоты в жидкостях можно представить как перенос 

энергии путем нестройных упругих колебаний. Коэффициент теплопроводности 

жидкостей лежит в пределах λ = 0,07…0,7 Вт/(м⋅К); с увеличением температуры он, как 

правило, уменьшается (кроме воды и глицерина), а с повышением давления 

увеличивается. 

В металлах теплопроводность обеспечивается за счет теплового движения 

электронов («электронного газа»), которые в три тысячи раз легче молекул самого легкого 

газа – водорода. Соответственно и теплопроводность металлов много выше, чем газов. 

Коэффициент теплопроводности металлов находится в пределах 3…450 Вт/(м⋅К). 
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Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: 

λ = 400 Вт/(м⋅К). В сплавах коэффициент теплопроводности резко снижается вследствие 

того, что искажение примесями кристаллической решетки препятствует движению 

электронов. Например, у чистого железа     λ = 70 Вт/(м⋅К), для углеродистых сталей λ = 

50 Вт/(м⋅К), а для высоколегированных сталей – немногим больше 10 Вт/(м⋅К). С 

увеличением температуры коэффициент теплопроводности чистых металлов убывает, а 

сплавов – растет. 

Многие строительные и теплоизоляционные материалы имеют пористое строение 

(кирпич, бетон, шлак и др.) и применение закона Фурье к таким телам является условным. 

Наличие пор в материале не позволяет рассматривать такие тела как сплошную среду. 

Условным является также коэффициент теплопроводности пористого материала. 

Для строительных и теплоизоляционных материалов он находится в пределах от 0,023 до 

2,9 Вт/(м⋅К). 

 
4. Дифференциальное уравнение теплопроводности 
При решении задач, связанных с нахождением температурного поля, необходимо 

иметь дифференциальное уравнение теплопроводности. Для облегчения вывода этого 

уравнения сделаем следующие допущения: 

- тело однородно и изотропно; 

- физические параметры постоянны; 

- внутренние источники теплоты в теле распределены равномерно. 

В основу вывода дифференциального уравнения теплопроводности положен закон 

сохранения энергии, который в рассматриваемом случае может быть сформулирован 

следующим образом: количество теплоты, введенное в элементарный объем извне за 

время dτ вследствие теплопроводности, а также от внутренних источников, равно 

изменению внутренней энергии вещества, содержащегося в элементарном объеме: 

dQdQdQ =+ 21 , 

где dQ1 – количество теплоты, введенное в элементарный объем; 

dQ2 – количество теплоты, которое выделилось в элементарном объеме dυ за счет 

внутренних источников; 

dQ – изменение внутренней энергии вещества. 

Для нахождения составляющих записанного уравнения выделим в теле 

элементарный параллелепипед со сторонами dx, dy, dz (рис.). 

Количество теплоты, которое подводится к граням элементарного объема за время 

dτ в направлении осей Ох, Oy, Oz, обозначим соответственно dQx, dQy, dQz. Количество 

теплоты, которое будет отводиться через противоположные грани в тех же направлениях, 

обозначим соответственно dQx+dx, dQy+dy, dQz+dz. 

 

Количество теплоты, подведенное к 

грани dy ⋅ dz в направлении оси Ох за время 

dτ, составляет: 

τdzddyqdQ xx ⋅= , 

где qx – проекция плотности теплового 

потока на направление нормали к указанной 

грани. 

 

 

Количество теплоты, отведенное через противоположную грань равно: 

τdzddyqdQ dxxdxx ⋅= ++ . 
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Разница между количеством теплоты, подведенного к элементарному объему, и 

количеством теплоты отведенного от него за время dτ представляет собой количество 

теплоты введенное в параллелепипед в направлении оси Ох: 

dxxxx dQdQdQ +−=1 , 

( ) τττ dydzdqqdzddyqdzddyqdQ dxxxdxxxx ++ −=⋅−⋅=1 . 

Функция qx+dx является непрерывной в рассматриваемом интервале dx и может 

быть разложена в ряд Тейлора: 

...
!

dx

x

q
dx

x

q
qq xx

xdxx +⋅
∂
∂

+⋅
∂
∂

+=+
2

2

2

2

 

Если ограничиться двумя первыми членами ряда, то получим: 

τυτ dd
x

q
dxdydzd

x

q
dQ xx

x ∂
∂

−=
∂
∂

−=1
. 

Аналогичным образом можно найти количество теплоты, подводимое к 

элементарному объему и в направлении двух других осей Oy и Oz. Тогда, количество 

теплоты dQ1, подведенное в результате теплопроводности, к рассматриваемому объему, 

будет равно: 

τυdd
z

q

y

q

x

q
dQ zуx









∂
∂

+
∂
∂

+
∂
∂

−=1
. 

Определим вторую составляющую рассматриваемого закона сохранения энергии. 

Обозначим количество теплоты, выделяемое внутренними источниками в единице объема 

среды в единицу времени через qυ – это мощность внутренних источников теплоты, 

Вт/м
3
: 

τυυ ddqdQ =2 . 

И наконец,  третья составляющая рассматриваемого уравнения. При рассмотрении 

изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на 

изменение внутренней энергии вещества dU: 

τ
τ

ρυ υ d
t

cddUdQ
∂
∂

⋅⋅⋅== , 

где ρυ ⋅d – масса параллелепипеда, кг; 

сυ – удельная изохорная теплоемкость, Дж/(кг⋅К); 

τ
τ

d
t

∂
∂

– изменение температуры во времени, К. 

Таким образом, закон сохранения энергии может быть записан в следующем виде: 

τυτυυτ
τ

ρ υυ ddqdd
z

q

y

q

x

q
dd

t
c zуx +








∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

; 

υυ τ
ρ q

z

q

y

q

x

qt
c zуx +








∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

.    (1) 

В твердых телах можно принять ccc p ==υ , кроме того, перенос теплоты 

осуществляется по закону Фурье: 

n

t
q

∂
∂

−= λ . 

Проекции вектора теплового потока на координатные оси Ох, Oy, Oz определяются 

выражениями: 
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х

t
qх ∂

∂
−= λ ;  

y

t
qy ∂

∂
−= λ ;  

z

t
qz ∂

∂
−= λ . 

Подставляя проекции вектора теплового потока в уравнение (1), получим: 

υλλλ
τ

ρ q
z

t

zy

t

yx

t

x

t
c +
















∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=
∂
∂

. 

Полученное выражение является дифференциальным уравнением 

теплопроводности в наиболее общем виде, когда теплофизические характеристики λ, с, ρ 

будут переменными (зависящие от координат и температуры). Если принять 

теплофизические характеристики постоянными, то это выражение принимает следующий 

вид: 

ρρ
λ

τ
υ

c

q

z

t

y

t

x

t

c

t
+








∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2

2

. 

Полученное дифференциальное уравнение теплопроводности устанавливает связь 

между временными и пространственными изменениями температуры в любой точке тела, в 

котором происходит процесс теплопроводности. 

Запись этого уравнения можно упростить, введя следующие обозначения: 

а
с

=
ρ
λ

, 

t
z

t

y

t

x

t 2

2

2

2

2

2

2

∇=
∂
∂

+
∂
∂

+
∂
∂

, 

где 
2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇ – оператор Лапласа. 

При указанных обозначениях дифференциальное уравнение теплопроводности 

принимает вид: 

ρτ
υ

c

q
tа

t
+∇=

∂
∂ 2 , 

где а – коэффициент температуропроводности, м
2
/с. 

Коэффициент температуропроводности является мерой теплоинерционных свойств 

тела. Очевидно, изменение температуры во времени 
τ∂
∂t

 в любой точке тела будет тем 

больше, чем больше коэффициент температуропроводности а. Этот коэффициент зависит 

от природы вещества. Наибольший коэффициент температуропроводности имеют 

металлы, поэтому они обладают малой тепловой инерционностью. 

Выражение t2∇  в цилиндрической системе координат имеет вид: 

2

2

2

2

22

2
2 11

z

tt

rr

t

rr

t
t

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=∇
ϕ

. 

Если система тел не содержит внутренних источников теплоты (qυ = 0), то 

дифференциальное уравнение теплопроводности принимает форму уравнения Фурье: 

tа
t 2∇=

∂
∂
τ

. 

Если температурное поле стационарно, то есть t = f(x, y, z), то дифференциальное 

уравнение теплопроводности превращается в уравнение Лапласа: 
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02 =∇ t  или   0
2

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

z

t

y

t

x

t
. 

 
5. Краевые условия для процессов теплопроводности 
Общий интеграл дифференциального уравнения теплопроводности представляет 

собой совокупность бесконечного множества частных решений. Для выделения из этой 

совокупности того или иного частного решения, описывающего конкретный процесс 

теплопроводности, необходимо задать дополнительные условия, которые называются 

условиями однозначности или краевыми условиями. 

Условия однозначности включают в себя: 

1) геометрические условия, характеризующие форму и размеры тела, в которых 

протекает процесс теплопроводности; 

2) физические условия, определяющие физические параметры тела (λ, а, с, ρ и др.), 

закон распределения внутренних источников теплоты; 

3) начальное условие, задающее температурное поле в момент начала процесса; 

4) граничные условия, определяющие условия теплового взаимодействия тела с 

окружающей его средой. 

Граничные условия могут быть заданы несколькими способами. 

Граничные условия первого рода. Задается распределение температуры на 

поверхности тела tс в любой момент времени:   tс = f(x, y, z, τ). 
В частном случае, когда температура на поверхности является постоянной на 

протяжении всего времени протекания процессов теплообмена, уравнение упрощается и 

принимает вид:  tс = const. 

Граничные условия второго рода. Задаются значения плотности теплового потока 

для каждой точки поверхности тела и любого момента времени:  q = f(x, y, z, τ). 
В простейшем случае плотность теплового потока по поверхности и во времени 

остается постоянной:  q = q0 = const. 
Граничные условия третьего рода. При этом задаются температура окружающей 

среды tж и закон теплообмена между поверхностью тела и окружающей средой. 

Согласно закону Ньютона-Рихмана количество теплоты, отдаваемое единицей 

поверхности тела в единицу времени, пропорционально разности температур поверхности 

тела tс и окружающей среды tж (tс > tж): 

q = α(tс – tж),  

где α – коэффициент пропорциональности, называемый коэффициентом 

теплоотдачи, Вт/(м
2⋅К). Он характеризует интенсивность теплообмена между 

поверхностью тела и окружающей средой. 

Согласно закону сохранения энергии количество теплоты, которое отводится с 

единицы поверхности в единицу времени вследствие теплоотдачи, должно равняться 

количеству теплоты, подводимому к единице поверхности в единицу времени вследствие 

теплопроводности из внутренних объемов тела, то есть: 

α(tс – tж) = 

cn

t







∂
∂

− λ . 

Индекс «с» указывает на то, что температура и градиент относятся к поверхности 

тела. 

Окончательно граничное условие третьего рода можно записать в виде: 

( )жc

c

tt
n

t
−−=







∂
∂

λ
α

. 
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1. 2 Лекция № 2 (2 часа). 
Тема: «Основы конвективного теплообмена»  
 

1.2.1 Вопросы лекции:  
1. Основной закон конвективного теплообмена. Физические свойства тел. 

2. Теория пограничного слоя.  

3. Основы теории подобия.  

4. Приведение дифференциальных уравнений конвективного теплообмена и 

условий однозначности к безразмерному виду. 

 
1.2.2 Краткое содержание вопросов:  
 
1. Основной закон конвективного теплообмена 
Понятие конвективного теплообмена охватывает процесс теплообмена при 

движении жидкости или газа. При этом перенос теплоты осуществляется одновременно 

конвекцией и теплопроводностью. Под конвекцией теплоты понимается процесс 

переноса теплоты при перемещении макрочастиц жидкости или газа в пространстве из 

области с одной температурой в область с другой температурой. Конвекция возможна 

только в текучей среде, в которой перенос теплоты неразрывно связан с переносом самой 

среды.  

Конвективный теплообмен между потоками жидкости или газа и поверхностью 

соприкасающегося с ним тела называется конвективной теплоотдачей или просто 

теплоотдачей.  

При расчетах теплоотдачи используется закон Ньютона-Рихмана: тепловой поток в 

процессе теплоотдачи пропорционален площади поверхности теплоотдачи и разности 

температур между поверхностью тела и жидкости: 

Q = αF tc - tж. 

В процессе теплоотдачи независимо от направления теплового потока Q (от стенки 

к жидкости или наоборот) значение его принято считать положительным, поэтому 

разность температур, которая называется температурным напором tc - tж берется по 

абсолютной величине. 

Коэффициент пропорциональности α называется коэффициентом теплоотдачи, 

он характеризует интенсивность процесса теплоотдачи. Численное значение его равно 

тепловому потоку от единичной поверхности теплообмена при разности температур 

поверхности и жидкости в 1 К. 

Коэффициент теплоотдачи зависит от большого количества факторов: 

- формы и размеров тела, 

- режима движения, 

- скорости и температуры жидкости, 

- физических параметров жидкости. 

Различают свободную (естественную) и вынужденную конвекции (движение). 

Естественная конвекция возникает в жидкости с неоднородным распределением 

температуры и, как следствие, с неоднородным распределением плотности. В результате 

под действием поля земного тяготения возникает свободное гравитационное движение в 

жидкости. Вынужденное движение жидкости или газа создается внешним источником 

(насосом, вентилятором, ветром). 

Большое влияние на теплообмен оказывают следующие физические параметры: 

коэффициент теплопроводности λ, удельная теплоемкость с, плотность ρ, коэффициент 

температуропроводности а, которые были рассмотрены ранее. Для каждого вещества эти 

параметры имеют определенные значения и являются функциями параметров состояния 

(температуры и давления, прежде всего температуры).  
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Кроме этих параметров для конвективного теплообмена большое значение имеют 

вязкость и тепловое расширение жидкости. 

Все реальные жидкости обладают вязкостью; между частицами или слоями, 

движущимися с различными скоростями, всегда возникает сила внутреннего трения 

(касательное усилие), противодействующая движению. Согласно закону Ньютона эта 

касательная сила s, отнесенная к единице поверхности, пропорциональна изменению 

скорости (градиенту скорости) в направлении нормали к плоскости, ориентированной по 

течению: 

dn

dw
s µ= . 

Коэффициент пропорциональности, зависящий от природы жидкости и ее 

температуры, называется динамическим коэффициентом вязкости, или коэффициентом 

внутреннего трения, Па ⋅ с. 

Чем больше µ, тем меньше текучесть жидкости. Вязкость капельной жидкости с 

увеличением температуры уменьшается и почти не зависит от давления. У газов с 

увеличением температуры и давления вязкость увеличивается. Коэффициент вязкости 

идеальных газов не зависит от давления. 

В уравнения гидродинамики и теплопередачи часто входит кинематический 

коэффициент вязкости ν, представляющий собой отношение динамического 

коэффициента вязкости к плотности жидкости, м
2
/с: 

ρ
µν = . 

Тепловой расширение жидкости характеризуется температурным коэффициентом 

объемного расширения, который представляет собой относительное изменение объема 

при изменении температуры на один градус (при постоянном давлении): 

pT







∂
∂

=
υ

υ
β 1

. 

Температурный коэффициент объемного расширения капельных жидкостей 

значительно меньше, чем газов. Для идеального газа температурный коэффициент 

объемного расширения есть величина, обратная абсолютной температуре: 

Т/1=β . 

 
2. Теория пограничного слоя 

Рассмотрим процесс продольного омывания какого-либо тела безграничным 

потоком жидкости с постоянной скоростью течения wж, имеющей постоянную 

температуру tж. Частицы жидкости, непосредственно соприкасающиеся с 

поверхностью, адсорбируются («прилипают») к ней.  

Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от 

поверхности слои жидкости. 

 Зона потока, в которой наблюдается уменьшение скорости (w < wж), вызванное 

вязким взаимодействием жидкости с поверхностью, называется гидродинамическим 

пограничным слоем. За пределами пограничного слоя течет невозмущенный поток.  

На начальном участке (при малых значениях х) гидродинамический слой очень 

тонок (в лобовой точке с координатами х = 0 толщина равна нулю). При удалении от 

лобовой точки толщина пограничного слоя растет. Кроме того, с увеличением вязкости 

толщина гидродинамического слоя также возрастает.  

Толщина гидродинамического пограничного слоя зависит и от характера движения 

жидкости. Течение в гидродинамическом пограничном слое может быть, как 

турбулентным, так и ламинарным.  
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При ламинарном течении жидкости все частицы движутся только по параллельным 

между собой траекториям, не перемешиваясь. В турбулентном потоке непрерывно 

происходит перемешивание всех слоев жидкости. Каждая частица потока совершает 

различные движения, в том числе перпендикулярно станкам канала.  

Характер движения жидкости в круглой трубе определяется числом Рейнольдса: 

v

wd
Re = , где w – средняя скорость жидкости, м/с; d – диаметр круглого 

трубопровода, м; v – коэффициент кинематической вязкости жидкости, м
2
/с. 

Следует отметить, что даже при турбулентном гидродинамическом пограничном 

слое непосредственно у стенки имеется очень тонкий слой жидкости, движение в котором 

имеет ламинарный характер. Этот слой называется вязким, или ламинарным, подслоем. 

Аналогичным образом осуществляется и тепловое взаимодействие потока с 

пластиной. Частицы жидкости, «прилипшие» к поверхности, иемют температуру, равную 

температуре поверхности tс. Соприкасающиеся с этими частицами движущиеся слои 

жидкости охлаждаются, отдавая им свою теплоту. От соприкосновения с этими слоями 

охлаждаются следующие более удаленные от поверхности слои потока – так формируется 

тепловой пограничный слой, в пределах которого температура меняется от tс на 

поверхности до tж в невозмущенном потоке. 

С удалением от лобовой точки количество охлаждающейся у пластины жидкости 

увеличивается, и толщина теплового пограничного слоя возрастает аналогично 

возрастанию δг. В общем случае толщины теплового и гидродинамического слоев не 

равны, но часто достаточно близки друг к другу, особенно в газах. 

Механизм и интенсивность переноса теплоты зависит от характера движения 

жидкости в пограничном слое. При ламинарном течении тепловой поток от 

охлаждающейся в пограничном слое жидкости переносится к поверхности пластины 

только за счет теплопроводности. При турбулентном течении в тепловом пограничном 

слое перенос теплоты в направлении к стенке в основном обусловлен конвекцией за счет 

турбулентного перемешивания жидкости, то есть более интенсивно. Однако 

непосредственно у стенки, в ламинарном подслое, перенос теплоты к стенке 

осуществляется обычной теплопроводностью. 

Очень большое значение для теплообмена имеют форма и размер поверхностей; в 

зависимости от них может резко меняться характер движения жидкости и толщина 

пограничного слоя. 

 
3. Основы теории подобия 
Теория подобия – это учение о подобных явлениях. Она позволяет на основе 

отдельных опытов получить обобщенную зависимость, то есть не прибегая к 

интегрированию можно сделать ряд выводов из дифференциальных уравнений и условий 

однозначности. 

Термин «подобие» заимствован из геометрии, в которой изучается подобие 

геометрических фигур. У подобных геометрических фигур пропорциональны 

сходственные линейные элементы (длины сторон треугольника, граней призм и т.д.). 

Так условия подобия двух геометрических фигур можно записать: 

lC
l

l

l

l

l

l
=

′
′′

=
′
′′

=
′
′′

3

3

2

2

1

1 , 

где Сl – константа геометрического подобия.  

Следовательно, группу подобных фигур можно получить, если стороны основной 

фигуры умножить на величину Сl, которой можно придавать любые произвольные 

значения. 
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Константы подобия имеют одинаковое значение для конечных и бесконечно малых 

величин.  

Для осуществления подобия физических явлений необходима пропорциональность 

не только геометрических элементов системы, в которых протекает явление, но также и 

других физических характеристик, определяющих эти явления (скоростей, температур, 

плотностей и т.п.). 

Для изучения подобных величин вводятся понятия одноименных (однородных) 

величин, сходственных точек и сходственных моментов времени. 

Однородными называются физические величины, имеющие одинаковый физический 

смысл и одинаковую размерность. Сходственными называются такие точки системы, 

координаты которых удовлетворяют геометрическому подобию. 

Сходственные моменты времени наступают по истечении периодов времени τ′ и τ″, 
имеющих общее начало отсчета и связанных между собой константой подобия по 

времени: 

ττ
τ

С=
′
′′

. 

Подобными называются физические явления, протекающие в геометрически 

подобных системах, если у них во всех сходственных точках и сходственные моменты 

времени отношения одноименных величин есть постоянные числа. Эти постоянные числа 

называются константами подобия. 

Рассмотрим правило выбора констант подобия на конкретном примере. Запишем 

уравнения теплоотдачи для сходственных точек двух подобных между собой явлений: 

n

t

t ′∂
′∂

⋅
′∆
′

−=′
λα ;  

n

t

t ′′∂
′′∂

⋅
′′∆
′′

−=′′
λα . 

Обозначим константы подобия: 

α
α

α ′
′′

=C ; 
λ
λ

λ ′
′′

=C ; 
t

t
Ct ′∆

′′∆
= ; 

l

l

n

n
Cl ′

′′
=

′
′′

= , 

где l – характерный размер системы. 

Из определения констант подобия следует, что: 

αα α ′=′′ С ; λλ λ ′=′′ С ; tCt t
′∆=′′∆ ; tCt t

′=′′ ; nCn l
′=′′ . 

Подставим эти выражения в уравнение теплоотдачи для второго случая: 

nC

tC

tС

С
С

l

t

t
′∂
′∂

⋅
′∆
′

−=′
λα λ

α  ⇒ 
n

t

tCC

С

l
′∂
′∂

⋅
′∆
′

⋅
−=′

λα
α

λ . 

Полученное уравнение тождественно уравнению 
n

t

t ′∂
′∂

⋅
′∆
′

−=′
λα , так как они 

выражают связь между параметрами процесса, обусловленную дифференциальным 

уравнением теплоотдачи для одной и той же системой. Из условия тождественности 

уравнений следует, что: 

1=
⋅ lCC

С

α

λ . 

Это и есть связь между константами подобия, полученная из уравнения 

теплоотдачи. Из этого соотношения видно, что выбор комплекса констант подобия 

ограничен условием: любая их комбинация должна быть равна единице. 

Если заменить константы подобия физическими параметрами, получим: 

λ
α

λ
α

′′
′′′′

=
′
′′ ll

. 
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Следовательно, существуют такие безразмерные соотношения параметров, 

характеризующих процесс, которые у подобных явлений в сходственных точках имеют 

численно одинаковые значения. Такие безразмерные соотношения называются числами 

(критериями) подобия.  

Числа подобия принято называть именами крупных ученых. Записанное 

уравнением число называется числом Нуссельта и обозначается Nu. 

λ
αl

Nu = . 

Произведение чисел и частное от их деления также представляют собой числа 

подобия.  

Таким образом, для характеристики подобия явлений можно использовать 

константы подобия и числа подобия. Константы подобия сохраняют числовое значение 

только для двух подобных явлений, но они остаются одинаковыми для всех сходственных 

точек рассматриваемых систем. Числа подобия сохраняют свое числовое значение в 

сходственных точках всех подобных между собой систем, но в различных точках одной и 

той же системы они могут иметь разные числовые значения.  

Поэтому константами подобия удобно пользоваться при моделировании устройств, 

когда необходимо получить подобие только между двумя явлениями, а числами подобия – 

при обработке опытных данных, когда на основании изучения единичных явлений 

необходимо получить обобщенную зависимость, пригодную для всех подобных между 

собой явлений. 

Основу теории подобия физических явлений составляют три теоремы. 

Первую теорему формулируют так: у подобных явлений одноименные критерии 

подобия численно одинаковы. 

Первая теорема подобия устанавливает связь между константами подобия и 

позволяет вывести уравнения для чисел подобия. Теорема указывает, что при выполнении 

опытов необходимо и достаточно измерять лишь те величины, которые входят в числа 

подобия изучаемого явления. 

Вторая теорема гласит: интеграл дифференциального уравнения (или системы 

уравнений) может быть представлен как функция чисел подобия дифференциального 

уравнения.  

На основании этой теоремы любая зависимость между переменными, 

характеризующими какое-либо явление, может быть представлена в виде зависимости 

между числами подобия: 

( ) 0321 =nK...,K,K,Kf . 

 

4. Приведение дифференциальных уравнений конвективного теплообмена и 
условий однозначности к безразмерному виду. 

Явление теплоотдачи определяется факторами теплового и гидродинамического 

происхождения, поэтому для аналитической оценки этого явления необходимо 

рассмотреть систему дифференциальных уравнений, которая описывала бы тепловые и 

гидродинамические условия протекания процессов. 

Система дифференциальных уравнений состоит из уравнений теплоотдачи, 

теплопроводности, движения и сплошности. 

Дифференциальное уравнение теплоотдачи выражает условия теплообмен на 

границе твердого тела и жидкости: 

0=







∂
∂

∆
−=

nn

t

t

λα . 
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Дифференциальное уравнение теплопроводности (уравнение энергии) 

устанавливает связь между пространственным и временным изменением температуры в 

любой точке движущейся жидкости: 

tа
z

t

y

t

x

t

cz

t
w

y

t
w

x

t
w

t

p

zyx
2

2

2

2

2

2

2

∇=







∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ
λ

τ
. 

Дифференциальное уравнение движения вязкой жидкости представлено 

уравнением Навье-Стокса: 

для оси х 
xxz

x
y

x
x

xx w
x

p
gw

z

w
w

y

w
w

x

ww 2∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ µρ
τ

ρ ; 

для оси y 
yyz

y

y

y

x

yy
w

y

p
gw

z

w
w

y

w
w

x

ww
2∇+

∂
∂

−=







∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
µρ

τ
ρ ; 

для оси z 
zzz

z
y

z
x

zz w
z

p
gw

z

w
w

y

w
w

x

ww 2∇+
∂
∂

−=







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ µρ
τ

ρ . 

Дифференциальное уравнение сплошности или непрерывности, для сжимаемой 

жидкости имеет вид: 

( ) ( ) ( )
0=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

z

w

y

w

x

w zyx ρρρ
τ
ρ

. 

Для получения из множества решений системы дифференциальных уравнений 

одного частного, необходимо дополнительно ввести условия однозначности. Условия 

однозначности должны содержать все особенности данного конкретного явления. 

Следовательно, дифференциальные уравнения и четыре условия однозначности 

определяют конкретное единичное явление. Однако в большинстве случаев найти 

решение, удовлетворяющее дифференциальным уравнениям и условиям однозначности, 

невозможно. Поэтому для решения задач конвективного теплообмена необходимо 

воспользоваться теорией подобия. 

На основе анализа дифференциальных уравнений получены следующие числа 

(критерии) подобия: 

- из уравнения теплоотдачи число Нуссельта 
λ
αl

Nu = ; 

- из уравнения теплопроводности 

число Фурье 
2l

a
Fo

τ
= ; 

число Пекле 
a

wl
Pe = ;  

- из уравнения движения 

число гомохронности 
l

w
Ho

τ
= ; 

число Эйлера 
2w

p
Eu

ρ
= ; 

число Рейнольдса 
v

wl
Re = ; 

число Грасгофа 
2

3

v

gl
Gr

β
= . 

Число Нуссельта характеризует конвективный теплообмен между жидкостью и 

поверхностью твердого тела. Число Нуссельта определяется теми же величинами, что и 
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число Био, но в число Nu входит теплопроводность теплоносителя, а в число Bi – 

теплопроводность твердого тела. 

Число Фурье характеризует связь между скоростью изменения температурного 

поля, физическими параметрами и размерами тела, то есть отражает влияние 

нестационарности. 

Число Пекле, число подобия конвективного теплообмена. 

Число подобия гидродинамической гомохронности (Но) характеризует скорость 

изменения поля скоростей движущейся жидкости во времени. Число Эйлера (Eu) 

характеризует соотношение между силами давления и силами инерции. Число Рейнольдса 

(Re) представляет собой отношение сил инерции к силам вязкости и определяет характер 

течения жидкости. Число Грасгофа (Gr) характеризует соотношение подъемной силы, 

возникающей вследствие разности плотностей жидкости и силы молекулярного трения. 

Если разделить число Ре на число Re, то получим новое число Прандтля, зависящие 

только от физических свойств жидкости:  
a

v
Pr = . 

Уравнением подобия называется зависимость между каким-либо определяемым 

числом подобия и другими определяющими числами подобия. 

При расчете тепловых аппаратов искомыми величинами являются коэффициент 

теплоотдачи α и гидравлическое сопротивление ∆р. Конвективный теплообмен 

характеризуется пятью числами подобия – Nu, Eu, Pr, Gr, Fo и Re. Число Nu содержит 

неизвестный коэффициент теплоотдачи α, а число Eu – искомую величину ∆р, 

характеризующую гидравлическое сопротивление при движении жидкости. Поэтому 

числа Nu и Eu являются определяемыми числами подобия, а числа Pr, Gr и Re – 

определяющими.  

Тогда при конвективном теплообмене уравнения подобия могут быть представлены в 

следующем виде: 

( )Pr,GrRe,,FofNu 1=  ( )Pr,GrRe,,FofEu 2= .О 

Зависимость между числами подобия в основном определяется опытным путем. 

Критерии подобия, входящие в правую часть уравнения, учитывают влияние 

различных факторов на коэффициент теплоотдачи. Критерий Фурье отражает влияние 

нестационарности, критерий Рейнольдса – влияние вынужденной конвекции, критерий 

Грасгофа влияние свободной конвекции и критерий Прандтля – влияние физических 

свойств жидкости на коэффициент теплоотдачи. 

В большинстве случаев изучаются стационарные процессы теплоотдачи и поэтому 

критерий Фурье, исключается из уравнения подобия. 

Свободная конвекция всегда сопровождает явление теплоотдачи, но при развитом 

турбулентном движении она имеет второстепенное значение и не отражается на величине 

коэффициента теплоотдачи. Поэтому для таких задач уравнение теплоотдачи упрощается: 

( )PrRe,fNu 1= . 

Для некоторых газов величина числа Прандтля в процессе конвективного 

теплообмена почти не изменяется с температурой, поэтому уравнение подобия принимает 

более простой вид, (среднее значение числа Прандтля войдет в постоянную уравнения): 

( )RefNu 1= . 

При свободном движении жидкости, когда вынужденная конвекция отсутствует, 

вместо числа Рейнольдса в уравнение подобия теплоотдачи необходимо ввести число 

Грасгофа: 

( )Pr,GrfNu 1= . 

Общее уравнение подобия для конвективного теплообмена представляют в виде 

степенной функции: 
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250,

cm

жmkn

Pr

Pr
PrGrRecNu 








= , где 

250 ,

cm

ж

Pr

Pr








- параметр, учитывающий 

направление теплового потока. 

Количественная связь между числами подобия и является предметом 

экспериментальных исследований конвективного теплообмена. 
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2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ВЫПОЛНЕНИЮ 
ЛАБОРАТОРНЫХ РАБОТ 

2.1 Лабораторная работа № 1 (2 часа). 
Тема: «Стационарная теплопроводность»         

 

2.1.1 Цель работы: ознакомиться с экспериментальным способом определения 

коэффициента теплопроводности материалов 

2.1.2 Описание (ход) работы: 

1. Теоретические основы работы 
 

Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке с 

внутренним радиусом r1 и внешним радиусом r2. На поверхностях стенки заданы 

постоянные температуры tc1 и tc2. В заданном интервале температур коэффициент 

теплопроводности материала стенки постоянен. Температура стенки изменяется только в 

радиальном направлении. Процесс стационарный. При данных допущениях уравнение 

теплопроводности выглядит так: 

 

;       

граничные условия: при r=r1, t=tc1 и при r=r2, t=tc2   

 

 Количество теплоты, проходящего через цилиндрическую поверхность в 

единицу времени, можно найти по закону Фурье: 

S
dr

dt
Q λ−=  , где      

lrS ⋅⋅⋅= π2  – площадь цилиндрической поверхности м
2
; 

λ – коэффициент теплопроводности, 
Км

Вт

⋅
. 

Тепловой поток через цилиндрическую стенку находится по формуле: 

)ln(

)(2

1

2

21

r

r

ttl
Q cc −

=
πλ

, Вт     

Из предыдущего выражения  следует: 

- удельный тепловой поток через внутреннюю поверхность: 

( )









−

==

1

2
1

21

1

1

ln

2

r

r
d

tt

ld

Q
q ccλ

π
     

- удельный тепловой поток через внешнюю поверхность: 

( )









−

==

1

2
2

21

2

2

ln

2

r

r
d

tt

ld

Q
q ccλ

π
     

- линейная плотность теплового потока: 

( )









−

==

1

2

21

ln

2

r

r

tt

l

Q
q cc

l

πλ       

 

0
1

2

2

=+
dr

dt

rdr

td
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2. Схема экспериментальной установки 

Схема экспериментальной установки приведена на рис. 2.1, а ее общий вид – на 

рис. 2.2. На передней панели находится восьмиканальный измеритель температуры 1 типа 

УКТ-38, подключённый к шести хромель-копелевым термопарам, тумблер 5 включения 

УКТ-38, мультиметр 2 типа MY-67 с автоматическим переключением пределов 

измерений, тумблер электропитания установки 3, разъёмы для подключения мультиметра, 

тумблер 6 для переключения мультиметра на измерение падения напряжения на 

образцовом сопротивлении Uо и напряжения на нагревателе Uн. Регулируемый источник 

питания ЛАТР 4 включается тумблером 7. 

На цилиндрическом нагревателе 8 расположена медная термостатирующая труба 9, 

на наружную поверхность которой надеты шесть исследуемых образцов 10 с 

одинаковыми размерами. Для уменьшения вертикальных конвективных потоков образцы 

разделены тонкими пластинами 11. Для уменьшения тепловых потерь на концах 

нагревателя расположены теплоизолирующие втулки 12 из пенопласта.  

Электропитание к нагревателю подводится от источника питания ЛАТР 4 (рис. 

3.1). Выход от ЛАТР соединяется с нагревателем электрическим кабелем через заднюю 

панель. Последовательно с нагревателем включено образцовое сопротивление Rо (рис. 3.2) 

для определения величины электрического тока в цепи по измеренному значению падения 

напряжения на Ro. 

На внутренней и наружной поверхности исследуемых образцов расположены 

шесть хромель-копелевых термопар (по 3 термопары на каждой поверхности), которые 

измеряют температуры в точках сечений: 
6

L
, 

2

L
, 

6

5L
, где L – длина рабочего участка. 

Термопары подключены к измерителю температур УКТ-38, который их «опрашивает» и 

показывает измеренные величины в следующей последовательности: 

t11 – температура внутренней поверхности в сечении 
6

5L
; 

t21 – температура внешней поверхности в сечении 
6

5L
; 

t12 – температура внутренней поверхности в сечении 
2

L
; 

t22 – температура внешней поверхности в сечении
2

L
; 

t13 – температура внутренней поверхности в сечении 
6

L
; 

t23 – температура внешней поверхности в сечении 
6

L
. 

 

3. Порядок проведения эксперимента 
При проведении эксперимента необходимо измерить следующие величины: 

Uн – напряжение на нагревателе; 

U0 – напряжение на образцовом сопротивлении; 

tij – температура внутренней (i=1) и внешней (j=2) поверхности в трех (j=1,2,3) 

сечениях цилиндрического слоя. 

 

Порядок проведения измерений: 

1. Убедиться, что регулятор напряжения ЛАТРа повернут против часовой 

стрелке до упора. 
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2. Включить тумблер 3 питания установки, тумблер 7 питания нагревателя и 

тумблер 5 питания УКТ-38. Включить мультиметр на измерение переменного напряжения 

(V~). 

3. Установить напряжение на нагревателе Uн ≈  60 В регулятором напряжения 

ЛАТР. 

4. Подождать несколько минут для получения стационарного режима 

(показания приборов не должны изменяться значительно). 

5. Снять показания Uн и U0 по мультиметру, установив переключатель 6 в 

соответствующее положение. 

6. Снять показания tij . При этом измеритель температуры УКТ-38 

автоматически и последовательно переключается с одной термопары на другую. 

7. Занести полученные данные в таблицу результатов измерений. 

8. Повторить пункты 3-7 не менее трех раз, изменяя напряжение Uн 

регулятором напряжения ЛАТР, но не более 80 В. 

9. Выключить приборы и установку, повернуть против часовой стрелке до 

упора регулятор напряжения ЛАТРа. 

 

4. Исходные данные для расчетов 
Параметры установки: 

длина рабочего участка: l = 0,384 м, 

внутренний диаметр образца: d1 = 22 мм, 

внешний диаметр образца: d2 = 34 мм, 

величина образцового сопротивления: Rо = 0,1 Ом. 

 

Таблица результатов измерений 

 

№
U

н 

U

0 

t

11 

t

21 

t

12 

t

22 

t

13 

T

23 

1         

2         

3         

 
5. Результаты расчетов 
По результатам измерений выполнить расчеты, используя следующие 

соотношения: 

0

0

R

U
I н = ; нн IUQ =       

      

      

21

1

2

2

)ln(

cc ttl

d

d
Q

−⋅⋅⋅

⋅
=

π
λ ,     

где 

tС1 и tС2 – усредненные по трем сечениям значения температуры на внешней и 

внутренней поверхности цилиндрического слоя, 

λ – среднее по результатам измерения значение теплопроводности материала 

цилиндрического слоя. 

3

 t  t t 131211

1

++
=ct

3

 t  t t 232221

2

++
=ct
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Таблица результатов расчета 

 

 

 

 

 

 

 
 
6. Контрольные вопросы: 
1. Понятие теплопроводности. 

2. Коэффициент теплопроводности, его физический смысл. 

3. Закон Фурье. 

4. Механизм передачи тепловой энергии в металлах. 

5. Механизм передачи тепловой энергии в диэлектриках. 

6. Механизм передачи тепловой энергии в полупроводниках. 

7. Механизм передачи тепловой энергии в жидкостях. 

8. Механизм передачи тепловой энергии в газах. 

9. Зависимость коэффициента теплопроводности от температуры. 

 

 
 

Рис. 2.1       Рис. 2.2 

№
I

н, А 

Q

, Вт 

t

C1, 
0
С 

t

C2, , 
0
С 

λ

, 
Км

Вт

⋅
 

1      

2      

3      
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2.2 Лабораторная работа № 2 (2 часа). 
Тема: «Основы конвективного теплообмена»    

 

2.2.1 Цель работы: Ознакомиться с определением   передачи теплоты через 

однослойные и многослойные стенки. 

 

2.2.2 Описание (ход) работы: 

1. Передача теплоты через плоскую стенку и граничных  
условиях I рода 

 

Рассмотрим однородную и изотропную стенку 

толщиной δ с постоянным коэффициентом 

теплопроводности λ. На наружных поверхностях стенки 

поддерживаются постоянными температуры tc1 и tc2. 

Следовательно, температура будет изменяться только в 

направлении оси Ох, а температура в направлении осей Oy 

и Oz будет оставаться постоянной: 

0=
∂
∂

=
∂
∂

z

t

y

t
. 

 

В связи с этим температура будет функцией только одной координаты х (t = f(x)) и 

дифференциальное уравнение теплопроводности запишется в виде: 

0
2

2

=
dx

td
. 

Граничные условия в рассматриваемой задаче задаются следующим образом: 

t = tc1 при х = 0; 

t = tc2 при х = δ. 

В результате решения поставленной задачи найдем распределение температуры в 

плоской стенке, то есть t = f(x), а также получим формулу для определения плотности 

теплового потока. 

Первое интегрирование дает: 

1С
dx

dt
= . 

После второго интегрирования получим: 

21 CxCt += – уравнение прямой линии. 

Следовательно, при λ = const закон изменения температуры при прохождении 

теплоты через плоскую стенку будет линейным. 

Постоянные интегрирования С1 и С2 определяем из граничных условий: 

при х = 0 t = tc1 ⇒ С2 = tc1; 

при х = δ t = tc2 
δ

21
1

cc tt
С

−
−= . 

Тогда закон распределения температуры в рассматриваемой плоской стенке имеет 

следующую запись: 

x
tt

tt cc
c δ

21
1

−
−= . 

Для определения плотности теплового потока в направлении оси Ох, 

воспользуемся законом Фурье, согласно которому: 
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x

t
q

∂
∂

−= λ . 

Так как 
1С

x

t
=

∂
∂

δ
21 cc tt −

−= , то 

( )21 cc ttq −=
δ
λ

. 

Из полученного уравнения следует, что количество теплоты, проходящее через 

единицу поверхности в единицу времени, прямо пропорционально коэффициенту 

теплопроводности λ, разности температур поверхностей стенки и обратно 

пропорционально толщине стенки δ. 

Величина, численно равная отношению разности температур между двумя 

изотермическими поверхностями тела к плотности теплового потока в какой-либо 

точке на одной из этих поверхностей, называется внутренним термическим 

сопротивлением, м
2⋅К/Вт: 

λ
δ

λ =
−

−=
q

tt
R cc 21 . 

Общее количество теплоты Qτ, которое передается через поверхность стенки F за 

промежуток времени τ: 

( ) τ
δ
λττ FttqFQ cc 21 −== . 

Кроме того, уравнение температурного поля может быть записано в виде: 

x
q

tt c λ
−= 1

. 

Из этого выражения следует, что при прочих равных условиях температура в стенке 

убывает тем быстрее, чем больше плотность теплового потока. 

Полученные выражения справедливы, когда λ = const. 

  

2. Передача теплоты через многослойную плоскую стенку и  
граничных условиях I рода 
 

 

Рассмотрим стенку, состоящую из слоев 

различной толщины (δ1, δ2,…, δn). 

Теплопроводность отдельных слоев обозначим 

λ1, λ2,…, λn. Примем, что контакт между 

слоями совершенный и температура на 

соприкасающихся поверхностях двух слоев 

одинакова. 

При стационарном режиме тепловой 

поток, проходящий через любую 

изотермическую поверхность неоднородной 

стенки, один и тот же: 

0=
∂
∂

x

q
. 

При заданных условиях можно составить систему уравнений: 

( )21

1

1
cc ttq −=

δ
λ

, 

( )32

2

2
cc ttq −=

δ
λ

, 

21

1

1
cc tt

q
−=

λ
δ

, 

32

2

2
cc tt

q
−=

λ
δ

, 



25 

 

…………………. 

( )( )1+−= nccn

n

n ttq
δ
λ

; 

…………………. 

( )1+−= nccn

n

n tt
q

λ
δ

. 

Сложив правые и левые части полученных уравнений, будем иметь: 

 ( )11

2

2

1

1
+−=








+++ ncc

n

n tt...q
λ
δ

λ
δ

λ
δ

. 

Тогда плотность теплового потока равна: 

( ) ( )

λ

λ
δ R

tttt
q

ncc

ni

i i

i

ncc 11

1

11 +
=

=

+ −
=

−
=

∑
, 

где ∑
=

=

=
ni

i i

iR
1 λ
δ

λ – полное термическое сопротивление плоской многослойной стенки, 

м
2⋅К/Вт. Полное термическое сопротивление многослойной стенки равно сумме 

термических сопротивлений составляющих ее слоев. 

Температуры на границах соприкосновения двух соседних слоев равны: 

1

1
12 λ

δ
qtt cc −= ;  








+−=

2

2

1

1
13 λ

δ
λ
δ

qtt cc
; 

( ) ∑
=

+ −=
i

i i

i
cic qtt

1

11 λ
δ

. 

 
3. Передача теплоты через плоскую однослойную и многослойную стенки и 

граничных условиях III рода 

 

Рассмотрим однородную и 

изотропную стенку толщиной δ с 

постоянным коэффициентом 

теплопроводности λ. Заданы также 

температуры окружающей среды tж1 и tж2, а 

также коэффициенты теплоотдачи α1 и α1, 

причем все эти параметры также постоянны и 

не меняются вдоль поверхности. 

Следовательно, температура будет 

изменяться только в направлении, 

перпендикулярном плоской стенки. 

Необходимо найти тепловой поток от горячей жидкости к холодной и температуры 

на поверхности стенки. 

Плотность теплового потока от горячей жидкости к стенке определяется по 

уравнению Ньютона-Рихмана: 

q = α1(tж1 – tс1). 

При стационарном тепловом режиме та же плотность теплового потока, 

обусловленная теплопроводностью через твердую стенку будет равна: 

( )21 cc ttq −=
δ
λ

. 

Тот же тепловой поток передается от второй поверхности стенки к холодной 

жидкости за счет теплоотдачи: 

q = α2(tс2 – tж2). 

Представленные выражения можно записать в виде: 
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( )11

1

1
cж ttq −=

α
, 

( )21

1
cс ttq −=

λ
, 

( )22

2

1
жс ttq −=

α
. 

Складывая почленно полученные равенства, получим: 

21

21

11
жж ttq −=








++
αλ

δ
α

. 

Отсюда плотность теплового потока равна: 

21

21

11

αλ
δ

α
++

−
= жж tt

q . 

Обозначим 
k=

++
21

11

1

αλ
δ

α

. 

Тогда ( )21 жж ttkq −= , 

где k – коэффициент теплопередачи, Вт/(м
2⋅К). 

Коэффициент теплопередачи k характеризует интенсивность передачи теплоты от 

одной жидкости к другой через разделяющую их стенку и численно равен количеству 

теплоты, которое передается через единицу поверхности стенки в единицу времени при 

разности температур между жидкостями в один градус. 

Величина, обратная коэффициенту теплопередачи, называется полным 

термическим сопротивлением теплопередаче, (м
2⋅К)/Вт: 

21

111

αλ
δ

α
++==

k
R , 

где 

1

1

α
и 

1

1

α
 - внешние термические сопротивления, 

λ
δ  - термическое сопротивление стенки. 

Для многослойной стенки нужно учитывать термическое сопротивление каждого 

слоя. Если стенка состоит из n слоев, то полное термическое сопротивление 

теплопередачи через такую стенку будет равно: 

22

2

1

1

1

111

αλ
δ

λ
δ

λ
δ

α
+++++==

n

n...
k

R  

211

11

αλ
δ

α
++= ∑

=

=

ni

i i

iR , 

отсюда 

211

11

1

αλ
δ

α
++

=

∑
=

=

ni

i i

i

k . 

Плотность теплового потока через многослойную стенку, состоящую из n слоев, 

будет равна: 

211

21

11

αλ
δ

α
++

−
=

∑
=

=

ni

i i

i

жж tt
q . 
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Температуры поверхностей однородной стенки находятся из уравнений: 

1

11

1

α
qtt жc −= ;  









+−=
λ
δ

α1

12

1
qtt жc

 или 

2

22

1

α
qtt жc += . 

Температура на границе любых двух слоев i и i + 1 равна:   

( ) 







+−= ∑

=
+

i

i i

i
жic qtt

11

11

1

λ
δ

α
. 

4. Обобщающие сведения по теплопроводности через плоскую стенку 
Плоская однослойная стенка, граничные условия I рода 

( )21 cc ttq −=
δ
λ

 

λ
х

qtt c −= 1
 

 

Плоская многослойная стенка, граничные условия I рода 

 

( )

∑
=

=

+−
=

ni

i i

i

ncc tt
q

1

11

λ
δ

 

( ) ∑
=

+ −=
i

i i

i
cic qtt

1

11 λ
δ

 

Плоская однослойная стенка, граничные условия III рода 

 

21

21

11

αλ
δ

α
++

−
= жж tt

q , 

1

11

1

α
qtt жc −= , 









+−=
λ
δ

α1

12

1
qtt жc

 

Плоская многослойная стенка, граничные условия III рода 

  

211

21

11

αλ
δ

α
++

−
=

∑
=

=

ni

i i

i

жж tt
q  

( ) 







+−= ∑

=
+

i

i i

i
жic qtt

11

11

1

λ
δ

α
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2.3 Лабораторная работа № 3 (2 часа). 
Тема: «Критериальные уравнения конвективного теплообмена»    

 
2.3.1 Цель работы: изучить критериальне уравнения конвективного теплообмена 

 

2.3.2 Описание (ход) работы: 

1. Теоретические основы работы 
 

Связь между временными и пространственными изменениями температуры в 

любой точке тела, в которых происходит процесс теплопроводности, устанавливается 

уравнением теплопроводности. Для тела, в котором отсутствуют источники тепла, оно 

принимает вид: 

ta
t 2∇=

∂
∂
τ

,      

где  t – температура, 
0
С; 

τ – время, с; 

a – коэффициент температуропроводности, 
с

м 2

. Он является физическим 

параметром вещества и является мерой теплоинерционных свойств тела. При прочих 

равных условиях выравнивание температур во всех точках тела будет происходить тем 

быстрее, чем больше коэффициент температуропроводности. Он вычисляется по 

формуле: 

ρ
λ
c

a = ,      

где λ – коэффициент теплопроводности, 
Км

Вт

⋅
; с – удельная теплоемкость 

вещества, 
Ккг

Дж

⋅
; ρ – плотность вещества, 

3м

кг
. 

Решение уравнения ta
t 2∇=

∂
∂
τ

 производится с помощью рядов Фурье. Для 

различных краевых условий результаты получаются различными, но методология 

решения в основном одинакова. Искомая функция уравнения  зависит от большого числа 

переменных, но при более глубоком анализе решений оказывается, что эти переменные 

можно сгруппировать в три безразмерных комплекса. Эти комплексы являются 

критериями подобия: 

Bi
l
=

λ
α

 – критерий Био, 

Fo
l

a
=

2

τ
 – критерий Фурье, 

L
l

x
=  – критерий геометрического подобия. 

 
Применение метода регулярного режима для нахождения коэффициента 

теплоотдачи 

При малых Bi температура на поверхности тела незначительно отличается от 

температуры на его оси. Это возможно для металлов, у которых величина 

температуропроводности достаточно велика (медь, дюраль). В этом случае нагрев или 

охлаждение тела определяется интенсивностью теплоотдачи на его поверхности, а 
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процесс выравнивания температуры в теле происходит существенно быстрее, чем подвод 

или отвод теплоты с поверхности тела. 

Решение задачи о нагревании (охлаждении) тел приводит к понятию темпа нагрева 

(охлаждения): 

  

m
t

t
−=

∂
∂
τ

1
      

Левая часть определяет относительную скорость изменения температуры, которая 

при регулярном режиме не зависит от координат и времени и является постоянной 

величиной. Можно показать, что: 

с

S
m

αψ=       

Формула  отражает содержание первой теоремы Кондратьева: темп охлаждения 

(нагревания) однородного и изотропного тела при конечном значении коэффициента 

теплоотдачи пропорционален коэффициенту теплоотдачи, площади поверхности тела и 

обратно пропорционален его теплоемкости. 

Множитель ψ называется коэффициентом неравномерности распределения 

температуры. В случае медленного нагрева металлических образцов ψ=1. 

А.В. Лыковым было показано, что регулярный режим определяется не только 

определенными температурными полями, возникающими в нагреваемом или 

охлаждаемом теле, но и потоками тепла через его поверхность. Поэтому при нагревании 

металлических образцов нет необходимости различать регулярные режимы первого, 

второго и третьего рода. В качестве общего свойства теплового регулярного режима 

можно принять соотношение 

)( ttm
d

td
с −=−

τ
,     

где  t  – средняя по объему температура тела; 

tс – температура среды. 

Средний коэффициент теплоотдачи может быть найден по формуле: 

τ
ρα

d

td

tt

mc

с )( −
=     

 

Применение метода регулярного теплового режима первого рода для 

определения коэффициента температуропроводности металлов 

 

Экспериментальный метод определения температуропроводности, требующий 

условия Вi → ∞ не всегда осуществим при исследовании тел с высокой 

теплопроводностью, для которых Вi <10. В этом случае применяется метод двух точек, в 

котором используется важнейшее свойство регулярного режима, состоящее в том, что 

температурное поле в образце при его охлаждении в среде с постоянной температурой 

остается подобным самому себе. Следовательно, отношение температур для двух 

произвольных точек тела будет равно постоянной величине, не зависящей от времени: 

 

b
t

t
=

2

1 ,      

где 0 ≤ b ≤ 1. 

Величина b и темп охлаждения m определяются из опыта. Для этого строятся 

графики зависимостей lnθ1 = f1(τ) и lnθ2 = f2(τ), где ctt −= 22θ , ctt −= 11θ . 
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На регулярном участке получаются два отрезка параллельных прямых, угловой 

коэффициент которых определяет темп охлаждения. Значение b определяется из тех же 

графиков по соотношению 

y = lnθ1 - lnθ2,      

тогда 

b = e
-y     

 

 

Температуропроводность исследуемого образца рассчитывается из соотношения 

2P

mK
a = ,      

где Р – безразмерная величина 

∞

=
ε
ε

P  ≤ 1      

и К – коэффициент формы 

22

1







+








=
∞

lR

К
πε

,    

где: l – высота цилиндра;  R – радиус цилиндра; ε -постоянная определяемая из 

граничных условий при решении уравнения (5.1) для Вi < 10; ε∞ - постоянная, 

определяемая из граничных условий при решении уравнения (5.1) для Вi = ∞ 

(практически ≥ 100). 

В формуле (5.10) величину Р
2
 заменяют на функцию Ф(у), которая приведена в 

таблице. 

Следовательно, соотношение (5.10) можно записать в виде: 

( )

mK
a

Ф у
=       

Для расчета темпа охлаждения из экспериментальных данных используется один 

из графиков (например lnθ1 = f1(τ)) 

12

12 lnln

ττ
θθ

−
−

=m ,     

а для расчета коэффициента формы соотношение 

22
4048,2

1







+








=

lR

К
π

    

 

Таблица значений Ф(у) 

 

 

у 

 

 

Ф(у) 

 у  

Ф(у) 

 

0,03 

 

0,023 

0,

22 

0

,147 

 

0,04 

 

0,030 

0,

25 

0

,165 

 

0,05 

 

0,037 

0,

30 

0

,196 

 

0,07 

 

0,051 

0.

35 

0

.228 
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0,10 

 

0,072 

0.

4 

0

.252 

 

0,12 

 

0,0860 

1 0

.527 

 

0.15 

 

0.105 

2 0

,808 

 

0.17 

 

0.118 

3 0

.927 

 

0.20 

 

0.137 

0.

5 

0

.301 

 

Данный метод предполагает предварительное знание коэффициента формы 

образца, но при этом отпадает необходимость измерения координат двух точек в теле, в 

которых измеряется температура. 

2. Схема экспериментальной установки 

Схема экспериментальной установки приведена на рис. 4.1 и 4.2. На передней 

панели находятся два двухканальных измерителя температуры 1,2 типа ТРМ200, 

подключенные к трем хромель-копелевым термопарам. Первый канал измерителя 1 

подключен к термопаре 5, измеряющей температуру t1 цилиндрического образца 11 в 

середине на его оси. Первый канал измерителя температуры 2 подключен к термопаре 3, 

измеряющей температуру t2 внутри цилиндра 11 на расстоянии 15 мм от его оси. Второй 

канал измерителя 2 подключен к термопаре 4, измеряющей температуру t3 воды в 

термостате 12 вблизи цилиндра. На передней панели также находятся тумблер 6 

включения электропитания установки, тумблер 20 включения питания электропечи 19 и 

регулятора мощности 10 электропечи, устройство перемещения 18 образца из печи 19 в 

емкость 12 термостата, тумблер 7 включения вентилятора 8. 

3. Порядок проведения эксперимента 

 

1. С помощью подъёмного устройства 18 осторожно поместить в электропечь 19 

образец 11. 

2. Включить питание установки, регулятор температуры 10 и повернуть диск 

регулирования по часовой стрелке на половину оборота. 

3. Включить вентилятор для ускорения процесса нагревания образца 

4.  Включить измерители температуры. 

5. Произвести нагрев образца до температуры 60-70 
о
С. 

6. С помощью подъемного устройства 18 переместить образец из печи в емкость 12 

с водой. 

7. Включить секундомер. 

8. Через каждые 10 секунд производить отсчет показаний измерителей 

температуры и заносить данные в таблицу. 

9. Выключить приборы и установку. 

9. Произвести необходимые расчеты. 

10. Сделать вывод. 

4. Исходные данные для расчетов 

Параметры установки: 

диаметр образца d = 35 мм; 

длина образца l = 70 мм; 

расстояние между спаями двух термопар 15 мм; 
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материал образца: нержавеющая сталь. 

 

Таблица результатов эксперимента 

 п/п 1,
 

о
С 

2,
 о

С 3, 
о
С 

τ
, с     

     

     

     

     

 

5. Контрольные вопросы: 

1. Нестационарная теплопроводность. 

2. Понятие регулярного режима. 

3. Темп охлаждения. 

4. Коэффициент температуропроводности, его физический смысл. 

5. Критерий Био, его физический смысл. 

6. Методы решения задач теплопроводности при нестационарном режиме 

теплообмена. 

7. Теоремы Кондратьева. 

 

Рис. 4.1   Рис. 4.2 
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2.4 Лабораторная работа № 4 (2 часа). 
Тема: «Теплообмен излучением» 

     

2.4.1 Цель работы: исследовать теплообмен излучением 

2.4.2 Описание (ход) работы: 

1. Лучистый теплообмен в системе тел с плоскопараллельными 
поверхностями определяется на основании следующих выражений: 

   

 

4 4 4 4

1 2 1 2
1 2 1 2 1 0 1

100 100 100 100
, , пр

T T T T
Q q F c A F

          = − = −          
             

 -  

 полный результирующий поток,  где с�= 5,67 Вт/(м� ∙ К); 

 

1 2

1

1 1
1

прA

A A

=
+ −

 - приведенный   коэффициент поглощения системы; 

 

1 2 0 1 2

1 1

1 1 1 1 1
1

прc

c c c ε ε

= =
+ − + −

 – приведенный коэффициент излучения;  

  Если коэффициенты излучения тел и экранов различны, то при установке n 

защитных от теплового излучения экранов тепловой поток 

                              
( )

( )

4 4

1 2
0

1 2

1 2

100 100

1 1 1
2 1

n, эк

i экi

T T
c

q

n
A A A=

    −    
     =

+ + − +∑
 . 

  Теплообмен излучением между телом и его оболочкой происходит тогда, когда 

одно тело находится в полости другого. Тело 1 только выпуклое, тело 2-вогнутое. 

Результирующий поток излучения можно определить по следующему выражению: 

 
4 4 4 4

1 2 1 2
1 2 1 2 1 0 1

100 100 100 100
, пр , пр

T T T T
Q c F c A F

           = − = −           
               

, 

  

где         

1

1 2 0 2

1

1 1 1
прc

F

c c c F

=
 

+ − 
 

  ;           

1

1 2 2

1

1 1
1

прA
F

A A F

=
 

+ − 
 

 .  

  Экранирование оказывается наиболее эффективным, когда цилиндрический или 

сферический экран установлен вблизи тела, имеющего более высокую температуру. При 

наличии одного экрана в случае разных коэффициентов излучения тел для 

результирующего теплового потока можно записать следующие выражения: 

           

( ) ( )

4 4

1 2
0 11 2 1 2

100 100
, эк , эк

T T
Q с A F

    = −    
     

 

    где             
( )1 2

1 1

1 2 2 2

1

1 2
1

, эк

, э

A
F F

A A F F

=
 

+ − + 
 

.   
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  Здесь 
1 2, прA A=  – приведенная поглощательная способность системы с 

оболочкой при отсутствии экрана. 

 

  2. Теплообмен излучением между двумя телами, произвольно 
расположенными в пространстве.  

Рассмотрим два произвольно расположенных в пространстве черных тела, которые 

имеют изотермические поверхности с температурами Т	 и Т�. Самооблучение этих тел 

отсутствует, они однородны и изотропны, яркость излучения одинакова по всем 

направлениям. 

  Общий результирующий поток представится зависимостью                  

( )
4 4

1 2
1 2 1 21 2 2 11 2 1 2 1 2 0

100 100
, ,, ,,

T T
dQ E E H Q Q с Hϕ ϕ

    = − = − = −    
     

, 

где 1 2 1 2 1, ,H Fϕ=  – средняя взаимная поверхность излучения, 

       1
1 2

1

пад
,

Q

Q
ϕ =  - средний угловой коэффициент излучения (коэффициент 

облученности). 

  Результирующий поток для системы, состоящей из двух серых тел, может быть 

найден по аналогичному уравнению, если в него вместо потоков собственного излучения 

ввести эффективные потоки излучения: 

     1 2 2 11 2 1 2, ,, эф эфQ Q Qϕ ϕ== −                            

   Для двух параллельных полос одинаковой ширины угловые коэффициенты 
�	,� и 


�,	 равны и находятся по уравнению 

2

1 2 1,

h h

a a
ϕ  = + − 

 
. 

  Угловой коэффициент лучистого обмена для двух дисков одинакового диаметра, 

расположенных друг против друга в параллельных плоскостях, вычисляется по 

уравнению 

2 2

1 2 1 2 2 1,

h h h

a a a
ϕ    = + − +   

   
 

  Для дисков разного диаметра ( )1 2
d d< средний угловой коэффициент 

вычисляется по формуле: 

2 2

2 21 2 2 1
1 2

1
1,

d d d d
h h

d s s
ϕ

 + −    = + + + +   
     

 

  Для системы тел, представляющей собой стенку, покрытую одним рядом 

экранных труб, угловой коэффициент лучистого обмена вычисляется по формуле 
2 2

1 2 1 1 1,

d d d
arctg

s s s
ϕ    = − + + −   

   
 

  Для многорядных пучков труб (n– число рядов ) угловой коэффициент лучистого 

обмена пересчитывается по следующему выражению: 

( )1 2 1 21 1
n

, ,ϕ ϕ′ = − −  
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3. Излучение газов  
Такое  излучение носит объемный характер и зависит от плотности и толщины 

газового слоя. Газы излучают и поглощают энергию только в определенных интервалах 

длин волн ( селективное излучение ). В большей части спектра газы являются 

прозрачными для теплового излучения. Полосы поглощения наиболее распространенных 

в теплотехнике газов Н�О и СО� частично совпадают. При малых толщинах слоя 

преобладает влияние излучения СО�, а при больших – излучение Н�О. Для обоих газов 

излучение значительно отклоняется от закона четвертых степеней абсолютной 

температуры Стефана – Больцмана, а излучительная способность может быть 

представлена зависимостями: 

 ( )
2

3 5
0 33

3 5
100

,
,

co

T
E , pl

 =  
 

   

2

3

0 8 0 63 5
100

, ,

H O

T
E , p l

 =  
 

 

  На рис. 14.1 и рис. 14.2 приведены опытные данные по зависимости степени 

черноты углекислого газа и водяного пара от температуры при различных величинах 

параметра pl. 

Закон Бугера выражает зависимость ослабления интенсивности излучения в 

поглощающей среде от толщины газового слоя 

( )0 expl lJ J L== −  

где L k lλ= ⋅ - оптическая длина; l- полная толщина газового слоя; 

kλ - коэффициент ослабления луча. 

 

 
Рис. 14.1 Зависимость степени черноты углекислого газа от температуры при 

различных величинах параметра pl. 
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Рис.14.2 Зависимость степени черноты водяного пара от температуры при 

различных величинах параметра pl. 

 

4. Лучистый теплообмен между газом и его оболочкой приближенно можно 

рассчитать при помощи метода, основанного на экспериментальных данных. Если тело 

находится в оболочке, обладающей свойствами серого тела, то часть энергии, излучаемой 

газом, поглощается этой оболочкой, а часть ее отражается. Отраженная оболочкой 

энергия частично поглощается газом, а частично вновь попадает на поверхность 

оболочки. 

Результирующий тепловой поток при теплообмене излучением между газом и 

оболочкой определится разностью между лучистым потоком, испускаемым газом на 

оболочку, и частью излучения оболочки, которое поглощается газом: 
4 4

. 0 .
100 100

г с
r c эф с г г c

T Т
Q c А Fε ε

    = −    
     

 

 

Здесь . 0,5( 1)эф с cε ε= + — эффективная степень черноты оболочки в по-

глощающей среде;  

oε  — степень черноты оболочки в диатермичной среде; 

2 2г CO H Oε ε βε= + — интегральное значение степени черноты газа (определяется 

при температуре газа Тг); 

2 2г СО Н ОA А Аβ= +  - интегральное значение поглощательной способности газа 

(определяется при температуре оболочки Тг); 

 значения параметра β приведены на рис. 14.3. Для расчета средней длины пути 

луча пользуются приближенной формулой 3,6 / cl V F= , где V — объем газового тела, 
cF  

— площадь оболочки. Данный метод расчета лучистого теплообмена неприменим к 
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газовым телам, содержащим в продуктах сгорания взвешенные твердые частицы 

несгоревшего топлива. 

 

 
 

Рис.16.3 Значения параметра β  
 

Металлургические нагревательные печи служат для нагрева металла перед ковкой 

или прокаткой и для термической обработки проката. По теплотехническим условиям 

методическая печь делится на три зоны: методическую, сварочную и томильную. 

Необходимый для расчёта числа Био коэффициент теплоотдачи а рассчитываем на 

основе закона Ньютона - Рихмана. По определению коэффициент теплоотдачи равен 

отношению плотности теплового потока к разности температур между стенкой 

(поверхностью металла) и жидкой средой (дымовыми газами). Собственное излучение 

газа и поверхности металла определяется на основе закона Стефана — Больцмана, а 

искомая плотность теплового потока определяется как результирующий поток между 

газом и металлом. Тогда коэффициент теплоотдачи излучением 
4 4

0

100 100
г м

пр

г м

T Т

c
Т Т

α ε

   −   
   =

−
 

Приведённый коэффициент излучения в системе газ — кладка — металл 

определяется по формуле 

 

[ ]
1

1
(1 )

г
пр м

г
м г м

г

ω εε ε εε ε ε ω
ε

+ −
= ⋅

−
+ ⋅ − ⋅ +

 

где 0,8мε = — степень черноты углеродистых и легированных конструкционных 

марок сталей; 
гε  — степень черноты продуктов сгорания; ω  - степеньразвития кладки 

печи. 

Степень развития кладки печи определяется по формуле 

( )2 2кл

m

h B LF h B

F l L l
ω

+ ⋅ +
= = =

⋅
, 

где 
клF  — площадь кладки печи, м ;

mF  — площадь поверхности металла, м ; 

l  — длина заготовки, м ; h — высота печи, м ; В — ширина печи, м . 

Если температура металла и (или) температура среды меняется по длине зоны, то 

коэффициент теплоотдачи определяется как среднегеометрический между его значением 

на входе и выходе из зоны: 

 

изл вх выхα α α= ⋅  



38 

 

Для составления теплового баланса методической нагревательной печи 

необходимо найти потери тепла через кладку печи, а для этого нужно определить 

температуру внутренней поверхности печи (температуру кладки): 

 

( )4 4 41

1кл м г м
г

г

k
T T Т Т

k

ω
ε

ε

+ +
= + ⋅ −

−
 

где ( )1
м г м

k ε ε ε= + −
 

 

 

5. Примеры решения задач 
Задача 1 Вычислить тепловые потери с единицы длины коллектора, 

рассмотренного в предыдущей задаче, при условии, что его поверхность окружена 

стальным экраном диаметром dэк = 325 мм с коэффициентом поглощения Аэк = 0,7. 

Передача теплоты между поверхностью экрана и внешним ограждением происходит как 

за счет излучения, так и за счет свободой конвекции. Передачу теплоты между 

поверхностями коллектора и экрана за счет конвекции и теплопроводности можно не 

учитывать. Коэффициент теплоотдачи конвекцией на поверхности экрана α = 29 Вт/(м
2 

· 

°C). Сравнить полученные результаты с ответом предыдущей задачи. 

Ответ: ql
эк

 = 8,75 кВт/м; ql/ql
эк

=1,565. 

 

Решение: 

Температуру экрана найдем из уравнения баланса энергии: 

( )2

4

2
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44
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Приведенный коэффициент поглощения для системы коллектор – экран: 

.62,0

17,0

1

325,0

275,0

8,0

1

1

1

11

1
=









−

+
=









−

+

=

экэк

c

с

пр

АF

F

А
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Подставим известные значения величин в уравнения баланса энергии и получим 

нелинейное уравнение относительно температуре экрана, которое можно решить 

графически. По графику определяем, что температура экрана tэк = 240 °C. Лучистый поток 

с единицы длины коллектора: 
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⋅⋅⋅= π

Сравним потери оголенного коллектора и коллектора, окруженного экраном: 

 

.565,1
75,8

7,13
==

эк

l

q

q
 

 

 

Задача 2. Определить коэффициент ослабления луча слоем двуокиси углерода 

толщиной 30 мм, если известно, что после прохождения этого слоя спектральная 

интенсивность луча уменьшилась на 90%. 



39 

 

 

 

Решение: 

Коэффициент ослабления луча в поглощающей среде можно найти из закона 

Бугера: ( )xkJJ xx λλλ −= = exp0,, , откуда: 
0,

,
ln

1

=

−=
x

x

J

J

x
k

λ

λ
λ . Из условий задачи имеем: xJ ,λ / 

0, =xJλ =0,1. Подставив численные значения величин из условий задачи, получим: 

.7,761,0ln
103

1 1

2

−
− =⋅

⋅
−= мkλ  

Ответ: kλ=76,7 м
-1

. 

 

Задача 3. Вычислить плотность теплового потока, обусловленного 

лучеиспусканием от дымовых газов к поверхности цилиндрического газохода диаметром 

d = 500 мм. Газы содержат 10% СО2 и 5% Н2О. Общее давление газов – 98,1 кПа. 

Температура газов на входе в газоход - 800°C и на выходе - 600°C; средняя температура 

поверхности газохода - 400°C и степень черноты – 0,85. Решить задачу при условии, что 

парциальное давление водяных паров увеличилось в 2 раза, а все другие данные остались 

без изменений. 

Ответ: qл = 4630Вт/м
2
, qл = 5930 Вт/м

2
.       

 

Решение: 

Средняя длина пути луча .45,09,0
4/4

9,0
4

9,0
2

мd
dL

Ld

F

V
l ====

π
π

При больших 

изменениях температуры в газоходе степень черноты газов определяется по средней 

геометрической температуре газов: 

 

( ) ( ) ;9762736002738004 224 2

2

2

1 КTTT rrr =++=⋅=   C.994273 °=−= rr Tt   

Произведения парциальных давлений на среднюю длину пути луча равны: 

;5,410422,045,01081,91,0 44

2
атсмПамlpco ⋅=⋅⋅=⋅⋅⋅=    

.25,210221,045,01081,905,0 44

2
атсмПамlр ОН ⋅=⋅⋅=⋅⋅⋅=  

При средней температуре газов C994°=rt по рис.14.1, рис.14.2, рис.14.3 находим 

;09,0
2
=COε ;05,0

2
=OHε .06,1=β Степень черноты газов при средней температуре газов 
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=⋅+=+= OHCOr βεεε  При температуре стенки tc=400°C по тем же 

графикам находим ;08,0
2
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2
=OHε  Поглощательную способность газов при 

температуре стенки найдем как 
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Удельный тепловой поток на стенки газохода за счет излучения газов определим из 
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Задачи для самостоятельного решения 
Задача 1.  Решить предыдущую задачу при условии, что канал газохода в 

поперечном сечении имеет форму прямоугольника со сторонами а = 0,5м и       b = 1м. 

Общее давление газов – 98,1 кПа. Все другие исходные данные остались без изменений. 

Ответ: qл = 5420 Вт/м
2
.  

 

Задача 2.Температура поверхности выходного коллектора пароперегревателя 

высокого давления tc = 500 °C. Вычислить тепловые потери с 1 м неизолированного 

коллектора путем лучистого теплообмена, если наружный диаметр коллектора d = 275 мм, 

коэффициент поглощения Ас =0,8, а температура ограждений t2 = 30 °C. 

Ответ: ql = 13,7 кВт/м. 

 

Задача 3. Поглощательная способность слоя газа толщиной l1 при парциальном 

давлении р1 равна Аλ1. Определить поглощательную способность газа при одновременном 

изменении толщины слоя и парциального давления до величин, соответственно, l2 и p2. 

Считать, что для данного газа справедлив закон Бугера, а температура газа в обоих 

случаях одна и та же. 

Ответ: ( ) 1122 /

12 11
lplp

AА λλ −−= . 


