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1. КОНСПЕКТ ЛЕКЦИЙ 
1. 1  Лекция №1 ( 2 часа). 
Тема: «Обыкновенные дифференциальные уравнения п-го порядка. Системы 

обыкновенных дифференциальных уравнений» 
 

1.1.1 Вопросы лекции: 
1. Классификация обыкновенных дифференциальных  уравнений и методов их 

решения. 

2. Системы уравнений второго порядка. 

3. Методы решения систем. 

2. Краткое содержание вопросов: 
1. Классификация обыкновенных дифференциальных  уравнений и методов их 

решения. 

1. Определение. Дифференциальным уравнением порядка n называется 

уравнение вида: 

0),...,,,( )( =′ nyyyxF  

 В некоторых случаях это уравнение можно разрешить относительно y
(n)

: 

).,...,,,( )1()( −′= nn yyyxfy  

 Определение. Решение )(xy ϕ= удовлетворяет начальным условиям 
)1(

0000 ,...,,, −′ nyyyx , если .)(,....,)(,)( )1(

00

)1(

0000

−− =ϕ′=ϕ′=ϕ nn yxyxyx  

 Определение. Нахождение решения уравнения 0),...,,,( )( =′ nyyyxF , 

удовлетворяющего начальным условиям )1(

0000 ,...,,, −′ nyyyx , называется решением задачи 

Коши. 
 Теорема Коши. (Теорема о необходимых и достаточных условиях 

существования решения задачи Коши). 

 Если функция (n-1) –й переменных вида ),...,,,( )1( −′ nyyyxf в некоторой 

области D (n-1)- мерного пространства непрерывна и имеет непрерывные частные 

производные по 
)1(,...,, −′ nyyy , то какова бы не была точка ( )1(

0000 ,...,,, −′ nyyyx ) в этой 

области, существует единственное решение )(xy ϕ= уравнения ),...,,,( )1()( −′= nn yyyxfy , 

определенного в некотором интервале, содержащем точку х0, удовлетворяющее 

начальным условиям )1(

0000 ,...,,, −′ nyyyx . 

 Дифференциальные уравнения высших порядков, решение которых 

может быть найдено аналитически, можно разделить на несколько 

основных типов. 

 Рассмотрим подробнее методы нахождения решений этих уравнений. 

Уравнения, допускающие понижение порядка. 

 Понижение порядка дифференциального уравнения – основной метод 

решения уравнений высших порядков. Этот метод дает возможность сравнительно легко 

находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим 

случаи, когда возможно понижение порядка. 

Уравнения вида y
(n)

 = f(x). 

 Если f(x) – функция непрерывная на некотором промежутке a<x<b, то 

решение может быть найдено последовательным интегрированием. 

;)( 1

)1( Cdxxfy n += ∫−  

( ) ;)()( 2121

)2( CxCdxxfdxCdxCdxxfy n ++=++= ∫∫∫ ∫−  
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;...
)!2()!1(

)(....
2

2

1

1 n

nn

C
n

x
C

n

x
Cdxxfdxdxy ++

−
+

−
+=

−−

∫∫∫  

 Уравнения, не содержащие явно искомой функции  и ее производных до 

порядка k – 1 включительно.  Это уравнения вида: .0),...,,,( )()1()( =+ nkk yyyxF  

В уравнениях такого типа возможно понижение порядка на k единиц. Для этого 

производят замену переменной: 

....;; )()()1()( knnkk zyzyzy −+ =′==  

Тогда получаем: .0),...,,,( )( =′ −knzzzxF  

 Теперь допустим, что полученное дифференциальное уравнение 

проинтегрировано и совокупность его решений выражается соотношением: 

).,...,,,( 21 knCCCxz −ψ=  

Делая обратную подстановку, имеем: 

),...,,,( 21

)(

kn

k CCCxy −ψ=  

Интегрируя полученное соотношение последовательно k раз, получаем 

окончательный ответ: 

).,...,,,( 21 nCCCxy ϕ=  

Уравнения, не содержащие явно независимой переменной. 

 Это уравнения вида .0),...,,( )( =′ nyyyF  

Порядок таких уравнений может быть понижен на единицу с помощью замены 

переменных .py =′  

;p
dy

dp

dx

dy

dy

yd

dx

yd
y =⋅

′
=

′
=′′  

;

2

2

2

2

p
dy

dp
p

dy

pd
p

dy

p
dy

dp
d

p
dy

yd

dx

dy

dy

yd

dx

yd
y 








+=










=
′′

=⋅
′′

=
′′

=′′′  и т.д. 

 

 Подставляя эти значения в исходное дифференциальное уравнение, 

получаем: 

0,...,,,
1

1

1 =







−

−

n

n

dy

pd

dy

dp
pyF  

 Если это уравнение проинтегрировать, и 0),...,,,,( 121 =−nCCCpyФ - 

совокупность его решений, то для решения данного дифференциального уравнения 

остается решить уравнение первого порядка: 

.0),...,,,,( 121 =′ −nCCCyyФ  

 Линейные дифференциальные уравнения высших порядков. 

 

 Определение. Линейным дифференциальным уравнением n – го 
порядка называется любое уравнение первой степени относительно функции у и ее 

производных 
)(,...,, nyyy ′′′  вида: 

 

);(... 1

)2(

2

)1(

1

)(

0 xfypypypypyp nn

nnn =+′++++ −
−−  

 

где p0, p1, …,pn – функции от х или постоянные величины, причем p0≠0. 

 

 Левую часть этого уравнения обозначим L(y). 

);(... 1

)2(

2

)1(

1

)(

0 yLypypypypyp nn

nnn =+′++++ −
−−  
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 Определение.  Если f(x) = 0, то уравнение L(y) = 0 называется линейным 
однородным уравнением, если f(x) ≠ 0, то уравнение L(y) = f(x) называется линейным 
неоднородным уравнением, если все коэффициенты p0, p1, p2, … pn – постоянные числа, 

то уравнение L(y) = f(x) называется линейным дифференциальным уравнением 
высшего порядка с постоянными коэффициентами. 

Отметим одно важное свойство линейных уравнений высших порядков, которое 

отличает их от нелинейных. Для нелинейных уравнений частный интеграл находится из 

общего, а для линейных – наоборот, общий интеграл составляется из частных. Линейные 

уравнения представляют собой наиболее изученный класс дифференциальных уравнений 

высших порядков. Это объясняется сравнительной простотой нахождения решения. Если 

при решении каких – либо практических задач требуется решить нелинейное 

дифференциальное уравнение, то часто применяются приближенные методы, 

позволяющие заменить такое уравнение “близким” к нему линейным. 

 Рассмотрим способы интегрирования некоторых типов линейных 

дифференциальных уравнений высших порядков. 

Линейные однородные дифференциальные уравнения с 

произвольными коэффициентами. 

 

 Рассмотрим уравнение вида 0... 1

)2(

2

)1(

1

)(

0 =+′++++ −
−− ypypypypyp nn

nnn  

 

 Определение. Выражение 

)(... 1

)2(

2

)1(

1

)(

0 yLypypypypyp nn

nnn =+′++++ −
−−  называется линейным 

дифференциальным оператором. 

 Линейный дифференциальный оператор обладает следующими свойствами: 

 1) );()( yCLCyL =  

 2) );()()( 2121 yLyLyyL +=+  

Решения линейного однородного уравнения обладают следующими свойствами: 

 1) Если функция у1 является решением уравнения, то функция Су1, гдеС – 

постоянное число, также является его решением. 

 2) Если функции у1и у2 являются решениями уравнения, то у1 +у2 также 

является его решением. 

 Определение. Фундаментальной системой решений линейного 

однородного дифференциального уравнения n –го порядка на интервале (a, b) называется 

всякая система n линейно независимых на этом интервале решений уравнения. 

 Определение. Если из функций yi составить определитель n – го порядка 

)1()1(

2

)1(

1

21

21

...

............

...

...

−−−

′′′
=

n

n

nn

n

n

yyy

yyy

yyy

W
, 

то этот определитель называется определителем Вронского. 
( Юзеф Вроньский (1776 – 1853) – польский математик и философ - мистик) 

 Теорема. Если функции nyyy ,...,, 21  линейно зависимы, то составленный 

для них определитель Вронского равен нулю. 

 Теорема. Если функции nyyy ,...,, 21 линейно независимы, то составленный 

для них определитель Вронского не равен нулю ни в одной точке рассматриваемого 

интервала. 

 Теорема. Для того, чтобы система решений линейного однородного 

дифференциального уравнения nyyy ,...,, 21  была фундаментальной необходимо и 

достаточно, чтобы составленный для них определитель Вронского был не равен нулю. 
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 Теорема. Если nyyy ,...,, 21  - фундаментальная система решений на 

интервале (a, b), то общее решение линейного однородного дифференциального 

уравнения является линейной комбинацией этих решений. 

nn yCyCyCy +++= ...2211 , 

где Ci –постоянные коэффициенты. 

 

2. Системы уравнений второго порядка. 

  С системами дифференциальных уравнений встречаются при изучении 

процессов, для описания которых одной функции недостаточно. Решение многих задач 

динамики, электротехники, теории поля и векторного анализа приводит к составлению 

систем дифференциальных уравнений. 

 Определение. Системой дифференциальных уравнений называется 

совокупность уравнений, в каждое из которых входит независимая переменнаяt, искомые 

функции этой переменной и их производные 

Обозначения:  x(t), y(t), z(t)- если функций не больше трех 

x1(t), х2(t)…хn(t)- для большего числа функций  

 Будем рассматривать только такие системы, где число уравнений равно 

числу неизвестных. 

 Определение. Решением системы дифференциальных уравнений является 

совокупность функций  x1= x1 (t);   х2= х2(t);… хn= хn(t),которая при подстановке в каждое 

уравнение системы обратит его в тождество. 

 Будем рассматривать системы, которые приведены к определенному виду. 

Такие системы называются нормальными. 

(*)  

���
������� = 
�(
 , ��, ��…��)����� = 
�(
 , ��, ��…��)………………………����� = 
�(
 , ��, ��…��)

�  

 В большинстве случаев произвольную систему дифференциальных 

уравнений можно привести к нормальной. Например,  

1) ����� + 2 ���� − � = 0
���� − 3 ���� + � = 
 �⇒����� = � (3� − 2� + 2
)

���� = � (� + � − 
) � 
2) ����� + ���� − 
� = 0

���� + ���� + � = 0 �Данную систему нельзя разрешить относительно � ′ и � ′, 

следовательно,  нельзя  привести к нормальной. Такие системы  рассматриваться не будут. 

 Общее решение нормальной системы (*) имеет вид: 

x1=φ1(t, C1,C2,…Cn)                 

x2=φ2(t, C1,C2,…Cn)                                                             

- - - - - - - - - - - - - 

xn=φn(t, C1,C2,…Cn) 

где C1,C2,…Cn─произвольные постоянные. В каждое из записанных равенств может 

входить только часть произвольных постоянных. 

 Подставляя в общее решение начальные условия, получим систему 

алгебраических уравнений для определения произвольных постоянных и, следовательно, 

частного решения системы. 

 Теорема. Если правые части нормальной системы (*) непрерывны вместе со 

своими частными производными в окрестности значений, задающих начальные условия, 
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то существует единственная совокупность функций x1(t), х2(t),…хn(t), являющаяся 

решением системы и удовлетворяющая заданным начальным условиям. 

3. Методы решения систем. 

 Решить систему дифференциальных уравнений и выделить частные решения, 

удовлетворяющие заданным начальным условиям   

� ���� = � + 6�					(1)
���� = � + 3
 + 0,5				(2)�[x(0)=1, y(0)=-1] 

Решение.  Обе части уравнения (1) продифференцируем по t: ������ = ���� + 6 ���� . Производную � ′ заменим правой частью уравнения (2):   ������ − ���� − 6� = 18
 + 3           или             �" − � ′ − 6� = 18
 + 3 

 Получили ЛНДУ II с постоянными коэффициентами в левой части и со 

специальной правой частью. 'н = '( + )н ─ структура общего решения 

1)  *+ ─? �" − � ′ − 6� = 0 ,� − , − 6 = 0 

D=1+24=25          ,� = �- � = 3; ,� = �/ � = −2; '( = 012 ∙ 45 + 0/62 ∙ 46 
2)  )н─? �н = 8
 + 9 

(самостоятельно с помощью таблицы объясните запись решения в таком виде) �н
′ = 8 �н
" = 0 −8 − 6(8
 + 9) = 18
 + 3 
�
+ :−68 = 18
 ⇒ 8 = −3−8 − 69 = 3 ⇒ 9 = 0� �н = −3
 *н = ;<� ∙ =� + ;/�� ∙ =� − 3
─ общее решение ЛНДУ II 

Из уравнения (1) исходной системы:   6� = ���� − � 6� = 3=� ∙ ;<� − 2=� ∙ ;/�� − 3 − =� ∙ ;<� − =� ∙ ;/�� + 3
 6� = 2=� ∙ ;<� − 3=� ∙ ;/�� + 3
 − 3 
Подставим в подчеркнутые равенства начальные условия > 1 = =� + =�−6 = 2=� − 3=� − 3�⇒> =� = 1 − =�−6 = 2 − 2=� − 3=� − 3�⇒ −6 = 2 − 5=� − 3⇒ −5 = −5=� ⇒ =� = 1,С� = 0	

Частные решения, удовлетворяющие заданным начальным условиям: � = ;/�� − 3
 � = 16 (−3;/�� + 3
 − 3) = −12 (;/�� − 
 + 1) 
 Таким образом,  в большинстве случаев нормальная система может 

быть заменена одним уравнением, порядок которого равен числу уравнений 
системы. В этом и заключается метод решения рассматриваемых нами систем. 
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1. 2  Лекция №2 ( 2 часа). 
Тема: «Дифференциальные уравнения в частных производных» 
 
1.2.1 Вопросы лекции: 
1. Возможности математического моделирования физических процессов. 

2. Физические задачи, приводящие к уравнениям в частных производных. 

3. Колебательные процессы, теплопроводность и диффузия, электромагнитное 

поле, уравнения Максвелла. 

2. Краткое содержание вопросов: 
1. Возможности математического моделирования физических процессов. 

 Многие явления природы описываются функциями нескольких переменных. При 

нахождении этих функций необходимо решать дифференциальные уравнения  в частных 

производных. Поэтому в настоящее время сложился класс наиболее изученных 

дифференциальных уравнений, который является важным в системе человеческого 

знания. Это класс уравнений математической физики. 

 Математическая физика рассматривает идеализированные величины, 

отвлекаясь от ряда конкретных свойств этих величин. Поэтому эти величины 

описываются канонической формой дифференциальных уравнений в частных 

производных. Это позволяет в сложных явлениях выделить существенные стороны, 

отбрасывая то, что является второстепенным.  

 Предметом математической физики является изучение связей  между 

идеализированными явлениями, описываемыми при помощи функций нескольких 

переменных. Иначе, математическая физика изучает математические модели физических 

явлений на основе теории дифференциальных уравнений в частных производных. 

Причем, постановка задач основывается на физических соображениях и в каждом 

конкретном случае решение задачи, получаемое математическими  методами, должно 

иметь вполне определенную физическую интерпретацию. 

 Задачами математической физики успешно занимались Эйлер, Пуассон, 

Фурье, Коши, Дирихле. Существенный вклад в становление и развитие этого раздела 

математики внесли наши соотечественники Остроградский, Ковалевская, Стеклов, а 

позднее - советские ученые Петровский, Тихонов, Самарский, Фок, Ладыженский.  

Определение. Дифференциальным уравнением в частных производных называется 

уравнение, связывающее искомую функцию и ее частные производные ? @�, �, A, … 
, B, CBC� , CBC� ,… CBC
 , C�BC�< , C�BC�� , … C�BC
� D = 0 

 Из определения уравнения в частных производных следует, что искомая 

функция Uзависит от нескольких переменных x, y, z … t, т.е. U=U(x,y,z,…t). Будем 

рассматривать те дифференциальные уравнения, где искомая функция зависит максимум 

от четырех аргументов, три из которых, как правило, будут  x, y, z – декартовые 

прямоугольные координаты, а четвертый аргумент t будет истолкован как время. 

 Порядок уравнения определяется порядком старшей производной. 

 Дифференциальное уравнение в частных производных называется 

линейным, если искомая функция и ее частные производные входят в уравнения линейно.  

Пусть D – область n-мерного пространства R
n
точек х=(х1,х2,…,хn), где n≥2. 

Наиболее общее уравнение в частных производных k-порядка от nнезависимых 

переменных  х1,х2,…,хnможно записать в следующем виде 

0,...)
...

,...,,...,,),(,,...,,(
21

2121

21 =
∂∂∂

∂
∂
∂

∂
∂

∂
∂

nk

n

kk

k

n

n
xxx

u

x

u

x

u

x

u
xuxxxF      (1) 

где k1+ k2+…+ kn=k, u=u(х)=u(х1,х2,…,хn) – неизвестная функция,  )( ixF -заданная 

функция от своих аргументов. D -область задания уравнения (1). 

Пример.  
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1. 0... 2

21
=++++ uuuu

nxxx – уравнение 1-ого порядка; 

2. 0sin......
212211 21 =++++++++ uuxuxuxuuu

nnn xnxxxxxxxx
   уравнение 2-ого порядка; 

3. )cos( 2131213211
xxuuuu xxxxxxxx =++⋅ – уравнение 3-ого порядка. 

Определение. Уравнение в частных производных называется уравнением k-ого 

порядка, если оно содержит хотя бы одну частную производную k-го порядка и не 

содержит производных более высокого порядка. 

Определение. Определенная в области D функция u(х)=u(х1,х2,…,хn), непрерывная 

вместе со своими частными производными, входящими в это уравнение, и обращающая 

его в тождество по независимым переменным х1,х2,…,хn, называется  решением 
дифференциального уравнения (1). 

2. Физические задачи, приводящие к уравнениям в частных производных. 

3. Колебательные процессы, теплопроводность и диффузия, электромагнитное 

поле, уравнения Максвелла. 

 Многие задачи механики и физики приводят к исследованию дифференциальных 

уравнений с частными производными второго порядка. Так, например: 1) при изучении 

различных видов волн − упругих, звуковых, электромагнитных, а также других 

колебательных явлений мы приходим к волновому уравнению; 

2) процессы распространения тепла в однородном изотропном теле, так же как и 

явления диффузии, описываются уравнением теплопроводности; 

3) при рассмотрении установившегося теплового состояния в однородном 

изотропном теле мы приходим к уравнению Пуассона.   

При отсутствии источников тепла внутри тела уравнение  переходит в уравнение 

Лапласа.  Потенциалы поля тяготения и стационарного электрического поля также 

удовлетворяют уравнению Лапласа, в котором отсутствуют массы и, соответственно, 

электрические заряды. Уравнения 1) – 3) называют основными уравнениями 

математической физики. Их подробное изучение дает возможность построить теорию 

широкого круга физических явлений и решить ряд физических и технических задач. 

Функция u = u(x, y,z) , удовлетворяющая какому-либо из уравнений, называется его 

решением. 

Волновые процессы:  колебания сред, сооружений, электрические, звуковые, 

электромагнитные колебания. Диффузионные процессы:  тепломассоперенос 

(температура, диффузия газов).Стационарные процессы: стационарное распределение 

температуры, установившиеся колебания сред, задачи дифракции, потенциальное течение 

жидкости, электростатический потенциал. 

 

1. 3  Лекция №3 ( 2 часа). 
Тема: «Канонические формы и классификация уравнений второго порядка» 
 

1.3.1 Вопросы лекции: 
1. Основные понятия. 

2. Уравнения в частных производных второго порядка в случае двух независимых 

переменных. 

3. Классификация уравнений второго порядка. 

2. Краткое содержание вопросов: 
1. Основные понятия. 

2. Уравнения в частных производных второго порядка в случае двух независимых 

переменных. 

Определение. Дифференциальным уравнением в частных производных называется 

уравнение, связывающее искомую функцию и ее частные производные 



11 

 

? @�, �, A, … 
, B, CBC� , CBC� ,… CBC
 , C�BC�< , C�BC�� , … C�BC
� D = 0 

 Из определения уравнения в частных производных следует, что искомая 

функция Uзависит от нескольких переменных x, y, z … t, т.е. U=U(x,y,z,…t). Будем 

рассматривать те дифференциальные уравнения, где искомая функция зависит максимум 

от четырех аргументов, три из которых, как правило, будут  x, y, z – декартовые 

прямоугольные координаты, а четвертый аргумент t будет истолкован как время. 

 Порядок уравнения определяется порядком старшей производной. 

 Дифференциальное уравнение в частных производных называется 

линейным, если искомая функция и ее частные производные входят в уравнения линейно.  

Пусть D – область n-мерного пространства R
n
точек х=(х1,х2,…,хn), где n≥2. 

Наиболее общее уравнение в частных производных k-порядка от nнезависимых 

переменных  х1,х2,…,хnможно записать в следующем виде 

0,...)
...

,...,,...,,),(,,...,,(
21

2121

21 =
∂∂∂

∂
∂
∂

∂
∂

∂
∂

nk

n

kk

k

n

n
xxx

u

x

u

x

u

x

u
xuxxxF      (1) 

где k1+ k2+…+ kn=k, u=u(х)=u(х1,х2,…,хn) – неизвестная функция,  )( ixF -заданная 

функция от своих аргументов. D -область задания уравнения (1). 

Пример.  

4. 0... 2

21
=++++ uuuu

nxxx – уравнение 1-ого порядка; 

5. 0sin......
212211 21 =++++++++ uuxuxuxuuu

nnn xnxxxxxxxx    уравнение 2-ого порядка; 

6. )cos( 2131213211
xxuuuu xxxxxxxx =++⋅ – уравнение 3-ого порядка. 

Определение. Уравнение в частных производных называется уравнением k-ого 

порядка, если оно содержит хотя бы одну частную производную k-го порядка и не 

содержит производных более высокого порядка. 

Определение. Определенная в области D функция u(х)=u(х1,х2,…,хn), непрерывная 

вместе со своими частными производными, входящими в это уравнение, и обращающая 

его в тождество по независимым переменным х1,х2,…,хn, называется  решением 
дифференциального уравнения (1). 

Если размерность пространства 
nR  равна 2, то, в дальнейшем, будем записывать 

так ., 21 yxxx == Если n=3, то .,, 321 zxyxxx ===  

Пример. Проверить, являются ли следующие функции:  

а) ( )
2

2

2

2

,,
z

y

y

x
zyxu += ;  б) xyzu =  решениями уравнения 0=

∂
∂

+
∂
∂

+
∂
∂

z

u
z

y

u
y

x

u
x     в 

области: x>0, y>0, ,z>0. 

Решение: вычислим ux, uy, uz 

3

2

23

2

2

2
,

22
,

2

z

y

z

u

z

y

y

x

y

u

y

x

x

u
−=

∂
∂

+−=
∂
∂

=
∂
∂ . 

Подставив в исходное уравнение, получим 

0
2222

2

2

2

2

2

2

2

2

=−+−=++
z

y

x

y

y

x

y

x
zuyuxu zyx

. 

Следовательно: функция 
2

2

2

2

z

y

y

x
u +=  в указанной области является решением 

данного уравнения. 

Также найдем частные производные: ux=yz; uy=xz; uz=xy и подставим в исходное 

уравнение: 

03 ≠=++ xyzzuyuxu zyx
 при x>0,y>0,z>0. 
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Вывод: функция u=xyz не является решением исходного уравнения при 

x>0,y>0,z>0. 

Дифференциальное уравнение в частных производных так же, как и обыкновенное 

дифференциальное уравнение, в большинстве случаев, имеет бесконечное множество 

частных решений, то есть определяет некоторое семейство функций, удовлетворяющих 

данному уравнению. 

Совокупность таких функций образует общее решение дифференциального 

уравнения в частных производных. 

Между общими решениями обыкновенного дифференциального уравнения и 

общими решениями дифференциального уравнения в частных производных имеется 

существенное различие. 

Как известно, общее решение обыкновенного дифференциального уравнения 

),,( yyxfу ′=′′ , где у=у(х) представляет собой семейство функций, зависящее от 2-х 

произвольных постоянных: ),,( 21 cсxу ϕ= . 

Например,  рассмотрим ЛОДУ второго порядка 04 =+′′ уу . Запишем общее решение 

xCxСу 2sin2cos 21 += , где С1,С2 – произвольные постоянные. Для их нахождения 

достаточно задать начальное условие: 0)0( =у , 1)0( =′у . Получим С1=0, С2=
2

1
. 

Следовательно, xху 2sin
2

1
)( = - частное решение данного уравнения. 

Рассмотрим  теперь любое дифференциальное уравнение в частных производных 

первого порядка с двумя независимыми переменами х и у, не содержащее производной 

либо по х, либо поу. 

Пусть 0,,, =







∂
∂

x

u
uyxF  

При вычисление yyxu →),(  считаем фиксированной (постоянной). 

При фиксированному исходное дифференциальное уравнение можно 

рассматривать как обыкновенное дифференциальное уравнение с искомой функцией u и 

независимой переменной х. 

Пусть общее решение обыкновенного дифференциального уравнения определяется 

по формуле  

),,( cyxu ϕ= . 

Это решение содержит у как параметр и оно при постоянном С является решением 

исходного дифференциального уравнения. 

Для того, чтобы полученная функция ),,( cyxu ϕ=  была решением исходного 

дифференциального уравнения в частных производных необходимо и достаточно, чтобы 

С было постоянным относительно х, то есть она может быть любой функций от у. 

Тем самым получим наиболее общее решение дифференциального уравнения в 

частных производных первого порядка, если поставим вместо С произвольную функцию 

от у, например, )( уψ : 

)).(,,( yyxu ψϕ=  

Таким образом, общее решение дифференциального уравнения в частных 

производных первого порядка содержит одну произвольную функцию из класса С(R) 

непрерывных функций. 

Исходя из общего решения дифференциального уравнения в частных производных, 

можно найти частное решение. Для этого надо найти конкретный вид функции f и g на 

основании заданных условий рассматриваемой задачи. 

Надо отметить, что только  для малого числа дифференциальных уравнений в 

частных производных удается построить в явном виде общее решение. В теории 

дифференциальных уравнений в частных производных созданы методы 
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непосредственного нахождения частных решений дифференциальных уравнений, 

удовлетворяющих определенным начальным и граничным условиям. 

3. Классификация уравнений второго порядка. 

 Классификация уравнений в частных производных Уравнения с частными 

производными можно классифицировать по разным признакам. Например: 

1. По порядку уравнений: Ut=Uxx (уравнение 2-го порядка), Ut=Ux(уравнение 1-го 

порядка),      Ut=Uxxx + sinx (уравнение третьего порядка). 

2.По числу независимых переменных: Ut=Uxx (уравнение с 2-мя переменными),   

- уравнение с тремя переменными. 

3. ДУ с частными производными могут быть линейными и нелинейными. 
Линейные уравнения в свою очередь бывают однородными и неоднородными. 

4. ЛДУ 2-го порядка классифицируются по типу (в области D): 
а) гиперболический; б) эллиптический; в) параболический тип; 

  г) смешанный тип, если в области D уравнение имеет разный тип в разных точках. 

Замечания. 

1. Уравнения с постоянными коэффициентами имеют один тип на всей области 

определения. Так, например, волновое уравнение на плоскости и в пространстве имеет 

гиперболический тип, уравнение теплопроводности на плоскости и в пространстве - 

параболический тип, а уравнение Лапласа - эллиптический тип. 

2. Классификация ЛДУ с большим числом переменных почти аналогична. 

Зачем нужно классифицировать и приводить уравнения к каноническому 
виду? 

1. Типом уравнения определяются основные свойства решений. 

2. Три типа уравнений соответствуют трем видам физических процессов- 

волновым, диффузионным и стационарным. 

3. Канонические уравнения хорошо изучены. Уравнение общего вида сводится 

к каноническому уравнению. Часто можно найти его решение аналитически и вернуться к 

прежним переменным. 

4. Для канонических уравнений разработаны численные методы решения. 

Дифференциальное уравнение в частных производных называется линейным, если 

искомая функция и ее частные производные входят в уравнения линейно.  

 Если искомая функция U   зависит от двух аргументов x и y, то линейное 

дифференциальное уравнение в частных производных второго порядка имеет следующий 

вид: E F�GF�� + 2H F�GF�F� + = F�GF�� +I FGF� + J FGF� + KB + 
 = 0                    (1.1) 

 Под коэффициентами  a, b, c … p понимаются дважды дифференцируемые 

функции от x и y. Особо важным является случай, когда коэффициенты постоянны. 
Мы будем изучать преимущественно такие уравнения. 

Итак, пусть дано дифференциальное уравнение (1.1)  с постоянными 

коэффициентами, которое для краткости запишем в виде  LM)) + 6NM)O + 4MOO + PQ), O, M, M), MOR = (                    (1.2) 
 
Если (H)� − ES > 0, то дифференциальное уравнение (1.2) является 

дифференциальным уравнением гиперболического типа. 

Если (H)� − ES = 0, то дифференциальное уравнение (1.2) является 

дифференциальным уравнением параболического типа. 
Если (H)� − ES < 0, то дифференциальное уравнение (1.2)  является 

дифференциальным уравнением эллиптического типа. 
Чтобы уравнение (1.2) привести к каноническому виду  (форме), надо составить его 

характеристическое уравнение, а, именно, 
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E(V�)� − 2HV�V� + S(V�)� = 0 

 Тогда, W(�, �) = =� и 2),( Cyx =  - общие интегралы характеристического 

уравнения. Интегралы W(�, �) = =� и 2),( Cyx =  называются уравнениями характеристик 

дифференциального уравнения (1.2) , при этом W(�, �) = =� - это уравнения первого 

семейства характеристик,     2),( Cyx =     - уравнение второго семейства характеристик,   

аX = W(�, �)и Y = ѱ(�, �)-характеристические координаты.Для уравнений с 
постоянными коэффициентами всегда существует линейная замена 
переменных ξ=ax+by, η=cx+dy, с помощью которой уравнение можно привести к 
каноническому виду.  

Замечание. В случае n>2 переменных уравнение второго порядка всегда можно 

привести к каноническому виду в любой точке, однако в области это не всегда можно 

сделать. 

Пример. Рассмотрим уравнение      yUxx + Uyy = 0 

Оно возникает в газовой динамике и называется уравнением Трикоми. Для этого 

уравнения выражение δ(x,y) = B2 - AC = -y.  

Тогда при y>0  выражение δ(x,y)<0  и уравнение имеет эллиптический тип. 

При y<0 выражение δ(x,y)>0, следовательно, уравнение гиперболического типа, а при y=0, 

соответственно,  δ(x,y)=0 и уравнение имеет параболический тип  
 

 

1. 4  Лекция №4 ( 2 часа). 
Тема: «Основные уравнения и основные задачи» 
 

1.4.1 Вопросы лекции: 
1. Основные уравнения. 

2. Постановка основных задач: задача Коши, краевые и смешанные задачи. 

3. Понятие корректной постановки задачи. 

2. Краткое содержание вопросов: 
1. Пример волнового уравнения (математическая модель колебаний струны). 
Рассмотрим струну длины l. Струной будем называть тонкую туго натянутую 

упругую нить. 

При построении математической модели колебаний струны будем рассматривать 

малые колебания, происходящие в одной и той же плоскости. Пусть в состоянии покоя 

струна расположена вдоль оси Ox на отрезке [0,l] и при колебании каждая точка 

перемещается перпендикулярно оси (поперечные колебания). Тогда отклонение любой 

точки струны в произвольный момент времени U есть функция U(x,t) (см. рис.). 

 

 
Рис.  

Предположим, что натяжение столь велико, что силой тяжести и сопротивлением 

при изгибе можно пренебречь. Кроме того, в силу малости колебаний, будем пренебрегать 

также величинами высшего порядка малости по сравнению с производной Ux. 

В том случае, когда на струну не действуют внешние силы, получается уравнение 
свободных колебаний струны 

Utt = a
2
Uxx 

Данное уравнение является одномерными волновыми уравнением. 
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Замечание. 

 Волновыми эти уравнения называются потому, что они описывают 

распространение слабых возмущений в упругой среде (т.е. механические колебания с 

малыми амплитудами), которые в физике называют волнами. Волновые уравнения 

возникают также в задачах об электрических колебаниях, в гидродинамике и акустике, в 

теории упругости, при изучении электромагнитных полей. 

2. Дифференциальные уравнения с частными производными, вообще говоря, 

имеют бесчисленное множество решений. Чтобы из этого множества выбрать то 

единственное решение, которое соответствует реальному физическому процессу 

(например, колебанию данной струны), надо задать некоторые дополнительные условия. 

 В теории уравнений с частными производными, как и в обыкновенных 

дифференциальных уравнениях, задаются условия, называемые начальными и краевыми 

(граничными) условиями. Начальные условия в математической физике соответствуют 

состоянию физического процесса в начальный момент времени, который обычно 

принимают за t=0. В результате возникает задача Коши. Однако здесь есть некоторые 

отличия. Во-первых, начальные условия задаются для нестационарных уравнений, то есть 

таких уравнений, которые описывают нестационарные (зависящие от времени) процессы. 

Такими уравнениями являются, к примеру, волновые уравнения и уравнения 

теплопроводности. Во-вторых, задача Коши для уравнений с частными производными 

имеет единственное решение только в том случае, когда соответствующее уравнение 

рассматривается или на всей прямой, или на всей плоскости, или во всем пространстве.  

Например, это может быть задача о колебании бесконечной струны или о 

распространении тепла в бесконечном стержне. На практике к таким задачам приходят в 

том случае, когда имеется очень длинная струна или очень длинный стержень и 

интересуются процессами, происходящими далеко от концов, а влиянием концов 

пренебрегают. Если взять, допустим, длинный провод и слегка качнуть его в середине, то 

по нему влево и вправо побегут волны. Картина начнет искажаться только тогда, когда 

волны дойдут до концов провода и, отразившись, пойдут обратно. Следовательно, не 

учитывая влияния концов, мы тем самым не будем учитывать влияния отраженных волн. 

Для волнового уравнения Utt = a
2
Uxx задаются два начальных 

условия U|t=0=φ(x), Ut|t=0=ψ(x). Иногда их записывают иначе: U(x, 0) = φ(х), Ut(x, 0) = ψ(х). 

Первое условие физически задает начальную форму струны (начальные отклонения точек 

струны), а второе условие - начальные скорости точек струны. В случае волнового 

уравнения Utt = a
2
∆U на плоскости или в пространстве задаются те же два начальных 

условия, только функции φ и ψ,соответственно, будут зависеть от двух или трех 

переменных. 

Если размеры струны или стержня не очень велики и влиянием концов нельзя 

пренебречь, то в этих случаях одни начальные условия уже не обеспечивают 

единственность решения задачи. Тогда необходимо задавать условия на концах. Они 

называются граничными условиями или краевыми условиями. Для уравнения колебаний 

струны часто задаются условия U|x=0 = 0,   U|x=l = 0. Иначе их записывают еще и 

гак: U(0,t)=0, U(l,t) = 0. Эти условия физическиозначают, что концы струны закреплены 

(то есть отклонения при х = 0 и при х = l в любой момент времени равны нулю). Можно 

задавать и другие условия на концах струны, например, Ux|х=0= 0 , Ux|х=l = 0. Такие условия 

возникают в следующей задаче. 

Пусть концы струны перемещаются вдоль вертикальных направляющих без 

трения. 
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Так как вертикальные силы, действующие налевый и правый концы струны, 

определяютя выражениями T0Ux(O,t) и T0Ux(l,t) (см рис.), то записанные выше условия 

означают, что на концы струны не действуют никакие силы(поэтому такие условия 

называют еще условиями свободных концов). 

3. Как было уже сказано, волновое уравнение Utt = a
2
Uxx описывает не только 

колебания струны, но и другие волновые процессы, к примеру, продольные колебания 

пружины, продольные колебания стержня, крутильные колебания вала. В этих задачах 

возникают граничные условия и других видов. Приведем основные типы граничных 

условий. Обычно рассматривают три типа: 

I. Граничные условия первого рода 

U|x=0 = g1(t), U|x=l = g2(t) 

Эти условия физически означают, что на концах заданы режимы колебаний. 

II. Граничные условия второго рода 

Ux|x=0 = g1(t), Ux|x=l = g2(t) 

Такие условия соответствуют тому, что на концах заданы силы. 

III. Граничные условия третьего рода 

(Ux-σ1U)|x=0 = g1(t) , (Ux –σ2U)|x=l = g2(t) 

Эти условия соответствуют упругому закреплению концов. 

Граничные условия называются однородными, если правые части g1(t) и g2(t) 

тождественно равны нулю при всех значениях t. Если хотя бы одна из функций в правых 

частях не равна нулю, то граничные условия называются неоднородными. 

  При постановке начальных и граничных условий возникает задача об отыскании 

решения дифференциального уравнения, удовлетворяющего заданным начальным и 

граничным (краевым) условиям. Для волнового уравнения, начальных 

условий U(x,0)=φ(x), Ut(x,0)=ψ(x) и в случае граничных условий первого рода, задача 

называется первой начально-краевой задачей для волнового уравнения. Если вместо 

граничных условий первого рода задавать условия второго  рода или третьего рода, то 

задача будет называться, соответственно, второй и третьей начально-краевой задачей. 

Если граничные условия на разных участках границы имеют различные типы, то такие 

начально-краевые задачи называют смешанными. 

  

1. 5  Лекция №5 ( 2 часа). 
Тема: «Задача Коши для одномерного волнового уравнения» 
 
1.5.1 Вопросы лекции: 
1. Постановка задачи Коши. 

2. Формула Даламбера, ее физический смысл. 

3. Неоднородное уравнение. Принцип Дюамеля.  

2. Краткое содержание вопросов: 
1. Каждое из уравнений, соответствующее основной задаче,   имеет бесчисленное 

множество решений. При решении конкретной физической задачи необходимо из этих 

решений выбрать то, которое удовлетворяет некоторым дополнительным условиям, 

вытекающим из физического смысла задачи.  
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 Поэтому в математической физике находят решения дифференциального 

уравнения в частных производных, удовлетворяющие некоторым дополнительным 

условиям. Таким образом,  дополнительными условиями являются граничные условия, 

т.е. условия, заданные на границе рассматриваемой среды, и начальные условия, 

относящиеся к одному какому-нибудь моменту времени, с которого начинается 

исследование данного физического явления. Совокупность граничных и начальных 

условий называется краевыми условиями. 

 Следовательно, для одного и того же дифференциального уравнения в 

частных производных может быть поставлено  несколько краевых задач. Например, 

рассмотрим уравнение колебания струны, т.е. волновое уравнение V�BV
� = E� V�BV��  

 Искомая функция U(x,t), являясь  решением, выражает смещение точки 

струны. Таким образом, будет бесчисленное множество решений. Найти нужно только 

одно. Для этого надо знать начальное положение струны, т.е. U(x, t)�]+ = W(�), U(x, t)�]+ = ^(�). 
 В связи с этим мы получаем следующую задачу: найти в области 
 > 0 

решениеB(�, 
)дифференциального уравнения, удовлетворяющее следующим начальным 

условиям:  U(x, t)�]+ = W(�), 					U(x, t)�]+ = ^(�) 
Сформулированная задача называется задачей Коши. 

 Если струна  lограничена, то начальных условий мало, так как концы струны 

могут или быть закреплены, или двигаться по определенному закону. 

 Если концы струны закреплены, то это условие пишется так: U(x, t)�]+ = 0;       0 ≤ � ≤ ` ;U(x, t)�]a = 0 ;        
 > 0 

 В этом случае краевая задача ставится так: найти решение U(x, t) уравнения, 

удовлетворяющее граничным  условиям U(x, t)�]+ = 0;   U(x, t)�]a = 0 

и начальным условиям U(x, t)�]+ = W(�), 0 ≤ � ≤ `
 > 0; U(x, t)�]+ = ^(�), 	0 < � < `
 > 0 

Эта задача называется смешенной задачей Коши. 

 

2.    Выражение     называется формулой Даламбера. 
Использование формулы Даламбера в качестве общего решения волнового 

уравнения называется методом Даламбера. 

 

 Формула называется решением Даламбера задачи Коши для колебаний струны. 

U(x,t) теперь удовлетворяет начальным условиям. 

 Однако, часто рассматриваются задачи, в которых функции  (х) и  (х) не 

удовлетворяют указанным условиям. Несмотря на это, функцию U(x,t) все равно считают 

решением задачи Коши. Объясняется это тем, что всегда можно немного(чуть-чуть) 

изменив начальные условия добиться того, чтобы  (х) и (х) стали достаточно 

гладкими. Если малые изменения любого из начальных условий вызывают, 

соответственно, малые изменения решения, это указывает на устойчивость решения, т.е. 

на то, что задача поставлена корректно. 

 Данное замечание позволяет не требовать при рассмотрении примеров и 

задач того, чтобы начальные условия обязательно удовлетворяли условиям 

непрерывности и дифференцируемости.         
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Физический смысл решения 
  Начнем с функции (x-at) и построим ее график при возрастающих значениях 

 и т.д.  . 

 
 

 Тогда второй график будет сдвинут вправо относительно первого на 

величину , третий – на и т.д., т.е. график “побежит” вправо. Процесс перемещения 

отклонения называется волной. Скорость волны . 

 Второе слагаемое  будет также представлять волновой процесс, но только 

волна будет распространяться влево. 

 Теперь перейдем к исследованию решения, т.е. 

U(x,t)=
��(W(x-at)+	W(x+at) +

��b c d�-b��/b� (x)dx). 

Рассмотрим два случая : 

1) отсутствуют начальные скорости (d(�) = 0). 
2) отсутствуют начальные отклонения (W(�) = 0). 
 Общий случай будет являться результатом наложения (суперпозиции) обоих 

случаев. 

 Случай 1): пусть начальные скорости точек струны равны нулю и струна 

колеблется в результате начального отклонения, равного  W(х). Тогда   U(x,t)=
��W(x-

at)+
��W(x+at).    Так как   W(�) известна, то можно вычислить значения U(x,t)  для любых x 

и t. Колебания U(x,t) ,  как было установлено, будут складываться из двух волн:  

первая волна 
��W(x-at)  распространяется  вправо, а вторая волна 

��W(x+at) 

распространяется с той же скоростью влево.  

 Вначале профили обеих волн совпадают. Изобразим геометрически 

изменение формы струны в любой момент времени t.   Предположим, что в начальный 

момент функция   W(�)    отлична от нуля только на некотором интервале (-`;`) и явлется 

четной. Тогда W(�)=0 при x< -	` и при x>	`. В левом столбце  изобразим волну  
��W(x+at)   в 

разные моменты времени, а в правом столбце – в  те же моменты времени волну  
��W(x-at) . 

В среднем столбце изобразим сумму этих волн, т. е. результирующее отклонение струны.  

 Из геометрического изображения видно, что до тех пор, пока  t<
fb      есть 

участок, где обе волны накладываются друг на друга, начиная с  
 = gb , эти волны уже не 

накладываются, а расходятся в разные стороны.  

ϕ

210 ,,: ttttttt === ...210 <<< ttt

1at 2at

p

T
aV ==

)( atx +ϕ
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  Установим характер колебания струны с фиксированной абсциссой х. 

Если х>	` , то в начальный момент точка струны лежит на оси абсцисс и не участвует в 

начальном отклонении.  

 Волна, бегущая вправо, дойдет до этой точки в момент времени   
� = �/gb   и 

с этого момента точка начинает колебаться. Как только волна пройдет через эту точку, т.  

е. начиная с момента   
� = �-gb , она будет снова находиться в покое.  

 Случай 2): пусть теперь равны нулю начальные отклонения точек струны и 

струна колеблется в результате того, что по ней распространяются волныимпульса. 

Учитывая, что в этом случае  W(�) = 0,  получаем:    

U(x,t)=
��b c d�-b��/b� (x)dx 

 Полагая,  что 
��b c d�+ (x)dx = Ф(х)     - интеграл с переменным верхним 

пределом, соотношение  преобразуем к виду: U(x,t)=Ф(х+at)-Ф(x-at)      

 Решение U(x,t), как и в первом случае, складывается из двух волн  B� =−Ф(х − E
) иB� = Ф(х + E
).  Форма первой из них определяется уравнением B� =−Ф(х), а второй уравнением B� = Ф(х). В результате в начальный момент   U(x,0)=0. 

 Чтобы наглядно представить себе картину процесса, будем считать ( для 

простоты),  что	d(�) = 0     всюду вне интервала (-`;`)	, а в точках этого интервала 

принимает постоянное значение d(0) = i+.  Другими словами, точкам струны,  лежащим 

в интервал (-`;`), придана начальная скорость i+, направленная вверх. При этом 

функцияd(�)в точках х =	±`   имеет разрывы. 

    Функция Ф(х) принимает следующие значения:  

Ф(х) = 
��b c k+�+ V� = lm��b , если −` ≤ � ≤ `.  

Ф(х) = 
��b c k+f+ V� = lmf�b=

n�, если х>	`. 
Ф(х) = 

��b c k+/f+ V� = − lmf�b= - -
n�, если х<−`,где   

lmfb = ℎ .  

Функция Ф(х) непрерывная и нечетная. 
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  1.6  Лекция № 6 (2 часа ) 
Тема: «Уравнение теплопроводности» 
1.6.1  Вопросы лекции: 
1. Постановка задачи Коши. 

2. Постановка смешанной задачи. 

3. Уравнение теплопроводности. Принцип максимума. 

2. Краткое содержание вопросов: 
1.2. Найдем решение уравнения теплопроводности  B� = E�B+ в области 
 > 0, 0 ≤� ≤ 1, удовлетворяющее граничным условиям B(
, 0) = 0, B(1, 
) = 0 
и начальным условиям B(�, 0) = Bf]+ = W(�), W(0) = W(`) = 0. 
 Решим данную задачу методом разделения переменных. Ищем частные 

линейно независимые, следовательно, не нулевые решения уравнения теплопроводности в 

виде B(�, 
) = *(�) ∗ q(
), 
удовлетворяющие граничным условиям. 

 После подстановки в уравнение имеем *(�) ∗ q ,(
) = E�*�(�)q(
). 
 Откуда  

r,(�)r(�) = E� s"(�)s(�) = −E�,� = StJu
 и получаем два линейных 

дифференциальных уравнения  q ,(
) + E�,�q(
) = 0;	*"(�) + ,�*(�) = 0. Решения этих 

уравнений имеют вид:  q(
) = S;/b�v��; *(�) = 8Stu,� + 9uwJ,�, где A, B, C –

постоянные. 

 Из условий  следуют граничные условия для функции  X(x): X(0)=0 и X(l)=0. 

Используя эти граничные условия, приходим к системе: x 0 = 80 = 8 cos ,` + 9 sin ,`� 
Так как 9 ≠ 0, то  sin ,` = 0.  

 В результате получаем систему собственных чисел данной краевой раздачи 

для уравнения *" + ,�* = 0. 
 Это будут ,� = �f , ,� = ��f , ,< = <�f , . . .		 , ,� ��f .  Соответствующая система 

собственных функций имеет вид:  *�(�) = sin �f �, *�(�) = sin ��f �,… , *�(�) = sin ��f �,… . 
 Обозначая B*C= ak , получаем искомое частное решение Un(x,t), а именно        

Un(x,t)=an;/(���� )� ∗ sin ��f �. 
 Общее решение уравнения теплопроводности будет представлено рядом 

B(�, 
) = 	�B�(�, 
) = 	�E�;/(���� )� ∗ sin J�̀ �.�
�]�

�
�]�  

 Легко убедиться непосредственно подстановкой ряда  в уравнение, что этот 

ряд удовлетворяет данному уравнению. Используя начальное условие,  определяем 

коэффициент  an. Действительно, при t=0 имеем 

W(�) = �E� ∗ sin J��` ,�
�/�  

где 0 ≤ � ≤ `. 
 Полученное соотношение  показывает, что коэффициенты an (n=1,2,3…) 

являются коэффициентами разложения в ряд Фурье функции W(�).  Поэтому  находим их 

по известным формулам:  
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E� = 2̀�W(�) sin J��` V�.f
+  

Таким  образом, решение поставленной задачи определено в виде ряда, 

коэффициенты которого вычисляются по формулам. Задача решена. 

Замечание. Если граничные условия заданы в виде 
�G�� : �]+ = �G��: �]� = 0, то 

решение задачи имеет вид: B(�, 
) = ∑ E�;/(���� )� ∗ cos ���f + E+,��]�  

где E� = �f c W(�) cos ���f V�;	E+ = �ff+ c W(�)V�f+ . 

3. Если стержень является неограниченным, то задача ставится так. 

Найти U(x,t) решение уравнения теплопроводности  при 
 > 0	и	 − ∞ < � < ∞, 
удовлетворяющее начальному условию B(�, 0) = 	W(�) − ∞ < � < ∞. 

Применив метод Фурье, получаем решение этой задачи в виде 

B(�, 
) = 12E√�
 � W(�);/(���)����� V�.�
/�  

Если стержень ограничен с одной стороны, то задача ставится так. Найти U(x,t) 

решение изучаемого уравнения при 
 > 0, 0 ≤ � < ∞, удовлетворяющее начальному 

условию B(�, 0) = 	W(�) и граничному условию U(0,t)=f(t). 

Применив метод Фурье, решение этой задачи получаем в виде:  

B(�, 
) = 12E√�
� W(�) @;/(���)����� − ;/(���)����� DV� + 12E√�
�
(Y);/ �����(���) ∗ (
 − Y)/<2VY.�
+

�
+  

Задача. Найдите  решение уравнение Ut=a
2
Ux , если начальное распределение 

температуры стержня определяется равенством: B(�, 
)�]+ = W(�) = > B+,			если	�� < � < ��0,			если	� < ��или	� > �� � 
Решение. Решение уравнения запишется в виде: 

B(�, 
) = 12E√�
 � W(�);/(���)����� V��
/�  

В виду того, что функцияW(�)в интервале (x1,x2) равна постоянной температуре U0, 

а вне интервала равна  нулю, то U(x,t) имеет вид: 

(�, 
) = B+2E√�
 � W(�);/(���)����� V�.��
��

 

Полученный результат можно преобразовать, если использовать интегральную 

функцию Лапласа:�(A) = �√�c ;/��V��+ . 
Тогда, полагая 

�/��b√� = �, V� = −2E√
V�,,   получим: 

 

B(�, 
) = − B+√� � ;/��V�
������√�

������√�
= B+√� � ;/��V�

������√�
+ − B+√� � ;/��V� = B+2 �� �� − ��2E√
 � − � �� − ��2E√
 ��

������√�
+  

Для функции Ф(z) имеются специальные таблицы значений. 
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1.7  Лекция № 7 (2 часа ) 
Тема: «Метод разделения переменных решения краевых задач» 
1.7.1  Вопросы лекции: 
1. Основные понятия. 

2. Общая схема метода. 

3. Примеры. 

2. Краткое содержание вопросов: 
1.-.3. Метод Фурье разделения переменных, который играет большую роль в 

задачах колебаний и теплопроводности, применяется так же к решению уравнения 

Лапласа и задачи Дирихле для простых областей, таких как круг (шар), прямоугольник и 

другие. 

 Пусть в плоскости XOY имеется круг радиуса R с центром в начале 

координат и на его окружности задана некоторая функция ƒ(φ), где φ – полярный угол.  

 Требуется найти функцию U (r,φ), непрерывную в круге, включая границу, 

удовлетворяющую внутри круга уравнению Лапласа 

Uxx – Uyy= 0,                                       

а на окружности круга принимающую заданные значения                                          

U| r = R = ƒ(φ)                                      

 Будем решать задачу в полярных координатах (запишем таким образом 

уравнение Лапласа):  

r
2
Urr _+ rUr + U φφ = 0                               

 Будем искать решение уравнения  методом разделения переменных, 

согласно которому 

U = Ф(φ)R(r) 

 Подставим, получим: 

r
2
Ф(φ)R" (r) + rФ(φ)R´(r) + Ф" ( φ) = 0 

или 

   

 Так как левая часть равенства  не зависит от r, а правая – отφ, то, 

следовательно, они равны некоторому числу, которое обозначено -k
2
. Отсюда следует, что 

равенство  даёт два уравнения: 

Ф" ( φ) + k
2
 Ф( φ) = 0 

r
2
R" (r) + rR´(r) – k

2
R(r) = 0 

 Если k=0, то решение уравнения  будет иметь вид: 

Ф( φ)= A0+ B0 φ,                                       

а решение уравнения  имеет вид 

R(r) = C0 + D0 lnr 

Если k<0, то решение уравнения  принимает вид            

Ф( φ) = A cos k φ + B sin k φ 

 Решение уравнения  при k>0 будет искать в виде R(r) = r
m
. Подставив R(r) = 

r
m

 , получаем  

r
2
m (m-1) r

m-2
 + rmr

m-1 
– k

2 
r

m
 = 0 

или                            m
2
 – k

2 
= 0 m = k. 

 Следовательно,  R(r) = r
k
C + Dr

-k
. 

 Заметим, что U(r, φ) как функция от φ, является периодической функцией с 

периодом 2 , так как величины U(r, φ) и U(r, φ + 2 ) соответствуют однозначной 

функции в одной и той же точке. Поэтому в (6.6) B0 = 0, а в (6.8) k может иметь одно из 

значений 1,2,3,…(k>0). Далее  D=0, так как в противном случае функция U имела бы 

разрыв, в точке r = 0 и не была бы гармонической в круге. 

k
r

rR

rRrrR 2

2

)(

)()(

)(

)("
−=

′+′′
=

Φ
Φ

φ
φ

⇒ ±

π π
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 Итак, получено бесчисленное множество частных решений уравнения      r
2 

Urr+ rUr +Uφ φ= 0, которые непрерывны в круге. Эти решения можно записать, изменив 

несколько обозначения 

U0(r, φ) = , 

Un(r, φ) = (An cos n φ + Bn sin n φ) r
n
 (n = 1,2,3…).   

  Составляем теперь функцию U(r, φ) 

Un(r, φ) = (Ancos n φ + Bnsin n φ)r
n
 

 Функция U(r, φ), определяемая соотношением, вследствие линейности и 

однородности уравнения Лапласа также будет решением Лапласа. Определяем теперь A0, 

An, и Bn так, чтобы эта функция удовлетворяла условию U|r=R= ƒ(φ), а именно 

                    ƒ(φ) = (Ancosn φ + Bnsinn φ)r
n
 . 

 Полученное выражение  представляет собой разложение функции ƒ(φ) в 

промежутке [ ]. Поэтому, в силу известных в этом случае формул, находим  

A0 = (t) dt; An =  (t) cosntdt; Bn = (t) sinntdt.  

 Таким образом, ряд с коэффициентами, вычисленными по формулам, будет 

решением поставленной задачи, при этом он допускает почленное двукратное 

дифференцирование по r и поφ. 

 Подставив выражения коэффициентов  и проведя тригонометрические 

преобразования, получим  

U(r, φ) = (t) dt + (t) cos n(t- φ) dt( )
n  

=  

= (t) dt 

 Теперь преобразуем выражение, стоящее в квадратных скобках: 

dt=1+ = 

1+ =1+ = 

= . 

 Замечание. В процессе преобразования использовалась сумма бесконечной 

геометрической прогрессии, знаменатель которой есть комплексное число, модуль 

которого меньше единицы. Эта формула суммы геометрической прогрессии выводится 

так же, как и в случае действительного аргумента. Здесь аргументом является n. 

 Заменяя выражение, стоящее в квадратных скобках в формуле, на 

соотношение, получаем 

U(r, φ)= ƒ(t)  

2

0А

∑
∞

=

+
1

0

2 n

A

∑
∞

=

+
1

0

2 n

A

ππ ,−

∫
−

π

ππ
ƒ

1
∫
−

π

ππ
ƒ

Rn

1
∫
−

π

ππ
ƒ

Rn

1

∫
−

π

ππ
ƒ

2

1
∫∑
−

∞

=

π

π

ƒ
1n R

r

∫
−

π

ππ
ƒ

2

1












−






+ ∑

∞

=

)(cos21
1

ϕtn
R

r
n

n












−






+ ∑

∞

=

)(cos21
1

ϕtn
R

r
n

п

[ ])()(

1

ϕϕ −−−
∞

=

+





∑ tntm

n

n

ee
R

r


















 −+






 −−

∞

=
∑

n

tt

n

tt

n

e
R

r
e

R

r )()(

1

ϕϕ

)(

)(

)(

)(

11 ϕ

ϕ

ϕ

ϕ

−

−

−

−

−+

−
+

− tt

tt

tt

tt

e
R

r

e
R

r

e
R

r

e
R

r

2

2

)cos(21

1







+−−







−

R

r
t

R

r

R

r

ϕ
22

22

)cos(2 rtRR

rR

+−−
−

ϕ

∫
−

π

ππ2

1
.

)cos(2 22

22

dt
rtRR

rR

+−−
−

⋅
ϕ



24 

 

 Интеграл  называется интегралом Пуассона. 

 

 

1.8  Лекция № 8 (2 часа ) 
Тема: «Численные методы решения обыкновенных дифференциальных 

уравнений» 
1.8.1  Вопросы лекции: 
1. Основные понятия. 

2. Методы решения для уравнений первого порядка ( Эйлера, Рунге-Кутта). 

3. Методы решения линейной краевой задачи для уравнений второго порядка 

(обзорно). 

2. Краткое содержание вопросов: 
1,2. Известные методы точного интегрирования дифференциальных уравнений 

позволяют найти решение в виде аналитической функции, однако эти методы применимы 

для очень ограниченного класса функций. Большинство уравнений, встречающихся при 

решении практических задач нельзя проинтегрировать с помощью этих методов. 

 В таких случаях используются численные методы решения, которые 

представляют решение дифференциального уравнения не в виде аналитической функции, 

а в виде таблиц значений искомой функции в зависимости от значения переменной. 

 Существует несколько методов численного интегрирования 

дифференциальных уравнений, которые отличаются друг от друга по сложности 

вычислений и точности результата. 

 Рассмотрим некоторые из них. 

Метод Эйлера. 

(Леонард Эйлер (1707 – 1783) швейцарский математик ) 

 

 Известно, что уравнение ),( yxfy =′  задает в некоторой области поле 

направлений. Решение этого уравнения с некоторыми начальными условиями дает 

кривую, которая касается поля направлений в любой точке. 

 Если взять последовательность точек х0, х1, х2, …. и заменить на 

получившихся отрезках интегральную кривую на отрезки касательных к ней, то получим 

ломаную линию.   

    y 

 

        M2 

            M1  M3 

                M0 

                       y0   M4 

 

    0    x0               x1     x2        x3      x4                       x 

 

 При подстановке заданных начальных условий (х0, у0) в дифференциальное 

уравнение ),( yxfy =′ получаем угловой коэффициент касательной к интегральной кривой 

в начальной точке  

).,( 000 yxfytg =′=α  

 Заменив на отрезке [x0, x1] интегральную кривую на касательную к ней, 

получаем значение  

).)(,( 010001 xxyxfyy −+=  

 Производя аналогичную операцию для отрезка [x1, x2], получаем: 

).)(,( 121112 xxyxfyy −+=  
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 Продолжая подобные действия далее, получаем ломаную кривую, которая 

называется ломаной Эйлера. 

 Можно записать общую формулу вычислений: 

 

).)(,( 1111 −−−− −+= nnnnnn xxyxfyy  

 

 Если последовательность точек хi выбрать так, чтобы они отстояли друг от 

друга на одинаковое расстояние h, называемое шагом вычисления, то получаем формулу: 

 

hyxfyy nnnn ),( 111 −−− +=  

 

Следует отметить, что точность метода Эйлера относительно невысока. Увеличить 

точность можно, конечно, уменьшив шаг вычислений, однако, это приведет к усложнению 

расчетов. Поэтому на практике применяется так называемый уточненный метод Эйлера 

или формула пересчета. 

Суть метода состоит в том, что в формуле hyxfyy ),( 0001 +=  вместо значения 

),( 000 yxfy =′  берется среднее арифметическое значений f(x0, y0) и f(x1, y1). Тогда 

уточненное значение: 

;
2

),(),( 1100

0

)1(

1 h
yxfyxf

yy
+

+=  

 

 Затем находится значение производной в точке ),( )1(

11 yx . Заменяя f(x0, y0) 

средним арифметическим значений f(x0, y0) и ),( )1(

11 yxf , находят второе уточненное 

значение у1. 
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 Затем третье: 
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и т.д. пока два последовательных уточненных значения не совпадут в пределах 

заданной степени точности. Тогда это значение принимается за ординату точки М1 

ломаной Эйлера. 

 Аналогичная операция производится для остальных значений у. 

Подобное уточнение позволяет существенно повысить точность результата. 

  

Метод Рунге – Кутта. 

Метод Рунге – Кутта является более точным по сравнению с методом Эйлера.  

Суть уточнения состоит в том, что искомое решение представляется в виде 

разложения в ряд Тейлора. 

...
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1 ++′′′+′′+′+=+
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h
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 Если в этой формуле ограничиться двумя первыми слагаемыми, то получим 

формулу метода Эйлера. Метод Рунге – Кутта учитывает четыре первых члена 

разложения. 

iiiiiii yy
h

y
h
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В методе Рунге – Кутта приращения ∆yi предлагается вычислять по формуле: 
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где коэффициенты ki вычисляются по формулам: 
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Пример. Решить методом Рунге – Кутта дифференциальное уравнение yxy +=′  

при начальном условии у(0) = 1 на отрезке [0; 0,5] с шагом 0,1. 

 

 Для i = 0 вычислим коэффициенты ki. 
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 Последующие вычисления приводить не будем, а результаты представим в 

виде таблицы. 
i xi k ∆yi yi 

 

0 

 

 

0 

1 0,1000  

0,1104 

 

1 2 0,1100 

3 0,1105 

4 0,1155 

 

1 

 

0,1 

1 0,1210  

0,1325 

 

1,1104 2 0,1321 

3 0,1326 

4 0,1443 

 

2 

 

0,2 

1 0,1443  

0,1569 

 

1,2429 2 0,1565 

3 0,1571 

4 0,1700 

 

3 

 

0.3 

1 0,1700  

0,1840 

 

1,3998 2 0,1835 

3 0,1842 

4 0,1984 

 

4 

 

0,4 

1 0,1984  

0,2138 

 

1,5838 2 0,2133 

3 0,2140 

4 0,2298 

5 0,5  1,7976 
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 Решим этот же пример методом Эйлера. 

Применяем формулу ).,( 111 −−− += nnnn yxhfyy  

 

;1),(,1,0 000000 =+=== yxyxfyx  

      ;1,0)(),( 0000 =+= yxhyxhf  

      .1,11,01),( 0001 =+=+= yxhfyy  

 

;2,1),(1,11,0 111101 =+=== yxyxfyx  

      ;12,0)(),( 1111 =+= yxhyxhf  

      .22,112,01,1),( 1112 =+=+= yxhfyy  

 

 Производя аналогичные вычисления далее, получаем таблицу значений: 
i 0 1 2 3 4 5 

xi 0,0 0,1 0,2 0,3 0,4 0,5 

yi 1 1,1 1,22 1,362 1,528 1,721 

 Применим  теперь уточненный метод Эйлера. 
i 0 1 2 3 4 5 

xi 0,0 0,1 0,2 0,3 0,4 0,5 

yi 1 1,1 1,243 1,400 1,585 1,799 

 

 Для сравнения точности приведенных методов численного решение данного 

уравнения решим его аналитически и найдем точные значения функции у на заданном 

отрезке. 

 Уравнение xyy =−′  является линейным неоднородным дифференциальным 

уравнением первого порядка. Решим соответствующее ему однородное уравнение. 

;;;;;0 ∫ ∫====′=−′ dx
y

dy
dx

y

dy
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dx

dy
yyyy  

;ln;lnln x
C

y
Cxy =+= ;xCey =  

 Решение неоднородного уравнения имеет вид .)( xexCy =  

;)()( xx exCexCy +′=′  

;)(;)(;)()()( xxxxx xexCxexCexCxexCexC −=′=′+=+′  
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Общее решение: ;1−−= xCey x
 

 C учетом начального условия: ;2;101 =−−= CC  

Частное решение: ;12 −−= xey x
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Для сравнения полученных результатов составим таблицу. 

 
i xi yi 

Метод Эйлера Уточненный 

метод Эйлера 

Метод Рунге - 

Кутта 

Точное 

значение 

0 0 1 1 1 1 

1 0,1 1,1 1,1 1,1104 1,1103 

2 0,2 1,22 1,243 1,2429 1,2428 

3 0,3 1,362 1,4 1,3998 1,3997 

4 0,4 1,528 1,585 1,5838 1,5837 

5 0,5 1,721 1,799 1,7976 1,7975 

 Как видно из полученных результатов метод Рунге – Кутта дает наиболее 

точный ответ. Точность достигает 0,0001. Кроме того, следует обратить внимание на то, 

ошибка (расхождение между точным и приближенным значениями) увеличивается с 

каждым шагом вычислений. Это обусловлено тем, что во – первых полученное 

приближенное значение округляется на каждом шаге, а во – вторых – тем, что в качестве 

основы вычисления принимается значение, полученное на предыдущем шаге, т.е. 

приближенное значение. Таким образом происходит накопление ошибки. 

  

1.9  Лекция № 9 (2 часа ) 
Тема: «Численные методы решения простейших задач математической 

физики» 
1.9.1  Вопросы лекции: 
1. Метод сеток. 

2. Разностные аппроксимации дифференциальных операторов. 

3. Понятие об устойчивости разностной схемы. Явные и неявные схемы. 

2. Краткое содержание вопросов: 
1. Предположим, что решается одномерная краевая задача, т. е. требуется 

определить функцию ϕ(x) , удовлетворяющую заданному дифференциальному уравнению 

на отрезке 0 ≤ x ≤λ вместе с надлежащими краевыми условиями при x = 0 и x =λ . 

Для решения этой задачи методом конечных разностей, прежде всего, 

производится дискретизация независимой переменной x , т. е. строится множество (сетка) 

N +1 дискретных равноотстоящих точек i x (i = 0, 1, 2, ... , N ) на отрезке 0 ≤ x ≤λ. 

Следующий шаг состоит в замене в дифференциальном уравнении членов, содержащих 

дифференцирование, членами, в которых используются только алгебраические операции. 

Этот процесс по необходимости включает аппроксимацию и может быть выполнен путем 

использования конечно-разностных аппроксимаций для производных функции 

Пользуемся разложением по формуле Тейлора.  Это приведет к аппроксимации разностью 

вперед для первой производной функции.  Погрешность данной аппроксимации имеет 

порядок O(∆x).  
Аналогичным образом, пользуясь разложением по формуле Тейлора, 

аппроксимацию разностью назад для первой производной функции,   которая имеет 

порядок погрешности O(∆x). Обе аппроксимации  имеют один и тот же порядок 

погрешности O(∆x) , который можно повысить,  получив аппроксимацию центральной 

разностью. 

Это представление должно быть лучше, чем аппроксимация разностями вперед и 

назад, т. е. чем меньше выбран шаг ∆x , тем численное решение будет ближе к точному 

решению. Аппроксимации производных более высоких порядков, если они потребуются, 

можно получить аналогичным образом. 

2. Предположим, что требуется аппроксимировать заданную функцию ϕ( x ) на 

некотором отрезке Ω(0≤ x ≤λ).  В задачах, описываемых дифференциальными 

уравнениями, необходимо найти решение, удовлетворяющее определенным краевым 
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условиям. Построим аппроксимирующую функцию, которая в точках x = 0 и x =λ 

принимает те же значения, что и ϕ( x ).  
Если найти некоторую функцию ψ(x), принимающую одинаковые с ϕ( x ) значения 

на концах отрезка, т. е. ψ(0)=ϕ(0) иψ(λ)()=ϕ(λ) , и ввести систему линейно независимых 

базисных функций,  то на Ω можно предложить аппроксимацию для заданной функции.  

Базисные функции этого типа иногда называют функциями формы, или пробными 

функциями. Способ определения ψ и системы базисных функций автоматически 

обеспечивает тот факт, что аппроксимация обладает свойством ψ(0 )=ϕ(0) иψ(λ)=ϕ(λ)для 

любых значений параметров.  

Ясно, что система базисных функций должна быть выбрана таким образом, чтобы 

гарантировать улучшение аппроксимации при возрастании числа M используемых 

базисных функций. Параметры выбираются на основании требования, что аппроксимация 

ϕˆ должна совпадать с функцией ϕ в M различных произвольно выбранных точках Ω. Это 

требование приводит к системе линейных уравнений относительно набора параметров. 
 
 1.10  Лекция № 10 (2 часа ) 
Тема: «Применение функциональных рядов к решению дифференциальных 

уравнений» 
1.10.1  Вопросы лекции: 
1. Функциональные ряды, степенные ряды: основные понятия (обзорно). 

2. Применение степенных рядов к решению дифференциальных уравнений. 

3. Уравнение Бесселя. Функции Бесселя, их свойства. 

2.  Краткое содержание вопросов: 
1. Определение.  Частными (частичными) суммами функционального ряда 

∑
∞

=1

)(
n

n xu  называются функции ∑
=

==
n

k

kn nxuxS
1

,...2,1),()(  

Определение. Функциональный ряд ∑
∞

=1

)(
n

n xu называется сходящимся в точке 

(х=х0), если в этой точке сходится последовательность его частных сумм. Предел 

последовательности )}({ 0xSn  называется суммой ряда ∑
∞

=1

)(
n

n xu  в точке х0. 

Определение. Совокупность всех значений х, для которых сходится ряд∑
∞

=1

)(
n

n xu

называется областью сходимости ряда. 

Определение. Ряд ∑
∞

=1

)(
n

n xu называется равномерно сходящимся на отрезке [a,b], 

если равномерно сходится на этом отрезке последовательность частных сумм этого ряда. 

 Теорема.(Критерий Коши равномерной сходимости ряда) 

Для равномерной сходимости ряда ∑
∞

=1

)(
n

n xu необходимо и достаточно, чтобы для 

любого числа ε>0 существовал такой номер N(ε), что при n>N и любом целом p>0 

неравенство 

ε<+++ +++ )(...)()( 21 xuxuxu pnnn  

выполнялось бы для всех х на отрезке [a,b]. 

 

 Теорема. (Признак равномерной сходимости Вейерштрасса) 

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик) 
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Ряд ∑
∞

=1

)(
n

n xu сходится равномерно и притом абсолютно на отрезке [a,b], если 

модули его членов на том же отрезке не превосходят соответствующих членов 

сходящегося числового ряда с положительными членами : 

......21 ++++ nMMM  

т.е. имеет место неравенство: 

nn Mxu ≤)( . 

Еще говорят, что в этом случае функциональный ряд ∑
∞

=1

)(
n

n xu мажорируется  

числовым рядом ∑
∞

=

Μ
1n

n . 

Пример. Исследовать на сходимость ряд ∑
∞

=1
3

cos

n n

nx . 

Так как 1cos ≤nx  всегда, то очевидно, что 
33

1cos

nn

nx
≤ . 

При этом известно, что общегармонический ряд ∑
∞

=
α

1

1

n n
 при α=3>1 сходится, то в 

соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом 

в любом интервале. 

Пример. Исследовать на сходимость ряд ∑
∞

=1
3

n

n

n

x
. 

На отрезке [-1,1] выполняется неравенство
33

1

nn

x n

≤  т.е. по признаку Вейерштрасса 

на этом отрезке исследуемый ряд сходится, а на интервалах (-∝, -1) ∪ (1, ∝) расходится. 

 

Свойства равномерно сходящихся рядов. 

 

 1) Теорема о непрерывности суммы ряда. 

Если члены ряда ∑
∞

=1

)(
n

n xu  - непрерывные на отрезке [a,b] функции и ряд сходится 

равномерно, то и его сумма S(x) есть непрерывная функция на отрезке [a,b]. 

 

 2) Теорема о почленном интегрировании ряда. 

Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно 

почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его 

членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку. 

],[,;)()(
11

badxxudxxu
n

n

n

n ∈βα=∫ ∑∫∑
β

α

∞

=

β

α

∞

=

 

2. С помощью степенных рядов возможно интегрировать дифференциальные 

уравнения. 

 Рассмотрим линейное дифференциальное уравнение вида: 

)()(...)()( )2(

2

)1(

1

)( xfyxpyxpyxpy n

nnn =++++ −−
 

 Если все коэффициенты и правая часть этого уравнения разлагаются в 

сходящиеся в некотором интервале степенные ряды, то существует решение этого 

уравнения в некоторой малой окрестности нулевой точки, удовлетворяющее начальным 

условиям. 

 Это решение можно представить степенным рядом: 
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...3

3

2

210 ++++= xcxcxccy  

 Для нахождения решения остается определить неизвестные постоянные ci. 

Эта задача решается методом сравнения неопределенных коэффициентов. 

Записанное выражение для искомой функции подставляем в исходное дифференциальное 

уравнение, выполняя при этом все необходимые действия со степенными рядами 

(дифференцирование, сложение, вычитание, умножение и пр.) 

 Затем приравниваем коэффициенты при одинаковых степенях х в левой и 

правой частях уравнения. В результате с учетом начальных условий получим систему 

уравнений, из которой последовательно определяем коэффициенты ci. 

 Отметим, что этот метод применим и к нелинейным дифференциальным 

уравнениям. 

Пример. Найти решение уравнения 0=−′′ xyy c начальными условиями y(0)=1, 

y’(0)=0. 

Решение уравнения будем искать в виде ...2

210 +++= xcxccy  

...432 3

4

2

321 ++++=′ xcxcxccy
   

...201262 3

5

2

432 ++++=′′ xcxcxccy  

 Подставляем полученные выражения в исходное уравнение: 

0...)(...)201262( 4

3

3

2

2

10

3

5

2

432 =++++−++++ xcxcxcxcxcxcxcc  

0...)30()20()12()6(2 36

4

25

3

14

2

032 =+−+−+−+−+ ccxccxccxccxc  

Отсюда  получаем: 02 2 =c     

   

030

020

012

06

36

25

14

03

=−

=−

=−

=−

cc

cc

cc

cc

 

   ……………… 

Получаем, подставив начальные условия в выражения для искомой функции и ее 

первой производной:  
0

1

1

0

=

=

c

c
 

Окончательно получим: ;0;0;
6

1
;0;0;1 543210 ====== cccccc

...;
180

1
6 =c  

Итого: ...
1806

1
63

+++=
xx

y  

 Существует и другой метод решения дифференциальных уравнений с 

помощью рядов. Он носит название метод последовательного дифференцирования.  

Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в 

виде разложения неизвестной функции в ряд Маклорена. 

...
!3

)0(

!2

)0(

!1

)0(
)0( 32 +

′′′
+

′′
+

′
+= x

y
x

y
x

y
yy  

 Если заданные начальные условия  y(0)=1,  y’(0)=0  подставить в исходное 

дифференциальное уравнение, получим, что .0)0( =′′y  

 Далее запишем дифференциальное уравнение в виде xyy =′′  и будем 

последовательно дифференцировать его по х. 
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 После подстановки полученных значений получаем:  ...
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1
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+++=
xx

y  

 

1.11  Лекция № 11 (2 часа ) 
Тема: «Ряды Фурье» 
1.11.1  Вопросы лекции: 
1. Периодические функции, периодические процессы. 

2. Тригонометрический ряд Фурье. 

3. Теорема Дирихле.  

2. Краткое содержание вопросов: 
1. В науке и технике часто приходится иметь дело с периодическими явлениями.   

Различные   величины,   связанные   с   рассматриваемыми периодическими явлениями, по 

истечению периода t возвращаются к своим прежним значениям, и представляют, 

следовательно, периодические функции от времениt, характеризуемые равенством 

)()( tTt γγ ==+  

Таковы, например, сила и напряжение переменного тока. 

Простейшей из периодических функций (если не считать постоянной) является 

синусоидальная величина: ( )αϖ +tAsin ,  где ϖ  есть частота, связанная с периодом Т 

соотношением  
T

π
ϖ

2
=       (1) 

Из подобных простейших периодических функций могут быть составлены и более 

сложные функции путем сложения нескольких. Причем складывать выгодней 

синусоидальные величины разных частот, так как сложение одинаковых приводит опять к 

синусоидальной величине, и тойже частоты. Сложим несколько величин вида 

, , ,  ,…               

(2) 

которые, если не считать постоянной, имеют частоты 

,ϖ ,2ϖ ,...3ϖ кратные наименьшей  из них, ,ϖ и периоды 

,T ,
2

1
T ,

3

1
T …,получим периодическую функцию (с периодом Т), но уже 

существенно отличную от величины типа (2). 

Теперь поставим обратный вопрос: можно ли данную периодическую функцию 

)(tγ  с периодом Т представить в виде суммы конечного или бесконечного множества 

синусоидальных величин типа (2)? Для функций довольно широкого класса имеет место 

разложение в «тригонометрический ряд»: 

 

                                                               (3)   

Причем ,...,,,, 22110 αα ААА  постоянные, имеющие особые значения для каждой 

такой функции, а частота ϖ  дается формулой (1) 

Если за независимую переменную выбрать 

T

t
tх

πϖ 2
== ,     то получим функцию:       






=
ϖ

γ x
xf )(  

00 AY = ( )111 sin αϖ += tAY ( )222 2sin αϖ += tAY ( )333 3sin αϖ += tAY

( ) ( ) ( ) =+++++++= ...3sin2sinsin)( 3322110 αϖαϖαϖγ tAtAtAAt

( )∑
∞

=
++=

1
0 sin

n
nn tnAA αϖ
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тоже периодическую, но со стандартным периодом π2 . 

При этом разложение (3) примет вид 

     (4) 

Развернув члены этого ряда по формуле для синуса суммы, и положив 

nnnnnn
bAaAaA === αα cos,sin,

00
 

мы придем к окончательной форме тригонометрического разложения 

∑
∞

=

++=

=+++++=

1

0

22110

)sincos(

...)2sin2cos()sincos()(

n

nn nxbnxaa

xbxaxbxaaxf

           (5) 

Здесь функция от угла x, имеющая период π2 , оказывается разложенной по 

косинусам и синусам углов, кратных х. 

2. Для того, чтобы установить возможность тригонометрического разложения (5) 

для заданной функции )(xf , имеющей период ,2π  нужно исходить из определенного 

набора коэффициентов ,...,,,, 22110 babaa . Укажем прием для определения их, который во 

второй половине XVIII века был применен Л. Эйлером и независимо от него в начале XIX 

века – Ж.-Б. Фурье. 

Будем полагать функцию )(xf  непрерывной или кусочно-непрерывной в 

промежутке [ ]ππ ;−  

Замечание: Функция )(xf  называется кусочно-непрерывной в промежутке[ ]ba; , 

если она непрерывна на нем, за исключением конечного числа точек, где налицо скачки. 

Допустим, что разложение (5) имеет место, и проинтегрируем его почленно в 

пределах от π−  до ;π  получим 

∫ ∑ ∫ ∫
−

∞

= − −




 ++=
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π

π
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Видим: 
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           (6) 

Поэтому все члены под знаком суммы будут нулями, а 

                                                   (7) 

Для того, чтобы найти аm, умножим равенство (5), которое мы предполагаем 

выполненным, на cosmx и проинтегрируем почленно: 

 
Первый член суммы равен нулю в силу (6). Далее имеем: 

,        (8) 

,       (9) 

если n не равно m. Если n=m, то  

 

                                                              (10) 
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      (m=1,2,3,…)                                     (11) 

Аналогично, умножив разложение (5) на sinmx, получим 

        (m=1,2,3,…)                                    (12) 

Формулы (7), (11), (12) формулы Эйлера-Фурье. Вычисленные по этим формулам 

коэффициенты называются коэффициентами Фурье данной функции, а составленный с их 

помощью тригонометрический ряд (5) - рядом Фурье. 

Дадим теперь себе отчет в том, какова логическая ценность проведенных 

рассуждений. Так как мы исходим из предположения, что тригонометрическое 

разложение (5) имеет место, то вопрос о том, отвечает ли это действительности, 

естественно, остается открытым.  

Мы пользовались повторно почленным интегрированием ряда ∑
∞

=1n
n xU , а эта 

операция не всегда дозволительна в силу следующей теоремы: 

Теорема о почленном интегрировании рядов 

Если функции xUn  (n=1,2,3...) непрерывны в промежутке [а;b], и составленный из 

них ряд сходится в этом промежутке равномерно, то интеграл от суммы )(xf  ряда 

представляется следующим образом: 

∫ ∑ ∫ ∫ ∫∫
∞

=
++++==

a

b n

a

b

a

b

a

b
n

a

b
n dxxUdxxUdxxUdxxUdxxf

1
21 ...)(...)()()()(

 

Достаточным условием для ее применимости является равномерная сходимость  

ряда. Поэтому строго установленным можно считать следующее: 

Если функция )(xf  разлагается в равномерно сходящийся 

тригонометрический ряд (5), то последний необходимо будет ее рядом Фурье. 
Замечание: Равномерная сходимость сохранится и при умножении  всех  членов 

ряда на ограниченные функции cosmx, sinmx. 

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, 

коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) 

сходится к ней во всех ее точках непрерывности, то говорят, что функция  f(x) разлагается 

в ряд Фурье. 

3. Теорема. (Теорема Дирихле)  

Если функция f(x) имеет период 2π и на отрезке  [-π;π] непрерывна или имеет 

конечное число точек разрыва первого рода, и отрезок [-π;π] можно разбить на конечное 

число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для 

функции f(x) сходится при всех значениях х.  

Причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках 

разрыва его сумма равна 
2

)0()0( ++− xfxf , т.е. среднему арифметическому предельных 

значений слева и справа.  

При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который 

принадлежит интервалу непрерывности функции f(x). 

 Функция f(x), для которой выполняются условия теоремы Дирихле 

называется кусочно – монотонной на отрезке [-π;π]. 

 Теорема. Если функция f(x) имеет период 2π, кроме того, f(x) и ее 

производная f’(x) – непрерывные функции на отрезке [-π;π]  или имеют конечное число 

точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех 

значениях х.   

Причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна 

2

)0()0( ++− xfxf .  

∫
−

=
π

ππ
mxdxxfam cos)(
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∫
−

=
π

ππ
mxdxxfbm sin)(

1
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При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который 

принадлежит интервалу непрерывности функции f(x). 

 Функция, удовлетворяющая условиям этой теоремы, называется кусочно – 
гладкой на отрезке [-π;π]. 

 

 
1.12  Лекция № 12 (2 часа ) 
Тема: «Разложение функций в ряд Фурье» 

1.12.1  Вопросы лекции: 
1. Разложение в ряд Фурье четных и нечетных функций. 

2. Разложение в ряд Фурье функций произвольного периода. 

3. Представление непериодической функции рядом Фурье. 

2.  Краткое содержание вопросов: 
1. Ряд Фурье для четных и нечетных функций. 

  Отметим следующие свойства четных и нечетных функций: 

1)  









−

−

=
∫∫

− четнаяxfdxxf

нечетнаяxf

dxxf a

a

a
)(,)(2

)(,0

)(

0

 

 2) Произведение двух четных и нечетных функций является четной 

функцией. 

 3) Произведение четной и нечетной функций – нечетная функция. 

 

Справедливость этих свойств может быть легко доказана исходя из определения 

четности и нечетности функций. 

 

 Если f(x) – четная периодическая функция с периодом 2π, удовлетворяющая 

условиям разложимости в ряд Фурье, то можно записать: 

,...)2,1,0(cos)(
2

cos)(
1

0

=
π

=
π

= ∫∫
ππ

π−

nnxdxxfnxdxxfan
 

,...)2,1(;0sin)(
1

==
π

= ∫
π

π−

nnxdxxfbn
 

 

 Таким образом, для четной функции ряд Фурье записывается: 

∑
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1

0 cos
2
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n

n nxa
a

xf  

,...)2,1,0(cos)(
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0
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π

= ∫
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nnxdxxfan
 

 

 Аналогично получаем разложение в ряд Фурье для нечетной функции: 

 

∑
∞

=

=
1

;sin)(
n

n nxbxf  

,...)2,1(;sin)(
2

0

=
π

= ∫
π

nnxdxxfbn
 

 

 Пример. Разложить  в ряд Фурье периодическую функцию 
3)( xxf =  с 

периодом T = 2π на отрезке [-π;π]. 

 Заданная функция является нечетной, следовательно, коэффициенты Фурье 

ищем в виде: 
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Получаем: 

∑∑
∞

=

∞

=







 π
−−==

1

2

3
1

3 sin
212

)1(sin
n

n

n

n nx
nn

nxbx . 

 Построим графики заданной функции и ее разложения в ряд Фурье, 

ограничившись первыми четырьмя членами ряда. 

 

 
 

 2. Ряд Фурье для функции f(x) периода  Т = 2l, непрерывной или имеющей 

конечное число точек разрыва первого рода на отрезке [-l, l] имеет вид: 
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Для четной функции произвольного периода разложение в ряд Фурье имеет вид: 
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Для нечетной функции:
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3. Задача разложения непериодической функции в ряд Фурье в принципе не 

отличается от разложения в ряд Фурье периодической функции. 

 Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке 

кусочно – монотонной. Рассмотрим произвольную периодическую кусочно – монотонную 

функцию f1(x)c периодом 2Т ≥b-a, совпадающую с функцией f(x) на отрезке [a, b]. 

           f(x) 

 

 

 

 

   α - 2T αabα+2Tα + 4Tx 

 

 Таким образом, функция f(x) была дополнена. Теперь функция f1(x) 

разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с 

функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, 

b].  

 Таким образом, если функция f(x) задана на отрезке, равном 2π ничем не 

отличается от разложения в ряд периодической функции. Если же отрезок, на котором 

задана функция,  меньше, чем 2π, то функция продолжается на интервал (b, a + 2π) так, 

что условия разложимости в ряд Фурье сохранялись. 

 Вообще говоря, в этом случае продолжение заданной функции на отрезок 

(интервал) длиной 2π может быть произведено бесконечным количеством способов, 

поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной 

функцией f(x) на отрезке [a,b].  

 

 
 
 



38 

 

 
1.13  Лекция № 13 (2 часа ) 
Тема: «Интеграл Фурье» 
1.13.1  Вопросы лекции: 
1. Интеграл Фурье: основные понятия и приложения. 

2. Комплексная форма интеграла Фурье и ряда Фурье. 

2. Краткое содержание вопросов: 
 1. Пусть функция f(x) на каждом отрезке [-l,l], где l – любое число, кусочно – 

гладкая или кусочно – монотонная, кроме того, f(x) – абсолютно интегрируемая функция, 

т.е. сходится несобственный интеграл 

∫
∞

∞−

dxxf )(  

 

 Тогда функция f(x) разлагается в ряд Фурье: 

∑
∞

=







 π

+
π

+=
1

0 sincos
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n

nn x
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n
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n
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a
xf  
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=
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∫

∫
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n
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Если подставить коэффициенты в формулу для f(x), получим: 

 

=






 ππ
+

ππ
+= ∑ ∫∫∫

∞

= −−− 1
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1
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l
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n
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n
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n
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n
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l
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l
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∑∫∫
∞

= −−

−
π

+=
1

)(cos)(
1

)(
2

1

n

l

l

l

l

dtxt
l

n
tf

l
dttf

l
 

Переходя к пределу при l→∞, можно доказать, что 0)(
2

1
lim =∫

−
∞→

l

l
l

dttf
l

 и  

∑∫
∞

= −
∞→

−
π

=
1

)(cos)(
1

lim)(
n

l

l
l

dtxt
l

n
tf

l
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Обозначим ;
1

;; 1 π
∆

=
π

=−=∆
π

= +
n

nnnn

u

ll
uuu

l

n
u   

При l→∞  ∆un →0. 

∑ ∫
∞

= −
∞→

−∆
π

=
1

)(cos)(lim
1

)(
n

l

l

nn
l

dtxtutfuxf  

Можно доказать, что предел суммы, стоящий в правой части равенства равен 

интегралу 

∫∫
∞

∞−

∞

− dtxtutfdu )(cos)(
0

 

Тогда 
π

=
1

)(xf ∫∫
∞

∞−

∞

− dtxtutfdu )(cos)(
0

 - двойной интеграл Фурье. 

 

Окончательно получаем: 
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[ ]

∫

∫

∫

∞

∞−

∞

∞−

∞

π
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π
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+=

utdttfub

utdttfua
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)(

sin)(cos)()(
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- представление функции f(x) интегралом Фурье. 

 Двойной интеграл Фурье для функции f(x) можно представить в 

комплексной форме: 

∫∫
∞

∞−

−
∞

∞−π
= dtetfduxf txiu )()(

2

1
)(  

 

 

 

 

1.14  Лекция № 14 (2 часа ) 
Тема: «Преобразование Фурье» 
1.14.1  Вопросы лекции: 
1. Синус- и косинус- преобразования Фурье. 

2. Свойства преобразования Фурье. 

3. Приложения к решению дифференциальных уравнений. 

2. Краткое содержание вопросов: 
 1. Определение. Если f(x) – любая абсолютно интегрируемая на всей 

числовой оси функция, непрерывная или имеющая конечное число точек разрыва первого 

рода на каждом отрезке, то функция 

∫
∞

∞−

−= dxexfuF iux)()(  

называется преобразованием Фурье функции f(x).  

 Функция F(u) называется также спектральной характеристикой функции 
f(x). 

 

 Если f(x) – функция, представимая интегралом Фурье, то можно записать: 

∫
∞

∞−π
= dueuFxf iux)(

2

1
)(  

Это равенство называется обратным преобразованием Фурье 
 

Интегралы ∫
∞

π
=

0

cos)(
2

)( uxdxxfuF   и ∫
∞

π
=

0

sin)(
2

)( uxdxxfuF  называются 

соответственно косинус - преобразование Фурье и синус – преобразование Фурье. 
 

 Косинус – преобразование Фурье будет преобразованием Фурье для четных 

функций. синус – преобразование будет преобразованием Фурье для нечетных функций. 

 Преобразование Фурье применяется в функциональном анализе, 

гармоническом анализе, операционном исчислении, теории линейных систем и др. 
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 1.15  Лекция № 15 (2 часа ) 
Тема: «Уравнение теплопроводности» 
1.15.1  Вопросы лекции: 
1. Теплопроводность как физический процесс. 

2. Постановка задачи Коши. 

3. Решение задачи Коши уравнения теплопроводности методом преобразования  

2. Краткое содержание вопросов: 
1. Определение. Функция ),,( zyxu называется гармонической на области σ, если 

она имеет непрерывные частные производные второго порядка на области σ и 

удовлетворяет условию 

0=∆u ,  где ∆ - оператор Лапласа. 

 Уравнение 0
2

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

=∆
z

u

y

u

x

u
u  называется уравнением Лапласа. 

 Если на некоторой границе Г тела поддерживать постоянную температуру 

),,( zyxfuГ = , где f – заданная функция, то внутри тела установится единственная 

постоянная температура. С физической точки зрения это утверждение очевидно, однако, 

данный факт может быть доказан математически. 

 Математическое доказательство этого факта называется задачей Дирихле. 
(Петер Густав Дирихле (1805 – 1859) – немецкий математик) 

Решение задачи Дирихле для круга. 
 Пусть в плоскости XOY имеется круг радиуса R с центром в начале 

координат и на его окружности задана функция f(ϕ), где ϕ - полярный угол. 

 Требуется найти функцию ),( ϕru , которая удовлетворяет уравнению 

Лапласа 

0
2

2

2

2

=
∂
∂

+
∂
∂

y

u

x

u  

и при ).(ϕ== fuRr  

 Запишем уравнение Лапласа в полярных координатах: 

0
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∂
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u
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u
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Полагаем  ).()( rRu ϕΦ=  Подставляя это соотношение в уравнение Лапласа, 

получаем: 

0)()()()()()(
2 =ϕΦ′′+′ϕΦ+′′ϕΦ rRrRrrRr          

2
2

)(

)()(

)(

)(
k

rR

rRrrRr
−=

′+′′
−=

ϕΦ
ϕΦ ′′  

Таким образом, имеем два уравнения:  

0)()()(

0)()(

22

2

=−′+′′

=ϕΦ+ϕΦ ′′

rRkrRrrRr

k  

Общее решение первого уравнения имеет вид: ϕ+ϕ=Φ kBkA sincos  

Решение второго уравнения ищем в виде: mrR = . При подстановке получим: 

0)1(
2122 =−+− −− mmm rkrmrrmmr  

022 =− km  

Общее решение второго уравнения имеет вид: 
kk DrCrR −+= . 

 Подставляя полученные решения в уравнение )()( rRu ϕΦ= , получим: 

))(sincos( k

k

k

kkkk rDrCkBkAu −+ϕ+ϕ=  

Эта функция будет решением уравнения Лапласа при любом k≠0. 

 Если k = 0, то 0;0 =′+′′=Φ ′′ RRr  следовательно )ln)(( 00000 rDCBAu +ϕ+= . 

Решение должно быть периодическим, т.к. одно и то же значение будет 

повторяться через 2π. (Тогда рассматривается одна и та же точка круга.) Поэтому В0 = 0. 
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 Решение должно быть конечным и непрерывным, поэтому D0 = 0. 

Окончательно получаем: ∑
∞

=

ϕ+ϕ+=ϕ
1

0 )sincos(
2

),(
n

n

nn rnBnA
A

ru  

При этом: ∫
π

π−π
= ntdttf

R
A

nn cos)(
1

   

 ∫
π

π−π
= ntdttf

R
B

nn sin)(
1

 

Если подставить эти коэффициенты в полученную выше формулу и произвести 

упрощение, получаем окончательный результат решения задачи Дирихле, который 

называется интегралом Пуассона. (Симеон Дени Пуассон (1781 – 1840) – французский 

математик) 

∫
π

π− +ϕ−−
−

π
=ϕ dt

rtrRR

rR
tfru

22

22

)cos(2
)(

2

1
),(  

2.  Рассмотрим металлический стержень длиной l, температура которого в разных 

точках различна. Тогда с течением времени будет происходить перераспределение 

температуры вдоль стержня, и поэтому температура точки М(х) в момент времени t 

является функцией двух переменных: ( ) ( )txUxU ,= . Начальное распределение 

температуры задается функцией ( ) ( )0,xUxf = . Для однозначного определения процесса 

распределения тепла надо еще знать условия на концах стержня (мы считаем, что боковая 

поверхность стержня теплоизолирована). Например, температура левого конца стержня 

задается функцией ( )t1ϕ  от времени t, тогда правого – функцией ( )t2ϕ . 

Стержень длины l однородный, имеющий постоянную по длине толщину, и 

настолько тонкий, чтобы в любой момент времени температуру тела во всех точках 

поперечного сечения можно считать одинаковой. 

Выберем ось x (направив ее по оси стержня) так, чтобы стержень совпадал с 

отрезком [0,l] оси х. Выведено дифференциальное уравнение теплопроводности 

однородного конечного стержня. 

2

2
2

x

U
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t

U

∂
∂

=
∂
∂ , 








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ρc

k
a2      (1) 

где 1с - коэффициент теплопроводности, с - теплоемкость материала стержня, ρ -

плотность, с граничными условиями.
( ) ( )
( ) ( ) ( )+∞≤≤





=

=
t

ttlU

tyU
0

,

,0

2

1

ϕ
ϕ

  

и начальными условиями  ( ) ( )xfxU =0,  

Предположим сначала, что на обоих концах стержня поддерживается постоянная 

температура, скажем, 0. Это приводит к таки предельным условиям: 

( ) ( ) 0,,0 == tlUtU , 0≥t      (3) 

Тогда начальное условие запишем так: 

( ) ( ) 00 == lff  

Для разыскания функции ( )xtU , , удовлетворяющей уравнению (1) и всем 

поставленным условиям, применим метод Фурье. Пусть, как и выше, TXu ⋅= , так что 

уравнение принимает вид:   TXaTX ⋅′′=′⋅ 2
 или xxaTT ′′=′ 2 ;   если постоянное значение 

этих отношений положить равным – λ , то уравнение разобьется на два:  0=+′′ XX λ                

(4)  

и TaT λ2+′                                                                                                  (5) 

 

В пункте 1 мы выяснили, что ненулевые решения уравнения        (4) существуют 

только при kλλ = , где 
2







=

l

k
k

πλ , где ( ),...2,1=k  
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причем в качестве этих решений можно взять функции 

x
l

k
X k

π
sin= , где ( ),...2,1=k  

Заменим в уравнении (5) λ на kλ  

0

2
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




+′ kk T

l

ak
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π  

Его общим решением будет 

t
l

ak

kk eCT

2







−

=
π

, 

где kC  – произвольная постоянная, соответствующая взятому значению  k. 

Перемножим 
kX  и 

kT , получим решение уравнения (1) 

( ) x
l

k
eCtxU

t
l

ak

kk

π
π

sin,

2

⋅






−

, где ( ),...2,1=k     (6) 

Каждая из функций kU  удовлетворяет граничным условиям (3). Общее решение 

возьмем в форме ряда 

∑
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=







−

⋅=
1
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k
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     (7) 

Желая удовлетворить начальному условию, мы должны положить: 

( )∑
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
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=⋅
1
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2

k
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, где ( )lx ≤≤0  

Если функция f(x) непрерывна и имеет ограниченное изменение, то для 

осуществления этого разложения достаточно взять: 

( )∫=
l

k xdx
l

k
xf

l
С

0

sin
2 π , 

чем и завершим решение задачи. 

 

 
 1.16  Лекция № 16 (2 часа ) 
Тема: «Преобразование Лапласа» 
1.16.1  Вопросы лекции: 
1. Основные понятия. 

2. Основные теоремы об оригиналах и изображениях. 

3. Формулы обращения интеграла Лапласа. 

2. Краткое содержание вопросов: 
1. В качестве преобразования, позволяющего перейти от функции к их 

изображениям, мы будем пользоваться преобразованием Лапласа. 

Преобразование Лапласа определяется формулой: 

∫
∞

−=
0

dttfepF tp )()( , 

которая преобразует функцию действительного переменного f(t) в функцию 

комплексного переменного F(p).  

Несобственный интеграл в правой части равенства называется интегралом Лапласа. 

Через р обозначена комплексная переменная: σisp += . 

Так как интеграл Лапласа несобственный, то установим, какие условия надо 

наложить на функцию, чтобы этот интеграл сходился и действительно определял 

некоторую функцию F(p).  

Будем предполагать следующее: 
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1. Функция f(t) – кусочно-непрерывная при t≥ 0. Это значит, что она 

непрерывная, или имеет только конечное число точек разрыва первого рода в любом 

конечном интервале. 

2. Функция f(t) равна нулю при отрицательных значениях t: 

0≡)( tf  при 0<t   

При изучении многих физических процессов роль переменной t играет время и 

сказанное означает, что процесс начинается с некоторого момента времени (удобнее 

считать, что в момент 0=t ). 

3. При возрастании t модуль функции f(t) может возрастать, но не быстрее 

некоторой показательной функции, т.е. существуют такие постоянные 0>М  и 00 >s , 

что для всех t из интервала +∞≤≤ t0 : 
ts

eMtf 0≤)(
 
Число 0s  называется показателем роста.  

Условие (3) обеспечивает сходимость интеграла Лапласа, ему удовлетворяют, 

конечно, все ограниченные функции, в частности tt cos,sin . В этом случае 0s  можно 

положить равным нулю: Mtf ≤)( . Условию (3) удовлетворяют все степенные функции 

k
t при 0>k , так как любая такая функция растет медленнее, чем показательная функция 

te . Применяя правило Лопиталя, легко проверить, что 0=
∞→ t

k

t e

t
lim . 

При 0<k  соответствующие степенные функции имеют бесконечный разрыв при

0=t  и не удовлетворяют первому условию. 

Любая функция, удовлетворяющим перечисленным выше трем условиям, 

называется оригиналом. 

Функцию F(p), определяемую формулой (1), называют изображением 

(изображением по Лапласу). 

Соответствие между оригиналом f(t) и изображением F(p) записывают так: 

)()( pFtf ←•  или )()( tfpF →•   

Употребляется так же символ { })()( tfLpF = . 

Простейшей функцией – оригиналом является так называемая единичная функция 

Хевисайда: 




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<
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01

00
)()(0

tпри

tпри
tt ησ  . 

График ее приведен на рисунке 1. 

 

 

 

 

 

 

 

 

 

 

Если функция f(t) не удовлетворяет условию (2), но удовлетворяет условиям (1) и 

(3), то умножением ее на единичную функцию σ0 (t), получаем оригинал: 
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В дальнейшем для
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Не существует так

Совершенно не 

действительные значения

переменного t, т.е. иметь 

Каждому оригинал

2. Теорема  Пуст

сходится абсолютно для

условию 0sp >Re  (т.е. 

условии (3), и определяет

Теорема единстве
Если две непрер

(t)имеют одно и тоже 

функции тождественно ра

Эту теорему мы пр

Примеры 1. Пус

функция 





=
1

0
0

tпри

tпри
t )(σ

Найдем изображен

44 

я сокращения записи, как правило, буде

рассматриваемые функции продолжены ну

функций, не являющихся оригиналами: 1. 

т разрыв второго рода в точке t = 1. 

≥ 0

0

t
 

сконечное число экстремумов на отрезке [

( )





⋅+
=

1

0
)( 2

et

tпри
tf

t

ких констант M и σ0, что | f (t) | ≤ M·e
σ

0
 t
. 

обязательно считать, что оригинал f

я, она может быть и комплексной функ

 вид:   )()()( tiftftf 21 +=  

лу соответствует изображение F(p). 

ть функция f(t) является оригиналом. Т

я всех значений комплексной переменно

в полуплоскости 0sp >Re  где 0s  - посто

т изображение F(p).) 

енности 
рывные функции ϕ(t) иψ 

изображение F(p), то эти 

авны.  

римем без доказательства. 

сть σ0 (t) – простейшая 

≥

<

0

0t
 

ние этой функции, пользуясь интегралом Л

По

σ 

0s0 

ем писать )( tf  вместо 

улём для 0<t . 







≥
−

<
=

0
1

1

00

)(
tпри

t

tпри

tf
.  

[0,1]                          

≥

<

0

0

tпри  

)( tf принимает только 

кцией действительного 

Тогда интеграл Лапласа 

ой р, удовлетворяющих 

оянная, участвующая в 

Лапласа 

олуплоскость 

0sp >Re  

s  
Рис. 2 
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pp

e
dtepF

pt
pt 1

00

=−==
∞−∞

−∫)( , 

причем последнее заключение можно сделать только в том случае, когда 0→− pte

при ∞→t . 

Если σisp += , то tstitspt eee −−−− == σ . Последнее выражение стремится к нулю 

при ∞→t , если 0>s . 

Таким образом, интеграл Лапласа для единичной функции сходится при

0>= ps Re  и ее изображение является 
p

1
. 

Итак, 
p

1
1 ← •

 или 
p

t
1

0 ←•
)(σ  

2. Пусть ttf sin)( = . 

Тогда  

{ }

.cos1coscos

cos

sin
sinsin

00
0

0

∫∫

∫
∞

−
∞

−∞−

−

−∞
−

−=−−=

=
−=−=

==
==

dttepdttepte

tvdtpedu

dttdveu
dttetL

ptptpt

pt

pt

pt

 

К последнему интегралу снова применяем метод интегрирования по частям, 

полагая  
tvdtpedu

dttdveu

pt

pt

sin

cos

=−=

==
−

−

 

Тогда  

∫ ∫
∞ ∞

−∞−− −−=−
0 0

2

0
dtteptepdttep ptptpt sinsincos ,    

 а  ∫ ∫
∞ ∞

−− −=
0 0

21 dttepdtte ptpt sinsin  или ∫
∞

−

+
=

0
2 1

1

p
dtte pt sin . 

Итак,  
1

1
2 +

←•

p
tsin   

3. Пусть 
tetf α=)(
, где γβα i+=  - любое комплексное число.  

Условия (1) и (3) очевидно, выполняются, причем в силу равенства 

ttitt eee βγβα == +
 можно положить 1=M  и β=0s . 

Интегрируя, получим 
αα

α
αα

−
=

−−
==

∞−−∞
−−

∞
− ∫∫ pp

e
dtedtee

tp
tptpt 1

000 )(

)(
)( , если только 

∞→→−− tприe
p 0)( α

. Последнее же имеет место при 0>−=− βα pp Re)Re( , т.е. 

при β>pRe . 

Таким образом  
α

α

−
←•

p
e

t 1
В частности, при 0=α  снова получаем  

p

1
1 ←•  

3. Если функция F(p) - изображение функции-оригинала f(t), то f(t) может быть 

найдена по формуле  



 

Это равенство име

разрыва функции  

f(t) значение право

 

 

 

 

 

 

 

 

 

 

 

Интеграл в правой

может вестись по любой

интеграл понимается в см;K
VK 
Вычисление ориги

на практике при решени

ниже. 

 Теорема разложе
До сих пор, мы р

изображения по заданно

оригинал по заданному из

Рассмотрим важн

правильной рациональной

)(

)(
)(

2

1

pF

pF
pF = , где 1F

причем nm< . Рассмотри

)(

)(
)(

2

1

pF

pF
pF =  

Обозначим n  прос

Тогда имеем разло

Разлагая дробь на п

p

c

pp

c

pF

pF

−
+

−
= 2

1

1

2

1

)(

)(

Найдем коэффиц

полученное равенство на

+=− cpp
pF

pF
11

2

1 )(
)(

)(
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(
) = 12�w � ?(K) ∙ ; �VK¡-a¢
¡/a¢  

еет место в каждой точке, в которой f(t)

ой части равно     .  

й части формулы называют интегралом Ме

й вертикальной прямой p=σ + i ω, σ=con

мысле главного значения: .c ?(K) ∙ ; �¡-a¢¡/a¢
инала по формуле Римана-Меллина доволь

ии задач применяют другие методы, кот

ения 
рассматривали в основном вопросы, связ

ому оригиналу. Теперь рассмотрим об

зображению.  

ный случай, когда изображение искомог

й дробью 

)(1 p  и )(2 pF  - многочлены от p  соответс

им случай, когда корни знаменателя  прос

стых корней уравнения 0)(2 =pF через pp ,1

ожение )())(()( 212 npppppppF −−−= K . 

простейшие, получим 

n

n

pp

c

p −
++K

2

2 или       ∑
= −

=
n

k k

k

pp

c

pF

pF
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1

)(

)( . 

циенты kc . Для определения 1c  пос

1pp −  и устремим затем p  к 1p . Получим


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

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
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−
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n

pp

c

pp

c
pp K
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2
1 )( . 

) непрерывна. В точках 

еллина; интегрирование 

nst>σ0, − ∞ < ω < ∞, и �VK = lim
+∞→ω

c ?(K) ∙¡-a¢¡/a¢
ьно трудоёмко, поэтому 

торые рассматриваются 

занные с нахождением 

братную задачу: найти 

го оригинала является 

ственно степени m  и n , 

стые и не равные нулю. 

npp K,2
. 

ступим так: умножим  
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При 1pp →  второе слагаемое в правой части обращается в нуль, а левая часть его 

становится неопределенностью вида 







0

0
, ибо 01 =− pp  и 0)( 22 =pF  при 1pp → . 

Раскрывая эту неопределенность по правилу Лопиталя, найдем:  

)(

)(

)(

))(()(
)(

)(

)(

12

11

2

111
1

2

1
1 limlim

11 pF

pF

pF

pppFpF
pp

pF

pF
c

pppp
′=′

−′+
=−=

→→

. 

Аналогично найдем остальные коэффициенты.  

Пример 1. Пользуясь теоремой разложения, найти оригинал по изображению 

652

1
)(

23 +−−
+

=
ppp

p
pF . 

Решение  Знаменатель изображения имеет простые корни. 

Так как 543)(,652)(,1)(
2

2

23

21 −−=′+−−=+= pppFppppFppF , то 

коэффициенты разложения ∑
= −

=
n

k k

k

pp

c
pF

1

)(  определяются формулами 

)(

)(

2

1

k

k
k

pF

pF
c ′= , 3,2,1=k . 

5

2

10

4

)3(

)3(
;

15

1

15

1

)2(

)2(
;

3

1

6

2

)1(

)1(

2

1
3

2

1
2

2

1
1 ==′=−=

−
=

−′
−

=−=
−

=′=
F

F
c

F

F
c

F

F
c . 

Следовательно, ttt eeetf 32

5

2

15

1

3

1
)( +−−= − . 

 
1.17  Лекция № 17 (2 часа ) 
Тема: «Операционный метод решения дифференциальных уравнений» 
1.17.1  Вопросы лекции: 
1. Свертка функций. 

2. Интеграл Дюамеля. 

3. Решение дифференциальных уравнений операционным методом. 

2. Краткое содержание вопросов: 
1.Одним из важнейших применений операционного исчисления является решение 

линейных дифференциальных уравнений с постоянными коэффициентами. 

Возьмем неоднородное линейное дифференциальное уравнение второго порядка 

)(21 tfxaxax =+′+′′                                (1)  

и найдем его частное решение при начальных условиях 

00 )0(,)0( xxxx ′=′= (2) 

Поставленную задачу раньше мы решали так: находили общее решение уравнения 

(1), содержащее две произвольные постоянные; потом эти постоянные определяли так, 

чтобы они удовлетворяли начальным условиям (2). 

Пользуясь операционным исчислением, данную задачу можно решить проще. 

Операционный метод решения такой задачи состоит в том, что мы считаем как 

искомую функцию ( )tx , так и правую часть ( )tf  оригиналами и переходим от уравнения 

(1), связывающего оригиналы, к уравнению, связывающему их изображения ( )pX  и 

( )pF . Для этого воспользуемся теоремой о дифференцировании оригинала: 

( )
00

2

0

)()(

,)(),()(

xpxpXptx

xppXtxpXtx

′−−←′′

−←′←
•

••

                                  (3) 

Пусть )()( pFtf ←•
. 

Применяя теорему линейности, перейдем в уравнении (1) от оригиналов к 

изображениям:  

[ ] )()()()( pFpXaxppXaxpxpXp =+−+′−− 20100
2   
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В результате мы получим алгебраическое уравнение относительно неизвестного 

изображения )( pX . Уравнение (3) называется изображающим (вспомогательным) 

уравнением. Решая уравнение (3), находим:  

010021
2 xaxpxpFpXapap +′++=++ )()()( , 

откуда 

21
2

0100

21
2 apap

xaxpx

apap

pF
pX

++
+′+

+
++

=
)(

)(   

Таким образом, изображение искомого решения найдено. Остается по таблице или 

другим способом по известному изображению )( pX  найти соответствующий ему 

оригинал ( )tx ; он и будет являться искомым решением дифференциального уравнения. 

Операционный метод решения линейного дифференциального уравнения имеет 

особенно простой вид при нулевых начальных условиях 
0)0(,0)0( =′= xx   

В этом случае 
21

2 apap

pF
pX

++
=

)(
)(  

Изложенный метол применим к решению линейных дифференциальных уравнений 

с постоянными коэффициентами любого порядка 

)()1(

)1(

1

)( tfxaxaxax nn

nn =+′++ −
−

K
        

(4) 

с начальными условиями 
)1(

0

)1(

00 )0(,,)0(,)0( −− =′=′= nn xxxxxx K   

Заметим, что если в формуле (4) считать начальные условия 00 xx ′,  не заданными, а 

произвольными постоянными, то мы получим не частное решение, а общее. 

Пример 1. Найти решение уравнения 
texxx 3223 =+′−′′ , удовлетворяющее нулевым 

начальным условиям 0,0 00 =′= xx . 

Решение. Полагая )()( pXtx ←•
 и находя изображение правой части 

3

13

+
←•

p
e t ,  составляем изображающее уравнение:  

3

2
)(2)(3)(

2

−
=+−

p
pXppXpXp . 

Откуда 
)3)(2)(1(

2

)3)(23(

2
)(

2 −−−
=

−+−
=

pppppp
pX . 

Изображение )( pX  - правильная рациональная дробь, корни знаменателя простые. 

Причем 3,2,1 321 === ppp . Применяя теорему разложения к )( pX , найдем    

)3(

1

)2(

2

)1(

1
)(

−
+

−
−

−
=

ppp
pX .  

Следовательно, искомое решение 
ttt

eeetx
32

2)( +−= . 

2. Формулы Дюамеля 
При решении задачи Коши для обыкновенного дифференциального уравнения 

согласно тому порядку действий, который изложен выше, необходимо находить 

изображение правой части уравнения, что в некоторых случаях может быть 

затруднительно или вообще невозможно. Формулы Дюамеля позволяют находить 

решение, не выписывая в явной форме изображение правой части. Они основаны на 

интегралах Дюамеля, рассмотренных выше:  
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τττ

τττ

∫

∫

⋅−′++=

=−⋅′++←•

t

t

dgtftgf

dtgftgfpGppF

0

0

)()()()0(

)()()()0())()(

, 

τττ

τττ

dgtftfg

dtgftfgpGppF

t

t

)()()()0(

)()()()0())()(

0

0

′⋅−++=

=−′⋅++←

∫

∫•

.  

Рассмотрим, наряду с полной задачей для функции )(tx  

),(... 1

)2(

2

)1(

1

)( tfxaxaxaxax nn

nnn =+′++++ −
−−

 

при условии ,)0(,...,)0(,)0(,)0( 1

)1(

210 −
− ==′′=′= n

n xxxxxxxx  

вспомогательную задачу для функции :)(tz  

,1... 1

)2(

2

)1(

1

)( =+′++++ −
−− zazazazaz nn

nnn

        
.0)0(,...,0)0(,0)0(,0)0( )1( ==′′=′= −nzzzz  

Особенность этой вспомогательной задачи - простая правая часть )1)(( =tf  и 

однородные (нулевые) начальные условия.  

Её изображение имеет вид: 

p
pZappZapZpapZpapZp nn

nnn 1
)()(...)()()( 1

2

2

1

1 =+++++ −
−−  

nn

nnn apapapapp
pZ

+++++
⋅=⇒

−
−−

1

2

2

1

1 ...

11
)( .  

Обратить это изображение можно любым методом: с помощью свёртки, или 

разложив дробь на простые слагаемые.  

Рассмотрим ещё одну вспомогательную задачу для функции :)(1 tz  

,1zaza...zazaz n11n
)2n(

12
)1n(

11
)n(

1 =+′++++ −
−−

при условии

,0)0(,...,0)0(,0)0(,0)0(
)1(

1111 ==′′=′= −n
zzzz  которая отличается от общей задачи 

однородными начальными условиями, а от первой вспомогательной задачи - общим 

видом правой части.  

Её изображение имеет вид:  

)()()(...)()()( 1111

2

21

1

11 pFpZappZapZpapZpapZp nn

nnn =+++++ −
−−  

nn

nnn apapapap

pF
pZ

+++++
=⇒

−
−−

1

2

2

1

1

1
...

)(
)( .  

Сравнивая функции )( pZ  и )(1 pZ , получаем )()()(1 pZppFpZ = .  

В соответствии с интегралами Дюамеля,  

∫ ∫ =⋅−′++=−⋅′++←•
t t

tzdztftzfdtzftzfpZppF
0 0

1 )()()()()0()()()()0())()( ττττττ

, или  

∫∫ =′⋅−=−′⋅←•
tt

tzdztfdtzfpZppF
0

1

0

)()()()()())()( ττττττ   (так как 0)0(1 =z

).  

Эти формулы, выражающие решение задачи с произвольной функцией )(tf  и 

однородными (нулевыми) начальными условиями через решение задачи с 1)( =tf  и 

такими же граничными условиями, называются формулами Дюамеля.  
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Наконец, чтобы учесть общий вид начальных условий, рассмотрим третью 

вспомогательную задачу (относительно функции )(ty  - с нулевой правой частью):  

,0... 1

)2(

2

)1(

1

)( =+′++++ −
−− yayayayay nn

nnn

,)0(,...,)0(,)0(,)0( 1

)1(

210 −
− ==′′=′= n

n xyxyxyxy  

+−−−−+

+−−−−−

−
−−−

−−
−−

)...)((

...)(

21

3

0

21

1

121

2

0

1

n

nnn

nn

nnn

xxpxppYpa

xpxxpxppYp
 

0)())((... 01 =+−++ − pYaxppYa nn  

[ ]
nn

nnn

nnn

nn

nn

nn

apapapap

axaxxpxpaxpxxpxp
pY

+++++
+++++++++++

=⇒
−

−−
−−

−−
−−

−−

1

2

2

1

1

0121

)3(

0

)2(

1121

)2(

0

)1(

...

...)...(...
)(

 Обращая это изображение, находим функцию )(tY решение третьей задачи. 

Теперь решение )(tx  полной задачи равно сумме полученного по одной из формул 

Дюамеля решения )(1 tz второй вспомогательной задачи (с общей правой частью и 

однородными (нулевыми) начальными условиями) и решения )(ty  третьей 

вспомогательной задачи (с однородным уравнением и общими граничными условиями).  

3. Пример.  Найдите решение уравнения ,tgtxx =+′′   удовлетворяющее начальным 

условиям .2)0(,1)0( =′= xx  

Решение:  Функция tgt  не является оригиналом (разрывы второго рода), поэтому 

найти её изображение невозможно. Решаем задачу с 1)( =tf  и однородными начальными 

условиями:  

t
p

p

ppp
pX

p
ppXxxxx

cos1
1

1

)1(

1
)(

1
)1)((0)0(,0)0(,1

22
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−←
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−=
+

=

⇒=+⇒=′==+′′

•  

по формуле Дюамеля τττ dtxfpXppF

t

)()())()( 1

0

−′⋅← ∫•  находим решение 

задачи с tgttf =)(  и нулевыми начальными условиями:  

[ ]
=

−⋅
=−⋅= ∫ ∫ τ

τ
τττ

τττ d
tt

dttgtx

t t

0 0
cos

sincoscossinsin
)sin()(  
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τ
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τ
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τ
τ
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dtdt

t
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t t
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0 0

2
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τ
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t
tglntcostsin
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42
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t

0
 

Наконец, решаем однородное уравнение с заданными начальными условиями: 

tt
pp

p
pX

pXppXpxxxx

sin2cos
1

2

1
)(

0)(2)(2)0(,1)0(,0
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+
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•
 

Решение исходной задачи - сумма двух последних функций:  
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





 +⋅−+=

=++





 +⋅−=

42
lncossin3cos

sin2cos
42

lncossin)(

π

π

t
tgttt

tt
t

tgtttx

. 

 
1.18  Лекция № 18 (2 часа ) 
Тема: «Обзорная» 
1.18.1  Вопросы лекции: 
1. Дифференциальные уравнения в частных производных и описываемые ими 

физические процессы. 

2. Рассмотренные подходы к решению дифференциальных уравнений в частных 

производных.  

2. Краткое содержание вопросов: 
1. Определение. Дифференциальным уравнением в частных производных 

называется уравнение, связывающее искомую функцию и ее частные производные ? @�, �, A, … 
, B, CBC� , CBC� ,… CBC
 , C�BC�< , C�BC�� , … C�BC
� D = 0 

 Из определения уравнения в частных производных следует, что искомая 

функция Uзависит от нескольких переменных x, y, z … t, т.е. U=U(x,y,z,…t). Будем 

рассматривать те дифференциальные уравнения, где искомая функция зависит максимум 

от четырех аргументов, три из которых, как правило, будут  x, y, z – декартовые 

прямоугольные координаты, а четвертый аргумент t будет истолкован как время. 

 Порядок уравнения определяется порядком старшей производной. 

 Дифференциальное уравнение в частных производных называется 

линейным, если искомая функция и ее частные производные входят в уравнения линейно.  

Пусть D – область n-мерного пространства R
n
точек х=(х1,х2,…,хn), где n≥2. 

Наиболее общее уравнение в частных производных k-порядка от nнезависимых 

переменных  х1,х2,…,хnможно записать в следующем виде 

0,...)
...

,...,,...,,),(,,...,,(
21

2121

21 =
∂∂∂

∂
∂
∂

∂
∂

∂
∂

nk

n

kk

k

n

n
xxx

u

x

u

x

u

x

u
xuxxxF      (1) 

где k1+ k2+…+ kn=k, u=u(х)=u(х1,х2,…,хn) – неизвестная функция,  )( ixF -заданная 

функция от своих аргументов. D -область задания уравнения (1). 

Пример.  

7. 0... 2

21
=++++ uuuu

nxxx – уравнение 1-ого порядка; 

8. 0sin......
212211 21 =++++++++ uuxuxuxuuu

nnn xnxxxxxxxx
   уравнение 2-ого порядка; 

9. )cos( 2131213211
xxuuuu xxxxxxxx =++⋅ – уравнение 3-ого порядка. 

Определение. Уравнение в частных производных называется уравнением k-ого 

порядка, если оно содержит хотя бы одну частную производную k-го порядка и не 

содержит производных более высокого порядка. 

Определение. Определенная в области D функция u(х)=u(х1,х2,…,хn), непрерывная 

вместе со своими частными производными, входящими в это уравнение, и обращающая 

его в тождество по независимым переменным х1,х2,…,хn, называется  решением 
дифференциального уравнения (1). 

Многие задачи механики и физики приводят к исследованию дифференциальных 

уравнений с частными производными второго порядка. Так, например: 1) при изучении 

различных видов волн − упругих, звуковых, электромагнитных, а также других 

колебательных явлений мы приходим к волновому уравнению; 
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2) процессы распространения тепла в однородном изотропном теле, так же как и 

явления диффузии, описываются уравнением теплопроводности; 

3) при рассмотрении установившегося теплового состояния в однородном 

изотропном теле мы приходим к уравнению Пуассона.   

При отсутствии источников тепла внутри тела уравнение  переходит в уравнение 

Лапласа.  Потенциалы поля тяготения и стационарного электрического поля также 

удовлетворяют уравнению Лапласа, в котором отсутствуют массы и, соответственно, 

электрические заряды. Уравнения 1) – 3) называют основными уравнениями 

математической физики. Их подробное изучение дает возможность построить теорию 

широкого круга физических явлений и решить ряд физических и технических задач. 

Функция u = u(x, y,z) , удовлетворяющая какому-либо из уравнений, называется его 

решением. 

Волновые процессы:  колебания сред, сооружений, электрические, звуковые, 

электромагнитные колебания. Диффузионные процессы:  тепломассоперенос 

(температура, диффузия газов).Стационарные процессы: стационарное распределение 

температуры, установившиеся колебания сред, задачи дифракции, потенциальное течение 

жидкости, электростатический потенциал. 

2. Метод Фурье разделения переменных, который играет большую роль в задачах 

колебаний и теплопроводности, применяется так же к решению уравнения Лапласа и 

задачи Дирихле для простых областей, таких как круг (шар), прямоугольник и другие. 

 Пусть в плоскости XOY имеется круг радиуса R с центром в начале 

координат и на его окружности задана некоторая функция ƒ(φ), где φ – полярный угол.  

 Требуется найти функцию U (r,φ), непрерывную в круге, включая границу, 

удовлетворяющую внутри круга уравнению Лапласа 

Uxx – Uyy= 0,                                       

а на окружности круга принимающую заданные значения                                          

U| r = R = ƒ(φ)                                      

 Будем решать задачу в полярных координатах (запишем таким образом 

уравнение Лапласа):  

r
2
Urr _+ rUr + U φφ = 0                               

 Будем искать решение уравнения  методом разделения переменных, 

согласно которому 

U = Ф(φ)R(r) 

 Подставим, получим: 

r
2
Ф(φ)R" (r) + rФ(φ)R´(r) + Ф" ( φ) = 0 

или 

   

 Так как левая часть равенства  не зависит от r, а правая – отφ, то, 

следовательно, они равны некоторому числу, которое обозначено -k
2
. Отсюда следует, что 

равенство  даёт два уравнения: 

Ф" ( φ) + k
2
 Ф( φ) = 0 

r
2
R" (r) + rR´(r) – k

2
R(r) = 0 

 Если k=0, то решение уравнения  будет иметь вид: 

Ф( φ)= A0+ B0 φ,                                       

а решение уравнения  имеет вид 

R(r) = C0 + D0 lnr 

Если k<0, то решение уравнения  принимает вид            

Ф( φ) = A cos k φ + B sin k φ 

 Решение уравнения  при k>0 будет искать в виде R(r) = r
m
. Подставив R(r) = 

r
m

 , получаем  

r
2
m (m-1) r

m-2
 + rmr

m-1 
– k

2 
r

m
 = 0 

k
r

rR

rRrrR 2

2

)(

)()(

)(

)("
−=

′+′′
=

Φ
Φ

φ
φ



53 

 

или                            m
2
 – k

2 
= 0 m = k. 

 Следовательно,  R(r) = r
k
C + Dr

-k
. 

 Заметим, что U(r, φ) как функция от φ, является периодической функцией с 

периодом 2 , так как величины U(r, φ) и U(r, φ + 2 ) соответствуют однозначной 

функции в одной и той же точке. Поэтому в (6.6) B0 = 0, а в (6.8) k может иметь одно из 

значений 1,2,3,…(k>0). Далее  D=0, так как в противном случае функция U имела бы 

разрыв, в точке r = 0 и не была бы гармонической в круге. 

 Итак, получено бесчисленное множество частных решений уравнения      r
2 

Urr+ rUr +Uφ φ= 0, которые непрерывны в круге. Эти решения можно записать, изменив 

несколько обозначения 

U0(r, φ) = , 

Un(r, φ) = (An cos n φ + Bn sin n φ) r
n
 (n = 1,2,3…).   

  Составляем теперь функцию U(r, φ) 

Un(r, φ) = (Ancos n φ + Bnsin n φ)r
n
 

 Функция U(r, φ), определяемая соотношением, вследствие линейности и 

однородности уравнения Лапласа также будет решением Лапласа. Определяем теперь A0, 

An, и Bn так, чтобы эта функция удовлетворяла условию U|r=R= ƒ(φ), а именно 

                    ƒ(φ) = (Ancosn φ + Bnsinn φ)r
n
 . 

 Полученное выражение  представляет собой разложение функции ƒ(φ) в 

промежутке [ ]. Поэтому, в силу известных в этом случае формул, находим  

A0 = (t) dt; An =  (t) cosntdt; Bn = (t) sinntdt.  
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2. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ВЫПОЛНЕНИЮ 
ЛАБОРАТОРНЫХ РАБОТ 

2.1 Лабораторная работа № 1 ( 2 часа). 
Тема: «Интерполирование функций» 
2.1.1 Цель работы: ознакомиться с возможностями интерполяции и экстраполяции 

опытных данных; научиться решать задачу численной интерполяции при работе с 

таблично заданными функциями. 

2.1.2 Задачи работы: 
1. Интерполяционный многочлен Лагранжа. 

2. Интерполяционный многочлен Ньютона. 

3. Интерполяция функции кубическим сплайном. 

2.1.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.1.4 Описание (ход) работы: 
Когда вы имеете дело с выборкой экспериментальных данных, то они, чаще всего, 

представляются в виде массива, состоящего из пар чисел ),( ii yx . Поэтому возникает 

задача аппроксимации дискретной зависимости )( ixy непрерывной функцией )(xf .  

Для построения интерполяции-экстраполяции в MathCAD имеются несколько 

встроенных функций, позволяющих "соединить" точки выборки данных ),( ii yx  кривой 

разной степени гладкости. По определению, интерполяция означает построение функции 

)(xA , аппроксимирующей зависимость )(xy  в промежуточных точках отрезка [ ]nxx ,0 . 

Поэтому интерполяцию еще по-другому называют аппроксимацией. В точках ix  значения 

интерполяционной функции должны совпадать с исходными данными, т. е. )()( ii xyxA = .  

Примечание. Будем использовать вместо обозначения )(xA другое имя ее 

аргумента )(tA , чтобы не путать вектор данных x  и скалярную переменную t . 

Интерполяционный многочлен Лагранжа 

Пусть  известные  значения   некоторой   функции   f   образуют следующую 

таблицу: 

0x
 1x

 2x
 

… nx
 

0y
 1y

 2y
 

… ny
 

При этом требуется получить значение функции  f  для такого значения аргумента 

x , которое входит в отрезок [ ]nxx ;0 , но не совпадает ни с одним из значений ix , ni ,0= . 

Очевидный прием решения этой задачи — вычислить значение f(x), 

воспользовавшись аналитическим выражением функции f. Этот прием, однако, можно 

применить лишь в случае, когда аналитическое выражение f пригодно для вычислений. 

Более того, часто аналитическое выражение функции f  вовсе неизвестно. В этих случаях 

применяется особый прием — построение по исходной информации (табл.) 

приближающей функции F, которая в некотором смысле близка к функции f  и 

аналитическим выражением, которой можно воспользоваться для вычислений, считая 

приближенно, что 

                                                        )()( xFxf = .                                           (1) 

Классический подход к решению задачи построения приближающей функции 

основывается на требовании строгого совпадения значений f(x) и F(x) в точках  ix , ni ,0= , 

т. е. 

                        00 )( yxF = , 11)( yxF = , …, nn yxF =)( .                                     (2) 

В этом случае нахождение приближенной функции называют интерполяцией (или 

интерполированием), а точки nxxx ,...,, 21  - узлами интерполяции. 
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Интерполяционным многочленом Лагранжа называется многочлен, 

представленный в виде 

( )( )( ) ( ) ( )( )( ) ( ) ...
...

)(

...

)(
)(

121011

1

020100

0 +
−⋅⋅−−−

⋅
+

−⋅⋅−−−
⋅

=
nn

n
xxxxxxxx

xy

xxxxxxxx

xy
xL

ϕϕ

 

                                            ( )( ) ( )10 ...

)(

−−⋅⋅−−
⋅

+
nnnn

n

xxxxxx

xy ϕ
,                             (3)                 

где ( )( )( ) ( )nxxxxxxxxx −⋅⋅−−−= ...)( 210ϕ - вспомогательный многочлен. 

Интерполяционным многочленом Лагранжа можно записать иначе: 

                                                                 ∑
= −′

⋅
=

n

i ii

i
n

xxx

xy
xL

0 ))((

)(
)(

ϕ
ϕ

.                                 

(4)              

По таблице исходной функции )(xf  формула (4) позволяет весьма просто сос-

тавить «внешний вид» многочлена. 

Пример 1.  Для заданной функции 
25

1
)(

x

x
xf

+
+

=  на отрезке [ ]3,0 : 

1. Построить интерполяционный многочлен Лагранжа )(xLn при 5,4,3,2,1=n   для 

равноотстающих узлов. Построить графики получившихся полиномов.  

2. Используя MathCAD, выполнить интерполяцию кубическим сплайном. Оценить 

погрешность. 

            3. Для аппроксимации )(xfy ′=′ , )(xfy ′′=′′  использовать nL′ и nL ′′
соответственно. Оценить погрешность (построить графики погрешности). Оценить 

зависимость погрешности интерполяции от порядка многочлена. 

Решение: 
1. 

f x( )
1 x+( )

5 x
2

+
:=

 

      

10 0 10
0.2

0

0.2

f x( )

x     
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4

 

Для составления полинома Лагранжа по формуле (4) можно воспользоваться 

средствами MathCAD. 

φ t( ) t t 3−( )⋅:=  

t 0:=          t
φ t( )

d

d
3−=

 

t 3:=          t
φ t( )

d

d
3=
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L1 t( )
1

5
t 3−( )⋅

1
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

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
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Чтобы упростить выражение, полученное по формуле (5) необходимо 

воспользоваться оператором упрощения в MathCAD. 

Упрощение выражений - наиболее часто применяемая операция. Символьный 

процессор MathCAD стремится так преобразовать выражение, чтобы оно приобрело более 

простую форму. При этом используются различные арифметические формулы, 

приведение подобных слагаемых, тригонометрические тождества, пересчет обратных 

функций и др. Чтобы упростить выражение с помощью меню: 

1) Введите выражение. 

2) Выделите выражение целиком или его часть, которую нужно упростить. 

3) Выберите команду Symbolics / Simplify (Символика / Упростить).  
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35
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Задания к лабора
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Контрольные  вопросы 
1. В чем особенность приближения таблично заданной функции методом 

интерполирования? 

2. Как обосновывается существование и единственность интерполяционного 

многочлена? Как связана его степень с количеством узлов интерполяции? 

3. Как  строятся  интерполяционные  многочлены  Лагранжа  и Ньютона? В чем 

особенности этих двух способов интерполяции? 

4. Как производится оценка погрешности метода интерполяции в случае, когда:  

а)  интерполируемая функция задана аналитически;  

б) интерполируемая функция задана таблицей? 

5. Как используется  метод интерполирования для уточнения таблиц функций? 

 
 
2.2 Лабораторная работа № 2 ( 2 часа). 
Тема: «Аппроксимация функций в среде MathCAD» 
2.2.1 Цель работы: ознакомиться с возможностями аппроксимации опытных 

данных на примере метода наименьших квадратов; научиться решать задачу численной 

аппроксимации при работе с таблично заданными функциями. 

2.2.2 Задачи работы: 
1. Постановка задачи численной аппроксимации. 

2. Аппроксимация  таблично заданных функций методом наименьших квадратов. 

2.2.3 Перечень приборов, материалов, используемых в лабораторной работе:  
спецификой дисциплины не предусмотрены 

2.2.4 Описание (ход) работы: 
1. Производится п наблюдений , ..., переменных х и у. Предполагая, 

что между х и у существует зависимость вида )(xfy = , найти значения параметров а и b, 

наилучшим образом согласованные с экспериментальными данными. 

Согласно методу наименьших квадратов параметры функции  следует выбирать 

так, чтобы сумма квадратов невязок была наименьшей. 

                                                    

                                             

2. Если  — линейная функция, т.е. , то , а 

неизвестные параметры a и b определяются из системы нормальных уравнений:  

                                                                                           

3. Если  — квадратичная функция, т.е. , то 

, а неизвестные параметры a, b, с определяются из системы 

нормальных уравнений:  

                                        

                      

4. Линейная регрессия 

Для расчета линейной регрессии в MathCAD необходимо воспользоваться 

следующими операторами:  
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- line (х,у) - вектор из двух элементов (b,а) коэффициентов линейной регрессии 

axby += ; 

- intercept (х, у) - коэффициент b линейной регрессии; - slope (х, у) - коэффициент  а 

линейной регрессии;  - х - вектор действительных данных аргумента; - у - вектор 

действительных данных значений того же размера.  

Пример 1. Линейная регрессия  
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Пример 2. Имеются следующие данные о расходах на рекламу (тыс. усл. ед) и 

сбыте продукции  у (тыс. ед): 

 
1 2 3 4 5 

 
1,6 4,0 7,4 12,0 18,0 

Методом наименьших квадратов найти эмпирические формулы прямой  и  

многочлена второй степени , аппроксимирующие функцию, заданную 

таблично. Найти значение многочленов первой и второй степеней  в заданных точках, 

абсолютную погрешность в них и среднеквадратическую погрешность.  

Выяснить, какая зависимость предпочтительнее. Построить графики. Для этой же 

функции построить многочлен первой степени, пользуясь встроенными функциями 

системы MathCAD для линейной регрессии. Графически сравнить полученные 

результаты. 

Решение: 

Система нормальных уравнений  имеет вид:  Её решения  а=4,08, 

b=-3,64. Таким образом, линейная зависимость имеет вид: . 

Система нормальных уравнений имеет вид:  Её решения  

а=0,3, b=0,48, c=5,06. Таким образом, искомая квадратичная зависимость имеет вид: 
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 - абсолютная погрешность для линейной зависимости  
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- среднеквадратическая погрешность для линейной зависимости  

        
              

 

 

 

 - абсолютная погрешность для квадратичной зависимости 

 - среднеквадратическая погрешность для квадратичной 

зависимости 

      
 

      

 

 

 

Как видно Sлин<Sкв, следовательно, линейная зависимость предпочтительнее. 

 

            
 

 

 

 

 

 

 

 

 

 

 

Рис. Изображение в ДСК опытных точек, линейной и квадратичной зависимостей 
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Рис. Изображение в ДСК опытных точек и графика линейной регрессии  

 
Контрольные вопросы 
1. Что значит аппроксимировать табличную функцию? 

2. Какая функция называется эмпирической? Назовите этапы получения 

эмпирической формулы. Как определить общий вид эмпирической формулы? 

3. В чём заключается принцип Лежандра? 

 
2.3 Лабораторная работа № 3 ( 2 часа). 
Тема: «Решение обыкновенных дифференциальных уравнений первого 

порядка» 
2.3.1 Цель работы: повторить обзорно основные понятия теории ДУ первого 

порядка, закрепить эти понятия в практике решения задач. 

2.3.2 Задачи работы: 
1. Методы решения линейных уравнений. 

2. Методы решения уравнений в полных дифференциалах. 

2.3.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.3.4 Описание (ход) работы: 
Определение. Дифференциальным уравнением называется уравнение, 

связывающее независимые переменные, их функцию и производные (или 

дифференциалы) этой функции. 

 Определение. Наивысший порядок производных, входящих в уравнение, 

называется порядком дифференциального уравнения. 
 Определение. Общим решением дифференциального уравнения 

называется такая дифференцируемая функция y = ϕ(x, C), которая при подстановке в 

исходное уравнение вместо неизвестной функции обращает уравнение в тождество. 

Определение. Решение вида у = ϕ(х, С0) называется частным решением 
дифференциального уравнения. 

 Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- 

французский математик) называется нахождение любого частного решения 

дифференциального уравнения вида у = ϕ(х, С0), удовлетворяющего начальным условиям 

у(х0) = у0. 

 Теорема Коши. (теорема о существовании и единственности решения 

дифференциального уравнения 1- го порядка).  Если функция f(x, y) непрерывна в 

некоторой области  D в плоскости XOY и имеет в этой области непрерывную частную 

производную ),( yxfy =′ , то какова бы не была точка (х0, у0) в области D, существует 

единственное решение )(xy ϕ=  уравнения ),( yxfy =′ , определенное в некотором 

интервале, содержащем точку х0, принимающее при х = х0 значение ϕ(х0) = у0, т.е. 

существует единственное решение дифференциального уравнения. 

 Определение. Интегральной кривой называется график y = ϕ(x) решения 

дифференциального уравнения  на плоскости ХОY. 



64 

 

Определение. Особым решением дифференциального уравнения называется 

такое решение, во всех точках которого условие единственности Коши (см. Теорема 

Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее 

двух интегральных кривых.  

Особые решения не зависят от постоянной С. 

 Особые решения нельзя получить из общего решения ни при каких 

значениях постоянной С.  Если построить семейство интегральных кривых 

дифференциального уравнения, то особое решение будет изображаться линией, которая в 

каждой своей точке касается по крайней мере одной интегральной кривой. 

 Особые решения нельзя получить из общего решения ни при каких 

значениях постоянной С.  Если построить семейство интегральных кривых 

дифференциального уравнения, то особое решение будет изображаться линией, которая в 

каждой своей точке касается по крайней мере одной интегральной кривой. 

 Пример. Найти общее решение дифференциального уравнения: .0=+′ yy  

Найти особое решение, если оно существует. 

y
dx

dy
−=  

dx
y

dy
−=  

∫ ∫−= dx
y

dy
 

Cxy +−=ln  
Cx eey ⋅= −

 
xeCy −⋅= 1  

 Данное дифференциальное уравнение имеет также особое решение у = 0. 

Это решение невозможно получить из общего, однако при подстановке в исходное 

уравнение получаем тождество. Мнение, что решение y = 0  можно получить из общего 

решения при С1 = 0 ошибочно, ведь C1 = e
C ≠ 0. 

Упражнения 
Найти общий интеграл дифференциального уравнения.  

                          
 

             
 

 
 

 

 

2.4 Лабораторная работа № 4 ( 2 часа). 
Тема: «Численные методы решения обыкновенных дифференциальных 

уравнений первого порядка» 
2.4.1 Цель работы: повторить обзорно основные понятия теории ДУ первого 

порядка, закрепить эти понятия в практике решения задач 

2.4.2 Задачи работы: 
1. Метод Эйлера. 

2. Одна из модификаций метода Рунге-Кутта. 

2.4.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 



 

2.4.4 Описание (хо
Численное решени

построении таблицы при

сетки a=x0 < x1 < ... < xi < 
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вычисления решения в то

x0.  

Простейший одно

Эйлера. В методе Эйлера 

yi+1 = yi + h f(xi , y

 ПРИМЕР 1. Реше

Найдем методом Э

задачи Коши y'=sinx-cosy

Расчетные формул

1, xi+1 = xi + 0.2,  yi+1 = y

Определим правую

Знак присваивания

Evaluation. 

Определим диапаз

  
Для того чтобы в

соответствующей позици

запятой")  Определим нач

Для того чтобы вв

позиции в панели Matrix и

Определим шаг фо

Определим по фор

 
Выведем в рабочий

Для того чтобы вы

переменной, знак равенст

 

Построим график н

Для того,  чтобы 

Graph по пиктограмме д

абсцисс обозначение ком

возле оси ординат - 

приближенного решения 

документе вне поля графи
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Метод Эйлера допускает простую геометрическую интерпретацию. Пусть известна 

точка (xi,yi) интегральной кривой уравнения y'=f(x,y).  

Касательная к интегральной кривой уравнения, проходящая через эту точку, определяется 

уравнением y=yi+f(xi,yi)(x-xi).  

Следовательно, вычисленная методом Эйлера точка (xi+1 , yi+1 ), где xi+1=xi+h, 

yi+1=yi + h f(xi , yi), лежит на этой касательной. 

ПРИМЕР 2. Геометрическая интерпретация метода Эйлера. 

 Найдем приближенное решение задачи Коши   y'=y, y(0)=1 в точке x=1 методом 

Эйлера.  

Изобразим на графике точное решение y = exp(x), касательную к нему и 

вычисленное приближенное решение.  

Изобразим приближенное решение графически, построим график точного решения 

y=exp(x) и построим касательную к графику решения в точке (0,y(0)). 

Формула Эйлера при h=1, y(0)=1, f(x,y)=y имеет вид: y=y(0)+hf(0) 

Уравнение касательной к графику решения в точке (0, y(0)), y(0)=1, f(x,y)=y имеет 

вид: y=y(0)+f(0,y(0))(x-0) 

Определим правую часть уравнения и начальную точку. 

     
Вычислим приближенное решение по формуле Эйлера: 

    
Уравнение касательной к графику решения имеет вид: 

 
Построим график точного решения y=exp(x), касательную к графику решения в 

точке (0, y(0))=(0, 1), а также изобразим приближенное решение y=2 в точке x=1 

Для того, чтобы построить график приближенного решения, щелкните в панели 

Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси 

абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции 

возле оси ординат - обозначение компонент вектора, содержащего значения 

приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем 

документе вне поля графиков. 
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Видно, что приближенное значение, вычисленное по формуле Эйлера на одном 

шаге, лежит на касательной к графику решения. Видно также, что погрешность 

приближенного решения растет с увеличением шага. 

Задания к лабораторной работе  
Решить заданное дифференциальное уравнение методом Эйлера с шагом h=0.2 и 

h=0.1, построить графики решения, сравнить полученные результаты. Найти точное 

решение уравнения, построить график. 

№ в-та Уравнение  
Начальные 

условия a  
№ в-та Уравнение  

Начальные 

условия a  

1 xyy 6+=′ 0)0( =y 6 xyy 6+=′ 0)1( =y

2 xyy +=′ 2 0)0( =y 7 xyy +=′ 2 0)1( =y

3 xyy 22 +=′ 1)0( =y 8 xyy 22 +=′ 0)1( =y

4 xyy 32 +=′
 

1)0( =y
 

9 xyy 32 +=′
 

0)1( =y
 

5 xyy 42 +=′
 

1)0( =y
 

10 xyy 42 +=′
 

0)1( =y
 

 

Контрольные вопросы 
1. Дайте определение дифференциального уравнения. 

2. Как определить порядок дифференциального уравнения? 

3. Какие типы дифференциальных уравнений первого порядка вы знаете? 

4. Сформулируйте теорему Коши. 

5. Что позволяет найти задача Коши? 

6.Как называется график решения дифференциального уравнения? 

7. Что называется общим решением дифференциального уравнения? 

8. Запишите условие, при котором ДУ является дифференциальным уравнением в 

полных дифференциалах 

 
2.5 Лабораторная работа № 5 ( 2 часа). 
Тема: «Численные методы решения некоторых задач математической 

физики» 
2.5.1 Цель работы: ознакомиться с возможностями численного решения 

некоторых задач математической физики; построить математическую модель  конкретной 

задачи; получить ее решение в одном из математических пакетов. 

2.5.2 Задачи работы: 
1. Построение математической модели задачи. 

2. Метод сеток. 

2.5.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.5.4 Описание (ход) работы: 
В практике научных и инженерных изысканий часто возникают задачи 

математического описания данных натурных наблюдений за состоянием исследуемых 

процессов, измерений изучаемых объектов и проч. Многообразие задач создания 

математических моделей объединяет наличие массивов данных, полученных в результате 

регистрации исследуемых переменных. Предположим, что предметом наблюдений 

(измерений) в исследуемой системе служит переменная у, значения которой меняются в 

зависимости от некоторого аргумента х. Таким аргументом в задачах, например, 

исследования динамических процессов, выходных характеристик динамических объектов 

и систем может выступать время. В задачах исследования экономических, 

социологических, биологических систем аргументами  

 Встроенные функции категории Curve Fitting. Таблица 1. 
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 expfit(X,Y,vg) 

Вычисляет коэффициенты экспоненциальной кривой a*e^(b*x) + c, наилучшим 

образом описывающей данные в X,Y. Вектор vg содержит начальные 

приближения искомых коэффициентов 

genfit(X,Y, vg, F) 

Вычисляет параметры заданной функции f , определенной в F и наилучшим 

образом описывающей данные в X,Y. Вектор vg  содержит начальные 

приближения параметров. F - вектор-функция, первая компонента которой есть 

функция f, а остальные - частные производные f по искомым параметрам. 

lgsfit(X,Y, vg) 

Вычисляет коэффициенты логистической кривой a/(1+b*e^(-c*x)), наилучшим 

образом описывающей данные в X,Y. Вектор vg содержит начальные 

приближения искомых коэффициентов 

line(X,Y) 
Вычисляет коэффициенты прямой  ax + b, наилучшим образом описывающей 

данные в X,Y. 

linfit(X,Y, F) 

Вычисляет весовые коэффициенты линейной комбинации функций, заданных в 

F, наилучшим образом описывающей данные в X,Y. Значения в X должны быть 

отсортированы в возрастающем порядке. 

lnfit(X,Y) 
Вычисляет значения параметров для логарифмической кривой, наилучшим 

образом описывающей данные в X,Y. Вектор начальных приближений не нужен. 

logfit(X,Y, vg) 

Вычисляет коэффициенты логарифмической кривой a*ln(x + b) + c, наилучшим 

образом описывающей данные в ax + b. Вектор vg содержит начальные 

приближения искомых коэффициентов 

medfit(X,Y) 
Вычисляет коэффициенты прямой вида ax + b, наилучшим образом 

описывающей данные в X,Y, методом медиан. 

pwrfit(X,Y, vg) 

Вычисляет коэффициенты степенной кривой вида a*x^b + c, наилучшим образом 

описывающей данные в X,Y. Вектор vg содержит начальные приближения 

искомых коэффициентов 

sinfit(X,Y, vg) 

Вычисляет коэффициенты синусоидальной кривой a*sin(x + b) + c, наилучшим 

образом описывающей данные в X,Y. Вектор vg содержит начальные 

приближения искомых коэффициентов 

  

  В ряде задач, когда требуется полиномиальное описание данных может 

успешно использоваться часть встроенных функций категории Regression and 
Smoothing(регрессия и сглаживание) и функция interp(v,X,Y,x) из 

категории Interpolation and Prediction (интерполяция и прогноз), приведенные в табл. 2. 

 Встроенные функции категории Regression and Smoothing. Таблица 2. 

 slope (X,Y) Вычисляет параметр a линии регрессии ax + b по данным X и Y 

intercept(X,Y) Вычисляет параметр b линии регрессии ax + b по данным X и Y 
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loess(X,Y,s) 

Вычисляет вектор v, используемый функцией interp для нахождения 

совокупности полиномов второго порядка, наилучшим образом описывающих 

окрестности значений данных в массивах X и Y. Параметр s регулирует размер 

окрестности для локальной регрессии. Рекомендуемое значение s = 0.7-0.8 

regress(X, Y, n) 

Вычисляет вектор v для функции interp для нахождения коэффициентов 

полинома степени n, который наилучшим (в смысле наименьших квадратов) 

образом приближает данные Yв точках, определяемых X. 

interp(v, X,Y, x) 

Вычисляет интерполированные значения функции в точках x на основании 

предварительно найденного вектора коэффициентов v. Вектор v может быть 

получен одной из функций loess или regress на основе данных X и Y. 

  

  Другой, также весьма широкий класс задач построения математических 

моделей, относится к описанию динамических звеньев и систем в виде 

дифференциальных или разностных уравнений по исходным данным, заданным в 

табличной форме. Для этих задач векторы X и Y объединяют значения входных и 

выходных сигналов динамического звена или системы. Задачи этого класса, которые 

иногда называют “задачами черного ящика”, могут быть успешно решены с 

использованием поисковых и беспоисковых алгоритмов.  

Задача1. Однородный стержень с известным коэффициентом 

температуропроводности нагревают в середине. Правый конец поддерживается при 

постоянной температуре, левый --- теплоизолирован. Начальное распределение 

температуры и мощность источника известны. Определите температуру в последующие 

моменты времени. 

Уравнение теплопроводности для стержня: 

 
В конечных разностях получаем: 

 
В результате вычислений получаются кривые T=T(t,x) зависимости температуры от 

координаты x в заданные моменты времени t. Видно, что температура средней части 

стержня за счет источников тепла повышается. 
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Моделирование диффузии осуществляется аналогично. 

Задача 2. Часть сосуда заполнена водным раствором соли, а другая часть --- чистой 

водой. Изучите самопроизвольное перемешивание жидкостей за счет диффузии. 

 

 

 
Упражнение.  Стержень разрезали на две половины и одну из них нагрели, после 

чего половинки стержня соединили. Рассчитайте распределение температуры вдоль 

стержня в последующие моменты времени. 

 

 

 

2.6 Лабораторная работа № 6 ( 2 часа). 
Тема: «Численные методы решения некоторых задач математической 

физики» 
2.6.1 Цель работы: ознакомиться с возможностями численного решения 

некоторых задач математической физики; построить математическую модель  конкретной 

задачи; получить ее решение в одном из математических пакетов. 

2.6.2 Задачи работы: 
1. Построение математической модели задачи. 

2. Разностные аппроксимации. 

2.6.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены   

2.6.4 Описание (ход) работы: 
Задача 1. Имеется идеальная колебательная система. Ее вывели из состояния 

равновесия и предоставили самой себе. Получите график колебательного движения и 

фазовую кривую. 

Решение дифференциального уравнения незатухающих колебаний: 

 
представлено в документе 06.mcd. 
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Задача 2. Тело, подвешенное на пружине, совершает гармонические колебания 

x(t)=Asin(ωt+φ). Средствами MathCAD продифференцируйте эту зависимость, постройте 

графики зависимости кинетической и потенциальной энергии от времени (07.mcd). 

  
 

Задача 3. Двойной маятник состоит из подвешенной на нити длиной 

L1 материальной точки m1, к которой с помощью нити длиной L2подвешена материальная 

точка m2. Изучите зависимость потенциальной энергии от углов α и β, которые образуют 

нити с вертикалью. 

Маятник движется в одной вертикальной плоскости, система имеет две степени 

свободы. Ее потенциальная энергия равна: 

 
В файле 08.mcd построена поверхность U=U(α,β), характеризующая зависимость 

потенциальной энергии от координат маятника. Видно, что значениям α=π и β=0 

соответствует седлообразное положение равновесия: потенциальная энергия по 

координате α достигает максимума, а по координате β --- минимума. 
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Задача 4. Последовательный колебательный контур, состоящий из резистора, 

конденсатора и катушки индуктивности, подключен к источнику переменного 

напряжения регулируемой частоты. Постройте график зависимости тока, напряжения на 

конденсаторе и катушке индуктивности, сдвига колебаниями тока и напряжения питания 

от частоты. 

Полное сопротивление колебательного контура и сдвиг фаз между колебаниями 

тока и напряжения: 

 
Ток в контуре равен I=U/z. Решение задачи --- в документе 09.mcd. 

 

 

 

2.7 Лабораторная работа № 7 ( 2 часа). 
Тема: «Суммирование рядов Фурье» 
2.7.1 Цель работы: ознакомиться с возможностями численного решения 

некоторых задач математической физики, связанных с разложением функций в ряд Фурье; 

получить решение в одном из математических пакетов. 

2.7.2 Задачи работы: 
1. Вычисление коэффициентов и частичных сумм ряда Фурье. 
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2. Анализ графиков частичных сумм. 

3. Вычисление значения суммы ряда Фурье в указанных точках. 

2.7.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.7.4 Описание (ход) работы: 
Определение 1. Тригонометрическим рядом называется ряд вида:  

∑
∞

=

++
1

0 ).sincos(
2 n

nn nxbnxa
a

 

Действительные числа ai, bi называются коэффициентами тригонометрического 

ряда. 

Если ряд представленного выше типа сходится, то его сумма представляет собой 

периодическую функцию с периодом 2π, т.к. функции sinnx и cosnx также периодические 

функции с периодом 2π. 

Если функция f(x) – любая периодическая функция периода 2π, непрерывная на 

отрезке [-π; π] или имеющая на этом отрезке конечное число точек разрыва первого рода, 

то коэффициенты   ∫
π

π−π
= dxxfa )(

1
0

  ,...2,1;cos)(
1

=
π

= ∫
π

π−

nnxdxxfan
 ,...2,1,sin)(

1
=

π
= ∫

π

π−

nnxdxxfbn

 

существуют и называются коэффициентами Фурье для функции f(x). 

Определение 2.  Рядом Фурье для функции f(x) называется тригонометрический 

ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции 

f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция  f(x) 

разлагается в ряд Фурье. 

Достаточные признаки разложимости в ряд Фурье 
Теорема Дирихле. 

 Пусть функция f(x) имеет период 2π и на отрезке [-π;π] непрерывна или имеет 

конечное число точек разрыва первого рода. Сам отрезок  можно разбить на конечное 

число отрезков так, что внутри каждого из них функция f(x) монотонна, тогда  ряд Фурье 

для функции f(x) сходится при всех значениях х.   

Причем,  в точках непрерывности функции f(x) его сумма равна f(x), а в точках 

разрыва его сумма равна 
2

)0()0( ++− xfxf , т.е. среднему арифметическому предельных 

значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом 

отрезке, который принадлежит интервалу непрерывности функции f(x). 

Для четной функции ряд Фурье записывается:  

∑
∞

=

+=
1

0 cos
2

)(
n

n nxa
a

xf  ,...)2,1,0(cos)(
2

0

=
π

= ∫
π

nnxdxxfan
 

Разложение в ряд Фурье для нечетной функции: 

 ∑
∞

=

=
1

;sin)(
n

n nxbxf  ,...)2,1(;sin)(
2

0

== ∫ nnxdxxfbn

π

π
 

Определение 3. Если f(x) – любая абсолютно интегрируемая на всей числовой оси 

функция, непрерывная или имеющая конечное число точек разрыва первого рода на 

каждом отрезке, то функция ∫
∞

∞−

−= dxexfuF
iux)()(  называется преобразованием Фурье 

функции f(x).  

Функция F(u) называется также спектральной характеристикой функции f(x). 
Если f(x) – функция, представимая интегралом Фурье, то можно записать: 

∫
∞

∞−π
= dueuFxf iux)(

2

1
)( .  Это равенство называется обратным преобразованием Фурье. 
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Пример 1. Исследуйте  графически поведение частичных сумм ряда Фурье: 










<<
−

≤≤−
−−

=
ππ

ππ

x
x

x
x

xf

0,
2

0,
2

)(
.  

Вычислите значение суммы ряда Фурье в указанных точках и в точках ππ ;− . 

1) Установите автоматический режим вычислений. 

2) Введите  функцию, используя клавиатуру и различные кнопки панели 

"Математика" (Если не открыта, выполнить следующие действия: выбрать меню просмотр 

– панели – математика)  

В выпавшей панели щелкнуть на кнопках , , , , , , вызвав 

необходимые меню. Для того чтобы определить функцию заданную разными 

аналитическими выражениями на разных промежутках нужно: ввести имя функции, затем 

в панели , щелкнуть по клавише .Появится вертикальная 

черта. После ввода первого аналитического выражения, щелкните по кнопке , 

введите промежуток.  

Аналогично введите второе выражение для функции: 

f x( )
π− x−( )

2
π− x≤ 0≤if

π x−( )
2

0 x< π≤if

:=

 

3) Найдите выражения для коэффициентов Фурье  и частичной суммы ряда как 

функции ),( nxs .  

Чтобы ввести нижний индекс,  нажмите "[". С помощью стрелок вернитесь в 

исходное положение. Сохраните выражения для коэффициентов Фурье в виде векторов a  

и b . Для этого определите размерность вектора и определите диапазон изменения номера 

k .  

(В меню  нажать кнопку ). 

n 50:=

k 0 n..:=

ak

1

π−

π

xf x( ) cos k x⋅( )⋅
⌠

⌡

d⋅

π
:=

bk

1

π−

π

xf x( ) sin k x⋅( )⋅
⌠

⌡

d⋅

π
:=

s x n,( )
a0

2
1

n

k

ak cos k x⋅( )⋅ b k sin k x⋅( )⋅+( )∑
=











+:=

 

4) Вычислите коэффициенты  и частичную сумму )50,(xs . 
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5) Постройте графики ),1,(xs ),2,(xs ),5,(xs )10,(xs , )50,(xs . Сравните их 

между собой и с графиком )(xf .  

 

x π− π−
π

100
+, π..:=

4 2 0 2 4
2

0

2

f x( )

s x 1,( )

x

4 2 0 2 4
2

0

2

f x( )

s x 2,( )

x

4 2 0 2 4
2

0

2

f x( )

s x 5,( )

x

4 2 0 2 4
2

0

2

f x( )

s x 10,( )

x

4 2 0 2 4
2

0

2

f x( )

s x 50,( )

x  

6) Вычислите значения ),1,(xs ),2,(xs ),5,(xs )10,(xs , )50,(xs  в указанных точках 

и в точках ππ ;− . Введите имя функции, указав в скобках нужное значение аргумента, и 

нажмите "=".  

f 0( ) 1.5707963−=
s

π

2
10,





0.834920634920635=
 

7)  Для 
2

π
=x  постройте график частичной суммы 








ns ,
2

π
 как переменной n , 

предварительно задав диапазон изменения n . 

n 1 50..:=

0 20 40 60
0.6

0.8s
π

2
n,





n  
 

 
 
 
 



76 

 

Задание для лабораторной работы  
Исследуйте  графически поведение частичных сумм ряда Фурье. Постройте 

графики частичных сумм. Вычислите значение суммы ряда Фурье  в точках πππ ;
2

;0;− . 

 

Варианты 1-15. 
( )





<<
+
+

−

≤≤−
=

ππ

π

x
N

N
x

x

xf
0,

2

1

0,0

)(
, где N  - номер варианта. 

 

Варианты 16-30. ( )






<<

≤≤−
−
−

+−
=

π

ππ

x

x
N

N
x

xf

0,0

0,
9

10

)(
, где N  - номер варианта. 

 
Контрольные  вопросы  
1. Дать определение ряда. 

2. Какой ряд называется функциональным? 

3. Дать определение ряда Фурье. 

4. Сформулировать теорему Дирихле. 

5. Как разложить в ряд непериодическую функцию?  

 

 
2.8 Лабораторная работа № 8 ( 2 часа). 
Тема: «Приложение операционного исчисления» 
2.8.1 Цель работы: изучение возможностей численного моделирования методов 

операционного исчисления в  MathCAD; реализация в практике решения задач. 

2.8.2 Задачи работы: 
1. Изучение операторного метода в среде MathCAD. 

2. Нахождение частного решения неоднородного дифференциального уравнения 

второго порядка с постоянными коэффициентами операторным методом. 

2.8.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.8.4 Описание (ход) работы: 
Рассмотрим функцию действительного переменного t , определенную при 0≥t . 

Будем также  считать, что функция )(tf - кусочно-непрерывная, т.е. в любом конечном 

интервале она имеет конечное число точек разрыва первого рода, и определена на 

бесконечном интервале      (-∞, ∞), но 0)( =tf  при 0<t . 

Будем считать, что функция ограничена условием: stMetf <)( . 

Рассмотрим функцию ∫
∞

−=
0

)()( dttfepF pt , где p = a + ib – комплексное число. 

Определение 1. Функция F(p) называется изображением Лапласа функции f(t). 

Также функцию F(p) называют L – изображением или преобразованием Лапласа. 

Обозначается );()();()()};({)( tfpFtfpFtfLpF
•

•

•

•
=→=  

При этом функция f(t) называется начальной функцией или оригиналом, а процесс 

нахождения оригинала по известному изображению называется операционным 

исчислением.  

Теорема единственности. Если две непрерывные функции f(x) и g(x) имеют одно 

и то же L – изображение F(p), то они тождественно равны. 

Свойства изображений 

Если )()( tfpF
•

•
= , то справедливы следующие свойства: 
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1) Свойство подобия. ;0;
1

)( >





=

•

•
α

αα
α p

Ftf  

2) Свойство линейности. )].([)]([)]()([ tgBLtfALtBgtAfL +=+  

3) Смещение изображения. )()( α+=
•

•

α− pFetf t  

4) Дифференцирование изображения. )()()1( tftpF
dp

d n

n

n
n

•

•
=−  

5) Дифференцирование оригинала. )()0()( tffppF ′=−
•

•
 

6) Интегрирование изображения. ∫
∞•

•
=

p

dqqF
t

tf
)(

)(   

(Справедливо при условии, что интеграл сходится) 

7) Интегрирование оригинала. 
p

pF
df

t
)(

)(
0

•

•
=∫ ττ  

Теорема. (Интеграл Дюамеля). Если )()();()( tgpGtfpF
•

•

•

•
== , то верно равенство 

∫ ττ−′τ+=
•

•

t

dtgfgtfpGppF
0

)()()0()()()(  

Операционное исчисление используется как для нахождения значений интегралов, 

так и для решения дифференциальных уравнений. 

Пусть дано линейное дифференциальное уравнение с постоянными 

коэффициентами. )()()(...)( 01

)( tftxatxatxa n

n =+′++  

Требуется найти решение этого дифференциального уравнения, удовлетворяющее 

начальным условиям:  

.)0(...;)0(;)0( )1(

0

)1(

00

−− =′=′= nn xxxxxx  

Если функция x(t) является решением этого дифференциального уравнения, то оно 

обращает исходное уравнение в тождество, значит функция, стоящая в левой части 

уравнения и функция f(t) имеет (по теореме единственности) одно и то же изображение 

Лапласа. 
)]([

0

tfL
dt

xd
aL

n

k
k

k

k =







∑
=

. 

Из теоремы о дифференцировании оригинала { )()0()(
.

.
tffppF ′=− } можно сделать 

вывод, что ).0()0(...)0(][ )1()2(1 −−− −−−−=






 kkkk

k

k

xpxxpxLp
dt

xd
L  

Тогда ].[][... 0 fLxLa
dt

xd
La

n

n

n =++






  

Обозначим ).(][),(][ pFfLpxxL ==  

Получаем: +++′+=++++ −−−−
− ]...[]...)[( )1(

00

2

0

1

01

1

1

nnn

n

n

n

n

n xxpxpaapapapapx  

).(][....]...[ 01002

)2(

00

3

0

2

1 pFxaxpxaxxpxpa nnn

n ++′+++++′++ −−−
−  

Это уравнение называется вспомогательным (изображающим) или операторным 

уравнением. 

Отсюда получаем изображение )( px , а по нему и искомую функцию x(t). 

Изображение получаем в виде:  

)(

)(

)(

)(
)( 1

pR

p

pR

pF
px

n

n

n

−Ψ
+= ,  Этот многочлен зависит от начальных условий. Если эти 

условия нулевые, то многочлен равен нулю, и формула принимает вид: 
)(

)(
)(

pR

pF
px

n

= . 

Оригинал можно найти с помощью теоремы разложения. 

Пример 1. Найдите  частное решение дифференциального уравнения   х´´ + 3х´ = е
-

3t
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x(0) = 1,  х´ (0) = 0 операторным методом. 

Решение: 
1) Установите режим автоматических вычислений.  

2) Введите уравнение, используя клавиатуру и различные кнопки панели 

"Математика" (Если не открыта, выполнить следующие действия: выбрать меню просмотр 

- панели – математика).  В выпавшей панели щелкнуть на кнопках , , , ,

, , вызвав необходимые меню: 

х´´ + 3х´ = е
-3t

   x(0) = 1;  х´ (0) = 0. 

3) Найдите изображение для правой части уравнения. (Введите правую часть 

уравнения, выделите переменную и нажмите последовательно "символика" – 

"трансформация" – "Лаплас") 

4) Составьте вручную операторное уравнение. Введите его:  

s
2
X s− 3s X⋅+

1

s 3+  
Затем разрешите его относительно переменной X .(Выделите переменную X и 

нажмите последовательно "символика" – "разрешить"). 

s
2

3 s⋅+ 1+( )
s 3+( )

2
s⋅   

Полученное выражение является изображением частного решения 

дифференциального уравнения. 

5) Найдите оригинал для полученного изображения. (Выделите переменную и 

нажмите последовательно "символика" – "трансформация" – "инверсия Лапласа").  

1−

3
t⋅ exp 3− t⋅( )⋅

8

9
exp 3− t⋅( )⋅+

1

9
+

. 

Задание для лабораторной работы  
Найдите частное решение дифференциальных уравнений операторным методом. 

№ в-та 1 задание 2 задание 3 задание 

1 
х´´+3х´=е-3t   

x(0)=1; х´(0)=0. 1)0(,1)0(

,6539996 2

=′−=

+−=+′−′′

yy

xxyyy

 
2)0(,1)0(

4sin24cos168

−=′=

+=+′−′′

yy

xxyyy

 

2 
х´´+4x =2cos t;   

x(0)=0;   х´(0)=1 4)0(,1)0(

,68222 2

=′=

++=+′+′′

yy

xxyyy

 
2)0(,2)0(

,cos496

−=′=

=+′−′′

yy

xyyy

 

3 
х´´+4х´=1 

x(0)=-1;  х´(0)=0. 7)0(,0)0(

5942535314 23

=′=

−+=+′−′′

y

xxxyyy

 
8)0(,1)0(

,sincos65

−=′=

−=+′−′′

yy

xxyyy

 

4 
х´´+9х=sin2t;   

x(0)=0;   х´(0)=-1 2)0(,1)0(

,16204 2

=′=

=+′−′′

yy

xeyyy x

 
2)0(,1)0(

,sincos96

−=′=

−=−′−′′

yy

xxyyy

 

5 
х´´-4х´=e4t;   x(0)=0 

х´(0)=0 3)0(,2)0(

,1074 23

=′=

−+−=+′′

yy

xxxyy

 
4)0(,2)0(

2sin242cos323612

=′=

+=+′−′′

yy

xxyyy

 

6 
х´´+16х=3cos 2t;   

x(0)= 1;  х´ (0) = 0 1)0(),0(

,)1614(

−=′
−=′−′′ −

yy

exyy x

 
4)0(,2)0(

2sin242cos323612

=′=

+=+′−′′

yy

xxyyy

 

7 
х´´+х=2;   x(0)=0;  

х´(0)=-3 6)0(,0)0(

,93410 5

=′=

−=+′+′′ −

yy

eyyy x

 
6)0(,0)0(

6cos36372

=′=

=+′−′′

yy

xyyy
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8 
х´´+4х´=3t   x(0)=0;  

х´(0)=2 0)0(,3)0(

,661616256 2

=′=

+−=+′−′′

yy

xxyyy

 
6)0(,0)0(

6cos36372

=′=

=+′−′′

yy

xyyy

 

9 
х´´-3х´=2e3t;   

x(0)=0;  х´(0)=1 0)0(,1)0(

,2510 5

=′=

=+′−′′

yy

eyyy x

0)0(,2)0(

,2sin92cos122

=′−=

−−=+′−′′

yy

xxyyy

 

10 
х´´+16х=3cos4t;   

x(0)=1;  х´(0)=-1 2)0(,0)0(

,126552 2

=′=

−+=+′−′′

yy

xxyyy

 
6)0(,0)0(

6cos36372

=′=

=+′−′′

yy

xyyy

 

Контрольные  вопросы   
1. Какие условия должны выполняться, чтобы функция была оригиналом? 

2. Перечислить свойства оригиналов и изображений. 

3. Записать оператор Лапласа. 

4. Сформулировать теорему дифференцирования оригинала. 

5. Сформулировать теорему дифференцирования изображения. 

6. Сформулировать теорему интегрирования изображения. 

7. Дать определение свертки. 

8. Сформулировать теорему свертывания оригиналов. 

9. Записать интеграл Дюамеля. 

10.Сформулировать теорему разложения. 

 

 
2.9 Лабораторная работа № 9 ( 2 часа). 
Тема: «Численные методы решения линейной краевой задачи для уравнения 

второго порядка» 
2.9.1 Цель работы: изучение возможностей численного моделирования решения 

линейной краевой задачи в  MathCAD; реализация в практике решения задач. 

2.9.2 Задачи работы: 
1. Постановка задачи и построение математической модели. 

2. Реализация любого численного метода (итог самостоятельной работы). 

2.9.3 Перечень приборов, материалов, используемых в лабораторной работе: 
спецификой дисциплины не предусмотрены 

2.9.4 Описание (ход) работы: 
Задача. Дано дифференциальное уравнение со следующими условиями 

 

 

    < - краевое условие 

 Решение: определим первоначальное приближение недостающего значения y(0) 

 

 это неизвестное значение у(0) и начальное значение 1-ой 

производной 

   вектор D 

 разница между вычисленным и известным значением 

у'(1.3) 

 вычисляем нехватающее для rkfixed 

условие  
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 <-- начальные условия       

                                     

<-- численное решение -->  

Используем слайн-интерполяцию для нахождения 2-ой производной 

      Вектор вторых производных 

 
  

Проверка: 

     в 1-ой точке 

        во 2-й 

        в 3-ей 

     в последней 

                                  на границе 

Построим кривую используя интерполяцию 
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3. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ 
ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

3.1 Практическое  занятие № 1  ( 2 часа). 
Тема: «Обыкновенные дифференциальные уравнения » 
 
3.1.1 Задание для работы: 
1. Решить дифференциальные уравнения:  

а) dxdyy х65 = ;    б) 122 =−′ хуух ;    в) 462
2

2

+⋅+=′
х

у

x

y
у ;     г) 

22

210

xy

xy
y

+
−

=′ . 

2. Опытным путем установлено, что при брожении кормов скорость изменения 

массы (прироста) действующего фермента пропорциональна его наличному количеству. 

За 4 часа после начала брожения масса фермента уменьшилась с 12 г до 9 г. Найти массу 

фермента после 10 часов брожения. 

3. Решить: 
x

y
2cos

1
=′′ , при 

4

π
=x  

2

2ln
=y , 1=′y . 4. 

2

3

2 11

2

x

x
y

x

x
y

+
=′

+
+′′  

5. Функции 
3ху =  и 

4ху =  удовлетворяют ДУ второго порядка. Убедиться, что 

они образуют ФСР и составить его уравнение. 

6. Решить ДУ: 

1. 02 =−′+′′ yyy .    2. 02 =+′−′′ yyy      3. 052 =−′+′′ yyy .                       4. 

05 =′+′′ yy  

7. Решить ДУ второго порядка: 

а) 143 2 +=−′+′′ хууу ; б) xууу sin98 =−′+′′ ; в) 
xхeууу −=−′−′′ 465 ; 

г) 
xeyyy 22 =+′−′′ ; д) )cos(sin32

2
xxeyyy

x +=−′−′′ . 

3.1.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Входной контроль. 

2. Решение обыкновенных дифференциальных уравнений различных порядков. 

3. Практические задачи на составление дифференциальных уравнений. 

3.1.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ и задачи, к ним приводящие, закрепляются в виде навыков. 

 

3.2 Практическое  занятие № 2  ( 2 часа). 
Тема: «Системы обыкновенных дифференциальных уравнений » 
 
3.2.1 Задание для работы: 
Решить системы ДУ методом подстановки и с помощью характеристического 

уравнения Эйлера:  

1) 




+−=′
−=′

zyz

zyy 25
;            

 2) 




+−=′
−=′

zyz

zyy
;          

3)




+−=′
−=′

zyz

zyy 25
; 

4) 




+−=′
−=′

zyz

zyy

2

2
 с начальными условиями 200)0(,100)0( == zy  

3.2.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 
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1. Методы решения систем дифференциальных уравнений второго порядка. 

2. Практические задачи, приводящие к системам дифференциальных уравнений. 

3.2.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать системы ДУ и задачи, к ним приводящие, закрепляются в виде навыков. 

  
3.3 Практическое  занятие № 3  ( 2 часа). 
Тема: «Уравнения в частных производных первого порядка » 
 

3.3.1 Задание для работы: 
1. Выясните, являются ли приведенные ниже равенства дифференциальными 

уравнениями в частных производных.  

а) ( ) 0
222 =−−+ yyxxyyxx UUUU  

б) ( ) 02cossincossinsin =+−⋅−− UUUUUUU xyxxxyyyxy  

2. Решите дифференциальные уравнения в частных производных. 

а) 0=
∂
∂

x

u
;  б) )(xf

y

u
=

∂
∂

;  в) x
y

u
=

∂
∂

;  г) 
x

z
xy

∂
∂

= ; д) )( yf
y

u
=

∂
∂

;   

3. Определите порядок дифференциального уравнения в частных производных. 

( ) ( ) 0222
2 =−−

∂
∂

−− xyuu
y

uuu xxyx  

4. Проверьте, что функция  

)()( yxyyxxu +++= ψϕ  есть решение уравнения 02
2

22

2

2

=
∂
∂

+
∂∂

∂
−

∂
∂

y

u

yx

u

x

u
. 

5. Найдите    решения линейных однородных ДУ в частных производных. 

1) 02 =
∂
∂

−
∂
∂

y

u
y

x

u
x ; 2) 0=

∂
∂

−
∂
∂

x

z
y

y

z
x ;   3) 0=

∂
∂

+
∂
∂

y

z
y

x

z
x ;  4) 02

2 =
∂
∂

+
∂
∂

+
∂
∂

z

u
z

y

u
y

x

u
x ;              

5) 0)43()2( =
∂
∂

++
∂
∂

+−
∂
∂

z

u
zy

y

u
zy

x

u
;       6) 1 xпри,0 =+==

∂
∂

+
∂
∂

−
∂
∂

zyu
z

u
z

y

u
y

x

u
x ;  

3.3.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Уравнения первого порядка в частных производных с двумя переменными. 

2. Решение линейных уравнений. 

3.3.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ в частных производных  закрепляются в виде навыков. 

 
 
 
3.4 Практическое  занятие № 4  ( 2 часа). 
Тема: «Уравнения в частных производных второго порядка» 
3.4.1 Задание для работы: 
Задача 1. Решить первую смешанную задачу для волнового уравнения на отрезке. 

  

 1.   2.  
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 3.  
 4.  

 5.  
 6.  

Задача 2. Используя формулу Пуассона, найти решение задачи Коши для 

уравнения теплопроводности. 

  

 1.   .2.  

 3.   4.  

 5.   6.  

3.4.2 Краткое описание проводимого занятия:  на занятии планируется решить 

следующие задачи: 

1. Приведение к каноническому виду уравнений второго порядка с двумя 

переменными. 

2. Характеристическое уравнение. Характеристики. 

3. Решение уравнений. 

3.4.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ в частных производных  закрепляются в виде навыков. 

 
3.5 Практическое  занятие № 5  ( 2 часа). 
Тема: «Задача Коши для одномерного волнового уравнения » 
3.5.1 Задание для работы: 
Задача 1. Решить первую смешанную задачу для волнового уравнения в круге. 

  

 1.   2.  

 3.  
 4.  

Задача 2. Используя формулу Пуассона, найти решение задачи Коши для 

волнового уравнения на плоскости. 

  

 1.   2.  
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 3.   4.  

Контрольная работа № 1.  
Примерный вариант:  

1. Материальная точка единичной массы движется по оси х  под влиянием силы 

 ( -4х), притягивающей ее к началу координат, и возмущающей силы, направленной 

по оси х  и равной   cos 2t   в момент времени  t. Получите дифференциальное уравнение 

движения этой точки. Найдите движение, определяемое полученным уравнением и 

начальными условиями х=0, x′=0, t=0. Постройте  график найденного движения.  

 2. Найдите общее решение системы дифференциальных уравнений  методом 

Эйлера:   x′ =x-y,   y′=x+y. 

3.5.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Постановка задачи Коши. 

2. Решение задачи Коши для одномерного волнового уравнения по формуле 

Даламбера. 

3. Контрольная работа №1. 

3.5.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ математической физики  закрепляются в виде навыков. 

3.6 Практическое  занятие № 6  ( 2 часа). 
Тема: «Задача Коши для неоднородного одномерного волнового уравнения» 
3.6.1 Задание для работы: 
Задача 1. Используя формулу Кирхгофа, найти решение задачи Коши для 

волнового уравнения в пространстве. 

  

 1.   2.  

 3.   4.  

 5.   6.  

3.6.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Постановка задачи Коши. 

2. Решение задачи Коши для неоднородного одномерного волнового уравнения 

методом Дюамеля. 

3.6.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ математической физики  закрепляются в виде навыков. 
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3.7 Практическое  занятие № 7  ( 2 часа). 
Тема: «Уравнение Лапласа» 
3.7.1 Задание для работы: 
Задача 1. Решить задачу Дирихле для уравнения Лапласа в круге. 

  

 4.1.   4.2.  

 4.3.   4.4.  

 4.5.   4.6.  

 4.7.   4.8.  

3.7.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Фундаментальное решение.  

2. Решение краевых задач методом разделения переменных. 

 3.7.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ математической физики  закрепляются в виде навыков. 

 

 

3.8 Практическое  занятие № 8  ( 2 часа). 
Тема: «Разложение функций в ряд Фурье » 
3.8.1 Задание для работы: 
Анализ домашнего задания  
1. Разложите в ряд Фурье периодическую функцию на указанном сегменте: 

 f(х)=х; Т=2π; [ -π;π]     f(х)=х
3
; Т=2π; [ -π;π] 

2. f(х)=cos2х; Т=2π; [ 0;π]  (разложить в ряд по синусам) 

3. f(х)=х
2
; Т=2π; [0;π]  (продолжить функцию на сегмент [ -π;0] нечетным образом) 

4. f(х)=π-2х; Т=2π; [ 0;π] (продолжить функцию на сегмент [ -π;0] четным образом, 

 нечетным образом). 

3.8.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Тригонометрический ряд Фурье. 

2. Разложение в ряд Фурье четных и нечетных функций и функций произвольного 

периода. 

3. Представление непериодической функции рядом Фурье. 

3.9.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения применять ряды Фурье при решении  практических задач  закрепляются в виде 

навыков. 

 
 
 


