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1. Организация самостоятельной работы 

 
1.1 Организационно-методические данные дисциплины 

п/п Наименование разделов, тем всего 

Количество часов по видам самостоятельной работы 

подго-
товка 
курсо-
вой ра-
боты 
(проек-
та) 

подго-
товка 
рефера-
тов 

ИДЗ 

 

СИВ 

 

ПкЗ 

1 2 3 4 5 6 7 8 

1 
Структура курса. Аксиомы ста-
тики. Силовые факторы.     2 2 

2 
Основная теорема статики. 
Уравнения равновесия.     1 1 

3 

Использование уравнений рав-
новесия. Статическая определи-
мость. Сочленённые конструк-
ции. 

    2 2 

4 
Центр тяжести. Способы опре-
деления положения ЦТ.     3 4 

5 Трение скольжения и качения    2 2 2 

6 
Кинематика. Скорости и ускоре-
ния точек при различных спосо-
бах задания движения. 

    4 2 

7 
Простейшие движения твёрдого 
тела. Плоское движение 

   2 2 4 

8 Составное движение точки.    2 2 2 

9 
Составление дифференциальных 
уравнений движения точки. 

    1  

10 
Свободные, затухающие и вы-
нужденные колебания 

    1 1 

11 
Общие свойства системы. Мо-
менты инерции. 

    1 1 
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12 

Теорема об изменении количест-
ва движения. Теорема о моменте 
количества движения.Принцип 
Даламбера. Силы инерции. 

    1 1 

13 

 

Принцип возможных перемеще-
ний. 

    2 3 
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2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 
ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 
2.1 Статика 
При подготовке к вопросам акцентировать внимание необходимо на следую-

щем:  
- Понятие равнодействующей системы сил. 
- Понятие момента силы относительно центра и оси. 
- Инвариантность главного вектора и скалярного произведения главного вектора 

на главный момент. 
- Условия равновесия системы сил. 
2.2 Кинематика 
При подготовке к вопросам акцентировать внимание необходимо на следую-

щем:  
- Векторный, координатный и естественный способы задания движения. Оп-

ределение кинематических характеристик в каждом из способов. 
- Виды движений твёрдого тела. Кинематические характеристики в каждом из 

движений. 
- Составное движение. 
2.3 Динамика 
При подготовке к вопросам акцентировать внимание необходимо на следую-

щем: 
- Дифференциальные уравнения движения в координатной и естественной 

формах. 
- Применение общих теорем динамики для точки, твёрдого тела и механиче-

ской системы. 
- Применение принципов динамики для решения первой и второй задач дина-

мики.  
 
3. Методические рекомендации по выполнению индивидуальных домашних 

заданий 
3.1   С-3  Определение реакций опор составной  конструк-

ции.



  

 6 



  

 7 



  

 8 



  

 9 

 
 



  

 10



  

 11



  

 12

2.2     С-7.     Определение реакций опор твёрдого тела. 
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2.3  К-1.    Определение скоростей и ускорений точек. 

 



  

 19

 



  

 20



  

 21

 
2.4  К-3  Кинематический анализ плоского механизма. 
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2.5 Д-1. Интегрирование дифференциальных уравнений движения материальной 

точки, находящейся под действием постоянной силы.      
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2.6  Д-10. Применение теоремы об изменении кинетической энергии к изучению 

движения механической системы 
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        4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО   
                       САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ  
 
1. Понятие силы, момента силы относительно точки и оси, пары сил 
1)Моментом силы называется векторное произведение радиус вектора на силы, где 

радиус вектор кратчайшее расстояние от оси вращения до точки приложения силы 
2) Моментом силы называется векторное произведение плеча силы на значение си-

лы, перпендикулярное оси вращения, где Р-плечо силы -  это кратчайшее расстояние от 
оси вращения до прямой, вдоль которой действует сила 

3) Моментом силы называется векторное произведение, где радиус вектор крат-
чайшее расстояние от оси вращения до точки приложения силы, а Ft проекция F_ на на-
правление, перпендикулярное радиус-вектору 

Если тело имеет неподвижную ось, т. е. закрепленную в неподвижных подшип-
никах, то при любой системе действующих сил тело может вращаться лишь около этой 
оси. Но не всякая сила может вызвать вращение. Например, сила, параллельная оси (Fy) 
не вызовет вращения; она лишь стремится сдвинуть тело вдоль оси и в конечном счете 
уравновешивается реакцией подшипников. Но вот сила, находящаяся в плоскости, пер-
пендикулярной к оси, может при некоторых условиях вызвать вращение. 

Две антипараллельные силы одинаковой величины, приложенные к разным точ-
кам, но направленные не по одной прямой, называют парой сил. Пара не имеет равнодей-
ствующей и представляет собой самостоятельный динамический элемент. 

 Момент силы  относительно центра 
Моментом силы F относительно некоторого неподвижного  центра О называ-

ется вектор, расположенный перпендикулярно к плоскости, проходящей через вектор 

силы и центр О, направленный в ту сторону, чтобы смотря с его конца можно было 

видеть поворот силы F относительно центра О против часовой стрелки. 
Свойства момента силы относительно центра: 
  

  

1)   Модуль момента силы относи-
тельно центра может быть выражен уд-
военной площадью треугольника ОАВ 

      (1.1) 
  
2)   Момент силы относительно 

центра равен нулю в том случае, если 
линия действия силы проходит через эту 
точку, то есть h = 0. 

  
  

  
  

3)   Если из точки О в точку при-
ложения силы А провести радиус вектор , 
то вектор момента силы можно выразить 
векторным произведением 

  

           (1.2) 
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4)   При переносе силы по линии 
ее действия вектор ее момента относи-
тельно данной точки не изменяется. 

  

  
  

  
  

5)   Если через центр О провести оси 
координат   Охуz   то   выражение 

(4.2) позволяет вычислить момент МО

аналитически относительно координатных 
осей. 

  

  
  

          (1.3) 
  

  
 Если к твердому телу приложено несколько сил, лежащих в одной плоскости, 

можно вычислить алгебраическую сумму моментов этих сил относительно любой точки 
этой плоскости 

  
            Момент МО, равный алгебраической сумме моментов данной системы отно-

сительно какой-либо точки в той же плоскости, называют главным моментом системы сил 
относительно этой точки. 

  
Момент силы относительно оси 
Чтобы определить момент силы относительно оси необходимо: 
1)     провести плоскость, перпендикулярную к оси Z; 
2)     определить точку О  пересечения оси с плоскостью; 
3)     спроецировать ортогонально силу F на эту плоскость; 
4)     найти момент проекции силы F относительно точки О пересечения оси с плос-

костью. 
Правило знаков: 

  
Момент силы относительно оси считается положительным, если,  смотря навстречу 

оси Z, можно видеть проекцию , стремящейся вращать плоскость I вокруг оси Z в сто-
рону, противоположную вращению часовой стрелки. 
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Свойства момента силы  
относительно оси 
1) Момент силы относительно оси 

изображается отрезком, отложенным  по оси 
Z  от точки О в положительном направле-

нии, если > 0 и в отрицательном на-

правлении, если < 0.  
2) Значение момента силы относи-

тельно оси может быть выражено удвоенной 

площадью ∆  

      (1.5) 
  
3) Момент силы относительно оси 

равен нулю в двух случаях: 
• если F1 = 0, то есть линия дей-

ствия силы параллельна оси; 
• eсли h1 = 0, то есть линия дей-

ствия силы пересекают ось. 
  

  
Пара сил. Векторный и алгебраический момент пары сил 
 Система двух равных по модулю, параллельных и противоположно направленных 

сил  и , называется парой сил. 

Плоскость, в которой находятся линии действия сил  и , называется плоско-
стью действия пары сил. 

Кратчайшее расстояние hмежду линиями действия сил, составляющих пару, назы-
вается плечом пары сил. 

Момент пары сил определяется произведением модуля одной из сил пары на пле-
чо. 

  

                              (1.6) 
  

  

  
 

 
Правило знаков 

Вектор момента М пары  и  направляют перпендикулярно к плоскости дей-
ствия пары сил в такую сторону, что бы смотря навстречу этому вектору, видеть пару сил 
стремящейся вращать плоскость ее действия в сторону, обратную вращению часовой 
стрелки. 

4.     Свойства пар сил на плоскости 
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Свойство 1. Вектор-момент M  пары  по модулю и направлению равен 
векторному произведению радиуса вектора АВ на ту из сил этой пары, к началу которой 
направлен радиус-вектор АВ, то есть  

                                         (1.7) 
  

  

  
  
Если пары сил лежат в одной плоскости 
  

  
  

 
Свойство 2. Главный момент сил, составляющих пару относительно произвольной 

точки на плоскости действия пары, не зависит от положения этой точки и равняется мо-
менту этой пары сил. 

  
  

  
  
  
 
2. Равновесие системы произвольных сил 
Из основных аксиом статики следуют элементарные операции над силами: 
1) силу можно переносить вдоль линии действия; 
2) силы, линии действия которых пересекаются, можно складывать по правилу па-

раллелограмма (по правилу сложения векторов); 
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3) к системе сил, действующих на твёрдое тело, можно всегда добавить две силы, 
равные по величине, лежащие на одной прямой и направленные в противоположные сто-
роны. 

Элементарные операции не изменяют механического состояния системы. 
Назовём две системы сил эквивалентными, если одна из другой может быть полу-

чена с помощью элементарных операций (как в теории скользящих векторов). 
Система двух параллельных сил, равных по величине и направленных в противо-

положные стороны, называется парой сил (рис.12). 
  

      

Момент пары сил  - вектор, по величине равный площади параллелограмма, по-
строенного на векторах пары, и направленный ортогонально к плоскости пары в ту сторо-
ну, откуда вращение, сообщаемое векторами пары, видно происходящим против хода ча-
совой стрелки. 

, то есть момент силы  относительно точки В. 
Пара сил полностью характеризуется своим моментом. 
Пару сил можно переносить элементарными операциями в любую плоскость, па-

раллельную плоскости пары; изменять величины сил пары обратно пропорционально пле-
чам пары. 

Пары сил можно складывать, при этом моменты пар сил складываются по правилу 
сложения (свободных) векторов. 

Приведение системы сил, действующих на твёрдое тело, к произвольной точке 

(центру приведения) - означает замену действующей системы более простой: системой 
трёх сил, одна из которых проходит через наперёд заданную точку, а две другие представ-
ляют пару. 

Доказывается с помощью элементарных операций (рис.13). 

 
Рис.13. 
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  Система сходящихся сил  и система пар сил . 
   

 - результирующая сила . 

 - результирующая пара .Что и требовалось показать. 
  
Две системы сил будут эквивалентны тогда и только тогда, когда обе системы при-

водятся к одной результирующей силе и одной результирующей паре, то есть при выпол-
нении условий: 

  

, 

 

  
Общий случай равновесия системы сил, действующих на твёрдое тело 
  

 
   
Рис.14. 
  
Приведём систему сил к (рис.14): 

 - результирующая сила через начало координат; 

 - результирующая пара, причём,  через точку О. 

 

То есть привели к  и  - две силы, одна из которых  проходит через задан-
ную точку О. 

Равновесие, если  и  на одной прямой, равны, направлены противоположно 
(аксиома 2). 

Тогда  проходит через точку О, то есть . 

Далее: , так как остаётся только эта сила. 
  
Итак, общие условия равновесия твёрдого тела: 

,   . 
Эти условия справедливы для произвольной точки пространства. 
 
3. Методы преобразования систем сил 
Особенности метода преобразования систем сил как способа раскрытия статиче-

ской неопределимости стержневых и рамных систем. Некорректные преобразования за-
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данной системы в основные могут быть  по причине кинематической изменяемости. При-
мером служит  расчет рамы, суммарной эпюры изгибающих моментов.  

 
4. Условия и уравнения равновесия твердых тел под действием различных 

систем сил. 
РАВНОВЕСИЕ ТВЕРДОГО ТЕЛА ПОД ДЕЙСТВИЕМ ПЛОСКОЙ СИСТЕМЫ 

СИЛ 
Для равновесия плоской системы сил, приложенных к твердому телу и не пересе-

кающихся в одной точке, необходимо и достаточно, чтобы главный вектор R этих сил и их 
главный момент относительно произвольной точки О, лежащей в плоскости действия этих 
сил, были равны нулю, т. е.  

 
В координатной форме эти условия выражаются следующими тремя уравнениями:  

 
Условия равновесия плоской системы сил, расположенных как угодно на плоско-

сти, можно выразить еще в двух других видах.  
- Алгебраическая сумма моментов сил относительно трех произвольных точек А, В, 

С, не лежащих на одной прямой, равна нулю, т. е.  

 
- Алгебраическая сумма моментов всех сил относительно двух произвольных точек 

А и В равна нулю и сумма проекций этих сил на какую-либо ось, не перпендикулярную к 
прямой, соединяющей точки А и В, равна нулю, т. е.  

 
В частном случае, если все силы плоской системы параллельны, то условия равно-

весия (20) таких сил выражаются не тремя, а двумя уравнениями:  

 

причем ось параллельна данным силам.  
Условия равновесия плоской системы параллельных сил можно выразить и в дру-

гой форме:  

 
причем прямая АВ не параллельна данным силам.  
Задачи на равновесие плоской системы сил можно разбить на два основных типа, а 

именно:  
1) задачи на равновесие плоской системы параллельных сил;  
2) задачи на равновесие плоской системы сил, расположенных как угодно.  
Задачи второго типа можно еще классифицировать по характеру связей, наложен-

ных на рассматриваемое тело, подразделяя их на следующие две группы:  
а) задачи, в которых линии действия реакций всех связей известны;  
б) задачи, в которых линия действия реакции одной из связей неизвестна.  
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Общие указания, сделанные в § 6. гл. I, о направлении реакций связей и решении 
задач на равновесие несвободного твердого тела, остаются такими же и при решении за-
дач этого параграфа.  

Чтобы задача была статически определима, число неизвестных реакций должно 
быть не больше трех, так как при равновесии твердого тела под действием пло-
ской системы сил в общем случае можно составить три уравнения равновесия.  

При составлении уравнений равновесия за центр моментов следует выбирать такую 
точку, через которую проходят линии действия двух неизвестных сил, тогда в уравнение 
моментов относительно этой точки войдет только одна неизвестная сила и ее легко будет 
определить из этого уравнения.  

Если данное тело находится в равновесии под действием плоской системы парал-
лельных сил, то число неизвестных реакций не должно быть больше двух, так как в этом 
случае мы имеем только два уравнения равновесия.  

 
 
5.Центр тяжести твердого тела и его координаты 
 
На каждую частицу тела, находящегося вблизи поверхности Земли, действует на-

правленная вертикально вниз сила, которая называется силой тяжести. Силы тяжести 
каждой частицы тела, строго говоря, направлены по радиусам к центру Земли и не явля-
ются параллельными. Но для тел, размеры которых малы по сравнению с размерами Зем-
ли, непараллельность настолько незначительна, что в расчетах с большой точностью силы 
тяжести их частиц можно считать параллельными, сохраняющими свои значения, точки 
приложения и параллельность при любых поворотах тела. Поэтому, обозначив силу тяже-

сти частицы через Рк , можно, согласно формулам и 

, найти точку С, которая неизменно свя-
зана с телом и называется центром системы параллельных сил тяжести. Таким образом, 
центром тяжести твердого тела называется центр системы параллельных сил тяжести час-
тиц данного тела. Точка С — это геометрическая точка, она может и не принадлежать те-
лу, но она всегда с ним связана, например центр тяжести баскетбольного мяча, кольца и 
др. Выразим силу тяжести (вес) частицы тела через ее объем V. Тогда величина 

называется удельным весом, а величина - плотностью тела в дан-
ной точке. ("гамма"-Н/м3) ("ро"-Н*с2/м4) 

Методы нахождения центра тяжести. 
1) Метод симметрии.  
Покажем, что если однородное тело имеет плоскость, ось или центр материальной 

симметрии, то его центр тяжести находится соответственно в плоскости, на оси или 
в центре симметрии. 

а. Пусть тело симметрично относительно плоскости Оху 
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Тогда вследствие симметрии каждому элементу К тела объемом ( , , ) 

будет соответствовать элемент К' того же объема с координатами ( , ,- ). Поэтому 

статический момент объема и координата . Следовательно, 
центр тяжести тела будет лежать в плоскости симметрии Оху. 

б. Пусть тело симметрично относительно оси Oz.  

 

Тогда всякому элементу К тела объемом с координатами ( , , ) будет 
соответствовать такой же по объему элемент К', расположенный симметрично относи-

тельно оси Oz и имеющий координаты (- ,- , ). Поэтому статические моменты 

и, следовательно, координаты 

. Таким образом, центр тяжести 
будет находится на оси симметрии. 

в. Пусть тело имеет центр симметрии, который примем за начало координат. Тогда 

всякой частице тела объемом , определяемой радиус-вектором rк, будет соответство-
вать частица такого же объема с радиус-вектором (-rк), симметричная ей относительно 

центра О. Поэтому . Следовательно, центр тяжести будет находиться в цен-
тре симметрии. Например, центры тяжести однородных куба, сферы, кольца, прямоуголь-
ной 
или круглой пластины лежат в геометрическом центре этих тел. 

2) Метод разбиения.  
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Этот метод основан на применении формул и 

. Его используют, когда тело можно раз-
бить на ряд частей, центры тяжести которых известны из условий симметрии. Метод раз-
биения можно наглядно проиллюстрировать с помощью рисунка. 

 
Расположив тело в системе координат, разделив его мысленно на отдельные части, 

веса которых Р1, Р2, Р3, Р4, а центры тяжести известны, вычислим вес тела и, согласно 

формулам , координаты центра тяже-
сти С всего тела. Если тело имеет вырез, причем известны центр тяжести тела без выреза 
и центр тяжести вырезанного тела, то для определения координат центра тяжести исполь-
зуют метод отрицательных масс (частный случай метода разбиения). 

 
На рисунке изображена квадратная пластина, сторона которой а. В пластине вы-

полнено круглое отверстие с радиусом r=0,2а и координатами центра x2=-0,3а; у2=0. Ко-
ординаты центра тяжести С, пластины без отверстия x1=0, у1=0. Рассмотрим два тела: 
пластину без отверстия и диск, соответствующий вырезанному отверстию. При использо-

вании формул вес диска будем считать от-

рицательным. Тогда , где р — вес едини-
цы площади пластины. 
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6.Трение 
 
Силой трения называют силу, которая возникает при движении одного тела по по-

верхности другого. Она всегда направлена противоположно направлению движения. Сила 
трения прямо пропорциональна силе нормального давления на трущиеся поверхности и 
зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаи-
модействием, которое существует между телами.  

       Различают трение внешнее и внутреннее.  
       Внешнее трение возникает при относительном перемещении двух соприка-

сающихся твердых тел (трение скольжения или трение покоя).  
       Внутреннее трение наблюдается при относительном перемещении частей одно-

го и того же сплошного тела (например, жидкость или газ).  
       Различают сухое и жидкое (или вязкое) трение.  
       Сухое трение возникает между поверхностями твердых тел в отсутствие смаз-

ки.  
       Жидким (вязким) называется трение между твердым телом и жидкой или газо-

образной средой или ее слоями.  
       Сухое трение, в свою очередь, подразделяется на трение скольжения и трение 

качения.  
Рассмотрим законы сухого трения (рис. 4.5).  

 
Рис. 4.5   

Рис. 4.6  

       Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , 
постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, зна-

чит, внешняя сила уравновешивается некоторой силой , направленной по касатель-

ной к трущейся поверхности, противоположной силе . В этом случае и есть сила 
трения покоя.  

Установлено, что максимальная сила трения покоя не зависит от площади сопри-
косновения тел и приблизительно пропорциональна модулю силы нормального давления 
 N:  

 
µ0 – коэффициент трения покоя, зависящий от природы и состояния трущихся по-

верхностей.  
       Когда модуль внешней силы, а следовательно, и модуль силы трения покоя 

превысит значение  F0, тело начнет скользить по опоре – трение покоя  Fтр.пок  сменится 
трением скольжения  Fск  (рис. 4.6):  

  Fтр = µ N,  
(

4.4.1) 
где  µ  – коэффициент трения скольжения.  
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       Трение качения возникает между шарообразным телом и поверхностью, по ко-
торой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения 
скольжения, но коэффициент трения  µ ; здесь значительно меньше.  

       Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 
4.7).  

На тело, находящееся на наклонной плоскости с сухим трением, действуют три си-

лы: сила тяжести  , нормальная сила реакции опоры    и сила сухого трения  . Си-

ла   есть равнодействующая сил    и  ; она направлена вниз, вдоль наклонной плос-
кости. Из рис. 4.7 видно, что  

F = mg sin α,         N = mg cos α.  

 
Рис. 4.7  

       Если   – тело остается неподвижным на наклонной плоско-
сти. Максимальный угол наклона  α  определяется из условия  (Fтр)max = F  или 
 µ mg cosα = mg sinα, следовательно,  tg αmax = µ, где  µ  – коэффициент сухого трения.  

Fтр = µN = mg cosα,  
F = mg sinα.  

       При  α > αmax  тело будет скатываться с ускорением  
a = g ( sinα - µ cosα ),  

Fск = ma = F - Fтр.  
 

       Если дополнительная сила  Fвн, направленная вдоль наклонной плоскости, приложена 
к телу, то критический угол  αmax  и ускорение тела будут зависеть от величины и направ-
ления этой внешней силы. 

 
7. Предмет кинематики. Способы задания движения точки. Скорость и уско-

рение точки. Вращения твердого тела вокруг неподвижной оси. Поступательное 
движение твердого тела. 

 
1. Поступательное движение твердого тела 
 Поступательным называется такое движение твердого тела, при котором любая 

прямая проведенная в этом теле, перемешается, оставаясь параллельной самой себе. 
 Поступательное движение не значит прямолинейное: 
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ТЕОРЕМА: при поступательном движении все точки тела описывают одинаковые 

(при наложении совпадающие) траектории и имеют в каждый момент времени одинако-
вые по модулю и направлению скорости и ускорения.  

  

 (3. 1) 

 

     (3. 2) 
  

 
  

  
  
2. Вращение твердого тела вокруг неподвижной оси. 
 
Вращательным называется такое движение твердого тела, при котором во все вре-

мя движения какие-либо две точки тела остаются неподвижными (проходящая через эти 
неподвижные точки прямая называется осью вращения), а все остальные точки описывают 
траектории, представляющие собой окружности, плоскости которых перпендикулярны к 
оси вращения, а центры лежат на этой оси. 

  

 
 
 
 
 

              φ = f (t)          (3. 3) 

 

  или       
(3. 4) 

 

      или 

(3. 5) 
  

Примеры: 
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Равномерное вращение 
(ω = const) 

Равнопеременное вращение 
(ε= const) 

dϕ = ωdt 
ϕ=ωt 
ω = ϕ/t 

 

 

     
3. Скорости и ускорения точек вращающегося твердого тела 

  

Вращательная скорость точки 
  

 
  
v = R ω      (3. 6) 
  

  
Модуль вращательной скорости точки твердого тела равен произведению рас-

стояния от точки до оси вращения на угловую скорость тела 
  
Ускорение точки 

 

 

или       (3.7) - вращательное ускорение     

   (3.8) – центростремительное ускорение   
  

(3.9) – полное ускорение 
  

 
  

         (3.10) 
  
 4. Векторные выражения вращательной скорости, вращательного  и центростреми-

тельного ускорений. 
Формулы Эйлера. 
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 (3.11) 
  

 
  

 
  
  

 

  

 (3.12) 
  
- формулы Эйлера 
  

  
Векторные выражения вращательного и центростремительного ускорения точки 
  

 
  

 - полное ускорение точки 
  

 - вращательное ускорение точки 
  

 
  
- центростремительное ускорение точки 
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8. Плоское движение твердого тела и движение плоской фигуры в ее плоско-

сти. Абсолютное и относительное движение точки. Сложное движение твердого тела. 
 
Основной задачей кинематики сложного движения твердого тела является установ-

ление соотношений между характеристиками абсолютного и относительного движе-
ний.Сложное движение твердого тела может состоять из поступательных движений, вра-
щательных движений, или может быть получено в результате сложения поступательного и 
вращательного движений.В некоторых задачах кинематики заданное сложное движение 
твердого тела раскладывают на составляющие движения (анализ); в других — требуется 
определить сложное движение твердого тела как результат сложения более простых дви-
жений (синтез). Как при анализе, так и при синтезе движений речь идет о разложении и 
сложении движений, рассматриваемых в данный момент (мгновенных движе-
ний).Сложение поступательных движений твердого тела. 

Теорема. В результате сложения мгновенных поступательных движений твердого 
тела получается результирующее мгновенно поступательное движение. 

Доказательство. Пусть твердое тело одновременно участвует в двух мгновенных 
поступательных движениях, из которых одно является относительным со скоростью υ1 а 
второе — переносным со скоростью υ2.По теореме о параллелограмме скоростей имеем 
для любой точки твердого телаυа = υr + υe = υ1+ υ2, 

а так как и относительное, и переносное движения твердого тела являются мгно-
венно поступательными, то относительные, переносные и, следовательно, согласно фор-
муле (II.98), абсолютные скорости всех точек тела соответственно между собой равны в 
каждый момент времени, т.е. абсолютное движение тела также является мгновенно посту-
пательным. Теорема доказана. 

 
Очевидно, что данная теорема применима к сложному движению твердого тела, состоя-

щему из трех и более мгновенно поступательных движении; тогда в общем случае  
Заметим, что мгновенно поступательное твердого тела отличается от поступательного 
тем, что во втором случае в каждый момент времени равны между собой скорости и уско-
рения всех точек тела, между тем, как в первом случае в данный момент времени равны 
между собой только скорости всех точек тела. 



  

 65

 
 ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА 

Плоско-параллельным (или плоским) движением твердого тела называется такое 
движение, при котором все точки тела движутся в плоскостях, параллельных некоторой 

неподвижной плоскости.  
Из определения плоско-параллельного движения следует, что движения точек тела, 

расположенных на перпендикуляре к неподвижной плоскости, одинаковы. Поэтому, вме-
сто движения всего тела в пространстве, можно рассмотреть движение плоской фигуры S, 
являющейся проекцией тела на неподвижную плоскость. Нетрудно показать, что, зная 
движение некоторого отрезка плоской фигуры S, можно определить движение всей фигу-
ры. Пусть отрезок АВ плоской фигуры занимает положение, указанное на рис. 68. По-
ложение произвольной точки М плоской фигуры определим, соединив эту точку с точка-
ми А и В отрезка. Если отрезок АВ изменит свое положение и перейдет в новое положе-
ние А1В1, то для определения нового положения этой точки достаточно построить тре-
угольник А1В1М1, равный треугольнику АВМ. Так как стороны треугольников, как рас-
стояния между двумя точками абсолютно твердого тела, остаются неизмененными, то 
А1В1 = АВ; АМ= А1М1; ВМ =В1М1. Таким образом, кинематика плоско-параллельного 
движения тела сводится к кинематике движения отрезка прямой на плоскости. 

Кинематические уравнения плоско-параллельного движения 

 
Допустим, что плоская фигура движется в неподвижной плоскости Оху. Выбрав, 

например, точку А плоской фигуры за полюс, неизменно свяжем с этой фигурой подвиж-
ную систему координат Аξη с началом в полюсе А (рис. 70). Для определения положения 
подвижной системы координат Аξη относительно неподвижной нужно знать координаты 
точки А (т. е. хA и уA), а также угол поворота φ вокруг полюса (т. е. угол, образованный 
осью Аξη с осью Ох). Следовательно, кинематические уравнения плоско-параллельного 
движения твердого тела имеют видxA= xA(t) . yA = yA (t). φ = φ (t),где xA(t) yA (t), φ (t)— ко-
нечные, однозначные, непрерывные и дифференцируемые функции времени.Пользуясь 
формулами преобразования координат, можно получить уравнения движения любой точ-
ки М плоской фигурыx = xA + ξcos φ —ηsin φ,y = yA + ξsin φ + ηcos φ -Скорости точек тела 

Теорема. При плоско-параллельном движении твердого тела скорость любой его 
точки равна векторной сумме скорости полюса и скорости во вращательном движении во-
круг полюса. 

Доказательство. Пусть полюс О движется со скоростью υ0, а плоская фигура вра-
щается вокруг полюса с угловой скоростью ω (рис. 71). Требуется определить скорость 
произвольной точки М этой фигуры. Так как переносным здесь является поступательное 
движение вместе с полюсом О, то переносные скорости всех точек плоской фигуры будут 
одинаковыми, равными скорости полюса:  υMe= υ0 
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Относительным движением является вращательное движение вокруг полюса. Поэтому, 
обозначая радиус-вектор точки ^ М относительно полюса О через rOM , согласно формуле 
Эйлера, для относительной скорости точки М получим   υMr= ω x rOM. 
Относительную скорость точки при плоско-параллельном движении тела обозначают 
двойным индексом, т. е. υMr = υOM. Первый индекс указывает полюс О, вокруг которого 
происходит вращение, а второй — обозначает рассматриваемую точку М. Следовательно, 
υMr= υOM= ω x rOM 
По теореме о сложении скоростей получим 
υa=υe+υr.  Следовательно, υM=υO+υOM. 

 
9. Законы механики Галилея-Ньютона. Задачи динамики. 
 
Динамика – раздел теоретической механики, который изучает движение матери-

альных тел под действием приложенных к ним сил. Классическая динамика базируется на 
3 основных законах, называемых законами Ньютона. Приведем формулировки этих зако-
нов:  

 
Закон 1. Всякое тело продолжает удерживаться в своем состоянии покоя или рав-

номерного прямолинейного движения, пока оно не понуждается приложенными силами 
изменить это состояние.  

 
Закон 2. Изменение количества движения пропорционально приложенной силе и 

происходит по направлению прямой, по которой эта сила действует.  
 
Закон 3. Действию всегда есть равное и противоположное противодействие, иначе, 

взаимодействия двух тел друг с другом равны и направлены в противоположные стороны.  
 
В соответствии с принципом относительности Галилея , существует бесконечное 

множество равноправных инерциальных систем, движение которых одна относительно 
другой не может быть установлено никаким образом путём наблюдения любых процессов 
и явлений, происходящих только в этих системах. Прямая траектория движения объекта в 
одной системе будет выглядеть также прямой в любой другой инерциальной системе.  

Если же в некоторой системе отсчёта свободное тело двигается по криволинейной 
траектории и/или с переменной скоростью, то такая система является неинерциальной.  

Преобразования Галилея — в классической механике преобразования координат 
и времени при переходе от одной инерциальной системы отсчета к другой.  

 
В динамике рассматриваются две основные задачи : нахождение сил, под действи-

ем которых может происходить данное движение тела, и определение движения тела, ко-
гда известны действующие на него силы.  
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Если подвижная система отсчета движется параллельно неподвижной системе от-

счета с постоянной скоростью, то динамическое уравнение прямолинейного ускоренного 
движения тела в этой системе отсчёта инвариантно динамическому уравнению ускоренно-
го движения этого же тела относительно неподвижной системы отсчета. Это доказывает 
физическую и математическую инвариантность второго закона Ньютона преобразовани-
ям Галилея. Главным является то, что описанные явления и их закономерности не зависят 
от скорости движения подвижной системы координат.  
 

10. Механическая система. Дифференциальные уравнения движения механи-
ческой системы. 

 
Механической системой материальных точек или тел называется такая их сово-

купность, в которой положение и движение каждой точки (или тела) зависит от положе-
ния и движения остальных.  
     Материальное тело рассматривается, как система материальных точек (частиц), кото-
рые образуют это тело. 
     Внешними силами   называют такие силы, которые действуют на точки или тела ме-
ханической системы со стороны точек или тел, которые не принадлежат данной системе. 
       Внутренними силами , называют такие силы, которые действуют на точки или тела 
механической системы со стороны точек или тел той же системы, т.е. с которыми точки 
или тела данной системы взаимодействуют между собой.  
      Внешние и внутренние силы системы, в свою очередь могут быть активными и реак-
тивными 
     Масса системы равняется алгебраической сумме масс всех точек или тел системыВ 
однородном поле тяжести, для которого  , вес любой частицы тела пропорционален ее 
массе. Поэтому распределение масс в теле можно определить по положению его центра 
тяжести – геометрической точки С, координаты которой  называют центром масс или цен-
тром инерции механической системы 
    Теорема о движении центра масс механической системы:  центр масс механической 
системы движется как материальная точка, масса которой равняется массе системы, и к 
которой приложены все внешние силы, действующие на систему 
    Выводы: 

1. Механическую систему или твердое тело можно рассматривать как матери-
альную точку в зависимости от характера ее движения, а не от ее размеров. 

2. Внутренние силы не учитываются теоремой о движении центра масс. 
3. Теорема о движении центра масс не характеризует вращательное движение 

механической системы, а только поступательное 
 
Рассмотрим механическую систему, состоящую из материальных точек. Для ка-

ждой точки системы в инерциальной системе отсчета справедлив второй закон Ньютона: 
  

(3.1) 
где 

– масса точки с номером ; 

– ее радиус–вектор; 

– равнодействующая всех внешних сил как активных, так и реакций связей, дей-

ствующих на точку с номером ; 
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– равнодействующая всех внутренних сил, действующих на точку с номером . 
Систему уравнений (3.1) называют системой дифференциальных уравнений дви-

жения точек механической системы. Одна из основных задач механики состоит в том, 
чтобы, зная активные силы и связи, наложенные на систему, определить движение всех 
точек системы и определить реакции связей. Решение такой задачи связано с интегриро-
ванием системы уравнений (3.1) при заданных начальных условиях. Однако, прямое ин-
тегрирование системы (3.1) весьма сложно, что связано как с возможно большим числом 
этих уравнений, так и, в основном, с неопределенностью информации о внутренних силах. 

Во многих практически интересных случаях нет необходимости определять все ин-
тегралы системы (3.1), достаточно получить лишь некоторые из них. Это позволяют сде-
лать общие теоремы динамики. Являясь прямым следствием уравнений (3.1), общие тео-
ремы динамики связывают основные динамические величины, характеризующие движе-
ние системы, с приложенными к ней внешними силами. 

 
11. Количество движения материальной точки и механической системы. Мо-

мент количества движения материальной точки относительно центра и оси. Кинети-
ческая энергия материальной точки и механической системы. Общие теоремы ди-
намики. Понятие о силовом поле. 

 
Количество движения материальной точки – векторная величина  , которая рав-

няется произведению массы точки на вектор ее скорости. 
    Единицей измерения количества движения есть (кг м/с). 

Количество движения механической системы – векторная величина  , равняю-
щаяся геометрической сумме (главному вектору) количества движения всех точек систе-
мы.или количество движения системы равняется произведению массы всей системы на 
скорость ее центра масс 
    Когда тело (или система) движется так, что ее центр масс неподвижен , то количество 
движения тела равняется нулю   (пример, вращение тела вокруг неподвижной оси, которая 
проходит через центр масс тела).  
    Если движение тела сложное, то   не будет характеризовать вращательную часть движе-
ния при вращении вокруг центра масс. Т.е., количество движения характеризует только 
поступательное движение системы (вместе с центром масс). 
      Импульс силы характеризует действие силы за некоторый промежуток времени. 
   Импульс   силы   за конечный промежуток времени   определяется как интегральная 
сумма соответствующих элементарных импульсов 
     Теорема об изменении количества движения материальной точки: 
(в дифференциальной форме): Производная за временем от количества движения матери-
альной точки равняется геометрической сумме действующих на точки сил 
(в интегральной форме): Изменение количества движения материальной точки за некото-
рый промежуток времени равняется геометрической сумме импульсов сил, приложенных 
к точке за тот же промежуток времени. 

    Теорема об изменении количества движения механической системы  
(в дифференциальной форме): Производная по времени от количества движения системы 
равняется геометрической сумме всех действующих на систему внешних сил. 
(в интегральной форме): Изменение количества движения системы за некоторый проме-
жуток времени равняется геометрической сумме импульсов, действующих на систему 
внешних сил, за тот же промежуток времени. 
     Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние си-
лы. 
    Теорема об изменении количества движения механической системы и теорема о движе-
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нии центра масс являются двумя разными формами одной теоремы. 
      Закон сохранения количества движения системы. 

1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то 
вектор количества движения системы будет постоянным по направлению и по модулю.       

2. Если сумма проекций всех действующих внешних сил на любую произволь-
ную ось равняется нулю, то проекция количества движения на эту ось является величиной 
постоянной. 

      Законы сохранения свидетельствуют, что внутренние силы не могут изменить 
суммарное количество движения системы. 

Кинетической энергией механической системы называется сумма кинетических 
энергий всех точек этой системы: 

T = ∑ mkvk
2
 / 2 , 

где mk и vk - масса и скорость k-й материальной точки, принадлежащей данной сис-
теме. 

На основании теоремы Кёнига кинетическая энергия произвольной механической 
системы определяется по формуле 

 T = MvC
2
/2 + ∑ mkvkr

2
 / 2 , 

где  M - масса всей системы; 
   vC - скорость центра масс системы; 
   mk - масса k-й точки системы; 
   vkr - относительная скорость k-й точки при движении её вокруг центра масс  

(т.е. vk= vC ⊕ vkr). 
Из этой формулы можно получить следующие частные случаи для твёрдого тела: 
- при поступательном движении тела vk= vC , vkr= 0, 
T =  mvC

2
 / 2; 

 
- при вращении тела вокруг оси, проходящей через его центр масс, 
vC=0 , vkr= ω ⊗ rk, 
T = ∑ mkvkr

2
 / 2 = Jω

2
/2  , 

где  J - момент инерции тела относительно оси, проходящей в данный момент вре-
мени через центр масс; 

ω - угловая скорость вращения тела; 
 
- в случае произвольного движения тела (например при плоскопараллельном дви-

жении) 
 T =  mvC

2
 / 2 + Jω

2
/2. 

Основные (общие) теоремы динамики систем свободных материальных точек яв-
ляются уравнениями движения систем свободных материальных точек, т. е. математиче-
ски дифференциальными уравнениями изменений основных мер движения. 

1. Для точки  уравнение движения относительно инерциальной системы отсчё-
та: 

 
Перенесём все векторы, не изменяя их направления, в центр масс и сложим геомет-

рически: 

. 
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Производная по времени от количества движения системы свободных матери-
альных точек равна геометрической сумме внешних сил. Это теорема об изменении 
количества движения системы. 

Так как  то 

. 
Это уравнение движения центра масс системы  материальных точек с массой, 

равной массе всей системы, к которой приложена сумма всех внешних сил (главный 
вектор внешних сил ) или теорема о движении центра масс. 

2. Умножим уравнение движения точки  слева векторно на  и геометриче-
ски сложим, перенося векторы в центр масс: 

. 
Теорема об изменении кинетического момента системы: 
Производная по времени от кинетического момента системы свободных мате-

риальных точек равна сумме моментов всех внешних сил (главному моменту всех 
внешних сил). 

Существенно: моменты количества движения и моменты сил вычисляются относи-
тельно общего неподвижного начала. 

3. Умножая скалярно уравнение движения точки  на  и суммируя: 

 
или 

. 
Теорема об изменении кинетической энергии системы: 
Дифференциал кинетической энергии системы свободных материальных точек ра-

вен сумме элементарных работ всех внешних и внутренних сил. 
Интегралы уравнений движения системы: 

1) Если равен нулю главный вектор внешних сил, то = const, то есть центр масс 
системы свободных материальных точек движется равномерно и прямолинейно. 

2) Если главный момент внешних сил равен нулю, то сохраняется кинетический 
момент системы свободных материальных точек: 

. 
3) Если внешние и внутренние силы консервативны, то  
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Здесь: 

 - потенциал внешнего силового поля; 

 - потенциал взаимодействия точек; 

 - потенциальная энергия системы точек во внешнем поле; 

 - потенциальная энергия взаимодействующих точек. 
  
 
12. Принцип Даламбера для материальной точки и механической системы. 

Метод кинетостатики. Определение динамических реакций подшипников при вра-
щении твердого тела вокруг неподвижной  оси 

 
Принцип Даламбера 
1.Вал 1, установленный вертикально, вращается с постоянной угловой скоростью 

ω. В точке О вала с помощью цилиндрического шарнира, ось которого перпендикулярна 
оси вала 1, прикреплен невесомый стержень 2, с которым соединен цилиндрическим шар-
ниром тяжелый однородный стержень 3. Оси шарниров А и О  параллельны. При движе-
нии системы стержни 2 и 3 располагаются в вертикальной плоскости, проходящей через 
ось О1О,  0 <α < 0,5π . Указать, какое из соотношений (β<α, β=α, β>α) справедливо для со-
стояния относительного равновесия системы. Ответ аргументировать.                                                  

 
2 Чему должен быть равен вес груза G3 , чтобы груз 3 был неподвижен в механиче-

ской системе, у которой G1=G2=G . Массами блоков и нитей и трением пренебрегаем. 

 
 
3  Идеально гладкий тонкий стержень 1 вращается равномерно вокруг вертикаль-

ной оси z с угловой скоростью ω. Вдоль стержня  скользит кольцо 2 массой m.В началь-

ный момент x0=a, x
•

 =0. Кольцо принять за материальную точку. 
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Найти силу, с которой кольцо давит на стержень, в зависимости от координаты x. 

 
4 (Тонкий однородный стержень массы m и длины r скользит, оставаясь все время в 

одной вертикальной плоскости, по внутренней поверхности гладкого цилиндра радиуса r. 
Найти реакции цилиндра в точке А   для произвольного угла ϕ, если в начальный момент 
этот угол был равен 30° и стержень покоился. 

 
 
 
13. Принцип возможных перемещений. Обобщенные координаты системы.  

Пусть система состоит из точек и, следовательно, ее положение в пространстве в 

каждый момент времени определяется координатами точек системы, например декар-

товыми . 
Предположим, что на систему наложены голономные связи, уравнения которых в 

общем случае могут содержать и производные от координат точек, но после их интегри-
рования они свелись к геометрическим и имеют форму 

, . (222) 
Освобождающие связи, выражающиеся неравенствами, не рассматриваются. Таким 

образом, координат связаны уравнениями и независимых координат будет . 
Любые декартовых координат можно задать независимо друг от друга. Осталь-

ные координаты определятся из уравнений связей. Вместо независимых декартовых ко-

ординат можно выбрать любые другие независимые параметры , зависящие от 
всех или части декартовых координат точек системы. Эти независимые параметры, опре-

деляющие положение системы в пространстве, называются обобщенными координата-

ми системы. В общем случае они могут зависеть от всех декартовых координат точек сис-
темы, т. е. 

, (223) 

где изменяется от 1 до . Задание обобщенных координат полностью определя-
ет положение точек системы относительно выбранной системы отсчета, например декар-
товых осей координат. 
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У свободной точки три обобщенные координаты. Если точка должна двигаться по 
заданной поверхности, то обобщенных координат только две и т.д. Используя уравнения 
связей (222) и выражения обобщенных координат через декартовы (223), можно выразить 
декартовы координаты через обобщенные, т.е. получить 

, 

, 

. 

Соответственно, для радиуса-вектора каждой точки системы , 
получим 

. (224) 
В случае стационарных связей время явно не входит в уравнения связей. Для голо-

номных систем вектор возможного перемещения точки в соответствии с (224) можно 
выразить в форме 

. (225) 
Система, имеющая независимых обобщенных координат, характеризуется также 

независимыми возможными перемещениями или вариациями , если связи 
голономны. Для голономных систем число независимых возможных перемещений совпа-

дает с числом независимых обобщенных координат. Следовательно, число степеней сво-

боды голономной системы равно числу независимых обобщенных координат этой систе-

мы, т. е. . Для неголономных систем в уравнения связей могут входить произ-
водные от декартовых координат точек и даже могут быть такие уравнения связей, в кото-
рые входят только одни производные. Такие уравнения связей наложат ограничения на 

вариации , и, следовательно, уменьшат число независимых вариаций, не свя-

зывая функциональной зависимостью сами обобщенные координаты . Число 

степеней свободы неголономной системы, равное числу независимых возможных переме-

щений, меньше числа обобщенных координат системы. В дальнейшем рассматриваются 
только голономные системы, т. е. системы с голономными связями. 

Перейдем к составлению уравнений Лагранжа 2 рода.  

Общее уравнение динамики материальной системы:  
Общее уравнение динамики системы материальных точек в обобщенных координа-

тах имеет вид: 

 
Так как  в случае системы, подчиненной голономным связям, 

являются независимыми обобщенными возможными перемещениями, то общее уравнение 
динамики удовлетворяется лишь при условии, что коэффициенты, стоящие при возмож-
ных перемещениях, равны нулю, т. Е. 
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Эти уравнения называются уравнениями Лагранжа второго рода.  
При наличии голономных связей, наложенных на систему, число уравнений Ла-

гранжа равно числу независимых обобщенных координат, т. е. числу степеней свободы. 
Система состоит из обыкновенных дифференциальных уравнений второго порядка.  

 
Если задаваемые силы системы потенциальны, то уравнения Лагранжа можно за-

писать в виде:  
 
Явления удара.  
Взаимодействие тел, при котором за малый промежуток времени скорости точек 

изменяются на конечную величину, называется ударом.  Силы, возникающие при таком 
взаимодействии, называются ударными. Из теоремы об изменении количества движения 
следует, что импульс этих сил за время удара есть конечная величина. Импульс  обычных 
(неударных) сил имеет тот же порядок малости, что и время удара. Этот же порядок мало-
сти имеет и перемещение точки за время удара.    

  
В связи с этим, в теории удара принимают следующие основные допущения: 
Скорости точек изменяются практически мгновенно на конечную величину. 
Импульсами неударных сил пренебрегают.  
Точки системы за время удара не перемещаются.  

 Пусть  − скорость материальной точки  до удара,  − скорость этой точки по-
сле удара.  

  
Применяя теорему об изменении количества движения, находим: 
Основное уравнение теории удара. Изменение количества движения материаль-

ной точки за время удара равно сумме ударных импульсов, действующих на точку. 

. 
  
Теорема об изменении количества движения механической системы при уда-

ре.  
Изменение количества движения механической системы за время удара равно 

сумме внешних ударных импульсов, действующих на точки системы.  
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Доказательство. Разделим ударные силы, действующие на каждую точку меха-

нической системы, на внешние и внутренние.  Запишем основное уравнение удара для ка-
ждой точки системы   

,   , 

где ,  − равнодействующие внешних и внутренних ударных импульсов. 
Суммируя полученные равенства, с учетом свойства внутренних сил находим:   

. 
  
Следствие. При действии на механическую систему лишь внутренних ударных 

импульсов количество движения системы не изменяется. 
Теорема об изменении кинетического момента механической системы при 

ударе. Изменение кинетического момента механической системы относительно лю-

бого неподвижного центра за время удара равно сумме моментов всех внешних удар-

ных импульсов, приложенных к точкам системы, относительно этого же центра.  

  .    
Основное уравнение удара для каждой точки системы   

,   .  Так как положение точек системы за вре-

мя удара не изменяется, то умножая на радиус-вектор -ой точки  (рис. 18.1), можно 

записать , .   
Суммируя полученные равенства, 

  . 

                             
   
Следствие. Внутренние ударные импульсы не влияют на изменение кинетического 

момента системы. 
  
Теорема об изменении кинетического момента  в скалярной форме. Изменение 

кинетического момента механической системы относительно неподвижной оси за 
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время удара равно сумме моментов всех внешних ударных импульсов, приложенных к 

точкам системы, относительно той же оси.  

. 

 этот результат получается проектированием предыдущего равенства на ось . 
  
Коэффициент восстановления при ударе 
Импульсы ударных сил зависят не только от масс и скоростей, но и от свойств со-

ударяющихся тел. 

Рассмотрим падение шара на неподвижную плиту (рис. 18.2). При этом    − им-
пульс реакции за время удара. 

Разделим удар на две фазы: 
1. От соприкосновения шара с плоскостью до его полной остановки. Кинетическая 

энергия шара переходит при этом  в потенциальную энергию упругой деформации 

, частично теряясь на необратимое изменение его формы и рассеиваясь в виде 
тепла. 

2. Скорость меняет направление и величину от  до . При этом накопленная по-

тенциальная энергия переходит в кинетическую энергию  . 
Величина, равная отношению скорости точки после удара к ее скорости до удара, 

называется коэффициентом восстановления при ударе о неподвижную плиту      ,  

.   Если , то удар  абсолютно упругий , если , то удар абсолютно 

неупругий . Коэффициент восстановления определяется экспериментально и в 
зависимости от материала соударяющихся тел может принимать различные значения:   

дерево о дерево … ,   сталь о сталь … ,  стекло о стекло … . 
  
Одним из способов определения коэффициента восстановления при ударе может 

служить определение высоты отскока шара от неподвижной поверхности, падающего на 

нее с высоты  без начальной скорости (рис. 18.3). Скорость шара в начале удара    

.   В конце удара   ,   где  − высота, на которую шар поднимется 
после удара. Тогда   

. 
      
Удар о неподвижную поверхность. Удар двух тел 
  

 Рассмотрим прямой удар тела массы  о неподвижную поверхность (рис. 18.4). 

Скорость тела до удара , коэффициент восстановления . Определим скорость тела по-
сле удара и величину ударного импульса.  Из основного урав-

нения теории удара в проекции на нормаль .   



  

 77

При этом   ,   .   Тогда     Ударный импульс 
достигает максимального значения в случае абсолютно упругого удара и минимального  в 
случае абсолютно неупругого.    

  

Рассмотрим косой удар тела массы  о 
гладкую (!)  неподвижную поверхность (рис. 18.5). 

Скорость тела до удара  и составляет угол  с 
нормалью к поверхности, коэффициент восстановле-

ния . Определим скорость тела после удара и ве-
личину ударного импульса.   Из основного уравне-
ния теории удара в проекциях на нормаль и каса-

тельную  ,   .  При 

этом   и      

. 
  

Тогда   , .  Кроме того,   

,   где   − угол падения,    − угол отражения.  

 Рассмотрим прямой центральный удар двух тел (шаров) массы , движущих-

ся до удара поступательно  со скоростями  (рис. 18.6). Коэффициент восстановле-

ния . Определим скорости тел после удара и величину ударного импульса.       
Так как отсутствуют внешние ударные импульсы, для системы двух тел количество дви-

жения не изменяется    .    

 Кроме того,    .    Решая полученную систему уравнений, находим: 

,   . 
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Для определения ударного импульса запишем теорему об изменении количества 
движения за время удара для одного из тел в проекции на направление движения  

.  
 Откуда 

. 
 При абсолютно упругом ударе ударный импульс в два раза больше, чем при 

абсолютно неупругом. 
  
Теорема об изменении кинетической энергии  (теорема Карно) 
Теорема. При неупругом ударе в механической системе потеря кинетической энер-

гии равна кинетической энергии данной системы, если бы она двигалась с потерянными 

скоростями.   
  
Доказательство. Рассмотрим прямой центральный неупругий удар двух шаров  

массы  и ,  ,  − скорости тел до удара,  − скорость тел после удара.   
По следствию из теоремы об изменении количества движения системы   

 

где ось  совпадает с направлением движения.  То есть   . 

Кинетическая энергия до удара равна   ,   

 после удара    . 
Рассмотрим дополнительное соотношение:    

. 

или   . 
В случае упругого удара: 

. 
Рассмотрим действие ударного импульса на 

твердое тело, вращающееся вокруг неподвижной 
оси (рис. 18.7).  Воспользуемся теоремой об изме-
нении кинетического момента механической сис-

темы в скалярной форме  ,  или   

.  Откуда  
. При действии ударного импульса на вращающее-
ся тело угловая скорость изменяется на величину, 
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равную отношению момента этого импульса относительно оси вращения к моменту инер-
ции тела относительно той же оси.  Для определения импульсов ударных реакций в под-

шипниках введем подвижную систему координат, проведя плоскость  через центр 

масс (рис. 18.8), а ось  − через точку приложения ударного импульса, и воспользуем-

ся теоремами об изменении количества движения     и об изменении кине-

тического момента .   
При этом    

, , 

,    . 
 В проекциях на оси координат: 

            

 

 
или 

, , , 

, , 

. 
Эти шесть уравнений позволяют определить импульсы ударных реакций и угловую 

скорость после удара. 
Центр удара 

 Центр удара − это точка вращающегося тела, 
при действии на которую ударного импульса, не возни-
кают ударные реакции.  Если что такая точка существу-

ет. .  Из первых 
трех уравнений для определения импульсов реакций в 
подшипниках следует, что приложенный к телу импульс 

направлен вдоль оси  и равен   

.  Обозначим расстояние от 

точки приложения  ударного импульса до оси вра-

щения через  (рис. 18.9). Из последнего уравнения 

находим  .  Откуда  .  
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Для системы координат с началом в точке  и направлением оси  таким образом, 
чтобы она проходила через точку приложения ударного импульса, то для обращения в 

ноль импульсов реакций необходимо , т.е. ось  должна быть главной осью 

инерции для точки .  
  
Для того чтобы при действии ударного импульса на вращающееся тело в подшип-

никах не возникали ударные реакции, надо, чтобы выполнялись условия:   
Центр удара лежит в плоскости, проходящей через центр масс и ось вращения, на 

расстоянии  от оси.  
Ударный импульс  направлен перпендикулярно этой плоскости.   
Ось вращения является главной для точки ее пересечения с плоскостью действия 

ударного импульса. 
 


