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1. КОНСПЕКТ ЛЕКЦИЙ 

1.1  Лекция №1 (2 часа). 

Тема: «Дифференциальные уравнения в частных производных. Основные 

уравнения и основные задачи» 

 
1.1.1 Вопросы лекции: 

1. Возможности математического моделирования физических процессов. 

Физические задачи, приводящие к уравнениям в частных производных. 

2.Колебательные процессы, теплопроводность и диффузия, электромагнитное поле, 

уравнения Максвелла. 

3. Основные уравнения. 

4. Постановка основных задач: задача Коши, краевые и смешанные задачи. 

Понятие корректной постановки задачи. 

 

1.1.2. Краткое содержание вопросов: 

1. Возможности математического моделирования физических процессов. Физические 

задачи, приводящие к уравнениям в частных производных 
 Многие явления природы описываются функциями нескольких переменных. При 

нахождении этих функций необходимо решать дифференциальные уравнения  в частных 

производных. Поэтому в настоящее время сложился класс наиболее изученных 

дифференциальных уравнений, который является важным в системе человеческого знания. Это 

класс уравнений математической физики. 

 Математическая физика рассматривает идеализированные величины, отвлекаясь от ряда 

конкретных свойств этих величин. Поэтому эти величины описываются канонической формой 

дифференциальных уравнений в частных производных. Это позволяет в сложных явлениях 

выделить существенные стороны, отбрасывая то, что является второстепенным.  

 Предметом математической физики является изучение связей  между идеализированными 

явлениями, описываемыми при помощи функций нескольких переменных. Иначе, математическая 

физика изучает математические модели физических явлений на основе теории дифференциальных 

уравнений в частных производных. Причем, постановка задач основывается на физических 

соображениях и в каждом конкретном случае решение задачи, получаемое математическими  

методами, должно иметь вполне определенную физическую интерпретацию. 

 Задачами математической физики успешно занимались Эйлер, Пуассон, Фурье, Коши, 

Дирихле. Существенный вклад в становление и развитие этого раздела математики внесли наши 

соотечественники Остроградский, Ковалевская, Стеклов, а позднее - советские ученые 

Петровский, Тихонов, Самарский, Фок, Ладыженский.  

Определение. Дифференциальным уравнением в частных производных называется уравнение, 

связывающее искомую функцию и ее частные производные 
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 Из определения уравнения в частных производных следует, что искомая функция Uзависит 

от нескольких переменных x, y, z … t, т.е. U=U(x,y,z,…t). Будем рассматривать те 

дифференциальные уравнения, где искомая функция зависит максимум от четырех аргументов, 

три из которых, как правило, будут  x, y, z – декартовые прямоугольные координаты, а четвертый 

аргумент t будет истолкован как время. 

 Порядок уравнения определяется порядком старшей производной. 

 Дифференциальное уравнение в частных производных называется линейным, если искомая 

функция и ее частные производные входят в уравнения линейно.  

Пусть D – область n-мерного пространства Rnточек х=(х1,х2,…,хn), где n≥2. Наиболее общее 
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где k1+ k2+…+ kn=k, u=u(х)=u(х1,х2,…,хn) – неизвестная функция,  )( ixF -заданная функция от 

своих аргументов. D -область задания уравнения (1). 

Пример.  

1. 0... 2

21
 uuuu

nxxx
– уравнение 1-ого порядка; 

2. 0sin......
212211 21  uuxuxuxuuu

nnn xnxxxxxxxx
   уравнение 2-ого порядка; 

3. )cos( 2131213211
xxuuuu xxxxxxxx  – уравнение 3-ого порядка. 

Определение. Уравнение в частных производных называется уравнением k-ого порядка, 

если оно содержит хотя бы одну частную производную k-го порядка и не содержит производных 

более высокого порядка. 

Определение. Определенная в области D функция u(х)=u(х1,х2,…,хn), непрерывная вместе со 

своими частными производными, входящими в это уравнение, и обращающая его в тождество по 

независимым переменным х1,х2,…,хn, называется  решением дифференциального уравнения (1). 

3. Колебательные процессы, теплопроводность и диффузия, электромагнитное поле, 

уравнения Максвелла. 
 Многие задачи механики и физики приводят к исследованию дифференциальных 

уравнений с частными производными второго порядка. Так, например: 1) при изучении различных 

видов волн − упругих, звуковых, электромагнитных, а также других колебательных явлений мы 

приходим к волновому уравнению; 

2) процессы распространения тепла в однородном изотропном теле, так же как и явления 

диффузии, описываются уравнением теплопроводности; 

3) при рассмотрении установившегося теплового состояния в однородном изотропном теле мы 

приходим к уравнению Пуассона.   

При отсутствии источников тепла внутри тела уравнение  переходит в уравнение Лапласа.  

Потенциалы поля тяготения и стационарного электрического поля также удовлетворяют 

уравнению Лапласа, в котором отсутствуют массы и, соответственно, электрические заряды. 

Уравнения 1) – 3) называют основными уравнениями математической физики. Их подробное 

изучение дает возможность построить теорию широкого круга физических явлений и решить ряд 

физических и технических задач. Функция u = u(x, y,z) , удовлетворяющая какому-либо из 

уравнений, называется его решением. 

Волновые процессы:  колебания сред, сооружений, электрические, звуковые, 

электромагнитные колебания. Диффузионные процессы:  тепломассоперенос (температура, 

диффузия газов).Стационарные процессы: стационарное распределение температуры, 

установившиеся колебания сред, задачи дифракции, потенциальное течение жидкости, 

электростатический потенциал. 

3. Основные уравнения. 
Пример волнового уравнения (математическая модель колебаний струны). 

Рассмотрим струну длины l. Струной будем называть тонкую туго натянутую упругую нить. 

При построении математической модели колебаний струны будем рассматривать малые 

колебания, происходящие в одной и той же плоскости. Пусть в состоянии покоя струна 

расположена вдоль оси Ox на отрезке [0,l] и при колебании каждая точка перемещается 

перпендикулярно оси (поперечные колебания). Тогда отклонение любой точки струны в 

произвольный момент времени U есть функция U(x,t) (см. рис.). 

 

 
Рис.  

Предположим, что натяжение столь велико, что силой тяжести и сопротивлением при изгибе 

можно пренебречь. Кроме того, в силу малости колебаний, будем пренебрегать также величинами 

высшего порядка малости по сравнению с производной Ux. 

В том случае, когда на струну не действуют внешние силы, получается уравнение свободных 

колебаний струны 

Utt = a2Uxx 
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Данное уравнение является одномерными волновыми уравнением. 

Замечание. 

 Волновыми эти уравнения называются потому, что они описывают распространение слабых 

возмущений в упругой среде (т.е. механические колебания с малыми амплитудами), которые в 

физике называют волнами. Волновые уравнения возникают также в задачах об электрических 

колебаниях, в гидродинамике и акустике, в теории упругости, при изучении электромагнитных 

полей. 

4. Постановка основных задач: задача Коши, краевые и смешанные задачи. 

Понятие корректной постановки задачи. 
Дифференциальные уравнения с частными производными, вообще говоря, имеют бесчисленное 

множество решений. Чтобы из этого множества выбрать то единственное решение, которое 

соответствует реальному физическому процессу (например, колебанию данной струны), надо 

задать некоторые дополнительные условия. 

 В теории уравнений с частными производными, как и в обыкновенных дифференциальных 

уравнениях, задаются условия, называемые начальными и краевыми (граничными) условиями. 

Начальные условия в математической физике соответствуют состоянию физического процесса в 

начальный момент времени, который обычно принимают за t=0. В результате возникает задача 

Коши. Однако здесь есть некоторые отличия. Во-первых, начальные условия задаются 

для нестационарных уравнений, то есть таких уравнений, которые описывают нестационарные 

(зависящие от времени) процессы. Такими уравнениями являются, к примеру, волновые уравнения 

и уравнения теплопроводности. Во-вторых, задача Коши для уравнений с частными 

производными имеет единственное решение только в том случае, когда соответствующее 

уравнение рассматривается или на всей прямой, или на всей плоскости, или во всем пространстве.  

Например, это может быть задача о колебании бесконечной струны или о распространении 

тепла в бесконечном стержне. На практике к таким задачам приходят в том случае, когда имеется 

очень длинная струна или очень длинный стержень и интересуются процессами, происходящими 

далеко от концов, а влиянием концов пренебрегают. Если взять, допустим, длинный провод и 

слегка качнуть его в середине, то по нему влево и вправо побегут волны. Картина начнет 

искажаться только тогда, когда волны дойдут до концов провода и, отразившись, пойдут обратно. 

Следовательно, не учитывая влияния концов, мы тем самым не будем учитывать влияния 

отраженных волн. 

Для волнового уравнения Utt = a2Uxx задаются два начальных условия U|t=0=φ(x), Ut|t=0=ψ(x). 

Иногда их записывают иначе: U(x, 0) = φ(х), Ut(x, 0) = ψ(х). Первое условие физически задает 

начальную форму струны (начальные отклонения точек струны), а второе условие - начальные 

скорости точек струны. В случае волнового уравнения Utt = a2ΔU на плоскости или в 

пространстве задаются те же два начальных условия, только функции φ и ψ,соответственно, 

будут зависеть от двух или трех переменных. 

Если размеры струны или стержня не очень велики и влиянием концов нельзя пренебречь, то в 

этих случаях одни начальные условия уже не обеспечивают единственность решения задачи. 

Тогда необходимо задавать условия на концах. Они называются граничными условиями или 

краевыми условиями. Для уравнения колебаний струны часто задаются условия U|x=0 = 0,   U|x=l = 0. 

Иначе их записывают еще и гак: U(0,t)=0, U(l,t) = 0. Эти условия физическиозначают, что концы 

струны закреплены (то есть отклонения при х = 0 и при х = l в любой момент времени равны 

нулю). Можно задавать и другие условия на концах струны, например, Ux|х=0= 0 , Ux|х=l = 0. Такие 

условия возникают в следующей задаче. 

Пусть концы струны перемещаются вдоль вертикальных направляющих без трения. 

 
Так как вертикальные силы, действующие налевый и правый концы струны, определяютя 

выражениями T0Ux(O,t) и T0Ux(l,t) (см рис.), то записанные выше условия означают, что на концы 
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струны не действуют никакие силы(поэтому такие условия называют еще условиями свободных 

концов). 

Как было уже сказано, волновое уравнение Utt = a2Uxx описывает не только колебания струны, 

но и другие волновые процессы, к примеру, продольные колебания пружины, продольные 

колебания стержня, крутильные колебания вала. В этих задачах возникают граничные условия и 

других видов. Приведем основные типы граничных условий. Обычно рассматривают три типа: 

I. Граничные условия первого рода 
U|x=0 = g1(t), U|x=l = g2(t) 

Эти условия физически означают, что на концах заданы режимы колебаний. 

II. Граничные условия второго рода 
Ux|x=0 = g1(t), Ux|x=l = g2(t) 

Такие условия соответствуют тому, что на концах заданы силы. 

III. Граничные условия третьего рода 
(Ux-σ1U)|x=0 = g1(t) , (Ux –σ2U)|x=l = g2(t) 

Эти условия соответствуют упругому закреплению концов. 

Граничные условия называются однородными, если правые части g1(t) и g2(t) тождественно 

равны нулю при всех значениях t. Если хотя бы одна из функций в правых частях не равна нулю, 

то граничные условия называются неоднородными. 

  При постановке начальных и граничных условий возникает задача об отыскании решения 

дифференциального уравнения, удовлетворяющего заданным начальным и граничным (краевым) 

условиям. Для волнового уравнения, начальных условий U(x,0)=φ(x), Ut(x,0)=ψ(x) и в случае 

граничных условий первого рода, задача называется первой начально-краевой задачей для 

волнового уравнения. Если вместо граничных условий первого рода задавать условия второго  

рода или третьего рода, то задача будет называться, соответственно, второй и третьей начально-

краевой задачей. Если граничные условия на разных участках границы имеют различные типы, 

то такие начально-краевые задачи называют смешанными. 

 

1. 2  Лекция №2 (2 часа). 

Тема: «Метод разделения переменных решения краевых задач. Численные методы 

решения простейших задач математической физики» 

 
1.2.1 Вопросы лекции: 

1. Основные понятия. Общая схема метода разделения переменных. 

2. Методы решения линейной краевой задачи для уравнений 2порядка (обзорно). 

3. Метод сеток. 

4. Разностные аппроксимации дифференциальных операторов. 

 

1.2.2. Краткое содержание вопросов: 

 1. Основные понятия. Общая схема метода разделения переменных. 

Метод Фурье разделения переменных, который играет большую роль в задачах колебаний и 

теплопроводности, применяется так же к решению уравнения Лапласа и задачи Дирихле для 

простых областей, таких как круг (шар), прямоугольник и другие. 

 Пусть в плоскости XOY имеется круг радиуса R с центром в начале координат и на его 

окружности задана некоторая функция ƒ(φ), где φ – полярный угол.  

 Требуется найти функцию U (r,φ), непрерывную в круге, включая границу, 

удовлетворяющую внутри круга уравнению Лапласа 

Uxx – Uyy= 0,                                       

а на окружности круга принимающую заданные значения                                          

U| r = R = ƒ(φ)                                      

 Будем решать задачу в полярных координатах (запишем таким образом уравнение 

Лапласа):  

r2Urr _+ rUr + U φφ = 0                               

 Будем искать решение уравнения  методом разделения переменных, согласно которому 

U = Ф(φ)R(r) 

 Подставим, получим: 
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r2Ф(φ)R" (r) + rФ(φ)R´(r) + Ф" ( φ) = 0 

или 

   

 Так как левая часть равенства  не зависит от r, а правая – отφ, то, следовательно, они равны 

некоторому числу, которое обозначено -k2. Отсюда следует, что равенство  даёт два уравнения: 

Ф" ( φ) + k2 Ф( φ) = 0 

r2R" (r) + rR´(r) – k2R(r) = 0 

 Если k=0, то решение уравнения  будет иметь вид: 

Ф( φ)= A0+ B0 φ,                                       

а решение уравнения  имеет вид 

R(r) = C0 + D0 lnr 

Если k<0, то решение уравнения  принимает вид            

Ф( φ) = A cos k φ + B sin k φ 

 Решение уравнения  при k>0 будет искать в виде R(r) = rm. Подставив R(r) = rm , получаем  

r2m (m-1) rm-2 + rmrm-1 – k2 rm = 0 

или                            m2 – k2 = 0 m = k. 

 Следовательно,  R(r) = rkC + Dr-k. 

 Заметим, что U(r, φ) как функция от φ, является периодической функцией с периодом 2 , 

так как величины U(r, φ) и U(r, φ + 2 ) соответствуют однозначной функции в одной и той же 

точке. Поэтому в (6.6) B0 = 0, а в (6.8) k может иметь одно из значений 1,2,3,…(k>0). Далее  D=0, 

так как в противном случае функция U имела бы разрыв, в точке r = 0 и не была бы гармонической 

в круге. 

 Итак, получено бесчисленное множество частных решений уравнения      r2 Urr+ rUr +Uφ φ= 

0, которые непрерывны в круге. Эти решения можно записать, изменив несколько обозначения 

U0(r, φ) = , 

Un(r, φ) = (An cos n φ + Bn sin n φ) rn (n = 1,2,3…).   

  Составляем теперь функцию U(r, φ) 

Un(r, φ) = (Ancos n φ + Bnsin n φ)rn 

 Функция U(r, φ), определяемая соотношением, вследствие линейности и однородности 

уравнения Лапласа также будет решением Лапласа. Определяем теперь A0, An, и Bn так, чтобы эта 

функция удовлетворяла условию U|r=R= ƒ(φ), а именно 

                    ƒ(φ) = (Ancosn φ + Bnsinn φ)rn . 

 Полученное выражение  представляет собой разложение функции ƒ(φ) в промежутке [

]. Поэтому, в силу известных в этом случае формул, находим  

A0 = (t) dt; An =  (t) cosntdt; Bn = (t) sinntdt.  

 Таким образом, ряд с коэффициентами, вычисленными по формулам, будет решением 

поставленной задачи, при этом он допускает почленное двукратное дифференцирование по r и 

поφ. 

 Подставив выражения коэффициентов  и проведя тригонометрические преобразования, 

получим  

U(r, φ) = (t) dt + (t) cos n(t- φ) dt( )n  =  

= (t) dt 

 Теперь преобразуем выражение, стоящее в квадратных скобках: 

k
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dt=1+ = 

1+ =1+ = 

= . 

 Замечание. В процессе преобразования использовалась сумма бесконечной 

геометрической прогрессии, знаменатель которой есть комплексное число, модуль которого 

меньше единицы. Эта формула суммы геометрической прогрессии выводится так же, как и в 

случае действительного аргумента. Здесь аргументом является n. 

 Заменяя выражение, стоящее в квадратных скобках в формуле, на соотношение, получаем 

U(r, φ)= ƒ(t)  

 Интеграл  называется интегралом Пуассона. 

2. Методы решения линейной краевой задачи для уравнений 2порядка (обзорно). 

3. Метод сеток. 
Предположим, что решается одномерная краевая задача, т. е. требуется определить функцию 

x , удовлетворяющую заданному дифференциальному уравнению на отрезке 0  x  вместе с 

надлежащими краевыми условиями при x  0 и x  . 

Для решения этой задачи методом конечных разностей, прежде всего, производится 

дискретизация независимой переменной x , т. е. строится множество (сетка) N 1 дискретных 

равноотстоящих точек i x (i  0, 1, 2, ... , N ) на отрезке 0  x . Следующий шаг состоит в замене 

в дифференциальном уравнении членов, содержащих дифференцирование, членами, в которых 

используются только алгебраические операции. Этот процесс по необходимости включает 

аппроксимацию и может быть выполнен путем использования конечно-разностных 

аппроксимаций для производных функции Пользуемся разложением по формуле Тейлора.  Это 

приведет к аппроксимации разностью вперед для первой производной функции.  Погрешность 

данной аппроксимации имеет порядок Ox.  

Аналогичным образом, пользуясь разложением по формуле Тейлора, аппроксимацию 

разностью назад для первой производной функции,   которая имеет порядок погрешности Ox. 

Обе аппроксимации  имеют один и тот же порядок погрешности Ox , который можно повысить,  

получив аппроксимацию центральной разностью. 

Это представление должно быть лучше, чем аппроксимация разностями вперед и назад, т. 

е. чем меньше выбран шаг x , тем численное решение будет ближе к точному решению. 

Аппроксимации производных более высоких порядков, если они потребуются, можно получить 

аналогичным образом. 

4. Разностные аппроксимации дифференциальных операторов. 

Предположим, что требуется аппроксимировать заданную функцию  x  на некотором 

отрезке 0 x .  В задачах, описываемых дифференциальными уравнениями, необходимо 

найти решение, удовлетворяющее определенным краевым условиям. Построим 

аппроксимирующую функцию, которая в точках x  0 и x  принимает те же значения, что и  x 

.  

Если найти некоторую функцию x, принимающую одинаковые с  x  значения на 

концах отрезка, т. е. 00 и() , и ввести систему линейно независимых базисных 

функций,  то на  можно предложить аппроксимацию для заданной функции.  Базисные функции 

этого типа иногда называют функциями формы, или пробными функциями. Способ определения  
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и системы базисных функций автоматически обеспечивает тот факт, что аппроксимация обладает 

свойством 0 0 и()для любых значений параметров.  

Ясно, что система базисных функций должна быть выбрана таким образом, чтобы 

гарантировать улучшение аппроксимации при возрастании числа M используемых базисных 

функций. Параметры выбираются на основании требования, что аппроксимация ˆ должна 

совпадать с функцией  в M различных произвольно выбранных точках . Это требование 

приводит к системе линейных уравнений относительно набора параметров. 

 

1.3  Лекция №3 ( 2 часа). 

Тема: «Применение функциональных рядов к решению дифференциальных 

уравнений» 

 

1.3.1 Вопросы лекции: 

1. Применение степенных рядов к решению дифференциальных  уравнений 

(обзорно). 

2.Периодические функции, периодические процессы. Тригонометрический ряд 

Фурье.  Теорема Дирихле.  Разложение функций в ряд Фурье. 

3. Интеграл Фурье: основные понятия и приложения. 

 

1.3.2. Краткое содержание вопросов: 

1. Применение степенных рядов к решению дифференциальных  уравнений.  
С помощью степенных рядов возможно интегрировать дифференциальные уравнения. 

 Рассмотрим линейное дифференциальное уравнение вида: 

)()(...)()( )2(

2

)1(

1

)( xfyxpyxpyxpy n

nnn  
 

 Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в 

некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой 

окрестности нулевой точки, удовлетворяющее начальным условиям. 

 Это решение можно представить степенным рядом: 

...3

3

2

210  xcxcxccy  

 Для нахождения решения остается определить неизвестные постоянные ci. 

Эта задача решается методом сравнения неопределенных коэффициентов. Записанное 

выражение для искомой функции подставляем в исходное дифференциальное уравнение, 

выполняя при этом все необходимые действия со степенными рядами (дифференцирование, 

сложение, вычитание, умножение и пр.) 

 Затем приравниваем коэффициенты при одинаковых степенях х в левой и правой частях 

уравнения. В результате с учетом начальных условий получим систему уравнений, из которой 

последовательно определяем коэффициенты ci. 

 Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям. 

Пример. Найти решение уравнения 0 xyy c начальными условиями y(0)=1, y’(0)=0. 

Решение уравнения будем искать в виде ...2

210  xcxccy  

...432 3

4

2

321  xcxcxccy
   

...201262 3

5

2

432  xcxcxccy  

 Подставляем полученные выражения в исходное уравнение: 

0...)(...)201262( 4

3

3

2

2

10

3

5

2

432  xcxcxcxcxcxcxcc  

0...)30()20()12()6(2 36

4

25

3

14

2

032  ccxccxccxccxc  

Отсюда  получаем: 02 2 c    
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012
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36

25

14
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

cc

cc

cc

cc

 

   ……………… 
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Получаем, подставив начальные условия в выражения для искомой функции и ее первой 

производной:  
0

1

1

0





c

c
 

Окончательно получим: ;0;0;
6

1
;0;0;1 543210  cccccc ...;

180

1
6 c  

Итого: ...
1806

1
63


xx

y  

 Существует и другой метод решения дифференциальных уравнений с помощью рядов. Он 

носит название метод последовательного дифференцирования.  

Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в виде 

разложения неизвестной функции в ряд Маклорена. 

...
!3

)0(

!2

)0(

!1

)0(
)0( 32 








 x

y
x

y
x

y
yy  

 Если заданные начальные условия  y(0)=1,  y’(0)=0  подставить в исходное 

дифференциальное уравнение, получим, что .0)0( y  

 Далее запишем дифференциальное уравнение в виде xyy   и будем последовательно 

дифференцировать его по х. 

..........................................................

;4)0(;3

;0)0(;2

;0)0(;

;1)0()0(;









VIIVVI

VV

IVIV

yxyyyy

yyxyyy

yyxyyy

yyyxyy

 

 После подстановки полученных значений получаем:  ...
1806

1
63


xx

y
 

2.Периодические функции, периодические процессы. Тригонометрический ряд 

Фурье.  Теорема Дирихле.  Разложение функций в ряд Фурье. 
В науке и технике часто приходится иметь дело с периодическими явлениями.   Различные   

величины,   связанные   с   рассматриваемыми периодическими явлениями, по истечению периода 

t возвращаются к своим прежним значениям, и представляют, следовательно, периодические 

функции от времениt, характеризуемые равенством 

)()( tTt    

Таковы, например, сила и напряжение переменного тока. 

Простейшей из периодических функций (если не считать постоянной) является 

синусоидальная величина:   tAsin ,  где   есть частота, связанная с периодом Т 

соотношением  
T




2
       (1) 

Из подобных простейших периодических функций могут быть составлены и более 

сложные функции путем сложения нескольких. Причем складывать выгодней синусоидальные 

величины разных частот, так как сложение одинаковых приводит опять к синусоидальной 

величине, и той же частоты. Сложим несколько величин вида 

, , ,  ,…                             (2) 

которые, если не считать постоянной, имеют частоты 

, ,2 ,...3 кратные наименьшей  из них, , и периоды 

,T ,
2

1
T ,

3

1
T …,получим периодическую функцию (с периодом Т), но уже существенно 

отличную от величины типа (2). 

Теперь поставим обратный вопрос: можно ли данную периодическую функцию )(t  с 

периодом Т представить в виде суммы конечного или бесконечного множества синусоидальных 

величин типа (2)? Для функций довольно широкого класса имеет место разложение в 

«тригонометрический ряд»: 

 

00 AY   111 sin   tAY  222 2sin   tAY  333 3sin   tAY

       ...3sin2sinsin)( 3322110  tAtAtAAt
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                                                               (3)   

Причем ,...,,,, 22110  ААА  постоянные, имеющие особые значения для каждой такой 

функции, а частота   дается формулой (1) 

Если за независимую переменную выбрать 

T

t
tх




2
 ,     то получим функцию:       













x
xf )(  

тоже периодическую, но со стандартным периодом 2 . 

При этом разложение (3) примет вид 

                                                (4) 

Развернув члены этого ряда по формуле для синуса суммы, и положив 

nnnnnn
bAaAaA   cos,sin,

00
 

мы придем к окончательной форме тригонометрического разложения 










1

0

22110

)sincos(

...)2sin2cos()sincos()(

n

nn nxbnxaa

xbxaxbxaaxf

                                                           (5) 

Здесь функция от угла x, имеющая период 2 , оказывается разложенной по косинусам и 

синусам углов, кратных х. 

3. Интеграл Фурье: основные понятия и приложения. 

1. Пусть функция f(x) на каждом отрезке [-l,l], где l – любое число, кусочно – гладкая или кусочно 

– монотонная, кроме того, f(x) – абсолютно интегрируемая функция, т.е. сходится несобственный 

интеграл 






dxxf )(  

 

 Тогда функция f(x) разлагается в ряд Фурье: 













 





1

0 sincos
2

)(
n

nn x
l

n
bx

l

n
a

a
xf  

,...2,1,sin)(
1

,...2,1,0,cos)(
1



















ntdt
l

n
tf

l
b

ntdt
l

n
tf

l
a

l

l

n

l

l

n

 

 

Если подставить коэффициенты в формулу для f(x), получим: 

 














 



  



  1

sinsin)(coscos)(
1

)(
2

1
)(

n

l

l

l

l

l

l

x
l

n
tdt

l

n
tfx

l

n
tdt

l

n
tf

l
dttf

l
xf  

 




 





1

)(cos)(
1

)(
2

1

n

l

l

l

l

dtxt
l

n
tf

l
dttf

l
 

Переходя к пределу при l, можно доказать, что 0)(
2

1
lim 




l

l
l

dttf
l

 и  




 






1

)(cos)(
1

lim)(
n

l

l
l

dtxt
l

n
tf

l
xf  

 

 





1

0 sin
n

nn tnAA 

     





1

022110 sin...2sinsin)(
n

nn nxAAxAxAAxf 
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Обозначим ;
1

;; 1









 

n

nnnn

u

ll
uuu

l

n
u   

При l  un 0. 

 


 






1

)(cos)(lim
1

)(
n

l

l

nn
l

dtxtutfuxf  

Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу 








 dtxtutfdu )(cos)(
0

 

Тогда 



1

)(xf 






 dtxtutfdu )(cos)(
0

 - двойной интеграл Фурье. 

Окончательно получаем:

 

























utdttfub

utdttfua

duuxubuxuaxf

sin)(
1

)(

cos)(
1

)(

sin)(cos)()(
0

 

- представление функции f(x) интегралом Фурье. 

 Двойной интеграл Фурье для функции f(x) можно представить в комплексной форме: 













 dtetfduxf txiu )()(
2

1
)(  

 

1.4 Лекция № 4 (2 часа). 

Тема: «Ряды Фурье. Разложение функций в ряд Фурье» 

 

1.4.1 Вопросы лекции: 

1. Периодические функции, периодические процессы. 

2. Тригонометрический ряд Фурье. Теорема Дирихле.  

3. Разложение в ряд Фурье четных и нечетных функций. 

4. Разложение в ряд Фурье функций произвольного периода. Представление 

непериодической функции рядом Фурье. 

 

1.4.2.  Краткое содержание вопросов: 

1. Периодические функции, периодические процессы. 

2. Тригонометрический ряд Фурье. Теорема Дирихле.  

3. Разложение в ряд Фурье четных и нечетных функций. 
Ряд Фурье для четных и нечетных функций. 

  Отметим следующие свойства четных и нечетных функций: 

1)  



















четнаяxfdxxf

нечетнаяxf

dxxf a

a

a
)(,)(2

)(,0

)(

0

 

 2) Произведение двух четных и нечетных функций является четной функцией. 

 3) Произведение четной и нечетной функций – нечетная функция. 

 

Справедливость этих свойств может быть легко доказана исходя из определения четности 

и нечетности функций. 

 

 Если f(x) – четная периодическая функция с периодом 2, удовлетворяющая условиям 

разложимости в ряд Фурье, то можно записать: 
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,...)2,1,0(cos)(
2

cos)(
1

0







 




nnxdxxfnxdxxfan
 

,...)2,1(;0sin)(
1




 




nnxdxxfbn  

 

 Таким образом, для четной функции ряд Фурье записывается: 







1

0 cos
2

)(
n

n nxa
a

xf  

,...)2,1,0(cos)(
2

0




 


nnxdxxfan
 

 

 Аналогично получаем разложение в ряд Фурье для нечетной функции: 

 







1

;sin)(
n

n nxbxf  

,...)2,1(;sin)(
2

0




 


nnxdxxfbn
 

 

 Пример. Разложить  в ряд Фурье периодическую функцию 
3)( xxf   с периодом T = 2 

на отрезке [-;]. 

 Заданная функция является нечетной, следовательно, коэффициенты Фурье ищем в виде: 

,...)2,1(;sin)(
2

0




 


nnxdxxfbn  

 











































 


0

2

0

3

2

3

0

3 cos
3cos2

;
cos

;3

;sin;

sin
2

nxdxx
nn

nxx

n

nx
vdxxdu

nxdxdvxu

nxdxxbn  

 



















































 


00

23
2

sin2sin3cos2

;
sin

;2

;cos;

dx
n

nxx

n

nxx

nn

n

n

nx
vxdxdu

nxdxdvxu
 

 










































 



;
cos

;

;sin;

sin
6cos2

0

2

3

n

nx
vdxdu

nxdxdvxu

nxdxx
nn

n
 

 



































 



00
2

3 coscos6cos2
dx

n

nx

n

nxx

nn

n
 

 








 




































nnn

n

n

n

n

nx

nnn

n n
2

33

2

0
33

3 212
)1(

cos12cos2sin6cos6cos2  

 

Получаем: 
















 


1

2

3
1

3 sin
212

)1(sin
n

n

n

n nx
nn

nxbx . 

 Построим графики заданной функции и ее разложения в ряд Фурье, ограничившись 

первыми четырьмя членами ряда. 
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4. Разложение в ряд Фурье функций произвольного периода. Представление 

непериодической функции рядом Фурье. 
Ряд Фурье для функции f(x) периода  Т = 2l, непрерывной или имеющей конечное число точек 

разрыва первого рода на отрезке [-l, l] имеет вид: 

 













 





1
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1
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1
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1

0
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




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
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n
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b
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n
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a

dxxf
l

a

l
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n

l

l

n

l

l



  

 

Для четной функции произвольного периода разложение в ряд Фурье имеет вид: 

 





















l

n

l
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a
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2
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2
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Для нечетной функции:

,...2,1;sin)(
2

;sin)(

0

1
















nxdx
l

n
xf

l
b

x
l

n
bxf

l

n

n

n

 

3. Задача разложения непериодической функции в ряд Фурье в принципе не отличается от 

разложения в ряд Фурье периодической функции. 

 Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – 

монотонной. Рассмотрим произвольную периодическую кусочно – монотонную функцию f1(x)c 

периодом 2Т b-a, совпадающую с функцией f(x) на отрезке [a, b]. 

           f(x) 

 

 

 

 

    - 2T ab+2T + 4Tx 

 

- 3 - 2 - 1 1 2 3

- 30

- 20

- 10

10

20

30
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 Таким образом, функция f(x) была дополнена. Теперь функция f1(x) разлагается в ряд 

Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно 

считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b].  

 Таким образом, если функция f(x) задана на отрезке, равном 2 ничем не отличается от 

разложения в ряд периодической функции. Если же отрезок, на котором задана функция,  меньше, 

чем 2, то функция продолжается на интервал (b, a + 2) так, что условия разложимости в ряд 

Фурье сохранялись. 

 Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) 

длиной 2 может быть произведено бесконечным количеством способов, поэтому суммы 

получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке 

[a,b].  

 

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ  

ЛАБОРАТОРНЫХ РАБОТ 

 

2.1 Лабораторная работа № 1 (2 часа). 

Тема: «Аппроксимация функций» 
 

2.1.1 Цель работы: ознакомиться с возможностями аппроксимации опытных 

данных на примере метода наименьших квадратов; научиться решать задачу численной 

аппроксимации при работе с таблично заданными функциями. 

 

2.1.2 Задачи работы: 

1. Постановка задачи численной аппроксимации. 

2. Аппроксимация  таблично заданных функций методом наименьших квадратов. 

2.1.3 Перечень приборов, материалов, используемых в лабораторной работе:  

спецификой дисциплины не предусмотрены 

 

2.1.4 Описание (ход) работы: 

1. Производится п наблюдений , ..., переменных х и у. Предполагая, что 

между х и у существует зависимость вида )(xfy  , найти значения параметров а и b, наилучшим 

образом согласованные с экспериментальными данными. 

Согласно методу наименьших квадратов параметры функции  следует выбирать так, чтобы 

сумма квадратов невязок была наименьшей. 

                                                    

                                             

2. Если  — линейная функция, т.е. , то , а неизвестные 

параметры a и b определяются из системы нормальных уравнений:  

                                                                                           

3. Если  — квадратичная функция, т.е. , то 

, а неизвестные параметры a, b, с определяются из системы 

нормальных уравнений:  
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4. Линейная регрессия 

Для расчета линейной регрессии в MathCAD необходимо воспользоваться следующими 

операторами:  

- line (х,у) - вектор из двух элементов (b,а) коэффициентов линейной регрессии axby  ; 

- intercept (х, у) - коэффициент b линейной регрессии; - slope (х, у) - коэффициент  а линейной 

регрессии;  - х - вектор действительных данных аргумента; - у - вектор действительных данных 

значений того же размера.  

Пример 1. Линейная регрессия  

x 0 1 2 3 4 5 6( )
T

              y 4.1 2.4 3 4.3 3.6 5.2 5.9( )
T

  

line x y( )
2.829

0.414










            intercept x y( ) 2.829         slope x y( ) 0.414  

f t( ) line x y( )
0

line x y( )
1

t
 

0 5
2

4

6

8
ëèíåéíàÿ ðåãðåññèÿ

y

f t( )

x t  
Пример 2. Имеются следующие данные о расходах на рекламу (тыс. усл. ед) и сбыте 

продукции  у (тыс. ед): 

 1 2 3 4 5 

 1,6 4,0 7,4 12,0 18,0 

Методом наименьших квадратов найти эмпирические формулы прямой  и  

многочлена второй степени , аппроксимирующие функцию, заданную таблично. 

Найти значение многочленов первой и второй степеней  в заданных точках, абсолютную 

погрешность в них и среднеквадратическую погрешность.  

Выяснить, какая зависимость предпочтительнее. Построить графики. Для этой же функции 

построить многочлен первой степени, пользуясь встроенными функциями системы MathCAD для 

линейной регрессии. Графически сравнить полученные результаты. 

Решение: 

Система нормальных уравнений  имеет вид:  Её решения  а=4,08, b=-3,64. 

Таким образом, линейная зависимость имеет вид: . 
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Система нормальных уравнений имеет вид:  Её решения  а=0,3, 

b=0,48, c=5,06. Таким образом, искомая квадратичная зависимость имеет вид: 

. 

 - абсолютная погрешность для линейной зависимости  

- среднеквадратическая погрешность для линейной зависимости  

       
 

              

 

 

 

 - абсолютная погрешность для квадратичной зависимости 

 - среднеквадратическая погрешность для квадратичной 

зависимости 

      
 

      

 

 

 

Как видно Sлин<Sкв, следовательно, линейная зависимость предпочтительнее. 

            
 

 

 

 

 

         
или                                                                                                        
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Рис. Изображение в ДСК опытных точек и графика линейной регрессии  
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Контрольные вопросы 

1. Что значит аппроксимировать табличную функцию? 

2. Какая функция называется эмпирической? Назовите этапы получения эмпирической формулы. 

Как определить общий вид эмпирической формулы? 

3. В чём заключается принцип Лежандра? 

 

 

2.2 Лабораторная работа № 2 ( 2 часа). 

Тема: «Численные методы решения обыкновенных дифференциальных уравнений 

первого порядка» 
 

2.2.1 Цель работы: повторить обзорно основные понятия теории ДУ первого 

порядка, закрепить эти понятия в практике решения задач 

 

2.2.2 Задачи работы: 

1. Метод Эйлера. 

2. Одна из модификаций метода Рунге-Кутта. 

 

2.2.3 Перечень приборов, материалов, используемых в лабораторной работе: 

спецификой дисциплины не предусмотрены 

 

2.2.4 Описание (ход) работы: 
Численное решение на отрезке [a, b] задачи Коши  y' = f(x, y),  y(a) = y0 состоит в 

построении таблицы приближенных значений y0, y1, ..., yi, ... yN  решения y(x) в узлах сетки a=x0 < 

x1 < ... < xi < ...< xN=b,  y(xi)= yi.  Если  

xi = a+ i h, h=(b-a)/ N, то сетка     называется равномерной. 

Численный метод решения задачи Коши называется одношаговым, если для вычисления 

решения в точке x0 + h используется информация о решении только в точке x0.  

Простейший одношаговый метод численного решения задачи Коши - метод Эйлера. В 

методе Эйлера величины yi   вычисляются по формуле   

yi+1 = yi + h f(xi , yi),   i = 0, 1, ... 

 ПРИМЕР 1. Решение задачи Коши методом Эйлера.  

Найдем методом Эйлера на отрезке [0, 1] c шагом h=0.2 приближенное решение задачи 

Коши y'=sinx-cosy, y(0)=1.  Изобразим приближенное решение графически.  

Расчетные формулы метода Эйлера для решения этой задачи имеют вид  x0=0, y0= 1, xi+1 = 

xi + 0.2,  yi+1 = yi + 0.2(sinxi - cosyi),   i =0, 1, 2, 3, 4.  

Определим правую часть уравнения   

Знак присваивания можно ввести щелчком по соответствующей позиции в панели 

Evaluation. 

Определим диапазон изменения номера точки i=0,1, ..., 4 

  
Для того чтобы ввести символ диапазона изменения индекса <..>, щелкните по 

соответствующей позиции в панели Matrix или введите с клавиатуры символ <;> ("точка с 

запятой")  Определим начальное условие - решение в начальной точке    

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей 

позиции в панели Matrix или в панели Calculator 

Определим шаг формулы Эйлера - шаг интегрирования  

Определим по формулам Эйлера значения приближенного решения в узлах сетки 

  
Выведем в рабочий документ вычисленные значения решения 

http://www.exponenta.ru/educat/class/courses/ode/theme2/example.asp#ex1
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Для того чтобы вывести значение переменной в рабочий документ, введите имя 

переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки  

 

 
Построим график найденного решения y(x)  

Для того,  чтобы построить график приближенного решения, щелкните в панели Graph по 

пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение 

компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат - 

обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; 

затем щелкните по свободному месту в рабочем документе вне поля графиков. 

  

 
Метод Эйлера допускает простую геометрическую интерпретацию. Пусть известна точка 

(xi,yi) интегральной кривой уравнения y'=f(x,y).  

Касательная к интегральной кривой уравнения, проходящая через эту точку, определяется 

уравнением y=yi+f(xi,yi)(x-xi).  

Следовательно, вычисленная методом Эйлера точка (xi+1 , yi+1 ), где xi+1=xi+h, yi+1=yi + h 

f(xi , yi), лежит на этой касательной. 

ПРИМЕР 2. Геометрическая интерпретация метода Эйлера. 

 Найдем приближенное решение задачи Коши   y'=y, y(0)=1 в точке x=1 методом Эйлера.  

Изобразим на графике точное решение y = exp(x), касательную к нему и вычисленное 

приближенное решение.  

Изобразим приближенное решение графически, построим график точного решения 

y=exp(x) и построим касательную к графику решения в точке (0,y(0)). 

Формула Эйлера при h=1, y(0)=1, f(x,y)=y имеет вид: y=y(0)+hf(0) 

Уравнение касательной к графику решения в точке (0, y(0)), y(0)=1, f(x,y)=y имеет вид: 

y=y(0)+f(0,y(0))(x-0) 

Определим правую часть уравнения и начальную точку. 

     
Вычислим приближенное решение по формуле Эйлера: 

    
Уравнение касательной к графику решения имеет вид: 

 
Построим график точного решения y=exp(x), касательную к графику решения в точке (0, 

y(0))=(0, 1), а также изобразим приближенное решение y=2 в точке x=1 

Для того, чтобы построить график приближенного решения, щелкните в панели Graph по 

пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение 

http://www.exponenta.ru/educat/class/courses/ode/theme2/example.asp#ex3
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компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат - 

обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; 

затем щелкните по свободному месту в рабочем документе вне поля графиков. 

 
Видно, что приближенное значение, вычисленное по формуле Эйлера на одном шаге, 

лежит на касательной к графику решения. Видно также, что погрешность приближенного 

решения растет с увеличением шага. 

Задания к лабораторной работе  

Решить заданное дифференциальное уравнение методом Эйлера с шагом h=0.2 и h=0.1, 

построить графики решения, сравнить полученные результаты. Найти точное решение уравнения, 

построить график. 

№ в-та Уравнение  
Начальные 

условия a  
№ в-та Уравнение  

Начальные 

условия a  

1 xyy 6  0)0( y  6 xyy 6  0)1( y  

2 xyy  2  0)0( y  7 xyy  2  0)1( y  

3 xyy 22   1)0( y  8 xyy 22   0)1( y  

4 xyy 32   1)0( y  9 xyy 32   0)1( y  

5 xyy 42   1)0( y  10 xyy 42   0)1( y  

 

Контрольные вопросы 

1. Дайте определение дифференциального уравнения. 

2. Как определить порядок дифференциального уравнения? 

3. Какие типы дифференциальных уравнений первого порядка вы знаете? 

4. Сформулируйте теорему Коши. 

5. Что позволяет найти задача Коши? 

6.Как называется график решения дифференциального уравнения? 

7. Что называется общим решением дифференциального уравнения? 

8. Запишите условие, при котором ДУ является дифференциальным уравнением в полных 

дифференциалах 

 

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ  

ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 

 

3.1 Практическое занятие № 1  ( 2 часа). 

Тема: «Уравнения в частных производных первого и второго порядка» 

 
3.1.1 Задание для работы: 

1. Выясните, являются ли приведенные ниже равенства дифференциальными уравнениями в частных 

производных.  

а)   0
222  yyxxyyxx UUUU  

б)   02cossincossinsin  UUUUUUU xyxxxyyyxy  

2. Решите дифференциальные уравнения в частных производных. 

а) 0




x

u
;  б) )(xf

y

u





;  в) x

y

u





;  г) 

x

z
xy




 ; д) )(yf

y

u





;   
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3. Определите порядок дифференциального уравнения в частных производных. 

    0222
2





 xyuu

y
uuu xxyx

 

4. Проверьте, что функция  

)()( yxyyxxu    есть решение уравнения 02
2

22

2

2





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








y

u

yx

u

x

u
. 

5. Найдите    решения линейных однородных ДУ в частных производных. 

1) 02 









y

u
y

x

u
x ; 2) 0




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x

z
y

y

z
x ;   3) 0










y
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y

x

z
x ;  4) 02 2 















z

u
z

y

u
y

x

u
x ;              5) 

0)43()2( 














z

u
zy

y

u
zy

x

u
;       6) 1 xпри,0 














zyu

z

u
z

y

u
y

x

u
x ;  

6.  Решить первую смешанную задачу для волнового уравнения на отрезке. 

  

 1.   2.  

 3.   4.  

 5.  
 6.  

3.1.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Уравнения первого порядка в частных производных с двумя переменными. 

2. Решение линейных уравнений. 

3. Приведение к каноническому виду уравнений второго порядка с двумя 

переменными. 

4. Характеристическое уравнение. Характеристики. 

3.1.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ в частных производных  закрепляются в виде навыков. 

 

3.2 Практическое  занятие № 2  ( 2 часа). 

Тема: «Уравнения в частных производных первого и второго порядка» 

 
3.2.1 Задание для работы: 

1. Выясните, являются ли приведенные ниже равенства дифференциальными уравнениями в частных 

производных.  

а)   0
222  yyxxyyxx UUUU  
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б)   02cossincossinsin  UUUUUUU xyxxxyyyxy  

2. Решите дифференциальные уравнения в частных производных. 

а) 0

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x

u
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3. Определите порядок дифференциального уравнения в частных производных. 
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4. Проверьте, что функция  
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5. Найдите    решения линейных однородных ДУ в частных производных. 
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6.  Решить первую смешанную задачу для волнового уравнения на отрезке. 

  

 1.   2.  

 3.   4.  

 5.  
 6.  

3.2.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Уравнения первого порядка в частных производных с двумя переменными. 

2. Решение линейных уравнений. 

3. Приведение к каноническому виду уравнений второго порядка с двумя 

переменными. 

4. Характеристическое уравнение. Характеристики. 

3.2.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения решать ДУ в частных производных  первого и второго порядка  закрепляются в 

виде навыков. 
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3.3 Практическое  занятие № 3  (2 часа). 

Тема: «Разложение функций в ряд Фурье» 
 

3.3.1 Задание для работы: 

Работа с материалом соответствующей лекции 

1. Разложите в ряд Фурье периодическую функцию на указанном сегменте: 

 f(х)=х; Т=2π; [ -π;π]     f(х)=х3; Т=2π; [ -π;π] 

2. f(х)=cos2х; Т=2π; [ 0;π]  (разложить в ряд по синусам) 

3. f(х)=х2; Т=2π; [0;π]  (продолжить функцию на сегмент [ -π;0] нечетным образом) 

4. f(х)=π-2х; Т=2π; [ 0;π] (продолжить функцию на сегмент [ -π;0] четным образом, 

 нечетным образом). 

3.3.2 Краткое описание проводимого занятия: на занятии планируется решить 

следующие задачи: 

1. Тригонометрический ряд Фурье. 

2. Разложение в ряд Фурье четных и нечетных функций и функций произвольного 

периода. 

3. Представление непериодической функции рядом Фурье. 

3.3.3 Результаты и выводы: полученные теоретические знания и выработанные 

умения применять ряды Фурье при решении  практических задач  закрепляются в 

виде навыков. 

 

 

 


