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1. Организация самостоятельной работы 

 

1.1 Организационно-методические данные дисциплины 

п/п 
Наименование разделов, 
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1 2 4 5 6 7 8 

1 
Тема 1 
Структура курса. Аксиомы 

статики. Силовые факторы. 

 х 4   

2 
Тема 2 
 Основная теорема статики. 

Уравнения равновесия. 

 х 4   

3 
Тема 3 

 Частные случаи приведе-

ния систем сил. 

 х 4 10  

4 

Тема 4 

 Использование уравнений 

равновесия. Статическая 

определимость. Сочленѐн-

ные конструкции. 

 х 2   

5 

Тема 5 

 Центр тяжести. Способы 

определения положения 

ЦТ. 

 х 2 8  

6 
Тема 6 

Трение скольжения и каче-

ния 

 х 2 8  

7 

Тема 7 

Кинематика. Скорости и 

ускорения точек при раз-

личных способах задания 

движения. 

 х 4   

8 

Тема 8 

Простейшие движения 

твѐрдого тела. Плоское 

движение 

 х 4   

9 
Тема 9 

 Составное движение точ-

ки. 

 х 8 24  

10 

Тема 10 Составление диф-

ференциальных уравнений 

движения точки. 

 х 2   

11 
Тема 11 

 Способы решения 2-й за-

дачи динамики. 

 х 4 4  
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12 
Тема 12 

 Свободные, затухающие и 

вынужденные колебания 

 х 4 5  

13 
Тема 13 

 Общие свойства системы. 

Моменты инерции. 

 х 4 10  

14 

Тема 14 Теорема об изме-

нении количества движе-

ния. Теорема о моменте 

количества движения. 

Принцип Даламбера. Силы 

инерции. 

 х 4 10  

15 

Тема 15 

Теорема о движении цен-

тра масс системы. Теорема 

о кинетической энергии 

системы 

 х 4 10  

16 
Тема 16 

Принцип Даламбера. Силы 

инерции. 

 х 2 8  

17 
Тема 17 

Принцип возможных пере-

мещений. 

 х 4 4  

18 
Тема 18 

Общее уравнение динамики. 
 х 2 8  

 

2. Методические рекомендации по подготовке к занятиям 

2.1 Статика 

При подготовке к вопросам акцентировать внимание необходимо на следующем:  

- Понятие равнодействующей системы сил. 

- Понятие момента силы относительно центра и оси. 

- Инвариантность главного вектора и скалярного произведения главного вектора на главный 

момент. 

- Условия равновесия системы сил. 

2.2 Кинематика 

При подготовке к вопросам акцентировать внимание необходимо на следующем:  

- Векторный, координатный и естественный способы задания движения. Определение кине-

матических характеристик в каждом из способов. 

- Виды движений твѐрдого тела. Кинематические характеристики в каждом из движений. 

- Составное движение. 

2.3 Динамика 

При подготовке к вопросам акцентировать внимание необходимо на следующем: 

- Дифференциальные уравнения движения в координатной и естественной формах. 

- Применение общих теорем динамики для точки, твѐрдого тела и механической системы. 

- Применение принципов динамики для решения первой и второй задач динамики.  
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3. Методические рекомендации по выполнению домашних контрольных заданий 

3.1   С-1  Определение реакций связей. Плоская произвольная система сил. 

Жесткая рама (рис. С1. О—С1.9, табл. С1) закреплена в точке А шарнирно, а в точке В прикреп-

лена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках. 

В точке С к раме привязан трос, перекинутый через блок и несущий на конце груз весом         

Р=25 кН. На раму действует пара сил с моментом М=60 кН-м и две силы, значения, направления и 

точки приложения которых указаны в таблице (например, в условиях №1 на раму действуют сила F2 

под_ углом 15
о
 к горизонтальной оси, приложенная в точке D, и сила F2 под углом 60° к горизон-

тальной оси, приложенная в точке Е и т.д.). 

Определить реакции связей в точках А, В, вызываемые действующими нагрузками. При оконча-

тельных расчетах принять а=0,5 м. 

Указания. Задача Cl —на равновесие тела под действием произвольной плоской системы сил. 

При ее решении учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением 

пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше 

неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реак-

ций связей. При вычислении момента силы F часто удобно разложить ее на составляющие F' и F", 

для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда 

mо(F)=mo(F')+mo(F''). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.С1.0 
Рис.С1.1 

Рис.С1.2 
Рис. С1.3 

Рис.С1.4 
Рис.С1.5 
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Пример CI. Жесткая пластина АBCD (рис. С1) имеет в точке А неподвижную шарнирную опору, а в 

точке В—подвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны 

на рисунке. 

Дано:   F=25 кН,  а=60°, Р=18 кН,    γ=75º, М=50 кН•м, β=30
º 

a=0,5 м. Определить: реакции в точках А и В, вызываемые дей-

ствующими нагрузками. 

 

 

 

 

 

 

 

Решение: 1. Рассмотрим равновесие пластины. Проведем координатные оси ху и изобразим дей-

ствующие на пластину силы: силу F, пару сил с моментом М, натяжение троса Т (по модулю Т=Р) и 

реакции связи XA, YA, RB (реакцию неподвижной шарнирной опоры А изображаем двумя ее состав-

ляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости). 

2. Для полученной плоской системы сил составим три уравнения равновесия. При вычислении 

момента силы F относительно точки А воспользуемся теоремой Вариньона, т.е. разложим силу F на 

составляющие F
'
,F'' (F

'
=Fcosα, F"=Fsinα) и учтем, что mA(F)=mA(F

'
)+mA(F''). Получим: 

Рис.С.1.6 

60° 

Рис.С.1.7 

Рис.С.1.8 Рис.С.1.9 

Рис.С.1 
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Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, 

определим искомые реакции.  

Ответ: ХА=-8,5 кН; УA=—23,3 кН; Rв=7,3 кН. Знаки указывают, что силы ХA и УA направлены про-

тивоположно показанным на рис. С1. 
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3.2    С-5. Определение реакций связей. Пространственная произвольная система сил. 

 

Две однородные прямоугольные топкие плиты жестко соединены (сварены) под прямым уг-

лом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндри-

ческим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С5.0—С5.7) или же 

двумя подшипниками в точках А, и В и двумя невесомыми стержнями 1 и 2 (рис, С5.8, С5.9); все 

стержни прикреплены к плитам и к неподвижным опорам шарнирами. 

Размеры плит указаны на рисунках; вес большей плиты Р1=5 кН. вес меньшей плиты Р2=3 кН. 

Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость xy го-

ризонтальная). 

На плиты действуют пара сил с моментом M=4 кН·м, лежащая и плоскости одной из плит, и 

две силы. Значения этих сил, их направлении и точки приложении указаны и табл. С5; при этом 

силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 - в плоскости, параллель-

ной xz, и сила F3 в плоскости, параллельной yz. Точки приложения сил (D, E, H, К) находятся в 

углах или в серединах сторон плит. 

Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах 

принять а = 0,6 м. 

Указания. Задача С5 - на равновесие тела под действием произвольной пространственной си-

стемы сил. При се решении учесть, что реакция сферического шарнира (подпятники) имеет три 

составляющие (по всем трем координатным осям), а реакции цилиндрического шарнира (под-

шипника) — две составляющие, лежащие в плоскости, перпендикулярной оси шарнира (подшип-

ника). При вычислении момента силы F часто удобно разложить ее на две составляющие F' и F", 

параллельные координатным осям (или на три); тогда, по теореме Вариньона, 

mx(F)=mx(F')+mx(F") и т д. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.С.5.0 Рис.С.5.1 

Рис.С.5.2 
Рис.С5.3 



  

 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример C5.    Горизонтальная    прямоугольная    плита весом Р (рис. С5) закреплена сфериче-

ским шарниром в точке А, цилиндрическим (подшипником) в точке   В    и    невесомым стерж-

нем   OD'.  На   плиту   в   плоскости, параллельной xz, действует сила F, а в плоскости, парал-

лельной  yz, — пара сил с моментом М. 

Дано: Р = 3 кН, F=8 кН, М = 4 кН·м, α = 60°, АС =0,8 м, АВ = 1,2 м, ВЕ = 0,4 м,   ЕН = 0,4 м. 

Определить: реакции опор А, В и стержня DD'. 
 

 

 

Рис.С.5.4 Рис.С.5.5 

Рис.С.5.6 
Рис.С.5.7 

Рис.С.5.8 
Рис.С.5.9 
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Решение. 1. Рассмотрим равновесие плиты. На плиту действуют заданные силы Р, F и пара с 

моментом М, а также реакции связей. Реакцию сферического шарнира   разложим   на три со-

ставляющие XA, YA, ZA, цилиндрического (подшипника) – на две  составляющие XB, ZB  (в плос-

кости, перпендикулярной оси подшипника);   реакцию  N стержня   направляем   вдоль стержня  

от  D к D
'
, предполагая, что ан растянут. 

2. Для определения шести неизвестных реакций составляем шесть уравнений равновесия дей-

ствующей на плиту пространственной системы сил: 

 

 
 

Для определения моментов силы F относительно осей разлагаем ее на  составляющие F'  и F'', 

параллельные   осям х и z  (F' = F cosα, F''= sinα), и применяем теорему Вариньона (см. Указания). 

Аналогично можно поступать при определении моментов реакции N. 

Подставив в составленные уравнения числовые значении всех заданных величия и решив эти 

уравнения, найдем искомые реакции. 

Ответ: XA=3,4 кН; YA=5,1 кН; ZA=4,8 кH; XB= 7.4 kH; ZB=2,1 кН; N=5,9 кН. Знак минус ука-

зывает, что реакции XB направлена противоположно показанной на рис. С5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.С.5 
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3.3  К-1.    Изучение кинематических характеристик (положение, скорость, ускорение) движе-

ния точки при различных способах задания (векторный, координатный, естественный). 

 

Точка В движется и плоскости ху (рис. К1.0 - К1.9, табл. К1; траектория точки на рисунках 

показана условно). Закон движения точки задан уравнениями x=f1(t), y=f2(t), где x и y выражены в 

сантиметрах, t - в секундах. 

Найти уравнение траектории точки; для момента времени t1 =1с. определить скорость и уско-

рение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответству-

ющей точке траектории. 

Зависимость x=ft(t) указана непосредственно на рисунках, а зависимость y=f2(t) дана в табл. 

К1 (для рис. 0-2 в столбце 2, для рис. 3—6 в столбце 3, для рис. 7—9 и столбце 4). Как и в задачах 

С1—С5, номер рисунка выбирается по предпоследней цифре шифра, а номер условия в табл. K1 - 

по последней. 

Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по кото-

рым определяются скорость и ускорение точки в Декартовых координатах (координатный способ 

задания движения точки), а также формул, по которым определяются касательное и нормальное 

ускорения точки. 

В данной задаче все искомые величины нужно определить только для момента времени t1=1 

с. В некоторых вариантах задачи при определении траектории или при последующих расчетах 

(для их упрощения) следует учесть известные из тригонометрии формулы: cos2α =l— 2 sin
2
α =2 

cos
2
α -1; sin2α=2sinα cosα. 

 

Рис.К1.5 
O 

X 

Y 

B 
B 

X 

Y 

O 
Рис.К1.4 

O 

X=2-t 

X 

Y 

B 

B 

X 

Y 

O 

X=6cos(П/6)-3 

O 
X 

Y 
B 

O 

Y 

X 

X=2*3cos(П/6) 

B 

Рис.К1.0 
Рис.К.1.1 

X=4cos(П/6) 

Рис.К 1.3 

X=2t X=t-4 

Рис.К.1.2 
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Пример К1. Даны уравнения движения точки и плоскости ху: 

x= -2cos(
4


t) +3;    y= 2sin (

8


t) -1 

(x,y – в сантиметрах, t – в секундах). 

Определить уравнение траектории  точки, для момента времени t1=lс. найти скорость и ускорение 

точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей 

точке траектории. 

Решение. 1. Для определения уравнения траектории точки исключим из заданных уравнений 

движения время t. Поскольку t входит в аргументы тригонометрических функций, где один аргу-

мент вдвое больше другого, используем формулу 

cos 2α    1- 2sin
2
α   или   cos(

4


t) = 1-2 sin

2
 (

8


t). 

Из уравнений движения находим выражения соответствующих функций и подставляем в полу-

ченное выше равенство. Получим: 

 

cos(
4


t) = 

3

2

x
,  sin (

8


t) = 

1

2

y 
; 

следовательно, 

 
23 ( 1)

1 2
2 4

x y 
   

Отсюда  окончательно  находим   следующее   уравнение  траектории точки (параболы, рис. К1): 

x=(y+1)
2
 +1. 

2.   Скорость  точки  найдем   по ее  проекциям на координатные оси: 

2 2

sin( );
2 4

cos( );
4 8

x

y

x y

dx
t

dt

dy
t

dt

 


 


  

 

 

 

 

X=8sin(П/6t)-2 

X=4-6sin(П/6t) X=12sin(П/6t) X=4-2t 

Рис.К1.9 

Рис.К1.8 Рис.К1.7 Рис.К1.6 

B 

B 
B B 

X 

X X X 

Y 

Y Y Y 

O 

O O O 
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И при t=1 с. 
1 1,11x   см/с,     1 0,73y   см/с,  

1 1,33   

3. Аналогично найдем ускорение точки 

2

cos( );
8 4

x
x

d
a t

dt

  
               

2

sin( );
32 8

y

y

d
a t

dt

  
    

2 2

x ya a a   

И при t= 1с  

1 0,87xa   см/с
2
,              

1 0,12ya    см/с
2 

1 0,88a   см/с
2
 

4. Касательное  ускорение  найдем,  дифференцируя  по  времени равенство 2 2 2

x y     

Получим: 

2 2 2
yx

x y

ddd

dt dt dt


     

x x y ya ad
a

dt


 




   

Числовые значения всех величин, входящих в правую часть выражения,  определены и даются равен-

ствами. Подставив  эти числа, найдем сразу, что при t=1 с 0,66a   см/с
2
. 

5.  Нормальное ускорение точки  
2 2 .na a a      Подставляя 

сюда найденные числовые значения 
1a  и 1a  , получим, что при t=1с 1 0,58na   см/с

2
. 

6.  Радиус кривизны траектории 
2

na


  . Подставляя сюда числовые значения 1  и 1na , найдем, что 

при t=1 с  3,05   см. Ответ: 1 1,33  см/с,  1 0,88a   см/с
2
,  1 0,66a    см/с

2
,  1 0,58na   см/с

2
,  

1 3,05   см. 
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3.4 Д-1. Динамика материальной точки. Применение дифференциальных уравнений движения 

для решения прямой  и обратной задач динамики. 

     Груз D массой m, получив в точке А начальную скорость 0 , движется в изогнутой трубе ABC, 

расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизон-

тальный, а другой наклонный (рис. Д1.0— Д1.9, табл. Д1)., 

На участке АВ на груз кроме силы тяжести действуют постоянная сила Q


 (ее направление по-

казано на рисунках) и сила сопротивления среды R


, зависящая от скорости 


 груза (направлена 

против движения); трением груза о трубу на участке АВ пренебречь. 

В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кро-

ме силы тяжести действуют сила трения (коэффициент трения груза о трубу f =0,2) и пере-

менная сила F


, проекция которой xF , на ось x задана в таблице. 

Считая груз материальной точкой и зная расстояние АВ=l или время 1t  движения груза от точ-

ки А до точки В, найти закон движения груза на участке ВС, т. е. x=f(t), где x=BD. 

Указания. Задача Д1 — на интегрирование дифференциальных уравнений движения точки (ре-

шение основной задачи динамики). Решение задачи разбивается на две части. Сначала нужно соста-

вить и проинтегрировать методом разделения переменных дифференциальное уравнение движения 

точки (груза) из участке АВ, учтя начальные условия. Затем, зная время движения груза на участ-

ке АВ или длину этого участка, определить скорость груза в точке В. Эта скорость будет началь-

ной для движения- груза на участке ВС. После этого нужно составить и проинтегрировать диффе-

ренциальное уравнение движения груза на участке ВС тоже с учетом начальных условий, ведя отсчет 

времени от момента, когда груз находится в точке В, и полагая в этот момент t=0. При интегрирова-

нии уравнения движения на участке АВ в случае, когда задана длина l участка, целесообразно перей-

ти к переменному х, учтя, что 

dt

d

dt

d x

x

x 



 . 

 

 

 

 

              

 

 

 

 

 

A 
Q 

D 

B 

D 

C 
X 

30˚ 30˚ 

Рис.Д1.0 

B D Q A 

D 

C 

30˚ 
X 

Рис.Д1.1 

X 

C D B 

Q D 
A 

30˚ 

Рис  Д1.2 

 A 
Q 

D 

B D C 
X 

Рис.Д1.3 

30˚ 
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Пример Д1. На вертикальном участке АВ трубы (рис. Д1) на груз D массой m  действуют сила тяжести и 

сила сопротивления R


; движение от точки А, где 00  , до точки В длится 1t  с. На наклонном участке ВС 

на груз действуют сила трения (коэффициент трения груза о трубу равен f) и переменная сила F=F(t), за-

данная в ньютонах. 

Дано:   m=8 кг,   
2R ,   где    =0,2 кг/м, 

00  ,  ct 21  , f= 0,2,  )4sin(16 tFx  , 
30  

Определить:   x= f(t)  –  закон движения груза на участке ВС. 

 

 

 

A D Q B 

D 

C 

X 

30˚ 

Рис.Д1.4 

A 

D 

Q 

B 

D 

C 

X 

30˚ 30˚ 

Рис.Д1.5 

A D Q B 

D 

30˚ 

X Рис.Д1.6 

X 

C 

D 

B 
D Q 

A 

30˚ 

Рис.Д1.7 

X 

C D B 

D 

Q 
A 

30˚ 

Рис.Д1.8 

A 

D 

Q 

B D 

X 

30˚ 

Рис.Д1.9 
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Решение:  1. Рассмотрим   движение груза на участке   АВ,   считая   груз   материальной точ-

кой.    Изображаем    груз (в произвольном положении) и действующие    на    него   силы  gmP


  и 

R


. Проводим  ось zA  и составляем дифференциальное уравнение движения груза в проекции на эту 

ось; 

kz
z F

dt

d
m 


 или zz

z RP
dt

d
m 


. 

Введем для сокращения записей обозначение 

)/20(4002 ñìn
mg

n 


 

где при подсчете принято 2/10 ñìg  . Тогда, разделяя в уравнении (2) переменные и взяв за-

тем от обеих частей равенства интегралы, получим 

dt
mn

d 






 22
  и   1ln

2

1
Ct

mn

n

n




 




 

По   начальным   условиям    при t=0 00  , что дает 01ln).
2

1(1 
n

C . Введя еще одно 

обозначение 

,5,0 1 c
m

nk


 

Получим из (4) 

kt
n

n
2ln 








  и  kte

n

n 2







. 

Отсюда находим, что 

1

1
2

2






kt

kt

e

e
n . 

Полагая здесь 21  tt  с и заменяя n и k их значениями (3) и (5), определим скорость B  гру-

за в точке В (число е=2,7): 

A 

R 

D 

P y 

N 

Z 

B 

Fтр 

F 

P 

α 

X 

C 

Рис.Д1 
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ñì
e

e
B /2,15

1

1
20

2

2





 . 

2. Рассмотрим движение груза на участке ВС; найденная скорость B  будет для движения на 

этом участке начальной скоростью )( 0 B  . Изображаем груз (в произвольном положении) и дей-

ствующие на него силы gmP


 , N


, TPF


 и F


. Проведем из точки В оси xB  и yB  и составим диффе-

ренциальное уравнение движения груза в проекции на ось xB : 

xTPxxx

x FFNP
dt

d
m 


  или   xTP

x FFmg
dt

d
m  


sin , 

где fNFTP  . Для определения N составим уравнение в проекции на ось yB . Так как 0ya , 

получим cos0 mgN  , откуда cosmgN  . Следовательно, cosmgfFTP  ; кроме того 

)4sin(16 tFx   и уравнение (8) примет вид 

)4sin(16)cos(sin tfmg
dt

d
m x  


. 

Разделив обе части равенства на m, вычислим )30cos2,030(sin)cos(sin   gfg  =3,2; 

16/m=2 и подставим эти значения в (9). Тогда получим 

 

)4sin(22,3 t
dt

d x 


 

Умножая обе части уравнения (10) на dt и интегрируя, найдем 

2)4cos(
2

1
2,3 Cttx   

Будем теперь отсчитывать время от момента, когда груз находится в точке В, считая в этот 

момент t=0. Тогда при Bt   00 , где B  дается равенством (7). Подставляя эти величины в 

(11), получим 

7,155,02,150cos5,02  BC  . 

При найденном значении 2C  уравнение (11) дает 

 

7,15)4cos(5,02,3  tt
dt

dx
x . 

Умножая обе части на dt и снова интегрируя, найдем 

3

2 7,15)4sin(13,06,1 Ctttx  . 

Так как при t=0 x=0, то 03 C  и окончательно искомый закон движения груза будет  

),4sin(13,07,156,1 2 tttx   

Где x – в метрах, t – в секундах. 
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4. Методические рекомендации по самостоятельному изучению вопросов 

4.1. Рассматриваемые вопросы 

 

1. Частные случаи приведения систем сил 

1)Моментом силы называется векторное произведение радиус вектора на силы, где радиус вектор 

кратчайшее расстояние от оси вращения до точки приложения силы 

2) Моментом силы называется векторное произведение плеча силы на значение силы, перпендику-

лярное оси вращения, где Р-плечо силы -  это кратчайшее расстояние от оси вращения до прямой, 

вдоль которой действует сила 

3) Моментом силы называется векторное произведение, где радиус вектор кратчайшее расстояние от 

оси вращения до точки приложения силы, а Ft проекция F_ на направление, перпендикулярное ради-

ус-вектору 

Если тело имеет неподвижную ось, т. е. закрепленную в неподвижных подшипниках, то при любой 

системе действующих сил тело может вращаться лишь около этой оси. Но не всякая сила может вы-

звать вращение. Например, сила, параллельная оси (Fy) не вызовет вращения; она лишь стремится 

сдвинуть тело вдоль оси и в конечном счете уравновешивается реакцией подшипников. Но вот сила, 

находящаяся в плоскости, перпендикулярной к оси, может при некоторых условиях вызвать враще-

ние. 

Две антипараллельные силы одинаковой величины, приложенные к разным точкам, но направлен-

ные не по одной прямой, называют парой сил. Пара не имеет равнодействующей и представляет со-

бой самостоятельный динамический элемент. 

 Момент силы  относительно центра 

Моментом силы F относительно некоторого неподвижного  центра О называется вектор, рас-

положенный перпендикулярно к плоскости, проходящей через вектор силы и центр О, направ-

ленный в ту сторону, чтобы смотря с его конца можно было видеть поворот силы F относи-

тельно центра О против часовой стрелки. 

Свойства момента силы относительно центра: 

  

  

1)   Модуль момента силы относительно 

центра может быть выражен удвоенной 

площадью треугольника ОАВ 

      (1.1) 

  

2)   Момент силы относительно центра 

равен нулю в том случае, если линия дей-

ствия силы проходит через эту точку, то 

есть h = 0. 

  

  

  

  

3)   Если из точки О в точку приложения 

силы А провести радиус вектор , то вектор 

момента силы можно выразить векторным 

произведением 

  

           (1.2) 

  

4)   При переносе силы по линии ее дей-

ствия вектор ее момента относительно 

данной точки не изменяется. 
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5)   Если через центр О провести оси коорди-

нат   Охуz   то   выражение 

(4.2) позволяет вычислить момент МО анали-

тически относительно координатных осей. 

  

  

  

          (1.3) 

  

  

 Если к твердому телу приложено несколько сил, лежащих в одной плоскости, можно вычислить ал-

гебраическую сумму моментов этих сил относительно любой точки этой плоскости 

  

            Момент МО, равный алгебраической сумме моментов данной системы относительно какой-

либо точки в той же плоскости, называют главным моментом системы сил относительно этой точки. 

  

Момент силы относительно оси 

Чтобы определить момент силы относительно оси необходимо: 

1)     провести плоскость, перпендикулярную к оси Z; 

2)     определить точку О  пересечения оси с плоскостью; 

3)     спроецировать ортогонально силу F на эту плоскость; 

4)     найти момент проекции силы F относительно точки О пересечения оси с плоскостью. 

Правило знаков: 

  

Момент силы относительно оси считается положительным, если,  смотря навстречу оси Z, можно ви-

деть проекцию , стремящейся вращать плоскость I вокруг оси Z в сторону, противоположную 

вращению часовой стрелки. 

  

  

  

Свойства момента силы  

относительно оси 
1) Момент силы относительно оси изобража-

ется отрезком, отложенным  по оси Z  от точ-

ки О в положительном направлении, если 

> 0 и в отрицательном направлении, если 

< 0.  

2) Значение момента силы относительно оси 

может быть выражено удвоенной площадью 

Δ  

      (1.5) 

  

3) Момент силы относительно оси равен ну-

лю в двух случаях: 

 если F1 = 0, то есть линия действия 



  

 20 

силы параллельна оси; 

 eсли h1 = 0, то есть линия действия 

силы пересекают ось. 

  

  

Пара сил. Векторный и алгебраический момент пары сил 

 Система двух равных по модулю, параллельных и противоположно направленных сил  и , 

называется парой сил. 

Плоскость, в которой находятся линии действия сил  и , называется плоскостью действия 

пары сил. 
Кратчайшее расстояние hмежду линиями действия сил, составляющих пару, называется плечом па-

ры сил. 

Момент пары сил определяется произведением модуля одной из сил пары на плечо. 

  

                              (1.6) 

  

  

  

 

 

Правило знаков 

Вектор момента М пары  и  направляют перпендикулярно к плоскости действия пары сил в 

такую сторону, что бы смотря навстречу этому вектору, видеть пару сил стремящейся вращать плос-

кость ее действия в сторону, обратную вращению часовой стрелки. 

1. 4.     Свойства пар сил на плоскости 

  

Свойство 1. Вектор-момент M  пары  по модулю и направлению равен векторному произве-

дению радиуса вектора АВ на ту из сил этой пары, к началу которой направлен радиус-вектор АВ, то 

есть  

                                         (1.7) 

  

  

  

  

Если пары сил лежат в одной плоскости 
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Свойство 2. Главный момент сил, составляющих пару относительно произвольной точки на плоско-

сти действия пары, не зависит от положения этой точки и равняется моменту этой пары сил. 

  

  

  

  

  

 

 Условия равновесия систем сил 

Из основных аксиом статики следуют элементарные операции над силами: 

1) силу можно переносить вдоль линии действия; 

2) силы, линии действия которых пересекаются, можно складывать по правилу параллелограмма (по 

правилу сложения векторов); 

3) к системе сил, действующих на твѐрдое тело, можно всегда добавить две силы, равные по вели-

чине, лежащие на одной прямой и направленные в противоположные стороны. 

Элементарные операции не изменяют механического состояния системы. 

Назовѐм две системы сил эквивалентными, если одна из другой может быть получена с помощью 

элементарных операций (как в теории скользящих векторов). 

Система двух параллельных сил, равных по величине и направленных в противоположные стороны, 

называется парой сил (рис.12). 

  

      

Момент пары сил  - вектор, по величине равный площади параллелограмма, построенного на век-

торах пары, и направленный ортогонально к плоскости пары в ту сторону, откуда вращение, сообща-

емое векторами пары, видно происходящим против хода часовой стрелки. 

, то есть момент силы  относительно точки В. 

Пара сил полностью характеризуется своим моментом. 
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Пару сил можно переносить элементарными операциями в любую плоскость, параллельную плоско-

сти пары; изменять величины сил пары обратно пропорционально плечам пары. 

Пары сил можно складывать, при этом моменты пар сил складываются по правилу сложения (сво-

бодных) векторов. 

Приведение системы сил, действующих на твѐрдое тело, к произвольной точке (центру приведения) 

- означает замену действующей системы более простой: системой трѐх сил, одна из которых прохо-

дит через наперѐд заданную точку, а две другие представляют пару. 

Доказывается с помощью элементарных операций (рис.13). 

 
Рис.13. 

  Система сходящихся сил  и система пар сил . 

   

 - результирующая сила . 

 - результирующая пара .Что и требовалось показать. 

  

Две системы сил будут эквивалентны тогда и только тогда, когда обе системы приводятся к одной 

результирующей силе и одной результирующей паре, то есть при выполнении условий: 

  

 

,  

  

Общий случай равновесия системы сил, действующих на твѐрдое тело 

  

 
   

Рис.14. 

  

Приведѐм систему сил к (рис.14): 

 - результирующая сила через начало координат; 

 - результирующая пара, причѐм,  через точку О. 
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То есть привели к  и  - две силы, одна из которых  проходит через заданную точку О. 

Равновесие, если  и  на одной прямой, равны, направлены противоположно (аксиома 2). 

Тогда  проходит через точку О, то есть . 

Далее: , так как остаѐтся только эта сила. 

  

Итак, общие условия равновесия твѐрдого тела: 

,   . 

Эти условия справедливы для произвольной точки пространства. 

 

 Методы преобразования систем сил 

Особенности метода преобразования систем сил как способа раскрытия статической неопределимо-

сти стержневых и рамных систем. Некорректные преобразования заданной системы в основные мо-

гут быть  по причине кинематической изменяемости. Примером служит  расчет рамы, суммарной 

эпюры изгибающих моментов.  

 

 Составление и использование уравнений равновесия. 

РАВНОВЕСИЕ ТВЕРДОГО ТЕЛА ПОД ДЕЙСТВИЕМ ПЛОСКОЙ СИСТЕМЫ СИЛ 

Для равновесия плоской системы сил, приложенных к твердому телу и не пересекающихся в одной 

точке, необходимо и достаточно, чтобы главный вектор R этих сил и их главный момент относитель-

но произвольной точки О, лежащей в плоскости действия этих сил, были равны нулю, т. е.  

 
В координатной форме эти условия выражаются следующими тремя уравнениями:  

 
Условия равновесия плоской системы сил, расположенных как угодно на плоскости, можно выразить 

еще в двух других видах.  

- Алгебраическая сумма моментов сил относительно трех произвольных точек А, В, С, не лежащих 

на одной прямой, равна нулю, т. е.  

 
- Алгебраическая сумма моментов всех сил относительно двух произвольных точек А и В равна нулю 

и сумма проекций этих сил на какую-либо ось, не перпендикулярную к прямой, соединяющей точки 

А и В, равна нулю, т. е.  

 
В частном случае, если все силы плоской системы параллельны, то условия равновесия (20) таких 

сил выражаются не тремя, а двумя уравнениями:  

 

причем ось параллельна данным силам.  

Условия равновесия плоской системы параллельных сил можно выразить и в другой форме:  

 
причем прямая АВ не параллельна данным силам.  

 

http://stu.sernam.ru/book_stm.php?id=18
http://sernam.ru/lect_math1.php?id=14
http://stu.sernam.ru/book_stm.php?id=18
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Задачи на равновесие плоской системы сил можно разбить на два основных типа, а именно:  

1) задачи на равновесие плоской системы параллельных сил;  

2) задачи на равновесие плоской системы сил, расположенных как угодно.  

Задачи второго типа можно еще классифицировать по характеру связей, наложенных на рассматри-

ваемое тело, подразделяя их на следующие две группы:  

а) задачи, в которых линии действия реакций всех связей известны;  

б) задачи, в которых линия действия реакции одной из связей неизвестна.  

Чтобы задача была статически определима, число неизвестных реакций должно быть не больше трех, 

так как при равновесии твердого тела под действием плоской системы сил в общем случае можно со-

ставить три уравнения равновесия.  

При составлении уравнений равновесия за центр моментов следует выбирать такую точку, через ко-

торую проходят линии действия двух неизвестных сил, тогда в уравнение моментов относительно 

этой точки войдет только одна неизвестная сила и ее легко будет определить из этого уравнения.  

Если данное тело находится в равновесии под действием плоской системы параллельных сил, то чис-

ло неизвестных реакций не должно быть больше двух, так как в этом случае мы имеем только два 

уравнения равновесия.  

 

 

2.Центр тяжести. Способы определения положения центра тяжести 

На каждую частицу тела, находящегося вблизи поверхности Земли, действует направленная верти-

кально вниз сила, которая называется силой тяжести. Силы тяжести каждой частицы тела, строго 

говоря, направлены по радиусам к центру Земли и не являются параллельными. Но для тел, размеры 

которых малы по сравнению с размерами Земли, непараллельность настолько незначительна, что в 

расчетах с большой точностью силы тяжести их частиц можно считать параллельными, сохраняю-

щими свои значения, точки приложения и параллельность при любых поворотах тела. Поэтому, обо-

значив силу тяжести частицы через Рк , можно, согласно формулам и 

, найти точку С, которая неизменно связана с те-

лом и называется центром системы параллельных сил тяжести. Таким образом, центром тяжести 

твердого тела называется центр системы параллельных сил тяжести частиц данного тела. Точка С — 

это геометрическая точка, она может и не принадлежать телу, но она всегда с ним связана, например 

центр тяжести баскетбольного мяча, кольца и др. Выразим силу тяжести (вес) частицы тела через ее 

объем V. Тогда величина называется удельным весом, а величина - плотно-

стью тела в данной точке. ("гамма"-Н/м3) ("ро"-Н*с2/м4) 

Методы нахождения центра тяжести. 

1) Метод симметрии.  

Покажем, что если однородное тело имеет плоскость, ось или центр материальной симметрии, то его 

центр тяжести находится соответственно в плоскости, на оси или 

в центре симметрии. 

а. Пусть тело симметрично относительно плоскости Оху 

http://stu.sernam.ru/book_stm.php?id=18
http://alnam.ru/book_tm1.php?id=25
http://alnam.ru/book_tm1.php?id=25
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Тогда вследствие симметрии каждому элементу К тела объемом ( , , ) будет соответство-

вать элемент К' того же объема с координатами ( , ,- ). Поэтому статический момент объема 

и координата . Следовательно, центр тяжести тела будет лежать в плос-

кости симметрии Оху. 

б. Пусть тело симметрично относительно оси Oz.  

 

Тогда всякому элементу К тела объемом с координатами ( , , ) будет соответствовать та-

кой же по объему элемент К', расположенный симметрично относительно оси Oz и имеющий коор-

динаты (- ,- , ). Поэтому статические моменты и, 

следовательно, координаты . Таким образом, 

центр тяжести будет находится на оси симметрии. 

в. Пусть тело имеет центр симметрии, который примем за начало координат. Тогда всякой частице 

тела объемом , определяемой радиус-вектором rк, будет соответствовать частица такого же объ-

ема с радиус-вектором (-rк), симметричная ей относительно центра О. Поэтому . Следо-

вательно, центр тяжести будет находиться в центре симметрии. Например, центры тяжести однород-

ных куба, сферы, кольца, прямоугольной 

или круглой пластины лежат в геометрическом центре этих тел. 

2) Метод разбиения.  

Этот метод основан на применении формул и 

. Его используют, когда тело можно разбить на ряд 
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частей, центры тяжести которых известны из условий симметрии. Метод разбиения можно наглядно 

проиллюстрировать с помощью рисунка. 

 
Расположив тело в системе координат, разделив его мысленно на отдельные части, веса которых Р1, 

Р2, Р3, Р4, а центры тяжести известны, вычислим вес тела и, согласно формулам 

, координаты центра тяжести С всего тела. Если 

тело имеет вырез, причем известны центр тяжести тела без выреза и центр тяжести вырезанного тела, 

то для определения координат центра тяжести используют метод отрицательных масс (частный слу-

чай метода разбиения). 

 
На рисунке изображена квадратная пластина, сторона которой а. В пластине выполнено круглое от-

верстие с радиусом r=0,2а и координатами центра x2=-0,3а; у2=0. Координаты центра тяжести С, 

пластины без отверстия x1=0, у1=0. Рассмотрим два тела: пластину без отверстия и диск, соответ-

ствующий вырезанному отверстию. При использовании формул 

вес диска будем считать отрицательным. То-

гда , где р — вес единицы площади пластины. 

 

6.Трение скольжения и  качения. 

 

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. 

Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональ-

на силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. За-

коны трения связаны с электромагнитным взаимодействием, которое существует между телами.  

       Различают трение внешнее и внутреннее.  

       Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел 

(трение скольжения или трение покоя).  

       Внутреннее трение наблюдается при относительном перемещении частей одного и того же 

сплошного тела (например, жидкость или газ).  

       Различают сухое и жидкое (или вязкое) трение.  

       Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.  
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       Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой 

или ее слоями.  

       Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения.  

Рассмотрим законы сухого трения (рис. 4.5).  

 
Рис. 4.5   

Рис. 4.6  

       Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно уве-

личивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила урав-

новешивается некоторой силой , направленной по касательной к трущейся поверхности, противо-

положной силе . В этом случае и есть сила трения покоя.  

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и 

приблизительно пропорциональна модулю силы нормального давления  N:  

 
μ0 – коэффициент трения покоя, зависящий от природы и состояния трущихся поверхностей.  

       Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение 

 F0, тело начнет скользить по опоре – трение покоя  Fтр.пок  сменится трением скольжения  Fск  (рис. 

4.6):  

  Fтр = μ N,  (4.4.1)   

где  μ  – коэффициент трения скольжения.  

       Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. 

Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент 

трения  μ ; здесь значительно меньше.  

       Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).  

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести 

 , нормальная сила реакции опоры    и сила сухого трения  . Сила   есть равнодействующая 

сил    и  ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что  

F = mg sin α,         N = mg cos α.  

 
Рис. 4.7  
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       Если   – тело остается неподвижным на наклонной плоскости. Максимальный 

угол наклона  α  определяется из условия  (Fтр)max = F  или  μ mg cosα = mg sinα, следовательно, 

 tg αmax = μ, где  μ  – коэффициент сухого трения.  

Fтр = μN = mg cosα,  

F = mg sinα.  

       При  α > αmax  тело будет скатываться с ускорением  

a = g ( sinα - μ cosα ),  

Fск = ma = F - Fтр.  

 

       Если дополнительная сила  Fвн, направленная вдоль наклонной плоскости, приложена к телу, то 

критический угол  αmax  и ускорение тела будут зависеть от величины и направления этой внешней 

силы. 

 

4. Составное движение точки 

 

1. Поступательное движение твердого тела 

 Поступательным называется такое движение твердого тела, при котором любая прямая прове-

денная в этом теле, перемешается, оставаясь параллельной самой себе. 

 Поступательное движение не значит прямолинейное: 

    

ТЕОРЕМА: при поступательном движении все точки тела описывают одинаковые (при наложении 

совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению 

скорости и ускорения.  

  

 

 (3. 1) 

 

     (3. 2) 

  

 
  

  

  

2. Вращение твердого тела вокруг неподвижной оси. 

 

Вращательным называется такое движение твердого тела, при котором во все время движения 

какие-либо две точки тела остаются неподвижными (проходящая через эти неподвижные точки пря-

мая называется осью вращения), а все остальные точки описывают траектории, представляющие со-

бой окружности, плоскости которых перпендикулярны к оси вращения, а центры лежат на этой оси. 

  

 

              φ = f (t)          (3. 3) 
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  или       (3. 4) 

 

      или 

(3. 5) 

  

Примеры: 

Равномерное вращение 

(ω = const) 

Равнопеременное вращение 

(= const) 

d = dt 

=t 

 = /t 

 

 

     

3. Скорости и ускорения точек вращающегося твердого тела 

  

Вращательная скорость точки 

  

 
  

v = R ω      (3. 6) 

  

  

Модуль вращательной скорости точки твердого тела равен произведению расстояния от точки до 

оси вращения на угловую скорость тела 

  

Ускорение точки 

 

 

или       (3.7) - вращательное ускорение     
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   (3.8) – центростремительное ускорение   

  

(3.9) – полное ускорение 

  

 
  

         (3.10) 

  

 4. Векторные выражения вращательной скорости, вращательного  и центростремительного ускоре-

ний. 

Формулы Эйлера. 

  

 

  

 (3.11) 

  

 
  

 
  

  

 

  

 (3.12) 

  

- формулы Эйлера 

  

  

Векторные выражения вращательного и центростремительного ускорения точки 

  

 
  

 - полное ускорение точки 

  

 - вращательное ускорение точки 
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- центростремительное ускорение точки 

  

 

 

  

Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Абсолютное и от-

носительное движение точки. Сложное движение твердого тела. 

 

Основной задачей кинематики сложного движения твердого тела является установление соотноше-

ний между характеристиками абсолютного и относительного движений.Сложное движение твердого 

тела может состоять из поступательных движений, вращательных движений, или может быть полу-

чено в результате сложения поступательного и вращательного движений.В некоторых задачах кине-

матики заданное сложное движение твердого тела раскладывают на составляющие движения (ана-

лиз); в других — требуется определить сложное движение твердого тела как результат сложения бо-

лее простых движений (синтез). Как при анализе, так и при синтезе движений речь идет о разложе-

нии и сложении движений, рассматриваемых в данный момент (мгновенных движений).Сложение 

поступательных движений твердого тела. 

Теорема. В результате сложения мгновенных поступательных движений твердого тела получается 

результирующее мгновенно поступательное движение. 

Доказательство. Пусть твердое тело одновременно участвует в двух мгновенных поступательных 

движениях, из которых одно является относительным со скоростью υ1 а второе — переносным со 

скоростью υ2.По теореме о параллелограмме скоростей имеем для любой точки твердого телаυа = υr + 

υe = υ1+ υ2, 

а так как и относительное, и переносное движения твердого тела являются мгновенно поступатель-

ными, то относительные, переносные и, следовательно, согласно формуле (II.98), абсолютные скоро-

сти всех точек тела соответственно между собой равны в каждый момент времени, т.е. абсолютное 

движение тела также является мгновенно поступательным. Теорема доказана. 

 

Очевидно, что данная теорема применима к сложному движению твердого тела, состоящему из трех 

и более мгновенно поступательных движении; тогда в общем случае  

Заметим, что мгновенно поступательное твердого тела отличается от поступательного тем, что во 

втором случае в каждый момент времени равны между собой скорости и ускорения всех точек тела, 

между тем, как в первом случае в данный момент времени равны между собой только скорости всех 

точек тела. 
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 ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА 

Плоско-параллельным (или плоским) движением твердого тела называется такое движение, при ко-

тором все точки тела движутся в плоскостях, параллельных некоторой неподвижной плоско-

сти.  

Из определения плоско-параллельного движения следует, что движения точек тела, расположенных 

на перпендикуляре к неподвижной плоскости, одинаковы. Поэтому, вместо движения всего тела в 

пространстве, можно рассмотреть движение плоской фигуры S, являющейся проекцией тела на непо-

движную плоскость. Нетрудно показать, что, зная движение некоторого отрезка плоской фигуры S, 

можно определить движение всей фигуры. Пусть отрезок АВ плоской фигуры занимает положение, 

указанное на рис. 68. Положение произвольной точки М плоской фигуры определим, соединив эту 

точку с точками А и В отрезка. Если отрезок АВ изменит свое положение и перейдет в новое поло-

жение А1В1, то для определения нового положения этой точки достаточно построить треугольник 

А1В1М1, равный треугольнику АВМ. Так как стороны треугольников, как расстояния между двумя 

точками абсолютно твердого тела, остаются неизмененными, то А1В1 = АВ; АМ= А1М1; ВМ =В1М1. 

Таким образом, кинематика плоско-параллельного движения тела сводится к кинематике движения 

отрезка прямой на плоскости. 

Кинематические уравнения плоско-параллельного движения 

 
Допустим, что плоская фигура движется в неподвижной плоскости Оху. Выбрав, например, точку А 

плоской фигуры за полюс, неизменно свяжем с этой фигурой подвижную систему координат Аξη с 

началом в полюсе А (рис. 70). Для определения положения подвижной системы координат Аξη отно-

сительно неподвижной нужно знать координаты точки А (т. е. хA и уA), а также угол поворота φ во-

круг полюса (т. е. угол, образованный осью Аξη с осью Ох). Следовательно, кинематические уравне-

ния плоско-параллельного движения твердого тела имеют видxA= xA(t) . yA = yA (t). φ = φ (t),где xA(t) 

yA (t), φ (t)— конечные, однозначные, непрерывные и дифференцируемые функции време-

ни.Пользуясь формулами преобразования координат, можно получить уравнения движения любой 

точки М плоской фигурыx = xA + ξcos φ —ηsin φ,y = yA + ξsin φ + ηcos φ -Скорости точек тела 

Теорема. При плоско-параллельном движении твердого тела скорость любой его точки равна вектор-

ной сумме скорости полюса и скорости во вращательном движении вокруг полюса. 

Доказательство. Пусть полюс О движется со скоростью υ0, а плоская фигура вращается вокруг полю-

са с угловой скоростью ω (рис. 71). Требуется определить скорость произвольной точки М этой фи-

гуры. Так как переносным здесь является поступательное движение вместе с полюсом О, то перенос-

ные скорости всех точек плоской фигуры будут одинаковыми, равными скорости полюса:  υMe= υ0 
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Относительным движением является вращательное движение вокруг полюса. Поэтому, обозначая 

радиус-вектор точки ^ М относительно полюса О через rOM , согласно формуле Эйлера, для относи-

тельной скорости точки М получим   υMr= ω x rOM. 

Относительную скорость точки при плоско-параллельном движении тела обозначают двойным ин-

дексом, т. е. υMr = υOM. Первый индекс указывает полюс О, вокруг которого происходит вращение, а 

второй — обозначает рассматриваемую точку М. Следовательно, 

υMr= υOM= ω x rOM 

По теореме о сложении скоростей получим 

υa=υe+υr.  Следовательно, υM=υO+υOM. 

 

5. Способы решения второй задачи динамики. 

 

Динамика – раздел теоретической механики, который изучает движение материальных тел под дей-

ствием приложенных к ним сил. Классическая динамика базируется на 3 основных законах, называе-

мых законами Ньютона. Приведем формулировки этих законов:  

 

Закон 1. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямоли-

нейного движения, пока оно не понуждается приложенными силами изменить это состояние.  

 

Закон 2. Изменение количества движения пропорционально приложенной силе и происходит по 

направлению прямой, по которой эта сила действует.  

 

Закон 3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия 

двух тел друг с другом равны и направлены в противоположные стороны.  

 

В соответствии с принципом относительности Галилея , существует бесконечное множество рав-

ноправных инерциальных систем, движение которых одна относительно другой не может быть уста-

новлено никаким образом путѐм наблюдения любых процессов и явлений, происходящих только в 

этих системах. Прямая траектория движения объекта в одной системе будет выглядеть также прямой 

в любой другой инерциальной системе.  

Если же в некоторой системе отсчѐта свободное тело двигается по криволинейной траектории и/или 

с переменной скоростью, то такая система является неинерциальной.  

Преобразования Галилея — в классической механике преобразования координат и времени при пе-

реходе от одной инерциальной системы отсчета к другой.  

 

В динамике рассматриваются две основные задачи: нахождение сил, под действием которых может 

происходить данное движение тела, и определение движения тела, когда известны действующие на 

него силы.  

 

Если подвижная система отсчета движется параллельно неподвижной системе отсчета с постоянной 

скоростью, то динамическое уравнение прямолинейного ускоренного движения тела в этой системе 

отсчѐта инвариантно динамическому уравнению ускоренного движения этого же тела относительно 

неподвижной системы отсчета. Это доказывает физическую и математическую инвариантность 
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второго закона Ньютона преобразованиям Галилея. Главным является то, что описанные явления и 

их закономерности не зависят от скорости движения подвижной системы координат.  

 

6. Свободные, затухающие и вынужденные колебания 

 

Прямолинейное колебание материальной точки. 

Колебания являются одним из распространѐнных видов движения. 

Колебания возникают при наличии так называемой восстанавливающей си-

лы (это обязательное условие). Т.е. сила, которая стремится вернуть точку в 

положение равновесия. В роли восстанавливающей силы могут выступать 

силы различной физической природы, например силы упругости, состав-

ляющей силы тяжести, электромагнитные. 

В зависимости от действующих сил, различают следующие виды колеба-

ния:  

свободные или собственные 

свободно затухающие колебания 

вынужденные колебания. 

Свободные колебания. Сопротивление материалов Расчет валов Рассмотрим расчет вала на проч-

ность и жесткость. 

Рассмотрим прямолинейное движение точки.  

Точка О в положении равновесия, F – восстанавливающая сила. 

Рассмотрим простой, но часто встречающийся случай, когда сила F пропорциональна отклонению от 

положения равновесия. Пусть x – отклонение от положения равновесия: , где c – постоянная 

пропорциональности. В случае пружины, эта постоянная называется коэффициентом упругости. 

 
Уравнение (1) – дифференциальное уравнение свободных колебаний. 

 

При мнимых корнях, характеристическое решение уравнения (1): , где  - 

произвольные постоянные. 

Введѐм новые постоянные: 
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– амплитуда колебаний;  - фаза колебаний;  - начальная фаза колебаний;   - круговая 

частота (определяет число колебаний за  секунд). 

Таким образом, под действием одной только восстанавливающей силы, точка совершает гармониче-

ские колебания по синусоиде. 

 Колебания являются периодическими, т.е. . Пе-

риодом  колебаний, называется время между двумя амплиту-

дами колебаний (движение точки полностью повторяется). 

 

Круговая частота  и период колебаний , от начальных условий не зависят, а определяются только 

параметрами системы, поэтому частота свободных колебаний называется собственной частотой. От 

начальных условий зависит амплитуда . 

Свободные колебания. Пусть мат. точка М массой m отклоняется от положения равновесия О на рас-

стояние х. В результате растяжения пружины на неѐ будет действовать восстанавливающая сила Fb, 

стремящаяся вернуть точку в положение равновесия. Наличие восстанавливающей силы - необходи-

мое условие возникновения свободных колебаний  

 

 

 

7. Общие свойства системы. Моменты инерции. 

 

Механической системой материальных точек или тел называется такая их совокупность, в кото-

рой положение и движение каждой точки (или тела) зависит от положения и движения остальных.  

     Материальное тело рассматривается, как система материальных точек (частиц), которые образуют 

это тело. 

     Внешними силами   называют такие силы, которые действуют на точки или тела механической 

системы со стороны точек или тел, которые не принадлежат данной системе. 

       Внутренними силами , называют такие силы, которые действуют на точки или тела механиче-

ской системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной си-

стемы взаимодействуют между собой.  

      Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными 

     Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном 

поле тяжести, для которого  , вес любой частицы тела пропорционален ее массе. Поэтому распреде-

ление масс в теле можно определить по положению его центра тяжести – геометрической точки С, 

координаты которой  называют центром масс или центром инерции механической системы 

    Теорема о движении центра масс механической системы:  центр масс механической системы 

движется как материальная точка, масса которой равняется массе системы, и к которой приложены 

все внешние силы, действующие на систему 

    Выводы: 

1. Механическую систему или твердое тело можно рассматривать как материальную точку в за-

висимости от характера ее движения, а не от ее размеров. 

2. Внутренние силы не учитываются теоремой о движении центра масс. 

3. Теорема о движении центра масс не характеризует вращательное движение механической си-

стемы, а только поступательное 

 

Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы 

в инерциальной системе отсчета справедлив второй закон Ньютона: 

  

(3.1) 

где 
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– масса точки с номером ; 

– ее радиус–вектор; 

– равнодействующая всех внешних сил как активных, так и реакций связей, действующих на точ-

ку с номером ; 

– равнодействующая всех внутренних сил, действующих на точку с номером . 

Систему уравнений (3.1) называют системой дифференциальных уравнений движения точек механи-

ческой системы. Одна из основных задач механики состоит в том, чтобы, зная активные силы и свя-

зи, наложенные на систему, определить движение всех точек системы и определить реакции связей. 

Решение такой задачи связано с интегрированием системы уравнений (3.1) при заданных начальных 

условиях. Однако, прямое интегрирование системы (3.1) весьма сложно, что связано как с возможно 

большим числом этих уравнений, так и, в основном, с неопределенностью информации о внутренних 

силах. 

Во многих практически интересных случаях нет необходимости определять все интегралы системы 

(3.1), достаточно получить лишь некоторые из них. Это позволяют сделать общие теоремы динамики. 

Являясь прямым следствием уравнений (3.1), общие теоремы динамики связывают основные дина-

мические величины, характеризующие движение системы, с приложенными к ней внешними силами. 

 

8. Теорема об изменении количества движения. Теорема о моменте количества движения.  

Количество движения материальной точки – векторная величина  , которая равняется произведе-

нию массы точки на вектор ее скорости. 

    Единицей измерения количества движения есть (кг м/с). 

Количество движения механической системы – векторная величина  , равняющаяся геометриче-

ской сумме (главному вектору) количества движения всех точек системы.или количество движения 

системы равняется произведению массы всей системы на скорость ее центра масс 

    Когда тело (или система) движется так, что ее центр масс неподвижен , то количество движения 

тела равняется нулю   (пример, вращение тела вокруг неподвижной оси, которая проходит через 

центр масс тела).  

    Если движение тела сложное, то   не будет характеризовать вращательную часть движения при 

вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное дви-

жение системы (вместе с центром масс). 

      Импульс силы характеризует действие силы за некоторый промежуток времени. 

   Импульс   силы   за конечный промежуток времени   определяется как интегральная сумма соответ-

ствующих элементарных импульсов 

     Теорема об изменении количества движения материальной точки: 

(в дифференциальной форме): Производная за временем от количества движения материальной точ-

ки равняется геометрической сумме действующих на точки сил 

(в интегральной форме): Изменение количества движения материальной точки за некоторый проме-

жуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же 

промежуток времени. 

    Теорема об изменении количества движения механической системы  
(в дифференциальной форме): Производная по времени от количества движения системы равняется 

геометрической сумме всех действующих на систему внешних сил. 

(в интегральной форме): Изменение количества движения системы за некоторый промежуток време-

ни равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же 

промежуток времени. 

     Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы. 

    Теорема об изменении количества движения механической системы и теорема о движении центра 

масс являются двумя разными формами одной теоремы. 

      Закон сохранения количества движения системы. 

1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количе-

ства движения системы будет постоянным по направлению и по модулю.       

http://bcoreanda.com/ShowObject.aspx?ID=80
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2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется 

нулю, то проекция количества движения на эту ось является величиной постоянной. 

      Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количе-

ство движения системы. 

Кинетической энергией механической системы называется сумма кинетических энергий всех точек 

этой системы: 

T = ∑ mkvk
2
 / 2 , 

где mk и vk - масса и скорость k-й материальной точки, принадлежащей данной системе. 

На основании теоремы Кѐнига кинетическая энергия произвольной механической системы опреде-

ляется по формуле 

 T = MvC
2
/2 + ∑ mkvkr

2
 / 2 , 

где  M - масса всей системы; 

   vC - скорость центра масс системы; 

   mk - масса k-й точки системы; 

   vkr - относительная скорость k-й точки при движении еѐ вокруг центра масс  

(т.е. vk= vC ⊕ vkr). 

Из этой формулы можно получить следующие частные случаи для твѐрдого тела: 

- при поступательном движении тела vk= vC , vkr= 0, 

T =  mvC
2
 / 2; 

 

- при вращении тела вокруг оси, проходящей через его центр масс, 

vC=0 , vkr= ω ⊗ rk, 

T = ∑ mkvkr
2
 / 2 = Jω

2
/2  , 

где  J - момент инерции тела относительно оси, проходящей в данный момент времени через центр 

масс; 

ω - угловая скорость вращения тела; 

 

- в случае произвольного движения тела (например при плоскопараллельном движении) 

 T =  mvC
2
 / 2 + Jω

2
/2. 

Основные (общие) теоремы динамики систем свободных материальных точек являются уравнениями 

движения систем свободных материальных точек, т. е. математически дифференциальными уравне-

ниями изменений основных мер движения. 

1. Для точки  уравнение движения относительно инерциальной системы отсчѐта: 

 
Перенесѐм все векторы, не изменяя их направления, в центр масс и сложим геометрически: 

. 

Производная по времени от количества движения системы свободных материальных точек 

равна геометрической сумме внешних сил. Это теорема об изменении количества движения си-

стемы. 

ТЕОРЕМА КОЛИЧЕСТВА ДВИЖЕНИЯ (в дифференциальной форме). 

1. Для точки: производная от количества движения точки по времени равна равнодействующей при-

ложенных к точке сил : 

 

или в координатной форме: 
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2. Для системы: производная от количества движения системы по времени равна главному вектору 

внешних сил системы (векторной сумме внешних сил , приложенных к системе): 

 

или в координатной форме: 

 

ТЕОРЕМА ИМПУЛЬСОВ (теорема количества движения в конечной форме). 

1. Для точки: изменение количества движения точки за конечный промежуток времени равно сумме 

импульсов, приложенных к точке сил (или импульсу равнодействующей приложенных к точке сил) 

 

или в координатной форме: 

 

2. Для системы: изменение количества движения системы за конечный промежуток времени равно 

сумме импульсов внешних сил: 

 

или в координатной форме: 

 

Следствия: при отсутствии внешних сил количество движения системы есть величина постоянная; 

если внешние силы системы перпендикулярны некоторой оси, то проекция количества движения на 

эту ось есть величина постоянная. 

ТЕОРЕМА О МОМЕНТЕ КОЛИЧЕСТВА ДВИЖЕНИЯ 

1. Для точки: Производная по времени от момента количества движения точки относительно некото-

рого центра (оси) равна сумме моментов приложенных к точке сил относительно того же центра 

(оси): 

 

2. Для системы: 

Производная по времени от момента количества движения системы относительно некоторого центра 

(оси) равна сумме моментов внешних сил системы относительно того же центра (оси): 
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Следствия: если внешние силы системы не дают момента относительно данного центра (оси), то мо-

мент количества движения системы относительно этого центра (оси) есть величина постоянная. 

Если силы, приложенные к точке, не дают момента относительно данного центра, то момент количе-

ства движения точки относительно этого центра есть величина постоянная и точка описывает плос-

кую траекторию. 

 

 

 

9. Теорема о кинетической энергии системы. Теорема о движении центра масс системы.  

 

ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ 
1. Для точки: изменение кинетической энергии точки на конечном ее перемещении равно работе 

приложенных к ней активных сил (касательные составляющие реакций неидеальных связей включа-

ются в число активных сил): 

 

Для случая относительного движения: изменение кинетической энергии точки при относительном 

движении равно работе приложенных к ней активных сил и переносной силы инерции (см. "Частные 

случаи интегрирования"): 

 

2. Для системы: изменение кинетической энергии системы на некотором перемещении ее точек равно 

работе приложенных к ней внешних активных сил и внутренних сил, приложенных к точкам систе-

мы, расстояние между которыми меняется: 

 

Если система неизменяема (твердое тело), то ΣA
i
=0 и изменение кинетической энергии равно работе 

только внешних активных сил. 

ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ. Центр масс меха-

нической системы движется как точка, масса которой равна массе всей системы M=Σmi, к которой 

приложены все внешние силы системы: 

 

или в координатной форме: 

 

где - ускорение центра масс и его проекции на оси декартовых координат; 

внешняя сила и ее проекции на оси декартовых координат. 

http://www.baurum.ru/dynamics-point/8950/
http://www.baurum.ru/dynamics-point/8950/
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 10. Принцип Даламбера. Силы инерции. 

Принцип Даламбера 

Принцип кинетостатики используют для упрощения решения ряда технических задач. 

Реально силы инерции приложены к телам, связанным с разгоняющимся телом (к связям). 

Даламбер предложил условно прикладывать силу инерции к активно разгоняющемуся телу. Тогда 

система сил, приложенных к материальной точке, становится уравновешенной, и можно при реше-

нии задач динамики использовать уравнения статики. 

Принцип Даламбера: 

Материальная точка под действием активных сил, реакций связей и условно приложенной силы 

инерции находится в равновесии: 

 

Порядок решения задач с использованием принципа Даламбера 

1. Составить расчетную схему. 

2. Выбрать систему координат. 

3. Выяснить направление и величину ускорения. 

4. Условно приложить силу инерции. 

5. Составить систему уравнений равновесия. 

Определить неизвестные величины 

Сила инерции 

Инертность — способность сохранять свое состояние неизменным, это внутреннее свойство всех ма-

териальных тел. 

Сила инерции — сила, возникающая при разгоне или торможении тела (материальной точки) и 

направленная в обратную сторону от ускорения. Силу инерции можно измерить, она приложена к 

«связям» — телам, связанным с разгоняющимся или тормозящимся телом. 

Рассчитано, что сила инерции равна 

 

Таким образом, силы, действующие на материальные точки ml и m2(Рис. 23.), при разгоне платфор-

мы соответственно равны 

 

 

Разгоняющееся тело (платформа с массой т (Рис. 23.)) силу инерции не воспринимает, иначе разгон 

платформы вообще был бы невозможен. 

При вращательном движении (криволинейном) возникающее 

ускорение принято представлять в виде двух составляющих: 

нормального ап и касательного а, (Рис. 24.). 

Поэтому при рассмотрении криволинейного движения могут возникнуть две составляющие силы 

инерции: нормальная и касательная 

http://ostemex.ru/uploads/posts/2010-08/1281361714_8.jpg
http://ostemex.ru/uploads/posts/2010-08/1281361714_8.jpg
http://ostemex.ru/uploads/posts/2010-08/1281361004_6_20.jpg
http://ostemex.ru/uploads/posts/2010-08/1281361004_6_20.jpg
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При равномерном движении по дуге всегда возникает нормаль¬ное ускорение, касательное ускоре-

ние равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная 

по радиусу из центра дуги 

 

11. Принцип возможных перемещений.  

 

Пусть система состоит из точек и, следовательно, ее положение в пространстве в каждый момент 

времени определяется координатами точек системы, например декартовыми . 

Предположим, что на систему наложены голономные связи, уравнения которых в общем случае мо-

гут содержать и производные от координат точек, но после их интегрирования они свелись к геомет-

рическим и имеют форму 

, . (222) 

Освобождающие связи, выражающиеся неравенствами, не рассматриваются. Таким образом, ко-

ординат связаны уравнениями и независимых координат будет . 

Любые декартовых координат можно задать независимо друг от друга. Остальные координаты 

определятся из уравнений связей. Вместо независимых декартовых координат можно выбрать лю-

бые другие независимые параметры , зависящие от всех или части декартовых координат 

точек системы. Эти независимые параметры, определяющие положение системы в пространстве, 

называются обобщенными координатами системы. В общем случае они могут зависеть от всех де-

картовых координат точек системы, т. е. 

, (223) 

где изменяется от 1 до . Задание обобщенных координат полностью определяет положение точек 

системы относительно выбранной системы отсчета, например декартовых осей координат. 

У свободной точки три обобщенные координаты. Если точка должна двигаться по заданной поверх-

ности, то обобщенных координат только две и т.д. Используя уравнения связей (222) и выражения 

обобщенных координат через декартовы (223), можно выразить декартовы координаты через обоб-

щенные, т.е. получить 

, 

, 

. 

Соответственно, для радиуса-вектора каждой точки системы , получим 

. (224) 

В случае стационарных связей время явно не входит в уравнения связей. Для голономных систем 

вектор возможного перемещения точки в соответствии с (224) можно выразить в форме 

. (225) 
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Система, имеющая независимых обобщенных координат, характеризуется также независимыми 

возможными перемещениями или вариациями , если связи голономны. Для голономных 

систем число независимых возможных перемещений совпадает с числом независимых обобщенных 

координат. Следовательно, число степеней свободы голономной системы равно числу независимых 

обобщенных координат этой системы, т. е. . Для неголономных систем в уравнения свя-

зей могут входить производные от декартовых координат точек и даже могут быть такие уравнения 

связей, в которые входят только одни производные. Такие уравнения связей наложат ограничения на 

вариации , и, следовательно, уменьшат число независимых вариаций, не связывая 

функциональной зависимостью сами обобщенные координаты . Число степеней свободы 

неголономной системы, равное числу независимых возможных перемещений, меньше числа обобщен-

ных координат системы. В дальнейшем рассматриваются только голономные системы, т. е. системы 

с голономными связями. 

Перейдем к составлению уравнений Лагранжа 2 рода.  

Общее уравнение динамики материальной системы:  

Общее уравнение динамики системы материальных точек в обобщенных координатах имеет вид: 

 
Так как  в случае системы, подчиненной голономным связям, являются незави-

симыми обобщенными возможными перемещениями, то общее уравнение динамики удовлетворяется 

лишь при условии, что коэффициенты, стоящие при возможных перемещениях, равны нулю, т. Е. 

  
Эти уравнения называются уравнениями Лагранжа второго рода.  

При наличии голономных связей, наложенных на систему, число уравнений Лагранжа равно числу 

независимых обобщенных координат, т. е. числу степеней свободы. Система состоит из обыкновен-

ных дифференциальных уравнений второго порядка.  

 

Если задаваемые силы системы потенциальны, то уравнения Лагранжа можно записать в виде: 
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12. Общее уравнение динамики 

 

 Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить 

и к решению задач динамики. На основании принципа Германа—Эйлера—Даламбера для несвобод-

ной механической системы  в любой момент времени геометрическая сумма равнодействующей за-

даваемых сил, равнодействующей реакций связей и силы инерции для каждой точки Mn механиче-

ской системы равна нулю. 

 Если система получает возможное перемещение, при котором каждая точка имеет возможное пере-

мещение  , то сумма работ этих сил на перемещении   должна быть равна нулю. 

Общее уравнение динамики для системы с идеальными связями 

 Положим, что все связи в рассматриваемой механической системе двусторонние и идеальные (силы 

трения, если они имеются, отнесены к числу задаваемых сил). Тогда сумма работ реакций связей на 

возможных перемещениях системы равна нулю. 

 При движении механической системы с идеальными связями в любой данный момент времени сум-

ма элементарных робот всех активных (заданных) сил и всех сил инерции на любом возможном пе-

ремещении системы равняется нулю. 

 Общие уравнения динамики позволяют составить дифференциальные уравнения движения любой 

механической системы. Если механическая система состоит из отдельных твердых тел, то силы 

инерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре 

сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному мо-

менту этих сил относительно центра приведения. Чтобы воспользоваться принципом возможных пе-

ремещений, к каждому телу прикладывают действующие на него задаваемые силы, а также условно 

прикладывают силу и пару, составленные силами инерции точек тела. Затем системе сообщают воз-

можное перемещение и для всей совокупности задаваемых сил и приведенных сил инерции состав-

ляют общее уравнение динамики 

 

 

 

 

 

 

 

 

 


