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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

1.1.Организационно-методические данные дисциплины 
 

№ 

п.п. 
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1 2 3 4 5 6 7 

1 
Тема 1 

Введение. 

Основные понятия 

 х  4 4 

2 

Тема 2 

Основные 

уравнения и 

основные задачи 

математической 

физики 

 х  6 4 

3 

Тема 3 

Методы решения 

ур-ний 

математической 

физики 

 х  6 4 

4 

Тема 4 

Численные методы 

решения уравнений 

математической 

физики 

 х  4 4 

5 

Тема 5 

Применение 

функциональных  

рядов к решению 

дифференциальны

х уравнений 

 х  10 8 

6 

Тема 6 

Преобразования 

Фурье  
 х 8 10  

7 

Тема 7 

Преобразования 

Лапласа 

 х 8 8  

 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ 

2.1 Номера задач контрольной работы 

Номер каждой задачи выбирается по последней цифре учебного шифра заочника 
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2.2 Условия  задач контрольной работы  

Задача 1. Воспользуйтесь в первой задаче теоремой разложения, во второй - теоремой об 

интегрировании оригинала, в третьей  задаче - теоремой  свертывания  и найдите 

первоначальные функции (оригиналы) соответствующие данным изображениям. 
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Вопросы для самоконтроля 

1. В чем заключается свойство однородности, адаптивности и линейности преобразования 

Лапласа? 

2. Какое из этих трѐх свойств является наиболее общим? 
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3. Приведите примеры использования этих свойств для определения изображений. 

4. В чем заключается теорема запаздывания и каков еѐ физический смысл? 

5. Что утверждает теорема опережения? 

6. В чем отличие теоремы смещения от теоремы запаздывания? 

7. Как определяется изображение импульсной функции? 

8. Дайте определение свертки двух функций? 

9. Чему равно изображение сверстки? 

 

Задача 2. Найдите частные решения уравнений методами операционного исчисления, 

удовлетворяющие заданным начальным условиям 

 

 

Вопросы для самоконтроля 

1. В чем заключается операционный метод решения линейного дифференциального уравнения с 

постоянными коэффициентами? .В чем преимущество операционного метода? 

2. Что мы называем передаточной функцией системы? 

3. Что мы называем переходной функцией системы? 

Вариант №1 

1. ,3107 texxx  1)0( x  

2. ,416 txx  2)0( x  
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1. ,523 3texxx  ,1)0( x 0)0( x  

2. ,4sin344 ttxx  0)0()0(  xx  

Вариант №3 

1. 2)0(,0)0(,245 2  xxexxx t
 

2. 0)0()0(,2sin6344  xxtxxx  
 

Вариант №4 

1. 1)0(,0)0(,22 4  xxexxx t
 

2. 2)0()0(,2sin6643  xxttxx  
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2. 0)0()0(,4sin2162  xxtxxx  

Вариант №6 

1. 2)0(,1)0(,32  xxexxx t
 

2. 2,0)0(,0)0(,4sin2  xxtxx  

Вариант №7 

1. 1)0(,0)0(,32 2  xxexxxx t
 

2. 4,0)0(,0)0(,2sin  xxtxx  

Вариант №8 

1. 2)0(,0)0(,3   xxexx t
 

2. 0)0()0(sin,22  xxxxx  
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1. 0)0()0(,12  xxexx t
 

2. 3,0)0(,0)0(,3sin  xxtxx  

Вариант №10 

1. 1)0(,0)0(,32 2  xxexxx t
 

2. 1,0)0(,0)0(,sin3  xxtxx  

Вариант №11 

1. 0)0(,1)0(,54 2  xxexxx t
 

2. 1)0(,0)0(,2cos4  xxttxx  

Вариант №12 

1. 0)0()0(,3166 4  xxexxx t
 

2. 3)0(,0)0(,2cos9  xxtxx  

Вариант №13 

1. 0)0()0(,23 2  xxexx t
 

2. 0)0()0(,5 5   xxexx t
 

Вариант №14 

1. 2)0(,1)0(,35  xxexx t
 

2. 0)0()0(,4cos316  xxttxx  

Вариант №15 

1. 0)0(,1)0(,632 5  xxexxx t
 

2. 0)0()0(,2cos64  xxttxx  

Вариант №16 

1. 1)0(,1)0(,1634 3  xxexxx t
 

2. 2)0(,1)0(,49  xxxx  

Вариант №17 

1. 2)0(,0)0(,223011 5  xxexxx t
 

2. 3)0(,1)0(,3cos59  xxttxx        

Вариант №18 

1. 1)0(,0)0(,102410 4   xxexxx t  

2. 1)0(,1)0(,104  xxxx        

Вариант №19 
1. 0)0(,1)0(,554  xxxxx  

2. 0)0()0(,244  xxtxx      

Вариант №20 

1. 2)0(,0)0(,465  xxexxx t
 

2. 0)0()0(,3sin29  xxttxx  
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4. При каких начальных условиях определяется передаточная переходная функция системы? 

5. Каким уравнением описывается апериодическое звено? 

6. Чему равна передаточная и переходная функции апериодического звена? 

7. Как операционным методом интегрируется система дифференциальных уравнений? 

8. Перечислите основные этапы решения линейных дифференциальных уравнений операционным 

методом. 

9. Выпишите операционные соотношения для основных элементов электрической цепи. R,C,L. 

10. Перечислите основные этапы исследования электрических цепей операционными методами. 

Задача 3. Разложите периодическую функцию f(x) в ряд Фурье. Постройте график функции f(x). 
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033
Т

хх

х
;            4) f(x) =









2

103

013
Т

х

хх
; 

5)  f(x) =








4

204

020
Т

хх

х
;                    6)  f(x) =









6

303

03
Т

х

хх
; 

7)  f(x) =








6

303

035
Т

х

х
;                   8)  f(x) =









2

102

012
Т

х

х
; 

9) f(x) =








2

101

011
Т

хх

хх
;               10) f(x) =









2

101

011
Т

хх

хх
; 

 

Задача 4. Представьте  функцию  f(x), заданную на промежутке ( 0 ;   ),  рядом Фурье по синусам 

или косинусам. 

1) f(x) =












косинусампо

x

xx






2
0

2
0sin1

; 2) f(x) =












синусампо

xсosx

x






2

2
00

; 

3) f(x) =












косинусампо

xx

x






2
sin

2
00

;4) f(x) =












синусампо

xx

x






2
cos

2
00

; 

5) f(x) =












косинусампо

xx

x






2
sin

2
00

;6) f(x) =












синусампо

x

xx






2
0

2
0cos1

; 

7) f(x) =












косинусампо

xx

x






2
cos

2
00

;8) f(x) =












синусампо

xx

x






2
sin

2
00

; 

9) f(x) =












косинусампо

xx

x






2
sin

2
00

;10) f(x) =












синусампо

xx

x






2
sin

2
00

 

 

2.3 Решение типовых задач контрольной работы 

Задача 1.  Найдите изображение функции  

f(t)=5-3е
-t
sin2t+te

3t
+4cht. 
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Решение: 

На основании формул (1), (7), (12) и (6) из таблицы изображений получаем:   

    1

4

3

1

41

65
)(

222









p

p

ppp
pF  

Задача 2. Найдите  начальную функцию, изображение которой задается формулой 

104

5
)(

2 


рр
pF  

Решение: 

Преобразуем F(р) к виду выражения, стоящего в правой части формулы (7)      

2222
)6()2(

6

6

5

6)2(

5

104

5







 рррр
 

Итак,     
22 )6()2(

6

6

5
)(




р
pF  

Следовательно, на основании формулы (7) будем иметь: 

tepF t 6sin
6

5
)( 2  

Задача 3. Найти начальную функцию, изображение которой задается формулой     

134

4
)(

2 




pp

p
pF  

Решение: 

Произведем преобразование функции  F(p) 

      2222222
32

3

3

2

32

2

32

4

134

4


















pp

p

p

P

pp

P
 

На основании формул (7) и (8) находим начальную функцию: 

tetepF tt 3sin
3

2
3cos)( 22    

Функции, которые ниже приводятся в виде примеров, как правило, относятся к 

классу дифференцируемых или кусочно-дифференцируемых. Поэтому самая возможность их 

разложения в ряд Фурье - вне сомнения, и мы останавливаться на этом вопросе не будем. 

 

Задача 4.  Разложить функцию xy cos  

Из рисунка видно, что эта функция имеет период  . Функция непрерывна на отрезке 

 2;2  .    40 a  

 

     


 
2

0

2

0

2

0

12cos12cos
2

14
2coscos

4

2
coscos

2

2







dxxnxnnxdxxdx

xn
xan

 

   
 

 
14

14

14

2
1

2

12

2
12sin

12

2
12sin2

2

1

2 



































nnn

n

n

n n
n






; 

 
14

14
2

1








n
a

n

n


,. 

Так как функция непрерывна на основном промежутке  2;2   и периодична, примем 

   22  ff  , то для всех значений х справедливо равенство 
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 












1
2

1

2cos
14

142
cos

n

n

nx
n

x


 

Задача 5. Разложить в ряд Фурье на отрезке   x  функцию, имеющую период 2 . 

 










2x

x

xf  
при

при
 

,0

,0









x

x
 

График функции изображен ниже. 

 

 
 

Функция непрерывна на   ; . Вычислим коэффициенты Фурье. 

     



 










0 0

2

3
0

220

0
6

5

3232

111 xx
dx

x
dxxdxxfa  

 

 
 

2

0

20
113

coscos
1

cos
1

n
nxdx

x
nxdxxxdxnxfa

n

n


















 












 

 

 
  

32

0

20
112

sinsin
1

sin
1

n
nxdx

x
nxdxxnxdxfxb

n

n


























 



 

 

Следовательно, разложение нашей функции в ряд Фурье имеет вид: 

 
 

 
 



 
















1
322

12sin
12

4
cos

113

12

5

n

n

xn
n

nx
n

xf



. 

Полагая в этом разложении x , получим: 
 

 










1
2

1
113

12

5

n

n
n

n


  

 

3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ 

3.1 Классификация обыкновенных  дифференциальных  уравнений и методов их 

решения.  Системы уравнений 2 порядка. Методы решения систем. 

Определение. Дифференциальным уравнением порядка n называется уравнение вида: 

0),...,,,( )(  nyyyxF  

 В некоторых случаях это уравнение можно разрешить относительно y
(n)

: 

).,...,,,( )1()(  nn yyyxfy  

 Определение. Решение )(xy  удовлетворяет начальным условиям 
)1(

0000 ,...,,,  nyyyx , 

если .)(,....,)(,)( )1(

00

)1(

0000

  nn yxyxyx  

 Определение. Нахождение решения уравнения 0),...,,,( )(  nyyyxF , удовлетворяющего 

начальным условиям 
)1(

0000 ,...,,,  nyyyx , называется решением задачи Коши. 
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 Теорема Коши. (Теорема о необходимых и достаточных условиях существования решения 

задачи Коши). 

 Если функция (n-1) –й переменных вида ),...,,,( )1(  nyyyxf в некоторой области D (n-1)- 

мерного пространства непрерывна и имеет непрерывные частные производные по 
)1(,...,,  nyyy , 

то какова бы не была точка (
)1(

0000 ,...,,,  nyyyx ) в этой области, существует единственное 

решение )(xy  уравнения ),...,,,( )1()(  nn yyyxfy , определенного в некотором интервале, 

содержащем точку х0, удовлетворяющее начальным условиям 
)1(

0000 ,...,,,  nyyyx . 

 Дифференциальные уравнения высших порядков, решение которых может быть найдено 

аналитически, можно разделить на несколько основных типов. 

 Рассмотрим подробнее методы нахождения решений этих уравнений. 

Уравнения, допускающие понижение порядка. 

 Понижение порядка дифференциального уравнения – основной метод решения уравнений 

высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, 

он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение 

порядка. 

Уравнения вида y
(n)

 = f(x). 

 Если f(x) – функция непрерывная на некотором промежутке a<x<b, то решение может быть 

найдено последовательным интегрированием. 

;)( 1

)1( Cdxxfy n  


 

  ;)()( 2121

)2( CxCdxxfdxCdxCdxxfy n   
  

 

;...
)!2()!1(

)(....
2

2

1

1 n

nn

C
n

x
C

n

x
Cdxxfdxdxy 









  

 Уравнения, не содержащие явно искомой функции  и ее производных до порядка k – 1 

включительно.  Это уравнения вида: .0),...,,,( )()1()(  nkk yyyxF  

В уравнениях такого типа возможно понижение порядка на k единиц. Для этого производят замену 

переменной: 

....;; )()()1()( knnkk zyzyzy    

Тогда получаем: .0),...,,,( )(  knzzzxF  

 Теперь допустим, что полученное дифференциальное уравнение проинтегрировано и 

совокупность его решений выражается соотношением: 

).,...,,,( 21 knCCCxz   

Делая обратную подстановку, имеем: 

),...,,,( 21

)(

kn

k CCCxy   

Интегрируя полученное соотношение последовательно k раз, получаем окончательный 

ответ: 

).,...,,,( 21 nCCCxy   

Уравнения, не содержащие явно независимой переменной. 

 Это уравнения вида .0),...,,( )(  nyyyF  

Порядок таких уравнений может быть понижен на единицу с помощью замены переменных 

.py   

;p
dy

dp

dx

dy

dy

yd

dx

yd
y 





  

;

2

2

2

2

p
dy

dp
p

dy

pd
p

dy

p
dy

dp
d

p
dy

yd

dx

dy

dy

yd

dx

yd
y 




























  и т.д. 

 

 Подставляя эти значения в исходное дифференциальное уравнение, получаем: 
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0,...,,,
1

1

1 











n

n

dy

pd

dy

dp
pyF  

 Если это уравнение проинтегрировать, и 0),...,,,,( 121 nCCCpyФ - совокупность его 

решений, то для решения данного дифференциального уравнения остается решить уравнение 

первого порядка: 

.0),...,,,,( 121 
nCCCyyФ  

 Линейные дифференциальные уравнения высших порядков. 

 

 Определение. Линейным дифференциальным уравнением n – го порядка называется 

любое уравнение первой степени относительно функции у и ее производных 
)(,...,, nyyy   вида: 

 

);(... 1

)2(

2

)1(

1

)(

0 xfypypypypyp nn

nnn  


 

 

где p0, p1, …,pn – функции от х или постоянные величины, причем p00. 

 

 Левую часть этого уравнения обозначим L(y). 

);(... 1

)2(

2

)1(

1

)(

0 yLypypypypyp nn

nnn  


 

 

 Определение.  Если f(x) = 0, то уравнение L(y) = 0 называется линейным однородным 

уравнением, если f(x)  0, то уравнение L(y) = f(x) называется линейным неоднородным 

уравнением, если все коэффициенты p0, p1, p2, … pn – постоянные числа, то уравнение L(y) = f(x) 

называется линейным дифференциальным уравнением высшего порядка с постоянными 

коэффициентами. 

 Линейные однородные дифференциальные уравнения с произвольными 

коэффициентами. 

 

 Рассмотрим уравнение вида 0... 1

)2(

2

)1(

1

)(

0  

 ypypypypyp nn

nnn
 

 Определение. Выражение )(... 1

)2(

2

)1(

1

)(

0 yLypypypypyp nn

nnn  


 

называется линейным дифференциальным оператором. 

 Линейный дифференциальный оператор обладает следующими свойствами: 

 1) );()( yCLCyL   

 2) );()()( 2121 yLyLyyL   

Решения линейного однородного уравнения обладают следующими свойствами: 

 1) Если функция у1 является решением уравнения, то функция Су1, гдеС – постоянное 

число, также является его решением. 

 2) Если функции у1и у2 являются решениями уравнения, то у1 +у2 также является его 

решением. 

 Определение. Фундаментальной системой решений линейного однородного 

дифференциального уравнения n –го порядка на интервале (a, b) называется всякая система n 

линейно независимых на этом интервале решений уравнения. 

 Определение. Если из функций yi составить определитель n – го порядка 

)1()1(

2

)1(

1

21

21

...

............

...

...






n

n

nn

n

n

yyy

yyy

yyy

W
, 

то этот определитель называется определителем Вронского. 

( Юзеф Вроньский (1776 – 1853) – польский математик и философ - мистик) 

 Теорема. Если функции nyyy ,...,, 21  линейно зависимы, то составленный для них 

определитель Вронского равен нулю. 

 Теорема. Если функции nyyy ,...,, 21 линейно независимы, то составленный для них 

определитель Вронского не равен нулю ни в одной точке рассматриваемого интервала. 
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 Теорема. Для того, чтобы система решений линейного однородного дифференциального 

уравнения nyyy ,...,, 21  была фундаментальной необходимо и достаточно, чтобы составленный 

для них определитель Вронского был не равен нулю. 

 Теорема. Если nyyy ,...,, 21  - фундаментальная система решений на интервале (a, b), то 

общее решение линейного однородного дифференциального уравнения является линейной 

комбинацией этих решений. 

nn yCyCyCy  ...2211 , 

где Ci –постоянные коэффициенты. 

 

2. Системы уравнений второго порядка. 
  С системами дифференциальных уравнений встречаются при изучении процессов, для 

описания которых одной функции недостаточно. Решение многих задач динамики, 

электротехники, теории поля и векторного анализа приводит к составлению систем 

дифференциальных уравнений. 

 Определение. Системой дифференциальных уравнений называется совокупность 

уравнений, в каждое из которых входит независимая переменнаяt, искомые функции этой 

переменной и их производные 

Обозначения:  x(t), y(t), z(t)- если функций не больше трех 

x1(t), х2(t)…хn(t)- для большего числа функций  

 Будем рассматривать только такие системы, где число уравнений равно числу 

неизвестных. 

 Определение. Решением системы дифференциальных уравнений является совокупность 

функций  x1= x1 (t);   х2= х2(t);… хn= хn(t),которая при подстановке в каждое уравнение системы 

обратит его в тождество. 

 Будем рассматривать системы, которые приведены к определенному виду. Такие системы 

называются нормальными. 

(*)  

{
 
 

 
 
   

  
               

   

  
               
         

   

  
               

  

 В большинстве случаев произвольную систему дифференциальных уравнений можно 

привести к нормальной. Например,  

1) {

  

  
  

  

  
    

  

  
  

  

  
    

⇒{

  

  
 
 

 
          

  

  
 
 

 
       

 

2) {

  

  
 
  

  
     

  

  
 
  

  
    

Данную систему нельзя разрешить относительно    и   , следовательно,  

нельзя  привести к нормальной. Такие системы  рассматриваться не будут. 

 Общее решение нормальной системы (*) имеет вид: 

x1=φ1(t, C1,C2,…Cn)                 

x2=φ2(t, C1,C2,…Cn)                                                             

- - - - - - - - - - - - - 

xn=φn(t, C1,C2,…Cn) 

где C1,C2,…Cn─произвольные постоянные. В каждое из записанных равенств может входить 

только часть произвольных постоянных. 

 Подставляя в общее решение начальные условия, получим систему алгебраических 

уравнений для определения произвольных постоянных и, следовательно, частного решения 

системы. 

 Теорема. Если правые части нормальной системы (*) непрерывны вместе со своими 

частными производными в окрестности значений, задающих начальные условия, то существует 
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единственная совокупность функций x1(t), х2(t),…хn(t), являющаяся решением системы и 

удовлетворяющая заданным начальным условиям. 

3. Методы решения систем. 

 Решить систему дифференциальных уравнений и выделить частные решения, 

удовлетворяющие заданным начальным условиям   

{

  

  
             

  

  
                

[x(0)=1, y(0)=-1] 

Решение.  Обе части уравнения (1) продифференцируем по t: 
   

   
 
  

  
  

  

  
. Производную    заменим правой частью уравнения (2):   

   

   
 
  

  
                    или                            

 Получили ЛНДУ II с постоянными коэффициентами в левой части и со специальной 

правой частью. 

         ─ структура общего решения 

1)     ─? 

           

         

D=1+24=25             
   

 
      

   

 
     

    
       

       

2)              

(самостоятельно с помощью таблицы объясните запись решения в таком виде) 

  
    

  
    

                 

  

  
|
       ⇒     
       ⇒    

 

       
    

       
         ─ общее решение ЛНДУ II 

Из уравнения (1) исходной системы:      
  

  
   

        
        

          
       

       
        

        
         

Подставим в подчеркнутые равенства начальные условия 

{
       

            
⇒{

       
              

⇒ 

          ⇒ 

       ⇒           
Частные решения, удовлетворяющие заданным начальным условиям: 

          

  
 

 
               

 

 
           

 Таким образом,  в большинстве случаев нормальная система может быть заменена одним 

уравнением, порядок которого равен числу уравнений системы. В этом и заключается метод 

решения рассматриваемых нами систем. 

3.2 Основные понятия. Уравнения в частных производных 2 порядка в случае двух 

независимых переменных.  Классификация уравнений 2 порядка. 
Определение. Дифференциальным уравнением в частных производных называется 

уравнение, связывающее искомую функцию и ее частные производные 

 (           
  

  
 
  

  
  
  

  
 
   

   
 
   

   
  
   

   
)    

 Из определения уравнения в частных производных следует, что искомая функция Uзависит 

от нескольких переменных x, y, z … t, т.е. U=U(x,y,z,…t). Будем рассматривать те 

дифференциальные уравнения, где искомая функция зависит максимум от четырех аргументов, 
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три из которых, как правило, будут  x, y, z – декартовые прямоугольные координаты, а четвертый 

аргумент t будет истолкован как время. 

 Порядок уравнения определяется порядком старшей производной. 

 Дифференциальное уравнение в частных производных называется линейным, если искомая 

функция и ее частные производные входят в уравнения линейно.  

Пусть D – область n-мерного пространства R
n
точек х=(х1,х2,…,хn), где n≥2. Наиболее общее 

уравнение в частных производных k-порядка от nнезависимых переменных  х1,х2,…,хnможно 

записать в следующем виде 

0,...)
...

,...,,...,,),(,,...,,(
21

2121

21 















nk

n

kk

k

n

n
xxx

u

x

u

x

u

x

u
xuxxxF      (1) 

где k1+ k2+…+ kn=k, u=u(х)=u(х1,х2,…,хn) – неизвестная функция,  )( ixF -заданная функция от 

своих аргументов. D -область задания уравнения (1). 

Пример.  

1. 0... 2

21
 uuuu

nxxx – уравнение 1-ого порядка; 

2. 0sin......
212211 21  uuxuxuxuuu

nnn xnxxxxxxxx    уравнение 2-ого порядка; 

3. )cos( 2131213211
xxuuuu xxxxxxxx  – уравнение 3-ого порядка. 

Определение. Уравнение в частных производных называется уравнением k-ого порядка, 

если оно содержит хотя бы одну частную производную k-го порядка и не содержит производных 

более высокого порядка. 

Определение. Определенная в области D функция u(х)=u(х1,х2,…,хn), непрерывная вместе 

со своими частными производными, входящими в это уравнение, и обращающая его в тождество 

по независимым переменным х1,х2,…,хn, называется  решением дифференциального уравнения 

(1). 

Если размерность пространства 
nR  равна 2, то, в дальнейшем, будем записывать так

., 21 yxxx  Если n=3, то .,, 321 zxyxxx   

Пример. Проверить, являются ли следующие функции:  

а)  
2

2

2

2

,,
z

y

y

x
zyxu  ;  б) xyzu   решениями уравнения 0















z

u
z

y

u
y

x

u
x     в области: x>0, y>0, 

,z>0. 

Решение: вычислим ux, uy, uz 

3

2

23

2

2

2
,

22
,

2

z

y

z

u

z

y

y

x

y

u

y

x

x

u














 . 

Подставив в исходное уравнение, получим 

0
2222

2

2

2

2

2

2

2

2


z

y

x

y

y

x

y

x
zuyuxu zyx

. 

Следовательно: функция 
2

2

2

2

z

y

y

x
u   в указанной области является решением данного 

уравнения. 

Также найдем частные производные: ux=yz; uy=xz; uz=xy и подставим в исходное 

уравнение: 

03  xyzzuyuxu zyx
 при x>0,y>0,z>0. 

Вывод: функция u=xyz не является решением исходного уравнения при x>0,y>0,z>0. 

Дифференциальное уравнение в частных производных так же, как и обыкновенное 

дифференциальное уравнение, в большинстве случаев, имеет бесконечное множество частных 

решений, то есть определяет некоторое семейство функций, удовлетворяющих данному 

уравнению. 

Совокупность таких функций образует общее решение дифференциального уравнения в 

частных производных. 

Между общими решениями обыкновенного дифференциального уравнения и общими 

решениями дифференциального уравнения в частных производных имеется существенное 

различие. 
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Как известно, общее решение обыкновенного дифференциального уравнения 

),,( yyxfу  , где у=у(х) представляет собой семейство функций, зависящее от 2-х 

произвольных постоянных: ),,( 21 cсxу  . 

Например,  рассмотрим ЛОДУ второго порядка 04  уу . Запишем общее решение 

xCxСу 2sin2cos 21  , где С1,С2 – произвольные постоянные. Для их нахождения достаточно 

задать начальное условие: 0)0( у , 1)0( у . Получим С1=0, С2=
2

1
. Следовательно, xху 2sin

2

1
)(  - 

частное решение данного уравнения. 

Рассмотрим  теперь любое дифференциальное уравнение в частных производных первого 

порядка с двумя независимыми переменами х и у, не содержащее производной либо по х, либо 

поу. 

Пусть 0,,, 












x

u
uyxF  

При вычисление yyxu ),(  считаем фиксированной (постоянной). 

При фиксированному исходное дифференциальное уравнение можно рассматривать как 

обыкновенное дифференциальное уравнение с искомой функцией u и независимой переменной х. 

Пусть общее решение обыкновенного дифференциального уравнения определяется по 

формуле  

),,( cyxu  . 

Это решение содержит у как параметр и оно при постоянном С является решением 

исходного дифференциального уравнения. 

Для того, чтобы полученная функция ),,( cyxu   была решением исходного 

дифференциального уравнения в частных производных необходимо и достаточно, чтобы С было 

постоянным относительно х, то есть она может быть любой функций от у. 

Тем самым получим наиболее общее решение дифференциального уравнения в частных 

производных первого порядка, если поставим вместо С произвольную функцию от у, например, 

)(у : 

)).(,,( yyxu   

Таким образом, общее решение дифференциального уравнения в частных производных 

первого порядка содержит одну произвольную функцию из класса С(R) непрерывных функций. 

Исходя из общего решения дифференциального уравнения в частных производных, можно 

найти частное решение. Для этого надо найти конкретный вид функции f и g на основании 

заданных условий рассматриваемой задачи. 

Надо отметить, что только  для малого числа дифференциальных уравнений в частных 

производных удается построить в явном виде общее решение. В теории дифференциальных 

уравнений в частных производных созданы методы непосредственного нахождения частных 

решений дифференциальных уравнений, удовлетворяющих определенным начальным и 

граничным условиям. 

Классификация уравнений в частных производных Уравнения с частными производными 

можно классифицировать по разным признакам. Например: 

1. По порядку уравнений: Ut=Uxx (уравнение 2-го порядка), Ut=Ux(уравнение 1-го 

порядка),      Ut=Uxxx + sinx (уравнение третьего порядка). 

2.По числу независимых переменных: Ut=Uxx (уравнение с 2-мя переменными),   

- уравнение с тремя переменными. 

3. ДУ с частными производными могут быть линейными и нелинейными. Линейные 

уравнения в свою очередь бывают однородными и неоднородными. 

4. ЛДУ 2-го порядка классифицируются по типу (в области D): 

а) гиперболический; б) эллиптический; в) параболический тип; 

  г) смешанный тип, если в области D уравнение имеет разный тип в разных точках. 

Замечания. 

1. Уравнения с постоянными коэффициентами имеют один тип на всей области определения. Так, 

например, волновое уравнение на плоскости и в пространстве имеет гиперболический тип, 
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уравнение теплопроводности на плоскости и в пространстве - параболический тип, а уравнение 

Лапласа - эллиптический тип. 

2. Классификация ЛДУ с большим числом переменных почти аналогична. 

Зачем нужно классифицировать и приводить уравнения к каноническому виду? 

1. Типом уравнения определяются основные свойства решений. 

2. Три типа уравнений соответствуют трем видам физических процессов- волновым, 

диффузионным и стационарным. 

3. Канонические уравнения хорошо изучены. Уравнение общего вида сводится к 

каноническому уравнению. Часто можно найти его решение аналитически и вернуться к 

прежним переменным. 

4. Для канонических уравнений разработаны численные методы решения. 

Дифференциальное уравнение в частных производных называется линейным, если искомая 

функция и ее частные производные входят в уравнения линейно.  

 Если искомая функция U   зависит от двух аргументов x и y, то линейное 

дифференциальное уравнение в частных производных второго порядка имеет следующий вид: 

 
   

   
   

   

    
  

   

   
  

  

  
  

  

  
                           (1.1) 

 Под коэффициентами  a, b, c … p понимаются дважды дифференцируемые функции от x и 

y. Особо важным является случай, когда коэффициенты постоянны. Мы будем изучать 

преимущественно такие уравнения. 

Итак, пусть дано дифференциальное уравнение (1.1)  с постоянными коэффициентами, которое 

для краткости запишем в виде  

                 (           )                       (1.2) 

 

Если          , то дифференциальное уравнение (1.2) является дифференциальным 

уравнением гиперболического типа. 

Если          , то дифференциальное уравнение (1.2) является дифференциальным 

уравнением параболического типа. 

Если          , то дифференциальное уравнение (1.2)  является дифференциальным 

уравнением эллиптического типа. 

Чтобы уравнение (1.2) привести к каноническому виду  (форме), надо составить его 

характеристическое уравнение, а, именно, 

                       

 Тогда,           и 2),( Cyx   - общие интегралы характеристического уравнения. 

Интегралы           и 2),( Cyx   называются уравнениями характеристик 

дифференциального уравнения (1.2) , при этом           - это уравнения первого семейства 

характеристик,     2),( Cyx      - уравнение второго семейства характеристик,   

а        и         -характеристические координаты.Для уравнений с постоянными 

коэффициентами всегда существует линейная замена переменных ξ=ax+by, η=cx+dy, с 

помощью которой уравнение можно привести к каноническому виду.  

Замечание. В случае n>2 переменных уравнение второго порядка всегда можно привести к 

каноническому виду в любой точке, однако в области это не всегда можно сделать. 

Пример. Рассмотрим уравнение      yUxx + Uyy = 0 

Оно возникает в газовой динамике и называется уравнением Трикоми. Для этого уравнения 

выражение δ(x,y) = B
2
 - AC = -y.  

Тогда при y>0  выражение δ(x,y)<0  и уравнение имеет эллиптический тип. 

При y<0 выражение δ(x,y)>0, следовательно, уравнение гиперболического типа, а при y=0, 

соответственно,  δ(x,y)=0 и уравнение имеет параболический тип  

3.3 Постановка задачи Коши. Формула Даламбера, ее физический смысл. 

Неоднородное уравнение. Принцип Дюамеля. Постановка задачи Коши и смешанной 

задачи. Уравнение теплопроводности. Принцип максимума. 
Каждое из уравнений, соответствующее основной задаче,   имеет бесчисленное множество 

решений. При решении конкретной физической задачи необходимо из этих решений выбрать то, 

которое удовлетворяет некоторым дополнительным условиям, вытекающим из физического 

смысла задачи.  
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 Поэтому в математической физике находят решения дифференциального уравнения в 

частных производных, удовлетворяющие некоторым дополнительным условиям. Таким образом,  

дополнительными условиями являются граничные условия, т.е. условия, заданные на границе 

рассматриваемой среды, и начальные условия, относящиеся к одному какому-нибудь моменту 

времени, с которого начинается исследование данного физического явления. Совокупность 

граничных и начальных условий называется краевыми условиями. 

 Следовательно, для одного и того же дифференциального уравнения в частных 

производных может быть поставлено  несколько краевых задач. Например, рассмотрим уравнение 

колебания струны, т.е. волновое уравнение 

   

   
   

   

   
 

 Искомая функция U(x,t), являясь  решением, выражает смещение точки струны. Таким 

образом, будет бесчисленное множество решений. Найти нужно только одно. Для этого надо знать 

начальное положение струны, т.е.                              . 
 В связи с этим мы получаем следующую задачу: найти в области     

решение      дифференциального уравнения, удовлетворяющее следующим начальным 

условиям:  

                                   
Сформулированная задача называется задачей Коши. 

 Если струна  lограничена, то начальных условий мало, так как концы струны могут или 

быть закреплены, или двигаться по определенному закону. 

 Если концы струны закреплены, то это условие пишется так: 

           ;             ;            ;            

 В этом случае краевая задача ставится так: найти решение        уравнения, 

удовлетворяющее граничным  условиям 

           ;               

и начальным условиям 

                       ;               ,           

Эта задача называется смешенной задачей Коши. 

2.    Выражение     называется формулой Даламбера. 

Использование формулы Даламбера в качестве общего решения волнового уравнения называется методом 

Даламбера. 

 

 Формула называется решением Даламбера задачи Коши для колебаний струны. U(x,t) 

теперь удовлетворяет начальным условиям. 

 Однако, часто рассматриваются задачи, в которых функции  (х) и  (х) не 

удовлетворяют указанным условиям. Несмотря на это, функцию U(x,t) все равно считают 

решением задачи Коши. Объясняется это тем, что всегда можно немного(чуть-чуть) изменив 

начальные условия добиться того, чтобы  (х) и (х) стали достаточно гладкими. Если малые 

изменения любого из начальных условий вызывают, соответственно, малые изменения решения, 

это указывает на устойчивость решения, т.е. на то, что задача поставлена корректно. 

 Данное замечание позволяет не требовать при рассмотрении примеров и задач того, чтобы 

начальные условия обязательно удовлетворяли условиям непрерывности и дифференцируемости.              

Физический смысл решения 

  Начнем с функции (x-at) и построим ее график при возрастающих значениях 

 и т.д.  . 
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 Тогда второй график будет сдвинут вправо относительно первого на величину , третий 

– на и т.д., т.е. график ―побежит‖ вправо. Процесс перемещения отклонения называется 

волной. Скорость волны . 

 Второе слагаемое  будет также представлять волновой процесс, но только волна 

будет распространяться влево. 

 Теперь перейдем к исследованию решения, т.е. 

U(x,t)=
 

 
( (x-at)+  (x+at) +

 

  
∫  
    

    
(x)dx). 

Рассмотрим два случая : 

1) отсутствуют начальные скорости (         
2) отсутствуют начальные отклонения (         
 Общий случай будет являться результатом наложения (суперпозиции) обоих случаев. 

 Случай 1): пусть начальные скорости точек струны равны нулю и струна колеблется в 

результате начального отклонения, равного    х . Тогда   U(x,t)=
 

 
 (x-at)+

 

 
 (x+at).    Так как   

     известна, то можно вычислить значения U(x,t)  для любых x и t. Колебания U(x,t) ,  как было 

установлено, будут складываться из двух волн:  

первая волна 
 

 
 (x-at)  распространяется  вправо, а вторая волна 

 

 
 (x+at) распространяется с той 

же скоростью влево.  

 Вначале профили обеих волн совпадают. Изобразим геометрически изменение формы 

струны в любой момент времени t.   Предположим, что в начальный момент функция           
отлична от нуля только на некотором интервале (- ;   и явлется четной. Тогда     =0 при x< -   и 

при x>  . В левом столбце  изобразим волну  
 

 
 (x+at)   в разные моменты времени, а в правом 

столбце – в  те же моменты времени волну  
 

 
 (x-at) . В среднем столбце изобразим сумму этих 

волн, т. е. результирующее отклонение струны.  

 Из геометрического изображения видно, что до тех пор, пока  t<
 

 
      есть участок, где обе 

волны накладываются друг на друга, начиная с    
 

 
 , эти волны уже не накладываются, а 

расходятся в разные стороны.  

  
  Установим характер колебания струны с фиксированной абсциссой х. Если х>   , то в 

начальный момент точка струны лежит на оси абсцисс и не участвует в начальном отклонении.  

1at

2at

p

T
aV 

)( atx 
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 Волна, бегущая вправо, дойдет до этой точки в момент времени      
   

 
  и с этого 

момента точка начинает колебаться. Как только волна пройдет через эту точку, т.  е. начиная с 

момента      
   

 
, она будет снова находиться в покое.  

 Случай 2): пусть теперь равны нулю начальные отклонения точек струны и струна 

колеблется в результате того, что по ней распространяются волныимпульса. Учитывая, что в этом 

случае       = 0,  получаем:    

U(x,t)=
 

  
∫  
    

    
(x)dx 

 Полагая,  что 
 

  
∫  
 

 
        х      - интеграл с переменным верхним пределом, 

соотношение  преобразуем к виду: U(x,t)= (х+at)- (x-at)      

 Решение U(x,t), как и в первом случае, складывается из двух волн        х     
и     х    .  Форма первой из них определяется уравнением       х , а второй 

уравнением      х . В результате в начальный момент   U(x,0)=0. 

 Чтобы наглядно представить себе картину процесса, будем считать ( для простоты),  

что            всюду вне интервала (- ;   , а в точках этого интервала принимает постоянное 

значение        .  Другими словами, точкам струны,  лежащим в интервал (- ;  , придана 

начальная скорость   , направленная вверх. При этом функция    в точках х =      имеет 

разрывы. 

    Функция Ф(х) принимает следующие значения:  

Ф(х) = 
 

  
∫   
 

 
   

   

  
, если       .  

Ф(х) = 
 

  
∫   
 

 
   

   

  
=
 

 
, если х>  . 

Ф(х) = 
 

  
∫   
  

 
    

   

  
= - -

 

 
, если х<  ,где   

   

 
   .  

Функция Ф(х) непрерывная и нечетная. 

Найдем решение уравнения теплопроводности      
    в области          , 

удовлетворяющее граничным условиям 

                  
и начальным условиям 

                              
 Решим данную задачу методом разделения переменных. Ищем частные линейно 

независимые, следовательно, не нулевые решения уравнения теплопроводности в виде 

                  
удовлетворяющие граничным условиям. 

 После подстановки в уравнение имеем 

                        

 Откуда  
     

    
   

     

    
             и получаем два линейных дифференциальных 

уравнения                                    Решения этих уравнений имеют вид:  

         
                         где A, B, C –постоянные. 

 Из условий  следуют граничные условия для функции  X(x): X(0)=0 и X(l)=0. Используя эти 

граничные условия, приходим к системе: 

{
   

               
 

Так как      то         .  

 В результате получаем систему собственных чисел данной краевой раздачи для уравнения 

          

 Это будут    
 

 
    

  

 
    

  

 
         

  

 
.  Соответствующая система собственных функций 

имеет вид:           
 

 
           

  

 
             

  

 
     

 Обозначая B*C= ak , получаем искомое частное решение Un(x,t), а именно        

Un(x,t)=an 
  
   

 
      

  

 
   

 Общее решение уравнения теплопроводности будет представлено рядом 

        ∑         ∑    
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 Легко убедиться непосредственно подстановкой ряда  в уравнение, что этот ряд 

удовлетворяет данному уравнению. Используя начальное условие,  определяем коэффициент  an. 

Действительно, при t=0 имеем 

     ∑       
   

 
  

         где        

 Полученное соотношение  показывает, что коэффициенты an (n=1,2,3…) являются 

коэффициентами разложения в ряд Фурье функции        Поэтому  находим их по известным 

формулам:  

   
 

 
∫       

   

 
   

 

 

 

Таким  образом, решение поставленной задачи определено в виде ряда, коэффициенты 

которого вычисляются по формулам. Задача решена. 

Замечание. Если граничные условия заданы в виде 
  

  
|     

  

  
|        то решение 

задачи имеет вид:        ∑    
  
   

 
      

   

 
    

 
    

где    
 

 
∫        

   

 
       

 

 

 

 ∫       
 

 
. 

3. Если стержень является неограниченным, то задача ставится так. 

Найти U(x,t) решение уравнения теплопроводности  при               удовлетворяющее 

начальному условию                     
Применив метод Фурье, получаем решение этой задачи в виде 

       
 

  √  
∫      

 
      

       

 

  

 

Если стержень ограничен с одной стороны, то задача ставится так. Найти U(x,t) решение 

изучаемого уравнения при            удовлетворяющее начальному условию        
      и граничному условию U(0,t)=f(t). 

Применив метод Фурье, решение этой задачи получаем в виде:  

       
 

  √  
∫     ( 

 
      

      
 
      

    )   
 

  √  
∫     

 
  

                    

 

 

 

 

 

Задача. Найдите  решение уравнение Ut=a
2
Ux , если начальное распределение 

температуры стержня определяется равенством: 

               {
                  

                      
 

Решение. Решение уравнения запишется в виде: 

       
 

  √  
∫      

 
      

      

 

  

 

В виду того, что функция    в интервале (x1,x2) равна постоянной температуре U0, а вне 

интервала равна  нулю, то U(x,t) имеет вид: 

      
  

  √  
∫      

 
      

       

  

  

 

Полученный результат можно преобразовать, если использовать интегральную функцию 

Лапласа:     
 

√ 
∫    

 
  

 

 
  

Тогда, полагая 
   

  √ 
         √    ,   получим: 

 

        
  

√ 
∫    

 
   

  

√ 
∫    

 
  

    
  √ 

 

 
  

√ 
∫    

 
   

  
 
( (

    

  √ 
)   (

    

  √ 
))

    
  √ 

 

    
  √ 

    
  √ 

 

Для функции Ф(z) имеются специальные таблицы значений. 



21 

 

3.4 Основные понятия.  Методы решения для уравнений первого порядка (Эйлера, 

Рунге-Кутта).  Методы решения линейной краевой задачи для уравнений второго 

порядка 
Известные методы точного интегрирования дифференциальных уравнений позволяют 

найти решение в виде аналитической функции, однако эти методы применимы для очень 

ограниченного класса функций. Большинство уравнений, встречающихся при решении 

практических задач нельзя проинтегрировать с помощью этих методов. 

 В таких случаях используются численные методы решения, которые представляют 

решение дифференциального уравнения не в виде аналитической функции, а в виде таблиц 

значений искомой функции в зависимости от значения переменной. 

 Существует несколько методов численного интегрирования дифференциальных 

уравнений, которые отличаются друг от друга по сложности вычислений и точности результата. 

 Рассмотрим некоторые из них. 

Метод Эйлера. 

(Леонард Эйлер (1707 – 1783) швейцарский математик ) 

 

 Известно, что уравнение ),( yxfy   задает в некоторой области поле направлений. 

Решение этого уравнения с некоторыми начальными условиями дает кривую, которая касается 

поля направлений в любой точке. 

 Если взять последовательность точек х0, х1, х2, …. и заменить на получившихся отрезках 

интегральную кривую на отрезки касательных к ней, то получим ломаную линию.   

    y 

 

        M2 

            M1  M3 

                M0 

                       y0   M4 

 

    0    x0               x1     x2        x3      x4                       x 

 

 При подстановке заданных начальных условий (х0, у0) в дифференциальное уравнение 

),( yxfy  получаем угловой коэффициент касательной к интегральной кривой в начальной 

точке  

).,( 000 yxfytg   

 Заменив на отрезке [x0, x1] интегральную кривую на касательную к ней, получаем значение  

).)(,( 010001 xxyxfyy   

 Производя аналогичную операцию для отрезка [x1, x2], получаем: 

).)(,( 121112 xxyxfyy   

 Продолжая подобные действия далее, получаем ломаную кривую, которая называется 

ломаной Эйлера. 

 Можно записать общую формулу вычислений: 

 

).)(,( 1111   nnnnnn xxyxfyy  

 

 Если последовательность точек хi выбрать так, чтобы они отстояли друг от друга на 

одинаковое расстояние h, называемое шагом вычисления, то получаем формулу: 

 

hyxfyy nnnn ),( 111    

 

Следует отметить, что точность метода Эйлера относительно невысока. Увеличить 

точность можно, конечно, уменьшив шаг вычислений, однако, это приведет к усложнению 

расчетов. Поэтому на практике применяется так называемый уточненный метод Эйлера или 

формула пересчета. 
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Суть метода состоит в том, что в формуле hyxfyy ),( 0001   вместо значения 

),( 000 yxfy   берется среднее арифметическое значений f(x0, y0) и f(x1, y1). Тогда уточненное 

значение: 

;
2

),(),( 1100

0

)1(

1 h
yxfyxf

yy


  

 

 Затем находится значение производной в точке ),( )1(

11 yx . Заменяя f(x0, y0) средним 

арифметическим значений f(x0, y0) и ),( )1(

11 yxf , находят второе уточненное значение у1. 

;
2

),(),( )1(

1100

0

)2(

1 h
yxfyxf

yy


  

 Затем третье: 

;
2

),(),( )2(

1100

0

)3(

1 h
yxfyxf

yy


  

и т.д. пока два последовательных уточненных значения не совпадут в пределах заданной степени 

точности. Тогда это значение принимается за ординату точки М1 ломаной Эйлера. 

 Аналогичная операция производится для остальных значений у. 

Подобное уточнение позволяет существенно повысить точность результата. 

  

Метод Рунге – Кутта. 

Метод Рунге – Кутта является более точным по сравнению с методом Эйлера.  

Суть уточнения состоит в том, что искомое решение представляется в виде разложения в ряд 

Тейлора. 

...
!4!3!2
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 Если в этой формуле ограничиться двумя первыми слагаемыми, то получим формулу 

метода Эйлера. Метод Рунге – Кутта учитывает четыре первых члена разложения. 
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В методе Рунге – Кутта приращения yi предлагается вычислять по формуле: 

 )(4)(
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1 22
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1 iiii

i kkkky   

где коэффициенты ki вычисляются по формулам: 
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Пример. Решить методом Рунге – Кутта дифференциальное уравнение yxy   при начальном 

условии у(0) = 1 на отрезке [0; 0,5] с шагом 0,1. 

 Для i = 0 вычислим коэффициенты ki. 
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2

)0(

1
00

)0(

2 










k

y
h

xhfk  

;1105,0)055,105,0(1,0
2

;
2

)0(

2
00

)0(

3 










k

y
h

xhfk  
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  ;1211,0)1105,11,0(1,0; )0(

300

)0(

4  kyhxhfk  

;1104,11104,01

;1,0

;1104,0)1211,0221,022,01,0(
6

1
)22(

6

1

001

01

)0(

4

)0(

3

)0(

2

)0(

10







yyy

hxx

kkkky

 

 Последующие вычисления приводить не будем, а результаты представим в виде таблицы. 

i xi k yi yi 

 

0 

 

 

0 

1 0,1000  

0,1104 

 

1 2 0,1100 

3 0,1105 

4 0,1155 

 

1 

 

0,1 

1 0,1210  

0,1325 

 

1,1104 2 0,1321 

3 0,1326 

4 0,1443 

 

2 

 

0,2 

1 0,1443  

0,1569 

 

1,2429 2 0,1565 

3 0,1571 

4 0,1700 

 

3 

 

0.3 

1 0,1700  

0,1840 

 

1,3998 2 0,1835 

3 0,1842 

4 0,1984 

 

4 

 

0,4 

1 0,1984  

0,2138 

 

1,5838 2 0,2133 

3 0,2140 

4 0,2298 

5 0,5  1,7976 

 

 Решим этот же пример методом Эйлера. 

Применяем формулу ).,( 111   nnnn yxhfyy  

 

;1),(,1,0 000000  yxyxfyx  

      ;1,0)(),( 0000  yxhyxhf  

      .1,11,01),( 0001  yxhfyy  

 

;2,1),(1,11,0 111101  yxyxfyx  

      ;12,0)(),( 1111  yxhyxhf  

      .22,112,01,1),( 1112  yxhfyy  

 

 Производя аналогичные вычисления далее, получаем таблицу значений: 

i 0 1 2 3 4 5 

xi 0,0 0,1 0,2 0,3 0,4 0,5 

yi 1 1,1 1,22 1,362 1,528 1,721 

 Применим  теперь уточненный метод Эйлера. 

i 0 1 2 3 4 5 

xi 0,0 0,1 0,2 0,3 0,4 0,5 

yi 1 1,1 1,243 1,400 1,585 1,799 

 

 Для сравнения точности приведенных методов численного решение данного уравнения 

решим его аналитически и найдем точные значения функции у на заданном отрезке. 
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 Уравнение xyy   является линейным неоднородным дифференциальным уравнением 

первого порядка. Решим соответствующее ему однородное уравнение. 

;;;;;0   dx
y

dy
dx

y

dy
y

dx

dy
yyyy  

;ln;lnln x
C

y
Cxy  ;xCey   

 Решение неоднородного уравнения имеет вид .)( xexCy   

;)()( xx exCexCy   

;)(;)(;)()()( xxxxx xexCxexCexCxexCexC   

;
;;

;;
)( Cexedxexe

evdxdu

dxedvxu
dxxexС xxxx

x

x

x 















 







  

 

Общее решение: ;1 xCey x
 

 C учетом начального условия: ;2;101  CC  

Частное решение: ;12  xey x
 

 Для сравнения полученных результатов составим таблицу. 

 

i xi yi 

Метод 

Эйлера 

Уточненный 

метод Эйлера 

Метод Рунге 

- Кутта 

Точное 

значение 

0 0 1 1 1 1 

1 0,1 1,1 1,1 1,1104 1,1103 

2 0,2 1,22 1,243 1,2429 1,2428 

3 0,3 1,362 1,4 1,3998 1,3997 

4 0,4 1,528 1,585 1,5838 1,5837 

5 0,5 1,721 1,799 1,7976 1,7975 

 Как видно из полученных результатов метод Рунге – Кутта дает наиболее точный ответ. 

Точность достигает 0,0001. Кроме того, следует обратить внимание на то, ошибка (расхождение 

между точным и приближенным значениями) увеличивается с каждым шагом вычислений. Это 

обусловлено тем, что во – первых полученное приближенное значение округляется на каждом 

шаге, а во – вторых – тем, что в качестве основы вычисления принимается значение, полученное 

на предыдущем шаге, т.е. приближенное значение. Таким образом происходит накопление 

ошибки. 

3.5 Функциональные ряды, степенные ряды: основные понятия (обзорно). 

Применение степенных рядов к решению дифференциальных уравнений. 

Уравнение Бесселя. Функции Бесселя, их свойства. Интегралы, зависящие от 

параметра. Непрерывность. Дифференцирование  и интегрирование по параметру. 

Определение.  Частными (частичными) суммами функционального ряда 


1

)(
n

n xu  

называются функции 



n

k

kn nxuxS
1

,...2,1),()(  

Определение. Функциональный ряд 


1

)(
n

n xu называется сходящимся в точке (х=х0), если в этой 

точке сходится последовательность его частных сумм. Предел последовательности )}({ 0xSn  

называется суммой ряда 


1

)(
n

n xu  в точке х0. 
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Определение. Совокупность всех значений х, для которых сходится ряд


1

)(
n

n xu называется 

областью сходимости ряда. 

Определение. Ряд 


1

)(
n

n xu называется равномерно сходящимся на отрезке [a,b], если 

равномерно сходится на этом отрезке последовательность частных сумм этого ряда. 

 Теорема.(Критерий Коши равномерной сходимости ряда) 

Для равномерной сходимости ряда 


1

)(
n

n xu необходимо и достаточно, чтобы для любого числа 

>0 существовал такой номер N(), что при n>N и любом целом p>0 неравенство 

  )(...)()( 21 xuxuxu pnnn
 

выполнялось бы для всех х на отрезке [a,b]. 

 

 Теорема. (Признак равномерной сходимости Вейерштрасса) 

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик) 

Ряд 


1

)(
n

n xu сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов 

на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с 

положительными членами : 

......21  nMMM  

т.е. имеет место неравенство: 

nn Mxu )( . 

Еще говорят, что в этом случае функциональный ряд 


1

)(
n

n xu мажорируется  числовым рядом 







1n

n . 

Пример. Исследовать на сходимость ряд 


1
3

cos

n n

nx . 

Так как 1cos nx  всегда, то очевидно, что 
33

1cos

nn

nx
 . 

При этом известно, что общегармонический ряд 





1

1

n n
 при =3>1 сходится, то в соответствии с 

признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале. 

Пример. Исследовать на сходимость ряд 


1
3

n

n

n

x
. 

На отрезке [-1,1] выполняется неравенство
33

1

nn

x n
  т.е. по признаку Вейерштрасса на этом 

отрезке исследуемый ряд сходится, а на интервалах (-, -1)  (1, ) расходится. 

 

Свойства равномерно сходящихся рядов. 

 

 1) Теорема о непрерывности суммы ряда. 

Если члены ряда 


1

)(
n

n xu  - непрерывные на отрезке [a,b] функции и ряд сходится равномерно, то 

и его сумма S(x) есть непрерывная функция на отрезке [a,b]. 

 

 2) Теорема о почленном интегрировании ряда. 
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Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно 

интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] 

, сходится к интегралу от суммы ряда по этому отрезку. 

],[,;)()(
11

badxxudxxu
n

n

n

n  
















 

2. С помощью степенных рядов возможно интегрировать дифференциальные уравнения. 

 Рассмотрим линейное дифференциальное уравнение вида: 

)()(...)()( )2(

2

)1(

1

)( xfyxpyxpyxpy n

nnn  
 

 Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в 

некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой 

окрестности нулевой точки, удовлетворяющее начальным условиям. 

 Это решение можно представить степенным рядом: 

...3

3

2

210  xcxcxccy  

 Для нахождения решения остается определить неизвестные постоянные ci. 

Эта задача решается методом сравнения неопределенных коэффициентов. Записанное 

выражение для искомой функции подставляем в исходное дифференциальное уравнение, 

выполняя при этом все необходимые действия со степенными рядами (дифференцирование, 

сложение, вычитание, умножение и пр.) 

 Затем приравниваем коэффициенты при одинаковых степенях х в левой и правой частях 

уравнения. В результате с учетом начальных условий получим систему уравнений, из которой 

последовательно определяем коэффициенты ci. 

 Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям. 

Пример. Найти решение уравнения 0 xyy c начальными условиями y(0)=1, y’(0)=0. 

Решение уравнения будем искать в виде ...2

210  xcxccy  

...432 3

4

2

321  xcxcxccy
   

...201262 3

5

2

432  xcxcxccy  

 Подставляем полученные выражения в исходное уравнение: 

0...)(...)201262( 4

3

3

2

2

10

3

5

2

432  xcxcxcxcxcxcxcc  

0...)30()20()12()6(2 36

4

25

3

14

2

032  ccxccxccxccxc  

Отсюда  получаем: 02 2 c    
 

   

030

020

012

06

36

25

14

03









cc

cc

cc

cc

 

   ……………… 

Получаем, подставив начальные условия в выражения для искомой функции и ее первой 

производной:  
0

1

1

0





c

c
 

Окончательно получим: ;0;0;
6

1
;0;0;1 543210  cccccc ...;

180

1
6 c  

Итого: ...
1806

1
63


xx

y  

 Существует и другой метод решения дифференциальных уравнений с помощью рядов. Он 

носит название метод последовательного дифференцирования.  

Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в виде 

разложения неизвестной функции в ряд Маклорена. 

...
!3

)0(

!2

)0(

!1

)0(
)0( 32 








 x

y
x

y
x

y
yy  

 Если заданные начальные условия  y(0)=1,  y’(0)=0  подставить в исходное 

дифференциальное уравнение, получим, что .0)0( y  
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 Далее запишем дифференциальное уравнение в виде xyy   и будем последовательно 

дифференцировать его по х. 

..........................................................

;4)0(;3

;0)0(;2

;0)0(;

;1)0()0(;









VIIVVI

VV

IVIV

yxyyyy

yyxyyy

yyxyyy

yyyxyy

 

 После подстановки полученных значений получаем:  ...
1806

1
63


xx

y  

Определение.  Интеграл  называется интегралом, зависящим от параметра, 

если  интегрируема на промежутке при любом фиксированным , где . 

Следовательно, представляет собой функцию  переменной (параметра) , определенную в 

промежутке . Возможно также существование интеграла при фиксированном , тогда 

он будет представлять собой функцию переменной (параметра) , определенную в 

промежутке . Обозначается она так , так что . 

Основная задача будет состоять в том, чтобы, зная свойства функции , получить 

информацию о свойствах функции . Эти свойства имеют многообразные применения, 

особенно при вычислении несобственных интегралов. 

Пример. Найти интеграл  от функции ,  

Функция  непрерывна на отрезке  при любом фиксированном , а 

значит, она интегрируема. Тогда 

. 

Теорема 4 (о непрерывности интеграла как функции параметра). Пусть функция 

 определена и непрерывна в прямоугольнике , тогда интеграл  будет 

непрерывной функцией от параметра  в промежутке . 

 

3.6 Свойства преобразования Фурье.  Приложения к решению ДУ. 

Теплопроводность как физический процесс.  Постановка задачи Коши. 

Решение задачи Коши уравнения теплопроводности методом преобразования Фурье. 

Определение. Функция ),,( zyxu называется гармонической на области , если она имеет 

непрерывные частные производные второго порядка на области  и удовлетворяет условию 

0u ,  где  - оператор Лапласа. 

 Уравнение 0
2

2

2

2

2

2

















z

u

y

u

x

u
u  называется уравнением Лапласа. 

 Если на некоторой границе Г тела поддерживать постоянную температуру ),,( zyxfuГ  , 

где f – заданная функция, то внутри тела установится единственная постоянная температура. С 

физической точки зрения это утверждение очевидно, однако, данный факт может быть доказан 

математически. 

 Математическое доказательство этого факта называется задачей Дирихле. 

(Петер Густав Дирихле (1805 – 1859) – немецкий математик) 
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Решение задачи Дирихле для круга. 

 Пусть в плоскости XOY имеется круг радиуса R с центром в начале координат и на его 

окружности задана функция f(), где  - полярный угол. 

 Требуется найти функцию ),( ru , которая удовлетворяет уравнению Лапласа 

0
2

2

2

2











y

u

x

u  

и при ).( fuRr  

 Запишем уравнение Лапласа в полярных координатах: 

0
11

2

2

22

2














 u

rr

u

rr

u

       
0

2

2

2

2
2 













 u

r

u
r

r

u
r  

Полагаем  ).()( rRu   Подставляя это соотношение в уравнение Лапласа, получаем: 

0)()()()()()(2  rRrRrrRr          
2

2

)(

)()(

)(

)(
k

rR

rRrrRr







   

Таким образом, имеем два уравнения:  

0)()()(

0)()(

22

2



 

rRkrRrrRr

k  

Общее решение первого уравнения имеет вид:  kBkA sincos  

Решение второго уравнения ищем в виде: 
mrR  . При подстановке получим: 

0)1( 2122   mmm rkrmrrmmr  

022  km  

Общее решение второго уравнения имеет вид: 
kk DrCrR  . 

 Подставляя полученные решения в уравнение )()( rRu  , получим: 

))(sincos( k

k

k

kkkk rDrCkBkAu   

Эта функция будет решением уравнения Лапласа при любом k0. 

 Если k = 0, то 0;0   RRr  следовательно )ln)(( 00000 rDCBAu  . 

Решение должно быть периодическим, т.к. одно и то же значение будет повторяться через 2. 

(Тогда рассматривается одна и та же точка круга.) Поэтому В0 = 0. 

 Решение должно быть конечным и непрерывным, поэтому D0 = 0. 

Окончательно получаем: 





1

0 )sincos(
2

),(
n

n

nn rnBnA
A

ru  

При этом: 





 ntdttf
R

A
nn cos)(
1

   

 





 ntdttf
R

B
nn sin)(
1

 

Если подставить эти коэффициенты в полученную выше формулу и произвести упрощение, 

получаем окончательный результат решения задачи Дирихле, который называется интегралом 

Пуассона. (Симеон Дени Пуассон (1781 – 1840) – французский математик) 










 dt

rtrRR

rR
tfru

22

22

)cos(2
)(

2

1
),(  

2.  Рассмотрим металлический стержень длиной l, температура которого в разных точках 

различна. Тогда с течением времени будет происходить перераспределение температуры вдоль 

стержня, и поэтому температура точки М(х) в момент времени t является функцией двух 

переменных:    txUxU , . Начальное распределение температуры задается функцией

   0,xUxf  . Для однозначного определения процесса распределения тепла надо еще знать 

условия на концах стержня (мы считаем, что боковая поверхность стержня теплоизолирована). 

Например, температура левого конца стержня задается функцией  t1  от времени t, тогда правого 

– функцией  t2 . 

Стержень длины l однородный, имеющий постоянную по длине толщину, и настолько 

тонкий, чтобы в любой момент времени температуру тела во всех точках поперечного сечения 

можно считать одинаковой. 
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Выберем ось x (направив ее по оси стержня) так, чтобы стержень совпадал с отрезком [0,l] 

оси х. Выведено дифференциальное уравнение теплопроводности однородного конечного 

стержня. 

2

2
2

x

U
a

t

U








 , 









c

k
a2      (1) 

где 1с - коэффициент теплопроводности, с - теплоемкость материала стержня,  -плотность, с 

граничными условиями.
   

   
 







t

ttlU

tyU
0

,

,0

2

1




  

и начальными условиями     xfxU 0,  

Предположим сначала, что на обоих концах стержня поддерживается постоянная температура, 

скажем, 0. Это приводит к таки предельным условиям: 

    0,,0  tlUtU , 0t      (3) 

Тогда начальное условие запишем так: 

    00  lff  

Для разыскания функции  xtU , , удовлетворяющей уравнению (1) и всем поставленным 

условиям, применим метод Фурье. Пусть, как и выше, TXu  , так что уравнение принимает 

вид:   TXaTX  2
 или xxaTT  2 ;   если постоянное значение этих отношений положить 

равным –  , то уравнение разобьется на два:  0 XX                                            (4)  

и TaT 2                                                                                                  (5) 

 

В пункте 1 мы выяснили, что ненулевые решения уравнения        (4) существуют только 

при k  , где 

2











l

k
k


 , где  ,...2,1k  

причем в качестве этих решений можно взять функции 

x
l

k
X k


sin , где  ,...2,1k  

Заменим в уравнении (5)  на k  

0

2









 kk T

l

ak
T

  

Его общим решением будет 

t
l

ak

kk eCT

2















, 

где kC  – произвольная постоянная, соответствующая взятому значению  k. Перемножим 

kX  и kT , получим решение уравнения (1) 

  x
l

k
eCtxU

t
l

ak

kk




sin,

2












, где  ,...2,1k     (6) 

Каждая из функций kU  удовлетворяет граничным условиям (3). Общее решение возьмем в 

форме ряда 

















1

sin

2

k

t
l

ak

k x
l

k
eCU




     (7) 

Желая удовлетворить начальному условию, мы должны положить: 

 















1

sin

2

k

t
l

ak

k xfx
l

k
eC




, где  lx 0  

Если функция f(x) непрерывна и имеет ограниченное изменение, то для осуществления 

этого разложения достаточно взять: 
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 

l

k xdx
l

k
xf

l
С

0

sin
2  , 

чем и завершим решение задачи. 

3.7 Основные теоремы об оригиналах и изображениях.  Формулы обращения 

интеграла Лапласа. Свертка функций.  Интеграл Дюамеля. Решение 

дифференциальных уравнений операционным методом 

В качестве преобразования, позволяющего перейти от функции к их изображениям, мы будем 

пользоваться преобразованием Лапласа. 

Преобразование Лапласа определяется формулой: 





0

dttfepF tp
)()( , 

которая преобразует функцию действительного переменного f(t) в функцию комплексного 

переменного F(p).  

Несобственный интеграл в правой части равенства называется интегралом Лапласа. Через р 

обозначена комплексная переменная: isp  . 

Так как интеграл Лапласа несобственный, то установим, какие условия надо наложить на 

функцию, чтобы этот интеграл сходился и действительно определял некоторую функцию F(p).  

Будем предполагать следующее: 

1. Функция f(t) – кусочно-непрерывная при t 0. Это значит, что она непрерывная, или 

имеет только конечное число точек разрыва первого рода в любом конечном 

интервале. 

2. Функция f(t) равна нулю при отрицательных значениях t: 

0)( tf  при 0t   

При изучении многих физических процессов роль переменной t играет время и 

сказанное означает, что процесс начинается с некоторого момента времени (удобнее считать, что в 

момент 0t ). 

3. При возрастании t модуль функции f(t) может возрастать, но не быстрее некоторой 

показательной функции, т.е. существуют такие постоянные 0М  и 00 s , что для 

всех t из интервала  t0 : 
ts

eMtf 0)(
 
Число 0s  называется показателем роста.  

Условие (3) обеспечивает сходимость интеграла Лапласа, ему удовлетворяют, конечно, все 

ограниченные функции, в частности tt cos,sin . В этом случае 0s  можно положить равным нулю: 

Mtf )( . Условию (3) удовлетворяют все степенные функции 
kt при 0k , так как любая 

такая функция растет медленнее, чем показательная функция 
te . Применяя правило Лопиталя, 

легко проверить, что 0


t

k

t e

t
lim . 

При 0k  соответствующие степенные функции имеют бесконечный разрыв при 0t  и 

не удовлетворяют первому условию. 

Любая функция, удовлетворяющим перечисленным выше трем условиям, называется 

оригиналом. 

Функцию F(p), определяемую формулой (1), называют изображением (изображением по 

Лапласу). 

Соответствие между оригиналом f(t) и изображением F(p) записывают так: 

)()( pFtf 
  или )()( tfpF 

   

Употребляется так же символ  )()( tfLpF  . 

Простейшей функцией – оригиналом является так называемая единичная функция Хевисайда: 










01

00
)()(0

tпри

tпри
tt   . 

График ее приведен на рисунке 1. 
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Если функция f(t) не удовлетворяет условию (2), но удовлетворяет условиям (1) и (3), то 

умножением ее на единичную функцию 0 (t), получаем оригинал: 










.0)(

,00
)()( 0

tприtf

tпри
ttf   

В дальнейшем для сокращения записи, как правило, будем писать )( tf  вместо 

)()( ttf 0 , считая, что рассматриваемые функции продолжены нулѐм для 0t . 

 Примеры функций, не являющихся оригиналами: 1. 















0

1

1

00

)(
tпри

t

tпри

tf
.  

Эта функция имеет разрыв второго рода в точке t = 1. 

 

 

 

 

 

 

 

 

 





















0

1
sin

00

)(
tпри

t

tпри

tf  

Функция имеет бесконечное число экстремумов на отрезке [0,1]                          

 

 

 

 

 

 

 

 

 










01

00
)( 2

tприet

tпри
tf

t

 
Не существует таких констант M и σ0, что | f (t) | ≤ M·e

σ
0
 t
. 

Совершенно не обязательно считать, что оригинал )( tf принимает только действительные 

значения, она может быть и комплексной функцией действительного переменного t, т.е. иметь 

вид:   )()()( tiftftf 21   

Каждому оригиналу соответствует изображение 

F(p). 

2. Теорема  Пусть функция f(t) является оригиналом. 

Тогда интеграл Лапласа сходится абсолютно для всех 

значений комплексной переменной р, удовлетворяющих 

условию 0sp Re  (т.е. в полуплоскости 0sp Re  где 

0 (t) 
1 

0 t 

Рис

. 1 

Полуплоскость 

0sp Re  

 

0s

 

s  
0 

Рис. 2 
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0s  - постоянная, участвующая в условии (3), и определяет изображение F(p).) 

Теорема единственности 

Если две непрерывные функции (t) и (t)имеют одно и тоже изображение F(p), то эти 

функции тождественно равны.  

Эту теорему мы примем без доказательства. 

Примеры 1. Пусть 0 (t) – простейшая функция 










01

00
0

tпри

tпри
t )(  

Найдем изображение этой функции, пользуясь интегралом Лапласа 

pp

e
dtepF

pt
pt 1

00








)( , 

причем последнее заключение можно сделать только в том случае, когда 0 pte при t . 

Если isp  , то 
tstitspt eee   
. Последнее выражение стремится к нулю при

t , если 0s . 

Таким образом, интеграл Лапласа для единичной функции сходится при 0 ps Re  и ее 

изображение является 
p

1
. 

Итак, 
p

1
1 


 или 

p
t

1
0 


)(  

2. Пусть ttf sin)(  . 

Тогда  

 

.cos1coscos

cos

sin
sinsin

00
0

0






























dttepdttepte

tvdtpedu

dttdveu
dttetL

ptptpt

pt

pt

pt

 

К последнему интегралу снова применяем метод интегрирования по частям, полагая 

 
tvdtpedu

dttdveu

pt

pt

sin

cos









 

Тогда  

 
 




 
0 0

2

0
dtteptepdttep ptptpt

sinsincos ,    

 а   
 

 
0 0

2
1 dttepdtte ptpt

sinsin  или 







0

2
1

1

p
dtte pt

sin . 

Итак,  
1

1
2 




p
tsin   

3. Пусть 
tetf )(
, 

где  i  - любое комплексное число.  

Условия (1) и (3) очевидно, выполняются, причем в силу равенства 
ttitt eee   

 

можно положить 1M  и 0s . 
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Интегрируя, получим 




















 pp

e
dtedtee

tp
tptpt 1

000
)(

)(
)( , если только 

 tприe p
0

)( 
. Последнее же имеет место при 0  pp Re)Re( , т.е. при

pRe . 

Таким образом  









p
e t 1

В частности, при 0  снова получаем  
p

1
1 

  

3. Если функция F(p) - изображение функции-оригинала f(t), то f(t) может быть найдена по 

формуле  

     
 

   
∫           

    

    

 

Это равенство имеет место в каждой точке, в которой f(t) непрерывна. В точках разрыва 

функции  

f(t) значение правой части равно     .  

 

 

 

 

 

 

 

 

 

 

 

Интеграл в правой части формулы называют интегралом Меллина; интегрирование может 

вестись по любой вертикальной прямой p=σ + i ω, σ=const>σ0, − ∞ < ω < ∞, и интеграл понимается 

в смысле главного значения: .∫           
    

    
 lim



∫           
    

    
 

Вычисление оригинала по формуле Римана-Меллина довольно трудоѐмко, поэтому на 

практике при решении задач применяют другие методы, которые рассматриваются ниже. 

 Теорема разложения 

До сих пор, мы рассматривали в основном вопросы, связанные с нахождением 

изображения по заданному оригиналу. Теперь рассмотрим обратную задачу: найти оригинал по 

заданному изображению.  

Рассмотрим важный случай, когда изображение искомого оригинала является правильной 

рациональной дробью 

)(

)(
)(

2

1

pF

pF
pF  , где )(1 pF  и )(2 pF  - многочлены от p  соответственно степени m  и n , причем 

nm . Рассмотрим случай, когда корни знаменателя  простые и не равные нулю. 
)(

)(
)(

2

1

pF

pF
pF   

Обозначим n  простых корней уравнения 0)(2 pF через
nppp ,, 21
. 

Тогда имеем разложение )())(()( 212 npppppppF   . 

Разлагая дробь на простейшие, получим 

n

n

pp

c

pp

c

pp

c

pF

pF








 

2

2

1

1

2

1

)(

)( или       
 


n

k k

k

pp

c

pF

pF

12

1

)(

)( . 

Найдем коэффициенты kc . Для определения 1c  поступим так: умножим  полученное 

равенство на 1pp   и устремим затем p  к 1p . Получим  
















n

n

pp

c

pp

c
ppcpp

pF

pF


2

2
111

2

1 )()(
)(

)( . 



34 

 

При 1pp   второе слагаемое в правой части обращается в нуль, а левая часть его 

становится неопределенностью вида 








0

0
, ибо 01  pp  и 0)( 22 pF  при 1pp  . Раскрывая 

эту неопределенность по правилу Лопиталя, найдем:  
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Аналогично найдем остальные коэффициенты.  

Пример 1. Пользуясь теоремой разложения, найти оригинал по изображению 

652

1
)(

23 




ppp

p
pF . 

Решение  Знаменатель изображения имеет простые корни. 

Так как 543)(,652)(,1)( 2
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Следовательно, ttt eeetf 32
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4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 

4.1 ЛР-1 «Аппроксимация функций» 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

Аппроксима ция (от лат. proxima – ближайшая) или  приближе ние —

 научный метод, состоящий в замене одних объектов другими, в каком-то смысле 

близкими к исходным, но более простыми. 

Аппроксимация позволяет исследовать числовые характеристики и качественные 

свойства объекта, сводя задачу к изучению более простых или более удобных объектов 

(например, таких, характеристики которых легко вычисляются или свойства которых уже 

известны). Одним из наиболее часто употребляемых методов аппроксимации является 

метод наименьших квадратов. Следует обратить особое внимание на выбор 

аналитической функции для аппроксимации в ходе обработки результатов опытов. 

4.2 ЛР-2 «Численные методы решения обыкновенных дифференциальных 

уравнений первого порядка» 

При подготовки к занятию необходимо обратить внимание на следующие 

моменты: необходимость в численном интегрировании ДУ, виды численных методов для 

решения ДУ 1-го порядка, особенности каждого метода.  

 

4.3 ПЗ-1 «Уравнения в частных производных первого и второго порядка»  

4.4. ПЗ-2 «Уравнения в частных производных первого и второго порядка»  

https://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
https://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%83%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4
https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%8A%D0%B5%D0%BA%D1%82
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При подготовки к занятию необходимо обратить внимание на следующие 

моменты: виды ДУ в частных производных первого и второго  порядка,  классификация  и   

методы их решения;  формулировка задачи Коши для ДУ первого и второго порядка. 

4.5 ПЗ-3 «Разложение функций в ряд Фурье» 

При подготовки к занятию необходимо обратить внимание на следующие 

моменты: проверка возможности разложения функции в  тригонометрический ряд, 

частные случаи разложения  и возможности их применения, особенности в приложении 

рядов к решению ДУ. 


