ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ Б1.В.06 МЕТОДЫ ИНЖЕНЕРНОГО ПРОЕКТИРОВАНИЯ ГИДРАВЛИЧЕСКИХ СИСТЕМ

Направление подготовки (специальность) 35.04.06 Агроинженерия

Профиль подготовки (специализация) Технологии и средства механизации сельского хозяйства

Квалификация выпускника магистр

1. Перечень компетенций и их формирование в процессе освоения образовательной программы.

Таблица 1 - Показатели и критерии оценивания компетенций

Код и Код и наименование Планируемые Процедура			Процедура
наименование	индикатора	результаты обучения	оценивания
компетенции	достижения	по дисциплине	оценивания
компетенции	компетенции	(модулю)	
ПК-3 Способен	ПК-3.1 Разрабатывает	Знать:	Устный опрос и
разработать	технические задания на		тестирование
технические	проектирование и	действия и	1
задания на	изготовление	характеристики	
проектирование и	нестандартных средств	современных	
изготовление	механизации	гидравлических систем	
нестандартных	сельскохозяйственного	Уметь:	
средств	производства;	Решать задачи подбора	
механизации	_	гидравлических машин	
сельскохозяйствен		для гидравлических	
ного производства		систем	
		Владеть:	
		Навыком расчета	
		гидропривода	
ПК-12 Способен	ПК-12.1 Выбирает	Знать:	Устный опрос и
выбирать методики	методики проведения		Устный опрос и тестирование
проведения	экспериментов и	гидропривода	тестирование
экспериментов и	испытаний,	Уметь:	
испытаний,	анализировать их	Самостоятельно	
анализировать их	результаты;	разбираться в способах	
результаты	результаты,	и средствах	
результиты		регулирования	
		гидроприводов	
		Владеть:	
		Навыком анализа	
		различных вариантов,	
		поиском и выработкой	
		компромиссных	
		решений при	
		проектировании	
		гилропривода	

2. Шкала оценивания.

Шкалы оценивания и система оценок представлены в локальном нормативном акте ВУЗа Положении «Текущий контроль успеваемости и промежуточная аттестация» утвержденным решением Ученого совета университета 20 июля 2016г., протокол № 11

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, в процессе освоения образовательной программы.

Таблица 2.1 - ПК-3 Способен разработать технические задания на проектирование и изготовление нестандартных средств механизации сельскохозяйственного производства

	производства
Планируемые результаты	Формулировка контрольного задания (контрольные
обучения по дисциплине (модулю) (индикатор	вопросы/тестовые задания), необходимого для оценки
(модулю) (индикатор достижения компетенции)	освоения компетенции
<u> </u>	
-	1. Какая гидромашина предназначена для преобразования
	механической энергии в энергию давления движущейся
1 1	жидкости:
изготовление нестандартных	-
•	Гидроклапан;
сельскохозяйственного	Гидрораспределитель;
производства;	Гидроцилиндр;
	2. Что отражает объёмный КПД насоса:
	Потери энергии на преодоление трения в подвижных парах
	насоса;
	+Потери количества жидкости из-за внутренней
	негерметичности насоса; Потери энергии при заполнении жидкостью рабочего
	объёма насоса;
	Потери напора из-за преодоления гидравлических
	сопротивлений в насосе.
	3. Какая из перечисленных гидромашин является
	гидродинамической:
	шестерённая;
	+лопастная;
	пластинчатая;
	поршневая.
	4. Теоретическая подача насоса с постоянной частотой
	вращения вала:
	прямо пропорциональна перепаду давлений на
	гидромашине;
	+прямо пропорциональна рабочему объёму гидромашины;
	обратно пропорциональна перепаду давлений на
	гидромашине;
	обратно пропорциональна рабочему объёму гидромашины;
	5. С какой целью устанавливается дроссель:
	с целью повышения гидравлического сопротивления;
	с целью уменьшения КПД гидросистемы;
	+с целью уменьшения расхода жидкости в трубопроводе;
	с целью повышения скорости течения жидкости в дросселе. 6. Приведите примеры практического применения явления
	о. Приведите примеры практического применения явления гидравлического удара.
	гидравлического удара. 7. Расхода воды в каналах при равномерном ее движении в
	них.
	8. Гидравлически наивыгоднейшие сечение канала.
	9. Классификация насосов по принципу действия.
	10. Укажите области применения различных типов
	Passin minis

насосов.

- 11. Объясните устройство, принцип действия и назначение центробежного насоса.
- 12. Способы регулирования величины подачи центробежного насоса
- 13. Уравнение Эйлера для центробежного насоса.
- 14. Влияние угла β на характеристику центробежного насоса.
- 15. Способы изменение напорной характеристики центробежного насоса.
- 16. Совместная работа центробежного насоса с трубопроводом.
- 17. Уравнение гидравлической сети.
- 18. Потребный напор для насосной установки.
- 19. Допустимая геометрическая высота всасывания насоса.
- 20.Последовательное соединение насосов
- 21. Какая гидромашина предназначена для преобразования энергии давления движущейся жидкости в механическую энергию:

гидронасос;

гидроклапан;

гидрораспределитель;

+гидроцилиндр.

22. Что отражает механический КПД насоса:

+потери энергии на преодоление трения в подвижных парах насоса;

потери количества жидкости из-за внутренней негерметичности насоса;

потери энергии на смазывании механических частей насоса; потери напора из-за преодоления гидравлических сопротивлений в насосе;

23. Какая из перечисленных гидромашин является гидродинамической:

винтовая;

пластинчатая;

+лопастная;

плунжерная.

24. Крутящий момент на валу нерегулируемой гидромашины;

+прямо пропорционален расходу жидкости через гидромашину;

прямо пропорционален перепаду давлений на гидромашине; обратно пропорционален расходу жидкости через гидромашину;

обратно пропорционален перепаду давлений на гидромашине.

25. Обратный клапан устанавливается:

для повышения гидравлического сопротивления;

+для исключения протекания жидкости в обратном

направлении;

для обеспечения протекания жидкости в обратном направлении;

для уменьшения расхода жидкости в трубопроводе.

- 26. Параллельное соединение насосов.
- 27. Объясните устройство и принцип действия осевого насоса.
- 28. Достоинства и недостатки осевого насоса.
- 29. Объясните устройство и принцип действия вихревого насоса.
- 30. Достоинства и недостатки вихревого насоса.
- 31. Изобразите принципиальную схему и объясните устройство и принцип действия поршневого насоса.
- 32. Достоинства и недостатки поршневого насоса.
- 33. Определение подачи, напора поршневого насоса.
- 34. Объяснить устройство и принцип действия шестеренного насоса.
- 35. Достоинства и недостатки шестеренного насоса.
- 36. Подача, напор шестеренного насоса.
- 37. Объясните устройство и принцип действия аксиальноплунжерного насоса.
- 38. Достоинства и недостатки аксиально-плунжерного насоса.
- 39. Подача, напор аксиально-плунжерного насоса.
- 40. Объясните устройство и принцип работы объемных гидравлических двигателей прямолинейного движения гидроцилиндров.
- 41. Для накопления и возвращения энергии рабочей жидкости, которая находится под давлением применяют:

гидронакопитель;

гидроисполнитель;

+гидроаккумулятор;

гидроотделитель.

42. Источник гидравлической энергии это:

+насос;

гидродвигатель;

гидролинии;

гидромотор.

43. Объемный гидродвигатель с ограниченным возвратнопоступательным движением выходного звена называется: гидромотор;

----r,

насос-мотор;

дозатор;

+гидроцилиндр.

44. Устройство, служащее для изменения, согласно внешнему управлению движением потоков жидкости в нескольких гидролиниях, называют ...

+гидрораспределителем;

дросселем;

гидроаккумулятором;

гидроклапаном.

45. Укажите ошибку:

последовательное включение дросселя на нагнетающей линии

параллельное включение дросселя

последовательное включение дросселя на сливной линии +последовательное включение дросселя на всасывающей

линии 46. Область применения гидроцилиндров?

- 47. Определение скорости движения штока гидроцилиндра.
- 48. Объясните устройство и принцип работы объемных гидравлических двигателей вращательного движения гидромоторов.
- 49. Область применения гидромоторов.
- 50. Определение частоты вращения и момента ротора гидромотора.
- 51. Объясните устройство и принцип работы объемного гидропривода.
- 52. Изобразите типовые гидравлические схемы объемного гидропривода с разомкнутой и замкнутой циркуляцией рабочей жидкости и поясните достоинства и недостатки каждой из них.
- 53. Объясните назначение, устройство и принцип действия гидравлического распределителя объемного гидропривода.
- 54. Виды гидравлических распределителей объемного гидропривода.
- 55. Объясните назначение, устройство и принцип действия предохранительных клапанов объемного гидропривода.
- 56. Виды клапанов объемного гидропривода.
- 57. Объясните назначение, устройство и принцип действия гидродинамического трансформатора.
- 58. Каковы достоинства, недостатки гидродинамического трансформатора.
- 59. Объясните назначение, устройство и принцип действия гидродинамической муфты.
- 60. Принцип действия струйного насоса.

Таблица 2.2 - ПК-12 Способен выбирать методики проведения экспериментов и испытаний, анализировать их результаты

Планируемые результаты обучения по дисциплине (модулю) (индикатор достижения компетенции)

Формулировка контрольного задания (контрольные вопросы/тестовые задания), необходимого для оценки освоения компетенции

проведения экспериментов и насос; испытаний, анализировать их +гидротрансформатор; результаты;

ПК-12.1 Выбирает методики 1. Какие элементы не входят в объемный гидропривод:

гидродвигатель;

распределитель.

2. Гидродинамическая передача с тремя лопаточными колесами

насос:

+гидротрансформатор;

гидромуфта;

гидродвигатель.

- 3. Гидравлический КПД насоса отражает потери мощности, связанные:
- с внутренними перетечками жидкости внутри насоса через зазоры подвижных элементов;
- с возникновением силы трения между подвижными элементами насоса;
- +с деформацией потока рабочей жидкости в насосе и с трением жидкости о стенки;
- с непостоянным расходом жидкости в нагнетательном трубопроводе.
- 4. Мощность, которая отводится от насоса в виде потока жидкости под давлением называется:

подведенная мощность;

+полезная мощность;

гидравлическая мощность;

механическая мощность.

5. Мощность, которая передается от приводного двигателя к валу насоса называется

полезная мощность;

+подведенная мощность;

гидравлическая мощность;

механическая мощность;

- 6. Определение потерь напора по длине.
- 7. Отверстия и истечения из них.
- 8. Истечение из малых отверстий в тонкой стенке при постоянном

Напоре.

9. Насадки, скорость и расход при истечении жидкости через насадки при

постоянном напоре

- 10. Классификация труб
- 11. Скорость и расход при истечении жидкости из очень коротких труб при постоянном напоре
- 12. Истечение жидкости из малых отверстий переменном напоре.
- 13. Определение времени опорожнения сосудов постоянном напоре.
- 14. Расчет насосной установки
- 15. Расчет длинных трубопроводов
- 16. Расчет трубопроводов с непрерывной раздачей жидкости по пути
- 17. Расчет тупиковых трубопроводов

- 18. Расчет кольцевых трубопроводов
- 19. Расчет трубопроводов с насосной подачей воды
- 20. Гидравлический удар в трубах.
- 21. Индикаторная диаграмма позволяет:

следить за равномерностью подачи жидкости;

определить максимально возможное давление, развиваемое насосом;

устанавливать условия бескавитационной работы;

+диагностировать техническое состояние насоса.

22. Индикаторная диаграмма поршневого насоса это:

график изменения давления в цилиндре за один ход поршня; +график изменения давления в цилиндре за один полный оборот кривошипа;

график, полученный с помощью специального прибора – индикатора;

график изменения давления в нагнетательном трубопроводе за полный оборот кривошипа.

23. Агрегат, в котором механическая энергия передается от протекающей жидкости рабочему органу это:

насос

+гидромотор

гидроаккумулятор

гидрораспределитель

24. Насосы, в которых жидкость в камере движется под силовым воздействием и имеет постоянное сообщение со входным и выходным патрубками, называют:

объемными

поршневыми

+динамическими

Кинематическими

25. Явление, представляющее собой процесс нарушения сплошности течения жидкости, который происходит там, где давление, понижаясь, достигает давления насыщенных паров жидкости, называют:

+ кавитация

гидроудар

турбулентность

вязкость

- 26. Построение характеристик насосов при последовательном соединение
- 27. Построение характеристик насосов при параллельном соединение
- 28. Прямой и непрямой гидравлический удар, борьба с гидравлическим ударом.
- 29. Характеристика гидравлического удара.
- 30. Область применения лопастных и объемных гидромашин, их преимущества и недостатки.
- 31. Устройство, назначение и принцип действия пластинчатых (лопаточных насосов)
- 32. Методы регулирования режима работы объемного насоса.

- 33. Методы регулирования режима работы динамического насоса.
- 34. Пересчет характеристик центробежного насоса на другое значение частоты вращения.
- 35. Подобие в лопастных насосах. Формулы пропорциональности.
- 36. Неустойчивая работа насосной установки (помпаж).
- 37. Баланс энергии (мощности) в лопастном насосе, потери энергии, КПД насоса.
- 38. Проверка всасывающей линии насоса.
- 39. Кавитация в насосе.
- 40. Допустимая высота всасывания насоса.
- 41. Ротаметр прибор для определения:

температуры жидкости

плотность жидкости

вязкости жидкости

+ объемного расхода

42. Трубка пито установленная в открытом русле — это прибор для измерения:

температуры жидкости

плотность жидкости

+скоростного напора

объемного расхода

43. Трубка Пито – Прандтля — это прибор для измерения:

температуры жидкости

плотность жидкости

+динамического давления

вязкости жидкости

44. Труба Вентури — это прибор для измерения:

температуры жидкости

плотность жидкости

вязкости жидкости

+объемного расхода

45. Если диаметр трубы увеличился в два раза, то скорость:

уменьшится в 2 раза

увеличится в 2 раза

уменьшится в 4 раза

не изменится

- 46. Методы кинематического исследования течения жидкости
- 47. Кинематика жидкости.
- 48. Уравнение Бернулли для потока идеальной жидкости
- 49. Уравнение Бернулли для потока вязкой жидкости, физический смысл
- 50. Расход и средняя скорость.
- 51. Полное и манометрическое давление, вакуум, пьезометрическая и

вакуумметрическая высота

52. Основное уравнение гидростатики, энергетический и геометрический

Смысл.
53. Гидростатическое давление
54. Силы, действующие на покоящуюся жидкость
55. Условия применения уравнения Бернулли
56. Давление жидкости на криволинейную цилиндрическую
поверхность
57. Дроссельное регулирование
58. Объемное регулирование
1 * 1
1
59. Гидравлические аккумуляторы 60. Коэффициенты сжимаемости

4. Методические материалы, определяющие процедуры оценивания уровня достижения компетенций

Многообразие изучаемых тем, видов занятий, индивидуальных способностей студентов, обуславливает необходимость оценивания знаий, умений, навыков с помощью системы процедур, контрольных мероприятий, различных технологий и оценочных средств.

 Таблица 3 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Виды занятий и контрольных мероприятий	Оцениваемые результаты обучения	Описание процедуры оценивания
Лекционное занятие (посещение лекций)	Знание теоретического материала по пройденным темам	Проверка конспектов лекций, тестирование
Выполнение практических (лабораторных) работ	Основные умения и навыки, соответствующие теме работы	Проверка отчета, устная (письменная) защита выполненной работы, тестирование
Самостоятельная работа (выполнение индивидуальных, дополнительных и творческих заданий)	Знания, умения и навыки, сформированные во время самоподготовки	Проверка полученных результатов, рефератов, контрольных работ, курсовых работ (проектов), индивидуальных домашних заданий, эссе, расчетнографических работ, тестирование
Промежуточная аттестация	Знания, умения и навыки соответствующие изученной дисциплине	Экзамен или зачет, с учетом результатов текущего контроля, в традиционной форме или компьютерное тестирование

В процессе изучения дисциплины предусмотрены следующие формы контроля: текущий, промежуточный контроль, контроль самостоятельной работы студентов.

Текущий контроль успеваемости обучающихся осуществляется по всем видам контактной и самостоятельной работы, предусмотренным рабочей программой дисциплины. Текущий контроль успеваемости осуществляется преподавателем, ведущим аудиторные занятия.

Текущий контроль успеваемости может проводиться в следующих формах:

- устная (устный опрос, собеседование, публичная защита, защита письменной работы, доклад по результатам самостоятельной работы и т.д.);

- письменная (письменный опрос, выполнение, расчетно-проектировочной и расчетно-графической работ и т.д.);
 - тестовая (устное, письменное, компьютерное тестирование).

Результаты текущего контроля успеваемости фиксируются в журнале занятий с соблюдением требований по его ведению.

Устная форма позволяет оценить знания и кругозор студента, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Проводятся преподавателем с обучающимся на темы, связанные с изучаемой дисциплиной, рассчитана на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Уровень знаний, умений и навыков обучающегося при устном ответе во время промежуточной аттестации определяется оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» по следующим критериям:

Оценка «5» (отлично)ставится, если:

- -полно раскрыто содержание материала;
- -материал изложен грамотно, в определенной логической последовательности;
- -продемонстрировано системное и глубокое знание программного материала;
- -точно используется терминология;
- -показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации;
- -продемонстрировано усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость компетенций, умений и навыков;
 - -ответ прозвучал самостоятельно, без наводящих вопросов;
- –продемонстрирована способность творчески применять знание теории к решению профессиональных задач;
 - -продемонстрировано знание современной учебной и научной литературы;
- -допущены одна две неточности при освещении второстепенных вопросов, которые исправляются по замечанию.

Оценка «4» (хорошо) ставится, если:

- -вопросы излагаются систематизированно и последовательно;
- -продемонстрировано умение анализировать материал, однако не все выводы носят аргументированный и доказательный характер;
 - -продемонстрировано усвоение основной литературы.
- -ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие содержание ответа; допущены один –два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов, которые легко исправляются по замечанию преподавателя.

Оценка «3» (удовлетворительно) ставится, если:

- -неполно или непоследовательно раскрыто содержание материала, но показано
- общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала;
 - -усвоены основные категории по рассматриваемому и дополнительным вопросам;
- -имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после нескольких наводящих вопросов;
- –при неполном знании теоретического материала выявлена недостаточная сформированность компетенций, умений и навыков, студент не может применить теорию в новой ситуации;
 - -продемонстрировано усвоение основной литературы

Оценка «2» (неудовлетворительно) ставится, если:

-не раскрыто основное содержание учебного материала;

- -обнаружено незнание или непонимание большей или наиболее важной части учебного материала;
- -допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов.

-не сформированы компетенции, умения и навыки.

Письменная форма приучает к точности, лаконичности, связности изложения мысли. Письменная проверка используется во всех видах контроля и осуществляется как в аудиторной, так и во внеаудиторной работе. Письменные работы могут включать: диктанты, контрольные работы, эссе, рефераты, курсовые работы, отчеты по практикам, отчеты по научно-исследовательской работе студентов.

Контрольная работа - средство проверки умений применять полученные знания для решения задач определенного типа по теме, разделу или всей дисциплины. Контрольная работа — письменное задание, выполняемое в течение заданного времени (в условиях аудиторной работы — от 30 минут до 2 часов, от одного дня до нескольких недель в случае внеаудиторного задания). Как правило, контрольная работа предполагает наличие определенных ответов и решение задач.

	Критерии оцен	ки выполнения к	онтрольнои р	аооты:		
	□соответствие	предполагаемым	ответам;			
	□правильное	использование	алгоритма	выполнения	действий	(методики,
технол	огии и т.д.);					
	□логика рассух	кдений;				
	□неординарно	сть подхода к реп	цению;			
	- правильность	оформления рабо	оты.			
	Расчетно-графи	ическая работа -	средство про	верки умений	применять	полученные
знания	по заранее опре	еделенной методі	ике для реше	ния задач или з	ваданий по г	модулю.
	Критерии оцен	ки:				
	□понимание ме	етодики и умение	е ее правильн	о применить;		
	□качество офо	ормления (аккур	атность, лог	ччность, для	чертежно-і	графических
работ с	соответствие тре	ебованиям единой	й системы ко	нструкторской	документа	ции);
-	□достаточност	ь пояснений.			•	ŕ

Курсовой проект/работа является важным средством обучения и оценивания образовательных результатов. Выполнение курсового проекта/работы требует не только знаний, но и многих умений, являющихся компонентами как профессиональных, так и общекультурных компетенций (самоорганизации, умений работать с информацией (в том числе, когнитивных умений анализировать, обобщать, синтезировать новую информацию), работать сообща, оценивать, рефлексировать).

Критерии оценки содержания и результатов курсовой работы могут различаться в зависимости от ее характера:

- —реферативно-теоретические работы на основе сравнительного анализа изученной литературы рассматриваются теоретические аспекты по теме, история вопроса, уровень разработанности проблемы в теории и практике, анализ подходов к решению проблемы с позиции различных теорий и т.д.;
- -практические работы кроме обоснований решения проблемы в теоретической части необходимо привести данные, иллюстрацию практической реализации теоретических положений на практике (проектные, методические, дидактические и иные разработки);
- —опытно-экспериментальные работы предполагается проведение эксперимента и обязательный анализ результатов, их интерпретации, рекомендации по практическому применению.

Примерные критерии оценивания курсовых работ/проектов складываются из трех составных частей:

1) оценка процесса выполнения проекта, осуществляемая по контрольным точкам, распределенным по времени выполнения проекта (четыре контрольные точки

или еженедельно), проводится по критериям:
□умение самоорганизации, в том числе, систематичность работы в соответствии с
планом,
□ самостоятельность,
□активность интеллектуальной деятельности,
□творческий подход к выполнению поставленных задач,
□умение работать с информацией,
□умение работать в команде (в групповых проектах);
2) оценка полученного результата (представленного в пояснительной записке):
□конкретность и ясность формулировки цели и задач проекта, их соответствие
теме;
□обоснованность выбора источников (полнота для раскрытия темы, наличие
новейших работ
-журнальных публикаций, материалов сборников научных трудов и т.п.);
□глубина/полнота/обоснованность раскрытия проблемы и ее решений;
□соответствие содержания выводов заявленным в проекте целям и задачам;
□ наличие элементов новизны теоретического или практического характера;
□практическая значимость; оформление работы (стиль изложения, логичность
грамотность, наглядность представления информации
-графики, диаграммы, схемы, рисунки, соответствие стандартам по оформленик
текстовых и графических документов);
3) оценки выступления на защите проекта, процедура которой имитирует процесс
профессиональной экспертизы:
□соответствие выступления заявленной теме, структурированность, логичность
доступность, минимальная достаточность;
□уровень владения исследуемой темой (владение терминологией, ориентация в
материале, понимание закономерностей, взаимосвязей и т.д.);
\Box аргументированность, четкость, полнота ответов на вопросы;
□культура выступления (свободное выступление, чтение с листа, стиль подачи
материала и т.д.).
Тестовая форма - позволяет охватить большое количество критериев оценки и

Тестовая форма - позволяет охватить большое количество критериев оценки и допускает компьютерную обработку данных. Как правило, предлагаемые тесты оценки компетенций делятся на психологические, квалификационные (в учебном процессе эту роль частично выполняет педагогический тест) и физиологические.

Современный тест, разработанный в соответствии со всеми требованиями, может включать задания различных типов а также задания, оценивающие различные виды деятельности учащихся (например, коммуникативные умения, практические умения).

В обычной практике применения тестов для упрощения процедуры оценивания как правило используется простая схема:

- отметка «3», если правильно выполнено 50 –70% тестовых заданий;
- -«4», если правильно выполнено 70 –85 % тестовых заданий;
- -«5», если правильно выполнено 85 –100 % тестовых заданий

Шкала оценивания

Предел длительности контроля	45 мин.
Предлагаемое количество заданий из одного	30, согласно плана
контролируемого подэлемента	
Последовательность выборки вопросов из	Определенная по разделам, случайная
каждого раздела	внутри раздела
Критерии оценки:	Выполнено верно заданий
«5», если	(85-100)% правильных ответов
«4», если	(70-85)% правильных ответов
«3», если	(50-70)% правильных ответов

Промежуточная аттестация — это элемент образовательного процесса, призванный определить соответствие уровня и качества знаний, умений и навыков обучающихся, установленным требованиям согласно рабочей программе дисциплины. Промежуточная аттестация осуществляется по результатам текущего контроля.

Конкретный вид промежуточной аттестации по дисциплине определяется рабочим учебным планом и рабочей программой дисциплины.

Зачет, как правило, предполагает проверку усвоения учебного материала И семинарских занятий, выполнения лабораторных, расчетнопрактических проектировочных и расчетно-графических работ, курсовых проектов (работ), а также проверку результатов учебной, производственной или преддипломной практик. Зачет, как правило, выставляется без опроса студентов по результатам контрольных работ, других работ выполненных студентами в течение семестра, а также по результатам текущей успеваемости на семинарских занятиях, при условии, что итоговая оценка студента за работу в течение семестра (по результатам контроля знаний) больше или равна 60%. Оценка, выставляемая за зачет, может быть как квалитативного типа (по шкале наименований «зачтено»/ «не зачтено»), так и квантитативного (т.н. дифференцированный зачет с выставлением отметки по шкале порядка - «отлично, «хорошо» и т.д.).

Экзамен, как правило, предполагает проверку учебных достижений обучаемых по всей программе дисциплины и преследует цель оценить полученные теоретические знания, навыки самостоятельной работы, развитие творческого мышления, умения синтезировать полученные знания и их практического применения.

Экзамен в устной форме предполагает выдачу списка вопросов, выносимых на экзамен, заранее (в самом начале обучения или в конце обучения перед сессией). Экзамен включает, как правило, две части: теоретическую (вопросы) и практическую (задачи, практические задания, кейсы и т.д.). Для подготовки к ответу на вопросы и задания билета, который студент вытаскивает случайным образом, отводится время в пределах 30 минут. После ответа на теоретические вопросы билета, как правило, ему преподаватель задает дополнительные вопросы. Компетентностный подход ориентирует на то, чтобы экзамен обязательно включал деятельностный компонент в виде задачи/ситуации/кейса для решения.

В традиционной системе оценивания именно экзамен является наиболее значимым оценочным средством и решающим в итоговой отметке учебных достижений студента. В условиях балльно-рейтинговой системы балльный вес экзамена составляет 25 баллов.

Оценочные материалы разработаны в соответствии с ФГОС ВО по направлению подготовки 35.04.06 Агроинженерия

Разработал (и): Доцент, к.т.н. Аширов И.З.

Оценочные материалы рассмотрены и одобрены на заседании кафедры Механизация технологических процессов в АПК, протокол № 8 от 23.03.2020

Зав. кафедрой Герасименко И.В.

Оценочные материалы рассмотрены и утверждены на заседании учебнометодической комиссии Инженерный, протокол \mathfrak{N}_{2} 8 от 27.03.2020

Декан факультета Инженерный

Козловцев А.П.