ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

Б1.В.07 Современный автоматизированный электропривод

Направление подготовки (специальность) 35.04.06 Агроинженерия

Профиль подготовки (специализация) «Электротехнологии и электрооборудование в сельском хозяйстве»

Квалификация выпускника магистр

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

ОПК-4 - способностью использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении стандартных и нестандартных профессиональных задач

Знать:

Этап 1: знать классификацию электрических машин;

Этап 2: знать современные элементы конструкций, принципы работы и область применения электрических машин и установок

Уметь:

Этап 1: уметь разбираться в классификации особенностей современных двигателей;

Этап 2: уметь пользоваться справочной технической документацией

Владеть:

Этап 1: владеть навыками правильной сборки электрических схем;

Этап 2: владеть навыками подбора измерительных приборов и систем автоматизированного управления электроприводами

ПК-7 - способностью проведения инженерных расчетов для проектирования систем и объектов

Знать:

Этап 1: знать особенность проведения расчетов параметров электрических машин;

Этап 2: знать принципы автоматического управления электроприводом машин, агрегатов и поточных линий в с. х. производстве

Уметь:

Этап 1: уметь подключать электрический двигатель к сети с аппаратурой автоматизированного управления и защиты;

Этап 2: уметь выбирать для соответствующего механизма современный автоматизированный электропривод

Владеть:

Этап 1: владеть методами расчета и анализа параметров электрических машин

Этап 2: владеть навыками планирования эксперимента, его выполнения и оценки результатов измерений

2. Показатели и критерии оценивания компетенций на различных этапах их формирования

Таблица 1 - Показатели и критерии оценивания компетенций на 1 этапе

Наименование	Критерии	Показатели	Процедура
компетенции	сформированности		оценивания
1	компетенции		4
1	2	3	4
ОПК-4 -	способность	Знать:	Устный опрос,
способностью	использовать законы	классификацию	проверка
использовать законы	и методы	электрических	контрольных работ,
и методы	математики,	машин	тестирование
математики,	естественных,	Уметь: разбираться в	
естественных,	гуманитарных и	классификации	
гуманитарных и	экономических наук	особенностей	
экономических наук	при решении	современных	

при решении	стандартных и	двигателей	
стандартных и	нестандартных	Владеть: навыками	
нестандартных	профессиональных	правильной сборки	
профессиональных	задач	электрических схем	
задач		_	
ПК-7 -	способность	Знать: особенность	Устный опрос,
способностью	проведения	проведения расчетов	проверка
проведения	инженерных	параметров	контрольных работ,
инженерных	расчетов для	электрических	тестирование
расчетов для	проектирования	машин	
проектирования	систем и объектов	Уметь: подключать	
систем и объектов		электрический	
		двигатель к сети с	
		аппаратурой	
		автоматизированного	
		управления и защиты	
		Владеть: методами	
		расчета и анализа	
		параметров	
		электрических	
		машин	

Таблица 2 - Показатели и критерии оценивания компетенций на 2 этапе

Наименование	Критерии	Показатели	Процедура
компетенции	сформированности		оценивания
	компетенции		
1	2	3	4
ОПК-4 -	способность	Знать: современные	Устный опрос,
способностью	использовать законы	элементы	тестирование,
использовать законы	и методы	конструкций,	проверка
и методы	математики,	принципы работы и	контрольных работ,
математики,	естественных,	область применения	экзамен, с учетом
естественных,	гуманитарных и	электрических	результатов
гуманитарных и	экономических наук	машин и установок	текущего контроля,
экономических наук	при решении	Уметь: пользоваться	в традиционной
при решении	стандартных и	справочной	форме
стандартных и	нестандартных	технической	
нестандартных	профессиональных	документацией	
профессиональных	задач	Владеть: навыками	
задач		подбора	
		измерительных	
		приборов и систем	
		автоматизированного	
		управления	
		электроприводами	
ПК-7 -	способность	Знать: принципы	Устный опрос,
способностью	проведения	автоматического	тестирование,
проведения	инженерных	управления	проверка
инженерных	расчетов для	электроприводом	контрольных работ,
расчетов для	проектирования	машин, агрегатов и	экзамен, с учетом
проектирования	систем и объектов	поточных линий в с.	результатов

систем и объектов	х. производстве	текущего контроля,
	Уметь: выбирать для	в традиционной
	соответствующего	форме
	механизма	
	современный	
	автоматизированный	
	электропривод	
	Владеть: навыками	
	планирования	
	эксперимента, его	
	выполнения и	
	оценки результатов	
	измерений	

3. Шкала оценивания.

Университет использует систему оценок соответствующего государственным регламентам в сфере образования и позволяющую обеспечивать интеграцию в международное образовательное пространство. Система оценок и описание систем оценок представлены в таблицах 3 и 4.

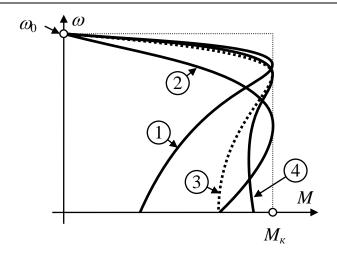
Таблица 3 - Система оценок

Диапазон	Экзамен		
оценки,	европейская шкала	традиционная шкала	Зачет
в баллах	(ECTS)		
[95;100]	A - (5+)	OTHUMA (5)	
[85;95)	B - (5)	отлично – (5)	201122112
[70,85)	C – (4)	хорошо – (4)	зачтено
[60;70)	D – (3+)	vioriotroputani na (2)	
[50;60)	\mathbf{E} – (3)	удовлетворительно – (3)	Handimaria
[33,3;50)	FX – (2+)	ноудордотроритод но (2)	незачтено
[0;33,3)	\mathbf{F} – (2)	неудовлетворительно – (2)	

Таблица 4 - Описание системы оценок

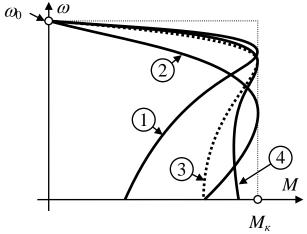
ECTS	Описание оценок	Традиционная шкала
A	Превосходно – теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.	отлично (зачтено)
В	Отлично — теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество выполнения большинства из них оценено	0ГЛ

	числом баллов, близким к максимальному.	
C	Хорошо — теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено максимальным числом баллов, некоторые виды заданий выполнены с ошибками.	хорошо (зачтено)
D	Удовлетворительно – теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки.	удовлетворительно (зачтено)
E	Посредственно – теоретическое содержание курса освоено частично, некоторые практические навыки работы не сформированы, многие предусмотренные программой обучения учебные задания не выполнены, либо качество выполнения некоторых из них оценено числом баллов, близким к минимальному	удовлетворительно (незачтено)
FX	Условно неудовлетворительно — теоретическое содержание курса освоено частично, необходимые практические навыки работы не сформированы, большинство предусмотренных программой обучения учебных заданий не выполнено, либо качество их выполнения оценено числом баллов, близким к минимальному; при дополнительной самостоятельной работе над материалом курса возможно повышение качества выполнения учебных заданий.	неудовлетворительно (незачтено)
F	Безусловно неудовлетворительно — теоретическое содержание курса не освоено, необходимые практические навыки работы не сформированы, все выполненные учебные задания содержат грубые ошибки, дополнительная самостоятельная работа над материалом курса не приведет к какому-либо значимому повышению качества выполнения учебных заданий.	неудовле


Таблица 5 – Формирование шкалы оценивания компетенций на различных этапах

			Фор	мирование о	ценки		
Этапы		незачтено	зачтено)		
формирования	неудовле	творительно	удовлетво	рительно	хорошо	ОТЛИ	ТЧНО
компетенций	F(2)	FX(2+)	E(3)*	D(3+)	C(4)	B(5)	A(5+)
	[0;33,3)	[33,3;50)	[50;60)	[60;70)	[70;85)	[85;95)	[95;100)
Этап-1	0-16,5	16,5-25,0	25,0-30,0	30,0-35,0	35,0-42,5	42,5-47,5	47,5-50
Этап 2	0-33,3	33,3-50	50-60	60-70	70-85	85-95	95-100

4. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.


Таблица 6.1 - ОПК-4 - способностью использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении стандартных и нестандартных профессиональных задач. Этап 1

Наименование	Формулировка типового контрольного задания или иного
знаний, умений,	материала, необходимого для оценки знаний, умений, навыков и
навыков и (или)	(или) опыта деятельности
опыта деятельности	
Знать:	1. Выбор электродвигателя по моменту.
классификацию	2. Определение понятия электропривода. Исторические вехи
электрических	развития электропривода.
машин	3. Классификация электроприводов по степени сближения с
	рабочей машиной.
	4. На рисунке изображены механические характеристики
	асинхронного короткозамкнутого двигателя с различными пазами
	на роторе: круглый паз, глубокий паз и повышенное
	сопротивление беличьей клетки, глубокий паз и двойная беличья
	клетка.
	Укажите характеристику двигателя с двойной беличьей
	клеткой.

- 1) 1
- 2) 2
- 3) 3 4) 4 (100%)
- 5. На рисунке изображены механические характеристики асинхронного короткозамкнутого двигателя с различными пазами на роторе: круглый паз, глубокий паз и повышенное сопротивление беличьей клетки, глубокий паз и двойная беличья клетка.

Укажите характеристику двигателя с круглым пазом и повышенным сопротивлением беличьей клетки.

- 1)
- 2) **2** (100%)
- 3) 3
- 4) 4
- 6. Что произойдет с асинхронным короткозамкнутым двигателем, работающим от сети с нагрузкой $M_C \leq 0,5 M_H$, в случае обрыва одной фазы напряжения питания?
 - 1) Двигатель остановится ($\omega = 0$)
 - 2) Скорость двигателя уменьшается ($\omega \approx 0.5\omega_C$)
 - 3) Скорость двигателя практически не изменится $(\omega \approx const)$ (50%)
 - 4) Ток двигателя не изменится $(I_1 \approx const)$
 - 5) Ток двигателя увеличится

	6) Ток двигателя уменьшится
Уметь: разбираться в	7. Режимы работы электродвигателей по нагрузке. Выбор
классификации	электродвигателя по режиму работы.
особенностей	8. Взаимодействие электродвигателя с рабочей машиной.
современных	Основное уравнение движения электропривода.
двигателей	9. Определение потребной мощности электродвигателя при
	длительной нагрузке.
	10. Каким типовым динамическим звеном может быть представлен асинхронный электромеханический преобразователь,
	работающий при скольжениях, меньших по модулю критического $ S < S_K $?
	1) интегрирующим;
	2) дифференцирующим;
	3) апериодическим;
	4) колебательным.
	11. При питании асинхронного двигателя от источника тока
	величина тока статора обычно выбирается гораздо большей тока
	холостого хода, и двигатель работает в режиме глубокого
	насыщения.
	В какую область смещается критическая точка двигателя в
	режиме насыщения по отношению к критической точке
	характеристики ненасыщенного режима?
	1) в область меньших s_k и меньших M_k ;
	2) в область меньших s_k и больших M_k ;
	3) в область больших s_{κ} и меньших M_{κ} ;
	4) в область больших \mathbf{s}_{κ} и больших \mathbf{M}_{κ} . 12. Каким выражением описываются потери энергии,
	выделяющиеся за время реверса вхолостую в якоре (роторе)
	двигателя, питающегося от сети?
	Здесь $W_{\kappa} = \frac{J_{\Sigma} \cdot \omega_0^2}{2}$
	1) $\Delta A_{\mathfrak{I}} = W_{K}$
	2) $\Delta A_{\rm ЭЛ} = 2 \cdot W_{\rm K}$
	3) $\Delta A_{\rm ЭЛ} = 3 \cdot W_{\rm K}$
	4) $\Delta A_{3\Pi} = 4 \cdot W_{K} (100\%)$
Навыки: владеть	13. Выбор электродвигателя по условиям окружающей среды.
навыками	14. Анализ механических характеристик электродвигателей.
правильной сборки	15. Общие сведения о коэффициенте мощности и значение
электрических схем	борьбы за повышение коэффициента мощности.
	16. Каким выражением описываются потери энергии,
	выделяющиеся за время торможения противовключением вхолостую в якоре (роторе) двигателя, питающегося от сети?
	Здесь $W_{\kappa} = \frac{J_{\Sigma} \cdot \omega_0}{2}$
	$ \begin{array}{ccc} & 2 \\ 1) & \Delta A_{\mathfrak{I}} &= W_{K} \end{array} $
	2) $\Delta A_{\mathfrak{I}} = 2 \cdot W_{\kappa}$

3) $\Delta A_{\mathfrak{I}} = 3 \cdot W_{K} (100\%)$
4) $\Delta A_{\Im\Pi} = 4 \cdot W_{K}$
17. Каким выражением определяются потери энергии,
выделяющиеся за время динамического торможения вхолостую в якоре (роторе) двигателя, питающегося от сети? Здесь
$\mathbf{W}_{\kappa} = \frac{\mathbf{J}_{\Sigma} \cdot \omega_0}{2}$
1) $\Delta A_{9\pi} = W_{K} (100\%)$
$2) \Delta A_{\mathfrak{I}} = 2 \cdot W_{K}$
3) $\Delta A_{\mathfrak{I}} = 3 \cdot W_{K}$
4) $\Delta A_{3JI} = 4 \cdot W_{K}$

Таблица 6.2 - ОПК-4 - способностью использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении стандартных и нестандартных профессиональных задач. Этап 2

Наименование	Формулировка типового контрольного задания или иного
знаний, умений,	материала, необходимого для оценки знаний, умений, навыков и
навыков и (или)	(или) опыта деятельности
опыта деятельности	
Знать: современные	19. Статическая устойчивость системы электропривода.
элементы	20. Факторы, влияющие на величину коэффициента мощности
конструкций,	асинхронного электродвигателя.
принципы работы и	21. Обзор типов электродвигателей, применяемых в сельском
область применения	хозяйстве.
электрических	22. Чему равны потери электрической энергии в роторе
машин и установок	многоскоростного асинхронного двигателя, питающегося от сети,
	при двухступенчатом пуске? Здесь $W_{_{\rm K}} = \frac{J_{\Sigma} \cdot \omega_0}{2}$
	input applied from hijeries. Speed Wik 2
	1) $\Delta A_{2\pi} = W_{K}$
	2) $\Delta A_{2\pi} = 0.75 \cdot W_{K}$
	3) $\Delta A_{2\pi} = 0.5 \cdot W_{K} (100\%)$
	4) $\Delta A_{2\pi} = 0.33 \cdot W_{K}$
	5) $\Delta A_{2\pi} = 0.25 \cdot W_{K}$
	23. Чему равны потери электрической энергии в роторе
	многоскоростного асинхронного двигателя, питающегося от сети,
	при четырехступенчатом пуске? Здесь $W_{\kappa} = \frac{J_{\Sigma} \cdot \omega_0}{2}$
	1) $\Delta A_{2\pi} = W_{\kappa}$
	$2) \Delta A_{2\Pi}^{2\Pi} = 0.75 \cdot W_{K}$
	3) $\Delta A_{2\Pi} = 0.5 \cdot W_{K}$
	4) $\Delta A_{2\pi} = 0.33 \cdot W_{K}$
	5) $\Delta A_{2\pi} = 0.25 \cdot W_{K} (100\%)$

	24. Для каких целей можно использовать выражение				
	$\overline{\Pi B_1}$				
	$M \geq M + \frac{\Phi}{2}$				
	$M_{\Pi KH} \ge M_{\Pi K \dot{\Phi}} \cdot \sqrt{\frac{\Pi B_{\dot{\Phi}}}{\Pi B_{\dot{H}}}}$				
	1) выбор двигателя по нагрузочной диаграмме механизма				
	2) проверка двигателя по нагреву				
	3) проверка двигателя по перегрузочной способности				
	4) определение эквивалентного момента				
Уметь: пользоваться	25. Способы улучшения коэффициента мощности.				
справочной	26. Режимы работы электродвигателя постоянного тока				
технической	параллельного возбуждения по моменту.				
документацией	27. Рубильники, выключатели, переключатели, кнопки.				
	28. Для каких целей можно использовать выражение				
	ΠB_{d_1}				
	$P_{\Pi KH} \ge P_{\Pi K \dot{\Phi}} \cdot \sqrt{\frac{\Pi B_{\dot{\Phi}}}{\Pi B_{H}}}$				
	IIΚΗ IIΚΨ IIIB				
	1) выбор двигателя по нагрузочной диаграмме механизма				
	2) проверка двигателя по нагреву				
	3) проверка двигателя по перегрузочной способности				
	4) определение эквивалентной мощности				
	29. Что дает применение маховика в электроприводах с ударной нагрузкой?				
	1) выравнивание нагрузочной диаграммы электропривода				
	2) увеличение быстродействия электропривода				
	3) уменьшение потерь энергии в двигателе и сети				
	4) увеличение амплитуды колебаний скорости				
	5) уменьшение установленной мощности двигателя				
	30. Каким образом можно оптимизировать потери в асинхронном короткозамкнутом двигателе?				
	1) введением добавочных сопротивлений в цепь статора;				
	2) регулированием частоты питающего напряжения;				
	3) регулированием величины напряжения на статоре;				
	4) применением каскадных схем.				
Навыки: владеть	31. Реверсирование электродвигателя постоянного тока				
навыками подбора	параллельного возбуждения.				
измерительных	32. Плавкие предохранители. Устройства, характеристики, расчет,				
приборов и систем	выбор.				
автоматизированного	33.Вывод уравнения механической характеристики трехфазного				
управления	асинхронного электродвигателя.				
электроприводами	34. Назовите преимущества системы Г-Д перед системой ТП-Д.				
	1) экономичность (КПД);				
	2) отсутствие искажений потребляемого из сети тока;				
	3) весогабаритные показатели;				
	4) быстродействие;				
	5) 5) высокий сояф.				
	35. Назовите недостатки системы ТП-Д.				
	1) низкое быстродействие;				
	2) значительное искажение формы потребляемого из сети тока;				
	3) низкий КПД;				
	4) низкий соѕф;				

5) высокие эксплуатационные расходы;
6) наличие зоны прерывистого тока в области малых
нагрузок.
36. Сколько управляемых полупроводниковых ключей
необходимо для создания нереверсивного электропривода по
системе «импульсный регулятор напряжения – двигатель» с
возможностью рекуперации энергии в сеть постоянного тока?
1) 1;
2) 2; (100%)
3) 3;
4) 4;
5) 5

Таблица 7.1 - ПК-7 - способностью проведения инженерных расчетов для проектирования систем и объектов. Этап 1

проектирования	я систем и ооъектов. Этап 1			
Наименование	Формулировка типового контрольного задания или иного			
знаний, умений,	материала, необходимого для оценки знаний, умений, навыков и			
навыков и (или)	(или) опыта деятельности			
опыта деятельности				
Знать: особенность				
проведения расчетов	расчет, выбор.			
параметров	2. Схема управления электродвигателя постоянного тока			
электрических	параллельного возбуждения в функции ЭДС.			
машин	3. Схема управления асинхронным электродвигателем с помощью			
	магнитного пускателя.			
	4. Сколько силовых управляемых вентилей (тиристоров или			
	транзисторов) в схеме трехфазного преобразователя частоты с			
	непосредственной связью, собранного по трехфазной нулевой			
	схеме?			
	1) 6;			
	2) 12;			
	3) 18;			
	4) 24.			
	5. Назовите недостатки системы НПЧ-АД.			
	1) низкий КПД;			
	2) значительные искажения потребляемого из сети тока;			
	3) большие потери энергии при регулировании скорости;			
	4) необходимость в установке ФКУ;			
	5) высокие эксплуатационные расходы.			
	6. Какой закон регулирования частоты и питающего асинхронный			
	короткозамкнутый двигатель напряжения лучше всего применять			
	для нагрузки с постоянной мощностью при регулировании			
	скорости выше основной?			
	1) $\frac{U_1}{f_1} = \text{const};$			
	¹ 1			
	U,			
	2) $-\frac{1}{2}$ = const;			
	2) $\frac{U_1}{f_1^2} = \text{const};$			
	3) $\frac{U_1}{\sqrt{f}} = \text{const}; (100\%)$			
	-/ f			

	4) $U_1 = \frac{U_{1H}}{f_{1-1}} \cdot f_1 + I_1 \cdot R_1$.			
	11н			
Уметь: подключать электрический двигатель к сети с аппаратурой автоматизированного управления и защиты	7. Схема управления электродвигателем с фазным ротором в функции тока. 8. Механические характеристики однофазного асинхронного электродвигателя. 9. Работа трехфазного электродвигателя в режиме однофазного. 10. В САУ двигателя постоянного тока по системе ТП-Д за малу некомпенсируемую постоянную времени Тµ принимается: 1) электромагнитная постоянная времени Тя; 2) электромагнитная постоянная времени Тв; 3) постоянная времени запаздывания системы управлен тиристорным преобразователем Тп;			
	4) электромеханическая постоянная времени _{ТМ};5) Тµ выбирается произвольно.			
	11. Какой регулятор имеет передаточную функцию $W(p) = \frac{K}{Tp}$?			
	1) ПИ-регулятор; 2) П-регулятор; 3) ПИД-регулятор; 4) И-регулятор. 12. Какой регулятор имеет передаточную функцию $W(p) = K \cdot (1 + \frac{1}{Tp})$?			
	1) П-регулятор; 2) И-регулятор;			
	3) ПИ-регулятор;4) ПД-регулятор.			
Навыки: владеть методами расчета и анализа параметров электрических машин	13. Устройство и принцип действия синхронного двигателя. 14. Механическая и угловая характеристики синхронного электродвигателя. 15. Режимы работы синхронного электродвигателя и регулирование частоты вращения. 16. Какой регулятор имеет передаточную функцию $W = K + \frac{1}{T_1 \cdot p} + T_2 \cdot p$?			
	 П-регулятор; И-регулятор; ПИД-регулятор; ПД-регулятор. Каким образом в системе управляемый преобразовательдвигатель постоянного тока можно регулировать скорость в зоне выше номинальной (ω>ω_н)? увеличивать напряжение на якоре U>U_я; уменьшать ток якоря I_я<i<sub>H;</i<sub> 			
	${f 3}$) уменьшать ток возбуждения ${f I}_B {<} {f I}_{BH};$ (100%) 4) увеличивать ток возбуждения ${f I}_B {>} {f I}_{BH};$			

Таблица 7.2 - ПК-7 - способностью проведения инженерных расчетов для проектирования систем и объектов. Этап 2

•	ГСИСТЕМ И ООЪЕКТОВ. ЭТАП 2	
Наименование	Формулировка типового контрольного задания или иного	
знаний, умений,	материала, необходимого для оценки знаний, умений, навыков и	
навыков и (или)	(или) опыта деятельности	
опыта деятельности		
Знать: принципы	19. Приведение моментов сопротивления к одной оси.	
автоматического	20. Общие сведения о нагреве электродвигателя. Классы	
управления	изоляции.	
электроприводом	21. Нагрев электродвигателя при различных нагрузках.	
машин, агрегатов и	22. В конструкции асинхронной машины отсутствует:	
поточных линий в с.	1) Статор	
х. производстве	2) Ротор	
	3) Коллектор	
	4) Подшипниковые щиты	
	5) Обмотка ротора	
	23. Асинхронный электродвигатель с КЗР отличается от двигателя	
	c ΦP:	
	1) Железом статора	
	2) Железом ротора	
	3) Обмоткой статора	
	4) Подшипниковыми щитами	
	5) Обмоткой ротора	
	6) Валом	
	24. Пусковой конденсатор в однофазном электродвигателе	
	подключается:	
	1) Параллельно пусковой обмотке	
	2) Параллельно рабочей обмотке	
	3) Последовательно с пусковой обмоткой	
	4) Последовательно с рабочей обмоткой	
V	5) Последовательно с пусковой и рабочей обмотками	
Уметь: выбирать для	25. Исполнительный двигатель переменного тока.	
соответствующего	26. Система управления технологическими машинами и	
механизма	приборами при обработке и сборке деталей.	
современный	27. Типовая структура автоматизированных технологических	
автоматизированный	комплексов.	
электропривод	28. В синхронной машине обмотка возбуждения:	
	1) Подключена к сети постоянного тока	
	2) К однофазной сети переменного тока	
	3) К трёхфазной сети переменного тока	
	4) Последовательно с обмоткой статора	
	5) К добавочному сопротивлению	
	29. Универсальный коллекторный электродвигатель отличается от	
	сериесного электродвигателя:	
	1) Числом обмоток возбуждения	
	2) Числом витков обмотки возбуждения	
	3) Устройством якоря	
	4) Коллектором	
	5) Конструкцией статора	
	30. Исполнительный электродвигатель постоянного тока с	
	обычным ротором отличается от электродвигателя постоянного	
	тока общепромышленного исполнения:	

	1) 770			
	1) Железом статора			
	2) Устройством якоря			
	3) Коллектором			
	4) Обмоткой статора			
	5) Обмоткой якоря			
Навыки: владеть	31. Нерегулируемые и регулируемые электроприводы.			
навыками	32. Программируемые контроллеры и промышленные			
планирования	компьютеры в системах электропривода.			
эксперимента, его	33. Математические модели и структура систем управления			
выполнения и оценки	электроприводами.			
результатов	34. Конструктивное исполнение асинхронного генератора			
измерений	аналогично конструкции:			
_	1) Асинхронного исполнительного двигателя			
	2) Трёхфазного асинхронного электродвигателя			
	общепромышленного исполнения			
	3) Однофазного асинхронного электродвигателя			
	общепромышленного исполнения			
	4) Трёхфазного асинхронного электродвигателя с фазным ротором			
	35. Однофазный сельсин со скользящими контактами имеет:			
	1) Одну обмотку возбуждения и три обмотки синхронизации			
	2) Одну обмотку синхронизации и три обмотки возбуждения			
	3) Одну обмотку возбуждения и одну обмотку синхронизации			
	4) Две обмотки синхронизации и две обмотки возбуждения			
	36. Синхронный гистерезисный электродвигатель не имеет:			
	1) Обмотки на статоре			
	2) Обмотки возбуждения на роторе			
	3) Успокоительной обмотки на роторе			
	4) Контактных колец			
	5) Контактных колец и обмоток: успокоительной и			
	возбуждения			
	2000/1144-1111			

5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Многообразие изучаемых тем, видов занятий, индивидуальных способностей студентов, обуславливает необходимость оценивания знаний, умений, навыков с помощью системы процедур, контрольных мероприятий, различных технологий и оценочных средств.

Таблица 8 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности на 1 этапе формирования компетенции

Виды занятий и контрольных мероприятий	Оцениваемые результаты обучения	Описание процедуры оценивания
1	2	3
Лекционное занятие (посещение лекций)	Знание теоретического материала по пройденным темам	тестирование
Выполнение практических (лабораторных) работ	Основные умения и навыки, соответствующие теме работы	устная защита выполненной работы, тестирование

Самостоятельная работа	Знания, умения	И	Проверка контрольных работ,
(выполнение	навыки,		тестирование
индивидуальных,	сформированные в	o	
дополнительных	время самоподготовки		
заданий)			

Таблица 9 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности на 2 этапе формирования компетенции

Виды занятий и контрольных мероприятий	Оцениваемые результаты обучения	Описание процедуры оценивания
1	2	3
Лекционное занятие	Знание теоретического	тестирование
(посещение лекций)	материала по пройденным темам	
Выполнение	Основные умения и	Устная защита выполненной работы,
практических	навыки,	тестирование
(лабораторных) работ	соответствующие теме	
	работы	
Самостоятельная работа	Знания, умения и	Проверка контрольных работ,
(выполнение	навыки,	тестирование
индивидуальных,	сформированные во	
дополнительных	время самоподготовки	
заданий)		
Промежуточная	Знания, умения и	Экзамен, с учетом результатов
аттестация	навыки	текущего контроля, в традиционной
	соответствующие	форме или компьютерное
	изученной дисциплине	тестирование

В процессе изучения дисциплины предусмотрены следующие формы контроля: текущий, промежуточный контроль, контроль самостоятельной работы студентов.

Текущий контроль успеваемости обучающихся осуществляется по всем видам контактной и самостоятельной работы, предусмотренным рабочей программой дисциплины. Текущий контроль успеваемости осуществляется преподавателем, ведущим аудиторные занятия.

Текущий контроль успеваемости может проводиться в следующих формах:

- устная (устный опрос);
- тестовая (устное, компьютерное тестирование).

Результаты текущего контроля успеваемости фиксируются в журнале занятий с соблюдением требований по его ведению.

Устная форма позволяет оценить знания и кругозор студента, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Проводятся преподавателем с обучающимся на темы, связанные с изучаемой дисциплиной, рассчитана на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Уровень знаний, умений и навыков обучающегося при устном ответе во время промежуточной аттестации определяется оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» по следующим критериям:

Оценка «5» (отлично)ставится, если:

- -полно раскрыто содержание материала;
- -материал изложен грамотно, в определенной логической последовательности;

- -продемонстрировано системное и глубокое знание программного материала;
- -точно используется терминология;
- –показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации;
- –продемонстрировано усвоение ранее изученных сопутствующих вопросов,
 сформированность и устойчивость компетенций, умений и навыков;
 - -ответ прозвучал самостоятельно, без наводящих вопросов;
- –продемонстрирована способность творчески применять знание теории к решению профессиональных задач;
 - –продемонстрировано знание современной учебной и научной литературы;
- -допущены одна две неточности при освещении второстепенных вопросов, которые исправляются по замечанию.

Оценка «4» (хорошо) ставится, если:

- -вопросы излагаются систематизированно и последовательно;
- –продемонстрировано умение анализировать материал, однако не все выводы носят аргументированный и доказательный характер;
 - -продемонстрировано усвоение основной литературы.
- -ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие содержание ответа; допущены один –два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов, которые легко исправляются по замечанию преподавателя.

Оценка «3» (удовлетворительно) ставится, если:

- -неполно или непоследовательно раскрыто содержание материала, но показано
- общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала;
 - -усвоены основные категории по рассматриваемому и дополнительным вопросам;
- –имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после нескольких наводящих вопросов;
- -при неполном знании теоретического материала выявлена недостаточная сформированность компетенций, умений и навыков, студент не может применить теорию в новой ситуации;
 - продемонстрировано усвоение основной литературы

Оценка «2» (неудовлетворительно) ставится, если:

- -не раскрыто основное содержание учебного материала;
- -обнаружено незнание или непонимание большей или наиболее важной части учебного материала;
- -допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов.
 - -не сформированы компетенции, умения и навыки.

Тестовая форма - позволяет охватить большое количество критериев оценки и допускает компьютерную обработку данных. Как правило, предлагаемые тесты оценки компетенций делятся на психологические, квалификационные (в учебном процессе эту роль частично выполняет педагогический тест) и физиологические.

Современный тест, разработанный в соответствии со всеми требованиями теории педагогических измерений, может включать задания различных типов (например, эссе или сочинения), а также задания, оценивающие различные виды деятельности учащихся (например, коммуникативные умения, практические умения).

В обычной практике применения тестов для упрощения процедуры оценивания как правило используется простая схема:

- -отметка «3», если правильно выполнено 50 -70% тестовых заданий;
- -«4», если правильно выполнено 70 −85 % тестовых заданий;
- -«5», если правильно выполнено 85 –100 % тестовых заданий.

Параметры оценочного средства

Предел длительности контроля	45 мин.		
Предлагаемое количество заданий из	30, согласно плана		
одного контролируемого подэлемента			
Последовательность выборки вопросов из	Определенная по разделам, случайная		
каждого раздела	внутри раздела		
Критерии оценки:	Выполнено верно заданий		
«5», если	(85-100)% правильных ответов		
«4», если	(70-85)% правильных ответов		
«3», если	(50-70)% правильных ответов		

Промежуточная аттестация — это элемент образовательного процесса, призванный определить соответствие уровня и качества знаний, умений и навыков обучающихся, установленным требованиям согласно рабочей программе дисциплины. Промежуточная аттестация осуществляется по результатам текущего контроля.

Конкретный вид промежуточной аттестации по дисциплине определяется рабочим учебным планом и рабочей программой дисциплины.

Экзамен, как правило, предполагает проверку учебных достижений обучаемых по всей программе дисциплины и преследует цель оценить полученные теоретические знания, навыки самостоятельной работы, развитие творческого мышления, умения синтезировать полученные знания и их практического применения.

Экзамен в устной форме предполагает выдачу списка вопросов, выносимых на экзамен, заранее (в самом начале обучения или в конце обучения перед сессией). Экзамен включает, как правило, две части: теоретическую (вопросы) и практическую (задачи, практические задания, кейсы и т.д.). Для подготовки к ответу на вопросы и задания билета, который студент вытаскивает случайным образом, отводится время в пределах 30 минут. После ответа на теоретические вопросы билета, как правило, ему преподаватель задает дополнительные вопросы. Компетентностный подход ориентирует на то, чтобы экзамен обязательно включал деятельностный компонент в виде задачи/ситуации/кейса для решения.

В традиционной системе оценивания именно экзамен является наиболее значимым оценочным средством и решающим в итоговой отметке учебных достижений студента. В условиях балльно-рейтинговой системы балльный вес экзамена составляет 25 баллов.

По итогам экзамена, как правило, выставляется оценка по шкале порядка: «отлично»- 21-25 баллов; «хорошо»- 17,5-21 балл; «удовлетворительно»- 12,5-17,5 баллов; «неудовлетворительно»- 0-12,5 баллов.

6. Материалы для оценки знаний, умений, навыков и (или) опыта деятельности

Полный комплект оценочных средств для оценки знаний, умений и навыков находится у ведущего преподавателя.

- 1. Тестовые задания (предоставляются в полном объеме)
- 2. Типовые контрольные задания (предоставляются варианты заданий контрольных работ)
- 3. Комплект билетов (предусматриваются для дисциплин формой промежуточной аттестации которых является экзамен.)