ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ Б1.В.06 СОВРЕМЕННЫЕ МЕТОДЫ АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

Направление подготовки (специальность) 35.04.06 Агроинженерия

Профиль подготовки (специализация) Электротехнологии и электрооборудование в сельском хозяйстве

Квалификация выпускника магистр

1. Перечень компетенций и их формирование в процессе освоения образовательной программы.

Таблица 1 - Показатели и критерии оценивания компетенций

Код и Код и наименование		Планируемые	Процедура
наименование	индикатора	результаты обучения	оценивания
компетенции	достижения	по дисциплине	- 1-
	компетенции	(модулю)	
УК-1 Способен	УК-1.3 Определяет в	Знать:	устный опрос;
осуществлять	рамках выбранного	основные понятия и	тестирование
критический анализ	_ = =	определения в области	1
проблемных	(задачи), подлежащие	автоматизации	
ситуаций на основе	дальнейшей разработке.	технологических	
системного	Предлагает способы их	процессов и	
подхода,	решения;	производств	
вырабатывать	•	Уметь:	
стратегию действий		выполнять работы по	
_		проектированию,	
		информационному	
		обслуживанию,	
		техническому контролю	
		в автоматизированном	
		технологическом	
		производстве	
		Владеть:	
		современными	
		методами разработки	
		оптимальных	
		автоматизированных и	
		автоматических	
		технологических	
		процессов и	
		производств	

ПК-5 Способен	ПК-5.1 Осуществляет	Знать:	устный опрос;
осуществлять	выбор машин и	методические,	тестирование
выбор машин и	оборудования для	нормативные и	
оборудования для	электрификации и	руководящие	
электрификации и	автоматизации	материалы, касающиеся	
автоматизации	сельскохозяйственного	выбора машин и	
сельскохозяйствен	производства;	оборудования для	
ного производства;		электрификации и	
		автоматизации	
		сельскохозяйственного	
		производства	
		Уметь:	
		выбирать эффективные	
		средства изготовления	
		деталей с	
		рациональным уровнем	
		автоматизации	
		Владеть:	
		методами проведения	
		комплексного технико-	
		экономического	
		анализа, обоснованного	
		принятия решений для	
		электрификации и	
		автоматизации	
		сельскохозяйственного	
		производства	

2. Шкала оценивания.

Шкалы оценивания и система оценок представлены в локальном нормативном акте ВУЗа Положении «Текущий контроль успеваемости и промежуточная аттестация» утвержденным решением Ученого совета университета 20 июля 2016г., протокол № 11

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, в процессе освоения образовательной программы.

Таблица 2.1 - УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

Планируемые результаты обучения по дисциплине (модулю) (индикатор достижения компетенции)		Формулировка контрольного задания (контрольные вопросы/тестовые задания), необходимого для оценки освоения компетенции
УК-1.3 Опреде	ляет в рамках	1. Отрасль техники, обеспечивающая контроль и управление
выбранного	алгоритма	производственными процессами – это:
вопросы	(задачи),	робототехника
подлежащие	дальнейшей	электротехника
разработке.	Предлагает	+ автоматика и телемеханика
способы их		2. Укажите элемент автоматики, который преобразует

решения; физическую входную величину в другую величину. удобную для воздействия на объект: + датчик усилитель распределитель 3. Укажите элемент автоматики, который вырабатывает кодовые комбинации: датчик усилитель + трансмиттер 4. Элемент автоматики, служащий для усиления сигналов стабилизатор + усилитель трансмиттер 5. Датчики, преобразующие электрическую энергию на выходе, называются: + генераторными параметрическими механическими 6. Датчики, преобразующие изменение входной величины в изменение электрического параметра, называются: генераторными +параметрическими механическими 7. Укажите основное отличие реле от других элементов автоматики: + скачкообразное изменение выходной величины при плавном изменении входной плавное изменение выходной величины при изменении входной при изменении входной величины выходная величина неизменна 8. Что является основной частью реле: + электромагнит якорь контакты 9. Назовите устройство реле: + электромагнит, якорь, контакты катушка, контакты, винт якорь, ярмо, кожух, контакты 10. Какое реле является трёхпозиционным: нейтральное + комбинированное кодовое 11. Какое реле имеет два якоря: нейтральное + комбинированное кодовое 12. Какое реле имеет Г-образный или П-образный сердечники: нейтральное

комбинированное

- + кодовое
- 13. Сколько позиций имеет комбинированное реле:

одна позиция

две позиции

- + три позиции
- 14. Назовите основные части геркона:
- + контактная пружина и стеклянная ампула

электромагнит и контакты

сердечник и катушка

- 15. Как по другому называется тиристор:
- неуправляемый диод
- + управляемый диод

опорный диод

- 16. Определение «Автоматика», «автомат», «автоматизация».
- 17. Классификация систем автоматического управления.
- 18. Потенциометрические датчики. Конструкция, принцип работы, применение.
- 19. Тензометрические датчики. Конструкция, принцип работы, применение.
- 20. Индуктивные датчики. Конструкция, принцип работы, применение.
- 21. Трансформаторные датчики. Конструкция, принцип работы, применение.
- 22. Индукционные датчики. Конструкция, принцип работы, применение.
- 23. Пьезоэлектрические датчики. Конструкция, принцип работы, применение.
- 24. Емкостные датчики. Конструкция, принцип работы, применение.
- 25. Терморезисторы. Конструкция, принцип работы, применение.
- 26. Термопары. Конструкция, принцип работы, применение.
- 27. Струнные датчики. Конструкция, принцип работы, применение.
- 28. Фотоэлектрические датчики. Конструкция, принцип работы, применение.
- 29. Датчик Холла. Конструкция, принцип работы, применение.
- 30. Электромагнитное нейтральное реле. Конструкция, принцип работы.
- 31. Поляризованное реле. Конструкция, принцип работы.
- 32. Индукционное реле.
- 33. Реле времени.
- 34. Электротермическое реле.
- 35. Шаговые искатели.
- 36. Герконы. Конструкция, принцип работы, применение.
- 37. Виды исполнительных механизмов.
- 38. Виды регулирующих органов.
- 39. Что такое автоматический регулятор?
- 40. Принцип регулирования по возмущению.

41.	Принцип	регу	илирования	по	отклонению.

- 42. Системы прямого и непрямого действия.
- 43. Системы стабилизации.
- 44. Системы программного регулирования.
- 45. Следящие системы.
- 46. Статические и астатические системы.
- 47. Одномерные и многомерные системы.
- 48. Непрерывные и дискретные системы.
- 49. Принцип работы модулятора.
- 50. Виды квантования сигнала.
- 51. Телемеханика. Структура линий связи телемеханических систем
- 52. Особенности автоматизации сельхозпроизводства.
- 53. Принцип действия АБС тормозов автомобиля.
- 54. Принцип действия электронной блокировки дифференциала ведущего моста автомобиля.
- 55. Пример построения телемеханической системы.
- 56. Предмет и значение дисциплины, ее место и роль в системе подготовки инженеров с.-х. производства.
- 57. Краткий очерк развития автоматики.
- 58. Автоматизация главное направление научнотехнического прогресса на современном этапе развития с. -х. производства.
- 59. Социальное и технико-экономическое значение автоматизации.
- 60. Особенности автоматизации с.-х. производства.

Таблица 2.2 - ПК-5 Способен осуществлять выбор машин и оборудования для электрификации и автоматизации сельскохозяйственного производства;

Планируемые результаты обучения по дисциплине (модулю) (индикатор достижения компетенции)

Формулировка контрольного задания (контрольные вопросы/тестовые задания), необходимого для оценки освоения компетенции

машин и оборудовани электрификации автоматизации сельскохозяйственного производства;

ПК-5.1 Осуществляет выбор 1. Какой компонент программы общий для языка релейно машин и оборудования для -контактных символов и языка КАУТ:

и контролируемые величины

+ таймер времени

регулируемые величины

- Сколько команд составляют основу языка релейноконтактных символов:
- + 4 команды
- 3 команды

число команд не ограничено

- 3. Автоматика не позволяет включать установку при открытых дверях высоковольтного шкафа. Это децентрализованная система:
- + первого уровня второго уровня третьего уровня
- 4. Какое устройство относится к следящим системам автоматики:
- + реле максимального тока стрелочный прибор

таймер времени

5. При достижении форвакуумного давления реле включает высоковакуумный насос. Это язык управления типа:

время – команда

+ время – параметр

КАУТ

6. Элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации называется:

генератором

+ датчиком

мультиметром

- 7. Перечислить существующие типы датчиков:
- + генераторные, параметрические, пропорциональные, инерционные

генераторные, параметрические, не пропорциональные, инерционные

генераторные, параметрические, не пропорциональные, безинерционные

- 8. Датчики, осуществляющие непосредственное преобразование входной величины в электрический сигнал: параметрические
- инерционные
- + генераторные
- 9. Датчики, преобразующие входную величину в изменение какого-либо электрического параметра (R, L или C): емкостные

индуктивные

- + параметрические
- 10. Наименьшее значение входной величины, которое вызывает появление сигнала на выходе датчика, называется: статической характеристикой

инерционностью

- + порогом чувствительности
- Отношение приращения выходной величины к приращению входной величины S = Ay/Ax датчика называется:
- + чувствительностью

порогом чувствительности

статической характеристикой

12. Датчики, у которых сигнал на выходе пропорционален измеряемой величине, называется:

шиклическим

+ пропорциональным

импульсным

- 13. Датчики, у которых сигнал на выходе нелинейно зависит от сигнала на входе, называется:
- + нелинейным

пропорциональным

релейным

- 14. Датчики, у которых сигнал на выходе пропорционален измеряемой величине и повторяется циклически, называется:
- + пиклическим

нелинейным

импульсным

15. Тип датчика, представляющий собой переменный резистор:

индуктивный

+ потенциометрический

емкостный

- 16. Управление, регулирование, система автоматического управления (САУ), система автоматического регулирования (САР).
- 17. Управляющее устройство, объект управления.
- 18. Основные виды систем автоматизации производства: автоматический контроль, автоматическая защита, дистанционное и автоматическое управление.
- 19. Воздействия и сигналы: внешнее, внутреннее, управляющее (регулирующее), задающее и возмущающее, выходная (контролируемая, измеряемая, управляемая, регулируемая) величина, ошибка управления (отклонение). Обратные связи и их назначение.
- 20. Классификация автоматических систем управления по виду используемой энергии (пневматические, гидравлические, электрические и прямого действия).
- 21. Классификация автоматических систем управления

- по задающему воздействию (стабилизирующие, программные, следящие, и адаптивные).
- 22. Классификация автоматических систем управления по принципу управления (по отклонению, по возмущению, комбинированные).
- 23. Классификация автоматических систем управления по принципу действия (прямого и непрямого).
- 24. Классификация автоматических систем управления по величине установившейся ошибки (статические и астатические).
- 25. Линейные и нелинейные системы.
- 26. Функции и параметры элементов систем автоматики.
- 27. Понятие о статических и динамических характеристиках.
- 28. Линейные и нелинейные элементы САУ.
- 29. Передаточный коэффициент, порог чувствительности, погрешность работы.
- 30. Основные элементы САУ (объект управления, датчик, элемент сравнения, усилитель, исполнительный механизм, регулирующий орган, регулятор, контроллер).
- 31. Понятие о типовых входных, воздействиях: ступенчатая и импульсная функции.
- 32. Частотные характеристики.
- 33. Элементарные типовые динамические звенья САУ.
- 34. Усилительное безинерционное звено.
- 35. Апериодические звенья первого и второго порядка.
- 36. Колебательное звено.
- 37. Интегрирующее и дифференцирующее звенья.
- 38. Звено транспортного запаздывания.
- 39. Статические и динамические характеристики.
- 40. Одно- и многоемкостные объекты управления.
- 41. Объекты управления: статические (с самовыравниванием) и астатические (без самовыравнивания).
- 42. Идентификация объектов управления.
- 43. Аналитическое и экспериментальное определение характеристик объектов управления.
- 44. Виды и типы схем автоматики.
- 45. Функциональная и структурная схемы автоматизации технологических процессов.
- 46. Функциональная и структурная схемы САУ.
- 47. Принципиальная схема.
- 48. Схемы соединений и подключений.
- 49. Классификация датчиков.
- 50. Устройство и принцип действия, статические и динамические характеристики датчиков давления.
- 51. Устройство и принцип действия, статические и динамические характеристики датчиков перепада давления и разряжения.
- 52. Устройство и принцип действия, статические и динамические характеристики датчиков уровня.
- 53. Устройство и принцип действия, статические и динамические характеристики датчиков расхода.

54	4. Устройство и принцип действия, статические и
I I	инамические характеристики датчиков количества.
55	5. Устройство и принцип действия, статические и
ді	инамические характеристики датчиков состава и свойств
M	атериалов.
56	б. Выбор датчиков.
57	7. Релейные элементы автоматики. Их основные
xa	арактеристики.
	8. Электромагнитные реле: переменного и постоянного
TC	ока, нейтральные и поляризованные.
	9. Реле выдержки времени и программные устройства.
60	0. Выбор релейных элементов автоматики.

4. Методические материалы, определяющие процедуры оценивания уровня достижения компетенций

Многообразие изучаемых тем, видов занятий, индивидуальных способностей студентов, обуславливает необходимость оценивания знаий, умений, навыков с помощью системы процедур, контрольных мероприятий, различных технологий и оценочных средств.

 Таблица 3 Процедуры оценивания знаний, умений, навыков и (или) опыта

 деятельности

Виды занятий и контрольных мероприятий	Оцениваемые результаты обучения	Описание процедуры оценивания
Лекционное занятие (посещение лекций)	Знание теоретического материала по пройденным темам	Проверка конспектов лекций, тестирование
Выполнение практических (лабораторных) работ	Основные умения и навыки, соответствующие теме работы	Проверка отчета, устная (письменная) защита выполненной работы, тестирование
Самостоятельная работа (выполнение индивидуальных, дополнительных и творческих заданий)	Знания, умения и навыки, сформированные во время самоподготовки	Проверка полученных результатов, рефератов, контрольных работ, курсовых работ (проектов), индивидуальных домашних заданий, эссе, расчетнографических работ, тестирование
Промежуточная аттестация	Знания, умения и навыки соответствующие изученной дисциплине	Экзамен или зачет, с учетом результатов текущего контроля, в традиционной форме или компьютерное тестирование

В процессе изучения дисциплины предусмотрены следующие формы контроля: текущий, промежуточный контроль, контроль самостоятельной работы студентов.

Текущий контроль успеваемости обучающихся осуществляется по всем видам контактной и самостоятельной работы, предусмотренным рабочей программой дисциплины. Текущий контроль успеваемости осуществляется преподавателем, ведущим аудиторные занятия.

Текущий контроль успеваемости может проводиться в следующих формах:

- устная (устный опрос, собеседование, публичная защита, защита письменной работы, доклад по результатам самостоятельной работы и т.д.);
- письменная (письменный опрос, выполнение, расчетно-проектировочной и расчетно-графической работ и т.д.);
 - тестовая (устное, письменное, компьютерное тестирование).

Результаты текущего контроля успеваемости фиксируются в журнале занятий с соблюдением требований по его ведению.

Устная форма позволяет оценить знания и кругозор студента, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Проводятся преподавателем с обучающимся на темы, связанные с изучаемой дисциплиной, рассчитана на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Уровень знаний, умений и навыков обучающегося при устном ответе во время промежуточной аттестации определяется оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» по следующим критериям:

Оценка «5» (отлично)ставится, если:

- -полно раскрыто содержание материала;
- -материал изложен грамотно, в определенной логической последовательности;
- -продемонстрировано системное и глубокое знание программного материала;
- -точно используется терминология;
- –показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации;
- -продемонстрировано усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость компетенций, умений и навыков;
 - -ответ прозвучал самостоятельно, без наводящих вопросов;
- –продемонстрирована способность творчески применять знание теории к решению профессиональных задач;
 - -продемонстрировано знание современной учебной и научной литературы;
- -допущены одна две неточности при освещении второстепенных вопросов, которые исправляются по замечанию.

Оценка «4» (хорошо) ставится, если:

- -вопросы излагаются систематизированно и последовательно;
- -продемонстрировано умение анализировать материал, однако не все выводы носят аргументированный и доказательный характер;
 - -продемонстрировано усвоение основной литературы.
- -ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие содержание ответа; допущены один –два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов, которые легко исправляются по замечанию преподавателя.

Оценка «3» (удовлетворительно) ставится, если:

- -неполно или непоследовательно раскрыто содержание материала, но показано
- общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала;
 - -усвоены основные категории по рассматриваемому и дополнительным вопросам;
- -имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после нескольких наводящих вопросов;
- –при неполном знании теоретического материала выявлена недостаточная сформированность компетенций, умений и навыков, студент не может применить теорию в новой ситуации;
 - -продемонстрировано усвоение основной литературы

Оценка «2» (неудовлетворительно) ставится, если:

- -не раскрыто основное содержание учебного материала;
- -обнаружено незнание или непонимание большей или наиболее важной части учебного материала;
- -допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов.
 - -не сформированы компетенции, умения и навыки.

Письменная форма приучает к точности, лаконичности, связности изложения мысли. Письменная проверка используется во всех видах контроля и осуществляется как в аудиторной, так и во внеаудиторной работе. Письменные работы могут включать: диктанты, контрольные работы, эссе, рефераты, курсовые работы, отчеты по практикам, отчеты по научно-исследовательской работе студентов.

Контрольная работа - средство проверки умений применять полученные знания для решения задач определенного типа по теме, разделу или всей дисциплины. Контрольная работа — письменное задание, выполняемое в течение заданного времени (в условиях аудиторной работы — от 30 минут до 2 часов, от одного дня до нескольких недель в случае внеаудиторного задания). Как правило, контрольная работа предполагает наличие определенных ответов и решение задач.

определег	нных ответов	в и решение задач	[,			
Кр	ритерии оцен	ки выполнения к	онтрольной р	работы:		
	соответствие	предполагаемым	г ответам;			
	правильное	использование	алгоритма	выполнения	действий	(методики,
технологі	ии и т.д.);					
	логика рассух	ждений;				
	неординарно	сть подхода к рег	шению;			
- I	правильность	оформления раб	оты.			
$\mathbf{p}_{\mathbf{z}}$	асчетно-графи	ическая работа -	спелство про	верки умений	применять	полученные

Расчетно-графическая работа - средство проверки умений применять полученные знания по заранее определенной методике для решения задач или заданий по модулю.

Критерии оценки:

□ понимание методики и умение ее правильно применить;

□качество оформления (аккуратность, логичность, для чертежно-графических работ соответствие требованиям единой системы конструкторской документации);

□достаточность пояснений.

Курсовой проект/работа является важным средством обучения и оценивания образовательных результатов. Выполнение курсового проекта/работы требует не только знаний, но и многих умений, являющихся компонентами как профессиональных, так и общекультурных компетенций (самоорганизации, умений работать с информацией (в том числе, когнитивных умений анализировать, обобщать, синтезировать новую информацию), работать сообща, оценивать, рефлексировать).

Критерии оценки содержания и результатов курсовой работы могут различаться в зависимости от ее характера:

- —реферативно-теоретические работы на основе сравнительного анализа изученной литературы рассматриваются теоретические аспекты по теме, история вопроса, уровень разработанности проблемы в теории и практике, анализ подходов к решению проблемы с позиции различных теорий и т.д.;
- -практические работы кроме обоснований решения проблемы в теоретической части необходимо привести данные, иллюстрацию практической реализации теоретических положений на практике (проектные, методические, дидактические и иные разработки);
- —опытно-экспериментальные работы предполагается проведение эксперимента и обязательный анализ результатов, их интерпретации, рекомендации по практическому применению.

Примерные критерии оценивания курсовых работ/проектов складываются из трех составных частей:

1) оценка процесса выполнения проекта, осуществляемая по контрольным точкам,
распределенным по времени выполнения проекта (четыре контрольные точки или
еженедельно), проводится по критериям:
□умение самоорганизации, в том числе, систематичность работы в соответствии с
планом,
□ самостоятельность,
□активность интеллектуальной деятельности,
□творческий подход к выполнению поставленных задач,
□умение работать с информацией,
умение работать в команде (в групповых проектах);
2) оценка полученного результата (представленного в пояснительной записке):
□конкретность и ясность формулировки цели и задач проекта, их соответствие
теме;
□обоснованность выбора источников (полнота для раскрытия темы, наличие
новейших работ
-журнальных публикаций, материалов сборников научных трудов и т.п.);
□глубина/полнота/обоснованность раскрытия проблемы и ее решений;
оответствие содержания выводов заявленным в проекте целям и задачам;
□ наличие элементов новизны теоретического или практического характера;
□практическая значимость; оформление работы (стиль изложения, логичность,
грамотность, наглядность представления информации
-графики, диаграммы, схемы, рисунки, соответствие стандартам по оформлению
текстовых и графических документов);
3) оценки выступления на защите проекта, процедура которой имитирует процесс
профессиональной экспертизы:
□соответствие выступления заявленной теме, структурированность, логичность,
доступность, минимальная достаточность;
□уровень владения исследуемой темой (владение терминологией, ориентация в
материале, понимание закономерностей, взаимосвязей и т.д.);
□аргументированность, четкость, полнота ответов на вопросы;
□культура выступления (свободное выступление, чтение с листа, стиль подачи
материала и т.д.).
Тестовая форма - позволяет охватить большое количество критериев оценки и
допускает компьютерную обработку данных. Как правило, предлагаемые тесты оценки
компетенций делятся на психологические, квалификационные (в учебном процессе эту
роль частично выполняет педагогический тест) и физиологические.
Современный тест, разработанный в соответствии со всеми требованиями, может

включать задания различных типов а также задания, оценивающие различные виды деятельности учащихся (например, коммуникативные умения, практические умения).

В обычной практике применения тестов для упрощения процедуры оценивания как правило используется простая схема:

- отметка «3», если правильно выполнено 50 –70% тестовых заданий;
- -«4», если правильно выполнено 70 –85 % тестовых заданий;
- -«5», если правильно выполнено 85 –100 % тестовых заданий

Шкала оценивания

Предел длительности контроля	45 мин.
Предлагаемое количество заданий из одного	30, согласно плана
контролируемого подэлемента	
Последовательность выборки вопросов из	Определенная по разделам, случайная
каждого раздела	внутри раздела
Критерии оценки:	Выполнено верно заданий
«5», если	(85-100)% правильных ответов
«4», если	(70-85)% правильных ответов
«3», если	(50-70)% правильных ответов

Промежуточная аттестация – это элемент образовательного процесса, призванный определить соответствие уровня и качества знаний, умений и навыков обучающихся, установленным требованиям согласно рабочей программе дисциплины. Промежуточная аттестация осуществляется по результатам текущего контроля.

Конкретный вид промежуточной аттестации по дисциплине определяется рабочим учебным планом и рабочей программой дисциплины.

Зачет, как правило, предполагает проверку усвоения учебного материала выполнения практических И семинарских занятий, лабораторных, расчетнопроектировочных и расчетно-графических работ, курсовых проектов (работ), а также проверку результатов учебной, производственной или преддипломной практик. Зачет, как правило, выставляется без опроса студентов по результатам контрольных работ, других работ выполненных студентами в течение семестра, а также по результатам текущей успеваемости на семинарских занятиях, при условии, что итоговая оценка студента за работу в течение семестра (по результатам контроля знаний) больше или равна 60%. Оценка, выставляемая за зачет, может быть как квалитативного типа (по шкале наименований «зачтено»/ «не зачтено»), так и квантитативного (т.н. дифференцированный зачет с выставлением отметки по шкале порядка - «отлично, «хорошо» и т.д.).

Экзамен, как правило, предполагает проверку учебных достижений обучаемых по всей программе дисциплины и преследует цель оценить полученные теоретические знания, навыки самостоятельной работы, развитие творческого мышления, умения синтезировать полученные знания и их практического применения.

Экзамен в устной форме предполагает выдачу списка вопросов, выносимых на экзамен, заранее (в самом начале обучения или в конце обучения перед сессией). Экзамен включает, как правило, две части: теоретическую (вопросы) и практическую (задачи, практические задания, кейсы и т.д.). Для подготовки к ответу на вопросы и задания билета, который студент вытаскивает случайным образом, отводится время в пределах 30 минут. После ответа на теоретические вопросы билета, как правило, ему преподаватель задает дополнительные вопросы. Компетентностный подход ориентирует на то, чтобы экзамен обязательно включал деятельностный компонент в виде задачи/ситуации/кейса для решения.

В традиционной системе оценивания именно экзамен является наиболее значимым оценочным средством и решающим в итоговой отметке учебных достижений студента. В условиях балльно-рейтинговой системы балльный вес экзамена составляет 25 баллов.

Оценочные материалы разработаны в соответствии с ФГОС ВО по направлению подготовки 35.04.06 Агроинженерия

Разработал(и): Доцент,к.т.н. Фомин М.Б.

Оценочные материалы рассмотрены и одобрены на заседании кафедры Электротехнологии и электрооборудования, протокол № 7 от 18.03.2019

Зав. кафедрой

Рахимжанова И.А.

Оценочные материалы рассмотрены и утверждены на заседании учебнометодической комиссии инженерного факультета, протокол № 1 от 30.08.2019

Председатель учебно-методической комиссии инженерного факультета

Асманкин Е.М.