ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ Б1.В.01 ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Направление подготовки (специальность) 35.04.06 Агроинженерия

Профиль подготовки (специализация) Электротехнологии и электрооборудование в сельском хозяйстве

Квалификация выпускника магистр

1. Перечень компетенций и их формирование в процессе освоения образовательной программы.

Таблица 1 - Показатели и критерии оценивания компетенций

Г од и	Год и маумарамиа Планируамиа Праматура					
Код и	Код и наименование	Планируемые		Процедура		
наименование	индикатора	результаты обучения		оценивания		
компетенции	достижения		по дисциплине			
	компетенции	(модулн	0)			
ПК-11 Способен	ПК-11.1 Выбирает	Знать:		устный	опрос	И
выбирать методики	методики проведения	физические	основы	тестирова	ание	
проведения	экспериментов и	явлений	В			
экспериментов и	испытаний,	электрических	цепях,			
испытаний,	анализировать их	законы электро	техники			
анализировать их	результаты;	Уметь:				
результаты;		определять	режимы			
		электрических	цепей			
		постоянного	И			
		переменного	тока,			
		применять	законы			
		электрических	цепей			
		для их анализа				
		Владеть:				
		методами	анализа			
		электрических	цепей			
		постоянного	И			
		переменного	тока,			
		вычислительны	МИ			
		методами	расчетов			
		электрических	-			

		1	T	
ПК-12 Способен	ПК-12.1 Разрабатывает	Знать:	устный опрос	И
разрабатывать	физические и	основы теории, методы	тестирование	
физические и	математические	и средства		
математические	модели, проводить	теоретического		
модели, проводить	теоретические и	исследования линейных		
теоретические и	экспериментальные	и нелинейных (в		
экспериментальны	исследования	режимах постоянного		
е исследования	процессов, явлений и	тока и гармонических		
процессов, явлений	объектов, относящихся	колебаний)		
и объектов,	к электрификации и	электрических цепей		
относящихся к	автоматизации	при гармонических и		
электрификации и	сельскохозяйственного	негармонических		
автоматизации	производства;	воздействиях; основы		
сельскохозяйствен		теории		
ного производства;		четырехполюсников и		
		цепей с		
		распределенными		
		параметрами		
		Уметь:		
		рассчитывать		
		параметры и		
		характеристики		
		линейных и		
		нелинейных (в режимах		
		постоянного тока и		
		гармонических		
		колебаний)		
		электрических цепей		
		Владеть:		
		навыками		
		экспериментального		
		исследования		
		электрических цепей в		
		рамках		
		математического		
		моделирования		
L		1	I	

2. Шкала оценивания.

Шкалы оценивания и система оценок представлены в локальном нормативном акте ВУЗа Положении «Текущий контроль успеваемости и промежуточная аттестация» утвержденным решением Ученого совета университета 20 июля 2016г., протокол № 11

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, в процессе освоения образовательной программы.

Таблица 2.1 - ПК-11 Способен выбирать методики проведения экспериментов и испытаний, анализировать их результаты;

	ний, анализировать их результаты;	
Планируемые результаты	Формулировка контрольного задания (контрольные	
обучения по дисциплине	вопросы/тестовые задания), необходимого для оценки	
(модулю) (индикатор	освоения компетенции	
достижения компетенции)		
ПУ 11 1 Выбирает методики	1. Что такое ЭДС, сила тока, потенциал, напряжение,	
	сопротивление, проводимость и электрическая мощность?	
=	2. Что такое вольт-амперная характеристика источника	
результаты;	ЭДС?	
	3. Напишите закон Ома для участка цепи, закон Ома для	
	участка цепи, содержащего ЭДС.	
	4. Опишите эквивалентные преобразования в линейных	
	электрических цепях. Последовательное, параллельное и	
	смешанное соединение.	
	5. Эквивалентная замена треугольника сопротивлений на	
	звезду и обратно.	
	6. Понятие узла и ветви. Первый закон Кирхгофа.	
	7. Понятие замкнутого контура . Второй закон Кирхгофа.	
	8. Составление уравнения баланса мощностей.	
	9.Использование законов Кирхгофа при решении задач.	
	10. Независимые контуры и узлы. Метод контурных токов.	
	11. Метод узловых потенциалов. Метод двух узлов.	
	12.Понятие двухполюсника. Активные и пассивные	
	двухполюсники.	
	13. Получение синусоидальных ЭДС и тока. Способы	
	представления синусоидальной электрической величины	
	14. Активные и реактивные сопротивления. Резистор,	
	катушка индуктивности и конденсатор.	
	15. Простейшие цепи синусоидального тока. Векторные	
	диаграммы.	
	16. Полное сопротивление цепи синусоидального тока.	
	Закон Ома для цепи синусоидального тока.	
	17. Параллельное соединение пассивных элементов в цепи	
	переменного синусоидального тока. Треугольники токов и	
	проводимостей.	
	18. Изображение векторов синусоидальных электрических	
	величин на комплексной плоскости.	
	19. Комплексный метод расчета цепей синусоидального	
	тока.	
	20. Комплексное сопротивление. Комплекс полной	
	мощности	
	21. Топографическая диаграмма напряжений.	
	22. Дайте определение мгновенному, амплитудному,	
	действующему значению переменного тока.	
	23. Дайте определение периоду, частоте, начальной фазе,	
	сдвигу фаз.	
	24. Напишите формулу для определения индуктивного	
	- T - T - J - J - G	
1	l l	

сопротивления катушки.

- 25. Напишите формулу для определения емкостного сопротивления конденсатора.
- 26.Напишите выражение закона изменения тока в цепи, состоящей из последовательно соединенных элементов R и L, если к цепи приложено напряжение u= Umsin (ωt+ψ).
- 27. Сформулируйте условие возникновения резонанса токов и способы его достижения.
- 28. Начертите петлю гистерезиса, обозначте на ней характерные участки. Что характеризует площадь петли?
- 29.От чего зависит индуктивность катушки с магнитопроводом?
- 30. Почему при увеличении зазора в магнитопроводе растет ток в цепи с катушкой?
- 31. Сформулируйте условие возникновения резонанса напряжений и способы его достижения.
- 32. Поясните при помощи векторной диаграммы, как будет меняться коэффициент мощности при приближении к резонансу напряжений в цепи?
- 33. От чего зависит коэффициент мощности цепи и для чего стремятся его повысить?
- 34. Поясните свойства активного сопротивления в цепи переменного тока.
- 35. Поясните свойства индуктивного сопротивления в цепи переменного тока
- 36. Поясните свойства емкостного сопротивления в цепи переменного тока.
- 37. В чем разница между активной и реактивной мощностью в цепи переменного тока? Какую мощность измеряет ваттметр?
- 38. Что такое треугольники напряжений, сопротивлений, мощности? Какие соотношения существуют в этих треугольниках?
- 39. Что такое индуктивный и емкостной характер нагрузки? При каком характере нагрузки напряжение опережает ток, при каком отстает от тока?
- 40 Что такое резонансная частота? Как она определяется?
- 41. Изменением каких величин в цепи можно достичь резонанс токов?
- 42. Почему в режиме резонанса токов в цепи с R, L, С ток не принимает нулевое значение? Почему угол ψ принимает нулевое значение?
- 43. Опишите один из методов определения тока в неразветвленной части цепи при параллельном соединении элементов.
- 44. В чем преимущества трехфазной системы ЭДС перед однофазной?
- 45. Покажите на схеме, где измеряются линейные и фазные напряжения и токи?
- 46. По какой формуле определяется мощность цепи:

```
P = I / IJ
P = U / I
+P = I * U
P = I * R
P = U * R2
47. Как выглядит закон Ома для участка цепи:
I = U * R
+I = U / R
I = U * R2
P = I * U
U = I / R
48. Амперметр измеряет:
+Силу тока
Мощность
Сопротивление
Напряжение
Частоту
49. В каких единицах измеряется электрический потенциал?
+ Вольт
Ампер
Ватт
Вебер
Кулон
50.
     Какой
             формулой
                         определяется эдс
                                             источника
электрической энергии?
E = q/W
+E = W/q
E = Wq E = W+q
E = Wq2
51. Какая из формулировок второго закона Кирхгофа
является правильной:
Алгебраическая сумма токов, входящих в контур, равна
алгебраической
                 сумме
                          падений
                                      напряжения
сопротивлениях этого контура.
+ Алгебраическая сумма эдс, входящих в контур, равна
алгебраической
                 сумме
                          падений
                                      напряжения
сопротивлениях этого контура.
Алгебраическая сумма эдс, входящих в контур, равна
алгебраической сумме токов в сопротивлениях этого
контура.
Алгебраическая сумма эдс, входящих в контур, равна
алгебраической сумме токов в узлах этого контура.
52. Какие устройства используются для расширения предела
измерения вольтметра в цепях постоянного тока?
Только шунт.
+Только добавочное сопротивление.
Только измерительный трансформатор напряжения.
Измерительный трансформатор напряжения или шунт.
53. Для увеличения соѕ ф сети принимают меры:
+устанавливают конденсаторы на
                                    трансформаторных
подстанциях;
```

отключают асинхронные электродвигатели; отключают нагревательные электроустановки; включают дополнительно асинхронные электродвигатели. 54. Каждый из четырех диодов мостового выпрямителя открыт в течение периода выпрямляемого напряжения. 1/8; +1/2;всего; 1/4; 55. Напряжение на всей цепи изменяется по закону u = Um $\sin\omega t$, ток цепи изменяется по закону $i = \text{Im sin}\omega t$. Какое из между сопротивлениями приведенных соотношений справедливо для цепи, если XC ,XL, и R включены последовательно. XC больше XL; XL больше XC; +XL равно XC; ХС равно нулю; XL равно R. 56. Что называется электрическим напряжением между двумя точками поля? Среднее значение потенциалов двух точек поля. Сумма потенциалов двух точек поля. Произведение потенциалов двух точек поля. + Разность потенциалов двух точек поля. Наибольший из потенциалов двух точек поля. 57. Ваттметр измеряет: + Мощность; Сопротивление: Силу тока; Частоту; Напряжение. 58. Как обозначается вольтметр в электрических схемах: PA; +PV; PW; QF; PR. 59. Что называется проводимостью проводника? Величина, обратная мощности, выделяемой в проводнике; Величина, обратная силе тока в проводнике: Величина, обратная напряжению на проводнике; +Величина, обратная сопротивлению проводника. 60. Вольтметр измеряет: +Напряжение Частоту

Силу тока Мощность Сопротивление
<u> </u>

Таблица 2.2 - ПК-12 Способен разрабатывать физические и математические модели, проводить теоретические и экспериментальные исследования процессов, явлений и объектов, относящихся к электрификации и автоматизации сельскохозяйственного производства;

Планируемые результаты		
обучения по дисциплине		
(модулю) (индикатор		
достижения компетенции)		

Формулировка контрольного задания (контрольные вопросы/тестовые задания), необходимого для оценки освоения компетенции

ПК-12.1 физические и математические трехфазной системе ЭДС? модели, теоретические экспериментальные исследования процессов, ЭДС. явлений относяшихся электрификации автоматизации сельскохозяйственного производства;

- Разрабатывает 1. Что такое прямая и обратная последовательность фаз в
 - проводить 47. Начертите схемы включения приборов для измерения и активной мощности симметричной и несимметричной нагрузки при соединении треугольником и звездой системы
 - объектов, 2. Проанализируйте, как изменятся линейные к симметричной нагрузки соединенной звездой без и нейтрального провода при обрыве одного линейного провода?
 - 3. Проанализируйте, как изменятся линейные симметричной нагрузки соединенной звездой нейтрального провода при коротком замыкании одного провода нагрузки
 - 4. Проанализируйте, как изменятся напряжения на фазах симметричной соединенной нагрузки звездой нейтрального провода при обрыве одного линейного провода?
 - 5. Проанализируйте, как изменятся линейные и фазные токи симметричной нагрузки соединенной треугольником при обрыве одного линейного провода?
 - 6. Проанализируйте, как изменятся линейные и фазные токи симметричной нагрузки соединенной треугольником при обрыве одного фазного провода?
 - 7. Проанализируйте, как изменятся напряжения на фазах симметричной нагрузки соединенной треугольником при обрыве одного линейного провода?
 - 8. Постройте векторную диаграмму двух индуктивно связанных катушек, включено последовательно согласно. Объясните построение.
 - 9. Постройте векторную диаграмму двух индуктивно связанных катушек, включено последовательно встречно. Объясните построение
 - 10. Постройте векторную диаграмму двух индуктивно связанных катушек, включено параллельно согласно. Объясните построение.
 - Постройте векторную диаграмму двух индуктивно связанных катушек, включено параллельно встречно. Объясните построение.
 - 12. Объясните назначение принцип действия и конструкцию однофазного трансформатора.
 - 13. Автотрансформаторы, сварочные трансформаторы.
 - 14. Получение вращающегося магнитного поля. Принцип действия трехфазного асинхронного двигателя.
 - 15. Зависимость частоты вращения асинхронного двигателя от частоты тока и числа пар полюсов.
 - 16. Устройство асинхронного двигателя. Типы роторов.
 - 17. Схемы включения асинхронных двигателей.
 - 18. Паспортные характеристики асинхронных двигателей. Естественная механическая характеристика асинхронного двигателя.
 - 19. Пуск асинхронного двигателя. Изменения направления врашения.

- 20. Понятие скольжения ротора. Принцип действия и свойства однофазного асинхронного двигателя. Включение трехфазного двигателя в однофазную цепь.
- 21. Классификация машин постоянного тока по способу возбуждения.
- 22. Начетрите эквивалентную схему замещения однофазного трансформатора.
- 23. Почему магнитопровод силового трансформатора делают из отдельных пластин электротехнической стали?
- 24. Поясните, какие потери в трансформаторе со стальным сердечником не зависят от нагрузки, а какие зависят и почему?
- 25. Почему первичную и вторичную обмотки трансформатора располагают на одном стержне?
- 26. Начертите схему опыта холостого хода трансформатора и объясните, какие величины определяются в этом опыте?
- 27. Начертите схему опыта короткого замыкания трансформатора и объясните, какие величины определяются в этом опыте?
- 28. Напишите выражение, определяющее тригонометрический ряд Фурье и назовите величины, входящие в это выражении.
- 29. Запишите формулы, определяющие коэффициенты характеризующие форму несинусоидальной периодической функции.
- 30. Напишите выражения, определяющие действующее значение несинусоидального тока, напряжения, а также активной, реактивной, полной мощности.
- 31. Выразите А-и В- параметры четырехполюсника через параметры Т-образной схемы замещения четырехполюсника.
- 32. Выразите С-и D- параметры четырехполюсника через параметры Т-образной схемы замещения четырехполюсника.
- 33. Выразите А-и В- параметры четырехполюсника через параметры П-образной схемы замещения четырехполюсника.
- 34. Выразите С-и D- параметры четырехполюсника через параметры П-образной схемы замещения четырехполюсника.
- 35. Выразите параметры Т-образной схемы замещения четырехполюсника через А- параметры четырехполюсника.
- 36. Выразите параметры П-образной схемы замещения четырехполюсника через А- параметры четырехполюсника.
- 37. Объясните графический метод расчета нелинейной цепи постоянного тока с последовательным включением нелинейных элементов.
- 38. Объясните графический метод расчета нелинейной цепи постоянного тока с параллельным включением

нелинейных элементов.

- 39. Объясните графический метод расчета нелинейной цепи постоянного тока со смешанным включением нелинейных элементов.
- 40.Сформулируйте законы коммутации.
- 41. Опишите суть классического метода расчета переходных процессов.
- 42. Опишите суть операторного метода расчета переходных процессов.
- 43. Что понимают под статическим сопротивлением нелинейного элемента? Как оно определяется?
- 44. Какие существуют схемы замещения четырёхполюсников
- 45. Как включается в электрическую цепь амперметр? Какому основному требованию он должен удовлетворять?
- 46. Какие устройства используются для расширения предела измерения вольтметра в цепях переменного тока?

Только шунт

+Измерительный трансформатор напряжения или добавочное сопротивление

Только измерительный трансформатор напряжения\$
Измерительный трансформатор напряжения или шунт
Только добавочное сопротивление

- 47. Для чего магнитопровод трансформатора выполняется из отдельных пластин или ленты?
- +Для уменьшения потерь на вихревые токи;

Для уменьшения потерь на гистерезис;

Для уменьшения потерь на нагрев обмоток;

Для усиления магнитной связи между обмотками.

48. Основное отличие контактора от пускателя:

Пускатели используют только для коммутации цепей переменного тока;

Наличие в пускателе вспомогательной контактной группы; +Наличие в пускателе теплового реле;

Пускатели только защищают цепи от перегрузки.

- 49. В цепь напряжением 220 В параллельно подключены два резистора с сопротивлениями R1 = 60 Ом и R2 = 30 Ом. Определить силу тока в цепи:
- 3,67 A;
- 5,5 A;

7,33 A;

+11 A.

50. Электрическая цепь, у которой электрическое напряжение и электрические токи связаны друг с другом

линейными зависимостями, называется... принципиальной схемой нелинейной электрической цепью схемой замещения +линейной электрической цепью 51. Величиной электрического потенциала является ... +24 B; 30 мкф; 60 BT; 0.05 См. 52. Как обозначается амперметр в электрических схемах: PW +PAPV QF PR 53. При последовательном соединении потребителей, сопротивление в цепи определяется: 1/ROБЩ = 1/R1 + 1/R2 + ... + 1/RiROBIII = R1 = R2 = ... = Ri+ROБЩ = R1 + R2 + ... + Ri54. характеризуется Каким параметром величина электрического тока в проводнике? Напряжением +Силой тока. Сопротивлением. Электродвижущей силой. 55 Напряжение на всей цепи изменяется по закону u = Um $\sin\omega t$, ток цепи изменяется по закону $i = \text{Im sin}\omega t$. Какое из между приведенных соотношений сопротивлениями справедливо для цепи, если XC ,XL, и R включены последовательно. XC больше XL XL больше XC +XL равно XC ХС равно нулю XL равно R цепь напряжением 220 В последовательно подключены два резистора с сопротивлениями R1 = 60 Ом и R2 = 40 Ом. Определить мощность на втором резисторе: +193,6 Вт 290,4 Вт 484 Вт 220 Вт

57. Какого условия достаточно, чтобы нагрузка в трехфазной цепи была симметричной? Одинаковы реактивные сопротивления трех фаз Одинаковы активные сопротивления трех фаз

+Одинаковы комплексные сопротивления трех фаз Одинаковы активные мощности трех фаз Одинаковы реактивные мощности трех фаз

58. При каком условии источник работает в режиме короткого замыкания, если r – внутреннее сопротивление источника, R – сопротивление нагрузки?

$$R = r$$

$$R = \infty$$

$$+R=0$$

$$r = 0$$

$$r = \infty$$

59. При параллельном соединении потребителей, напряжение в цепи определяется:

$$+UOБIII = U1 + U2 + ... + Ui$$

$$1/UOBIII = 1/U1 + 1/U2 + ... + 1/Ui$$

$$UOБЩ = U1 = U2 = ... = Ui$$

60. Как определить сопротивление проводника по известным его геометрическим размерам и материалу:

$$R = \rho \cdot S/1$$

$$+R = \rho \cdot 1/S$$

$$R = \rho \bullet S \bullet 1$$

4. Методические материалы, определяющие процедуры оценивания уровня достижения компетенций

Многообразие изучаемых тем, видов занятий, индивидуальных способностей студентов, обуславливает необходимость оценивания знаий, умений, навыков с помощью системы процедур, контрольных мероприятий, различных технологий и оценочных средств.

 Таблица 3 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Виды занятий и контрольных мероприятий	Оцениваемые результаты обучения	Описание процедуры оценивания
Лекционное занятие (посещение лекций)	Знание теоретического материала по пройденным темам	Проверка конспектов лекций, тестирование
Выполнение практических (лабораторных) работ	Основные умения и навыки, соответствующие теме работы	Проверка отчета, устная (письменная) защита выполненной работы, тестирование
Самостоятельная работа (выполнение индивидуальных, дополнительных и творческих заданий)	Знания, умения и навыки, сформированные во время самоподготовки	Проверка полученных результатов, рефератов, контрольных работ, курсовых работ (проектов), индивидуальных домашних заданий, эссе, расчетнографических работ, тестирование
Промежуточная аттестация	Знания, умения и навыки соответствующие изученной дисциплине	Экзамен или зачет, с учетом результатов текущего контроля, в традиционной форме или компьютерное тестирование

В процессе изучения дисциплины предусмотрены следующие формы контроля: текущий, промежуточный контроль, контроль самостоятельной работы студентов.

Текущий контроль успеваемости обучающихся осуществляется по всем видам контактной и самостоятельной работы, предусмотренным рабочей программой дисциплины. Текущий контроль успеваемости осуществляется преподавателем, ведущим аудиторные занятия.

Текущий контроль успеваемости может проводиться в следующих формах:

- устная (устный опрос, собеседование, публичная защита, защита письменной работы, доклад по результатам самостоятельной работы и т.д.);
- письменная (письменный опрос, выполнение, расчетно-проектировочной и расчетно-графической работ и т.д.);
 - тестовая (устное, письменное, компьютерное тестирование).

Результаты текущего контроля успеваемости фиксируются в журнале занятий с соблюдением требований по его ведению.

Устная форма позволяет оценить знания и кругозор студента, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. Проводятся преподавателем с обучающимся на темы, связанные с изучаемой дисциплиной, рассчитана на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Уровень знаний, умений и навыков обучающегося при устном ответе во время промежуточной аттестации определяется оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» по следующим критериям:

Оценка «5» (отлично)ставится, если:

- -полно раскрыто содержание материала;
- -материал изложен грамотно, в определенной логической последовательности;
- -продемонстрировано системное и глубокое знание программного материала;
- -точно используется терминология;
- –показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации;
- –продемонстрировано усвоение ранее изученных сопутствующих вопросов,
 сформированность и устойчивость компетенций, умений и навыков;
 - -ответ прозвучал самостоятельно, без наводящих вопросов;
- –продемонстрирована способность творчески применять знание теории к решению профессиональных задач;
 - -продемонстрировано знание современной учебной и научной литературы;
- -допущены одна две неточности при освещении второстепенных вопросов, которые исправляются по замечанию.

Оценка «4» (хорошо) ставится, если:

- -вопросы излагаются систематизированно и последовательно;
- -продемонстрировано умение анализировать материал, однако не все выводы носят аргументированный и доказательный характер;
 - -продемонстрировано усвоение основной литературы.
- -ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие содержание ответа; допущены один –два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов, которые легко исправляются по замечанию преподавателя.

Оценка «3» (удовлетворительно) ставится, если:

- -неполно или непоследовательно раскрыто содержание материала, но показано
- общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала;
 - -усвоены основные категории по рассматриваемому и дополнительным вопросам;
- -имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после нескольких наводящих вопросов;
- –при неполном знании теоретического материала выявлена недостаточная сформированность компетенций, умений и навыков, студент не может применить теорию в новой ситуации;
 - -продемонстрировано усвоение основной литературы

Оценка «2» (неудовлетворительно) ставится, если:

- -не раскрыто основное содержание учебного материала;
- -обнаружено незнание или непонимание большей или наиболее важной части учебного материала;
- -допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких наводящих вопросов.
 - -не сформированы компетенции, умения и навыки.

Письменная форма приучает к точности, лаконичности, связности изложения мысли. Письменная проверка используется во всех видах контроля и осуществляется как в аудиторной, так и во внеаудиторной работе. Письменные работы могут включать: диктанты, контрольные работы, эссе, рефераты, курсовые работы, отчеты по практикам, отчеты по научно-исследовательской работе студентов.

Контрольная работа - средство проверки умений применять полученные знания для решения задач определенного типа по теме, разделу или всей дисциплины. Контрольная работа — письменное задание, выполняемое в течение заданного времени (в условиях аудиторной работы — от 30 минут до 2 часов, от одного дня до нескольких недель в случае внеаудиторного задания). Как правило, контрольная работа предполагает наличие определенных ответов и решение задач.

□конкретность и ясность формулировки цели и задач проекта, их соответствие

теме;
□обоснованность выбора источников (полнота для раскрытия темы, наличие
новейших работ
-журнальных публикаций, материалов сборников научных трудов и т.п.);
□глубина/полнота/обоснованность раскрытия проблемы и ее решений;
□соответствие содержания выводов заявленным в проекте целям и задачам;
\Box наличие элементов новизны теоретического или практического характера;
□практическая значимость; оформление работы (стиль изложения, логичность,
грамотность, наглядность представления информации
-графики, диаграммы, схемы, рисунки, соответствие стандартам по оформлению
текстовых и графических документов);
3) оценки выступления на защите проекта, процедура которой имитирует процесс
профессиональной экспертизы:
□соответствие выступления заявленной теме, структурированность, логичность,
доступность, минимальная достаточность;
□уровень владения исследуемой темой (владение терминологией, ориентация в
материале, понимание закономерностей, взаимосвязей и т.д.);
□аргументированность, четкость, полнота ответов на вопросы;
□культура выступления (свободное выступление, чтение с листа, стиль подачи
материала и т.д.).

Тестовая форма - позволяет охватить большое количество критериев оценки и допускает компьютерную обработку данных. Как правило, предлагаемые тесты оценки компетенций делятся на психологические, квалификационные (в учебном процессе эту роль частично выполняет педагогический тест) и физиологические.

Современный тест, разработанный в соответствии со всеми требованиями, может включать задания различных типов а также задания, оценивающие различные виды деятельности учащихся (например, коммуникативные умения, практические умения).

В обычной практике применения тестов для упрощения процедуры оценивания как правило используется простая схема:

- отметка «3», если правильно выполнено 50 -70% тестовых заданий;
- -«4», если правильно выполнено 70 –85 % тестовых заданий;
- -«5», если правильно выполнено 85 –100 % тестовых заданий

Шкала оценивания

Предел длительности контроля	45 мин.	
Предлагаемое количество заданий из одного	30, согласно плана	
контролируемого подэлемента		
Последовательность выборки вопросов из	Определенная по разделам, случайная	
каждого раздела	внутри раздела	
Критерии оценки:	Выполнено верно заданий	
«5», если	(85-100)% правильных ответов	
«4», если	(70-85)% правильных ответов	
«3», если	(50-70)% правильных ответов	

Промежуточная аттестация — это элемент образовательного процесса, призванный определить соответствие уровня и качества знаний, умений и навыков обучающихся, установленным требованиям согласно рабочей программе дисциплины. Промежуточная аттестация осуществляется по результатам текущего контроля.

Конкретный вид промежуточной аттестации по дисциплине определяется рабочим учебным планом и рабочей программой дисциплины.

Зачет, как правило, предполагает проверку усвоения учебного материала практических И семинарских занятий, выполнения лабораторных, расчетнопроектировочных и расчетно-графических работ, курсовых проектов (работ), а также проверку результатов учебной, производственной или преддипломной практик. Зачет, как правило, выставляется без опроса студентов по результатам контрольных работ, других работ выполненных студентами в течение семестра, а также по результатам текущей успеваемости на семинарских занятиях, при условии, что итоговая оценка студента за работу в течение семестра (по результатам контроля знаний) больше или равна 60%. Оценка, выставляемая за зачет, может быть как квалитативного типа (по шкале наименований «зачтено»/ «не зачтено»), так и квантитативного (т.н. дифференцированный зачет с выставлением отметки по шкале порядка - «отлично, «хорошо» и т.д.).

Экзамен, как правило, предполагает проверку учебных достижений обучаемых по всей программе дисциплины и преследует цель оценить полученные теоретические знания, навыки самостоятельной работы, развитие творческого мышления, умения синтезировать полученные знания и их практического применения.

Экзамен в устной форме предполагает выдачу списка вопросов, выносимых на экзамен, заранее (в самом начале обучения или в конце обучения перед сессией). Экзамен включает, как правило, две части: теоретическую (вопросы) и практическую (задачи, практические задания, кейсы и т.д.). Для подготовки к ответу на вопросы и задания билета, который студент вытаскивает случайным образом, отводится время в пределах 30 минут. После ответа на теоретические вопросы билета, как правило, ему преподаватель задает дополнительные вопросы. Компетентностный подход ориентирует на то, чтобы экзамен обязательно включал деятельностный компонент в виде задачи/ситуации/кейса для решения.

В традиционной системе оценивания именно экзамен является наиболее значимым оценочным средством и решающим в итоговой отметке учебных достижений студента. В условиях балльно-рейтинговой системы балльный вес экзамена составляет 25 баллов.

Оценочные материалы разработаны в соответствии с ФГОС ВО по направлению подготовки 35.04.06 Агроинженерия
Разработал(и): Доцент,к.т.н Петина И.К.
Оценочные материалы рассмотрены и одобрены на заседании кафедрь Электротехнологии и электрооборудования, протокол № 7 от $18.03.2019$
Зав. кафедрой Рахимжанова И.А.
Оценочные материалы рассмотрены и утверждены на заседании учебно методической комиссии инженерного факультета, протокол № 1 от $30.08.2019$
Председатель учебно-методической комиссии инженерного факультета Асманкин Е.М.