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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

1.1.Организационно-методические данные дисциплины 
 

№ 

п.п. 
Наименование темы 

Общий объем часов по видам самостоятельной работы  

(из табл. 5.1 РПД) 

подгот

овка 

курсов

ого 

проект

а 

(работ

ы) 

подго

товка 

рефе

рата/

эссе 

индивид

уальные 

домашн

ие 

задания 

(ИДЗ) 

самостояте

льное 

изучение 

вопросов 

(СИВ) 

подготовка 

к занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1. 

Модуль 1. Основные определения и методы 

расчета линейных электрических цепей 

постоянного  и синусоидального тока  

  2 12 12 

2 
Модульная единица 1 
Электрические цепи с взаимной 

индуктивностью 

  2 12 6 

3 
Модульная единица 2 
Двухполюсники. Четырехполюсники 

    6 

4 
Модуль 2  

Переходные процессы в электрических 

цепях. 

  2  12 

 
Модульная единица 1 
Переходные процессы в цепях с RLи RC . 

Классический метод расчета. 

  2  6 

 
Модульная единица 2 
Операторный метод расчета    

    6 

 

Модуль3 

 Линейные электрические цепи при 

несинусоидальных периодических токах.   

 

   12 6 

 

Модульная единица 1 
Линейные электрические цепи при 

несинусоидальных периодических токах.   

 

   12 6 

 

Модуль 4. Нелинейные цепи постоянного и 

синусоидального тока. Цепи с 

распределенными параметрами 

 

   13 6 

 
Модульная единица 1 
Нелинейные цепи постоянного и 

синусоидального тока 

    6 

 
Модульная единица 2 
Цепи с распределенными параметрами 

 

   13  
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2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ 

ИНДИВИДУАЛЬНЫХ ДОМАШНИХ ЗАДАНИЙ 

Индивидуальные домашние задания выполняются в форме контрольной работы. 

2.1 Темы индивидуальных домашних заданий 

1. Цепи с взаимной индуктивностью 

           2.  Переходные процессы в электрических цепях. 

 

2.2. Содержание индивидуальных домашних заданий 

 

При выполнении контрольной работы возможно представление таблицы 

распределения заданий между обучающимися. 

 

Таблица 1. Распределение заданий 

 

 

Номер по 

списку 
Номера вариантов 

01 1 8 16 

 

02 3 11 19 

03 2 10 18 

04 5 13 21 

05 4 12 20 

06 7 15 23 

07 6 14 22 

08 9 17 25 

 

Таблица 2  - Задания к первой задаче 

Номер 

варианта 

Uv R1 R2 X1 X2 k 

1 75 20 30 40 50 0.8 

2 70 15 20 30 40 0.85 

3 65 10 25 35 45 0.84 

4 60 5 15 45 35 0.83 

5 55 25 10 50 30 0.82 

6 50 30 5 55 55 0.81 

7 80 35 35 60 60 0.86 

8 85 40 40 65 65 0.87 

9 90 45 45 70 70 0.88 

10 95 50 50 75 75 0.89 

 

Таблица 3.  - Задания ко второй задаче 

 Em Ѱe R1 R2 XL ω 

1 127 50 2 4 0.009  

 

314 

 

2 220 55 3 5 0.008 

3 127 60 4 6 0.011 

4 220 65 5 7 0.012 
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5 127 70 6 8 0.013 

6 220 75 7 9 0.014 

7 127 80 8 10 0.002 

8 220 85 9 11 0.003 

9 127 88 10 12 0.004 

10 220 95 11 13 0.005 

 

 

 

2.3 Порядок выполнения заданий 

Необходимо указать:  

1. Номер варианта задания 

2. Принципиальную электрическую схему исходные данные варианта для расчета 

3. Результаты расчетов  

4. Каждый этап решения должен иметь пояснение. Конечный результат должен 

быть выделен из общего текста.  

 

 

 

 

 

 

 

2.4 Пример выполнения задания  

Задача 1. 
Для схемы (рис.1) 

Дано:     U  = 75 Вольт 

                R1=20 Ом 

                R2=30 Ом 

               X1=40 Ом 

               X2=50 Ом                                 

               K=0,8                                                                                      

 
                               Рисунок 1      

 Найти входное напряжение  

Взаимная индуктивность элементов цепи, Гн 

1. М=k*      =k       ω,  где  

      собственная индуктивность элементов цепи           отсюда 

сопротивление  

Xm= ωM= k      = 0,8               Ом 

2. Ток на участке цепи  mn 

I=U  zmn= U  /                                 /125,5=0,596 Ом 

3. Сопротивление цепи 
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Z=                       =                            = 

135,344Ом 

Определяем  входное напряжение цепи 

U=I*Z=0,596*135,344=80,665 В 

 

 

 

Задача 2 

 

Пример  

Дано: 

R1 = R2 = 2 Ом 

XL = ωL =3 Ом 

e(t) = 127sin(ωt-50º), В 

ω = 314 
   

 
 

i(t) – ? 

 

 
I) Расчет классическим методом 

Решение первой части задачи 

В первую очередь перейдем от мгновенного значения ЭДС к его 

комплексному амплитудному значению. Переход осуществляется только от 

положительной синусоиды: 

 

e(t) = 127sin(ωt – 50º), В →   m = 127e
-j50º 

 В 

 

Комплексная амплитуда тока в цепи до коммутации: 

 

im = 
   

          
 =

         

      
  ≈  25,4e

-j86,87°
 A 

 

мгновенное значение тока до коммутации 
 

i(t) = 25,4sin(ω·t–86,87°), A 
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В момент до коммутации (t = 0–)  

 

i(0–) = 25,4sin(–86,87°) ≈ –25,36 A 

 

Принужденный ток после коммутации: 

 

  m пр = 
   

       
 = 

         

    
 ≈ 

         

             
 ≈ 35,22e

-j106,31°
 A 

 

Мгновенное значение принужденного тока:  

 

iпр(t) = 35,22sin(ω·t – 106,31°), A 

 

В момент после коммутации(t = 0+) 

 

iпр(0+) = 35,22sin(–106.31°) ≈ –33,8 A 

 

По первому закону коммутации: 

 

i(0+) = i(0–) = –25,36 A 

,но  i(0+) = iпр(0–) + iсв(0+) → iсв(0–) = i(0+) – iпр(0+) = –25,36 – (–33,8) = 8,44 A 

 

Решение второй части задачи 

Составим характеристическое уравнение и найдем его корни 

 

Z(p) =  R2 + pL = 0 → p = – 
  

 
 = – 

  

  
 = – 

   

  
 = – 

      

 
 ≈ –209,3 c

–1 

 

По данным первой части задачи ток в цепи до коммутации: 

 

i(t) = 25,4sin(ω·t – 86,87°), A 

 

Мгновенное значение принужденного тока после коммутации 

 

iпр(t) = 35,22sin(ω·t – 106,31°), A 

 

iсв(0+) = 8,44 A 

 

Следовательно: 

 

i(t) = iпр(t) + iсв(t) = 35,22sin(ω·t – 106,31°) + 8,44e
-209.3t 

, A 
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3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО  

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ 

 

3.1. Электрические цепи с взаимной индуктивностью  

При изучении вопроса необходимо обратить внимание на следующие особенности. 

При анализе цепей синусоидального тока до сих пор учитывалось явление 

самоиндукции, т.е. возникновение ЭДС в электрической цепи при изменении 

потокосцепления самоиндукции, обусловленного током в этой цепи. Если две катушки 

поместить рядом и через одну из них пропустить синусоидальный ток, то в другой 

катушке (без тока) будет наведена ЭДС, которую называют ЭДС взаимной индукции. 

Цепи, в которых наводятся ЭДС взаимной индукции, называют индуктивно связанными 

цепями. 

Рассмотрим два контура, удаленных друг от друга на некоторое расстояние (рис. 1). 

Контуры представляют собой плоские тонкие катушки с числами витков    и   

 
Рис. 1 

Поток самоиндукции   , созданный током   , может быть представлен в виде потока 

рассеяния   , пронизывающего только первый контур, и потока    , пронизывающего 

второй контур     

                                                   (2.1) 

       Аналогично определяем поток самоиндукции второго контура 

                                      (2.2) 

Потоки     и    называют потоками взаимной индукции. Их принято обозначать двумя 

индексами: первый индекс указывает, с каким контуром сцепляется поток, второй - номер 

тока, вызвавшего данный поток. Например, поток     вызван током   , сцепляется с 

первым контуром. Если направление потока взаимной индукции совпадает с 

направлением потока самоиндукции данного контура, то говорят, что магнитные потоки и 

токи контуров направлены согласно. В случае противоположного направления говорят о 

встречном направлении потоков. Суммарные потоки, пронизывающие первый и второй 

контуры, 

          ;                                   (2.4)  

где «+» соответствует согласному направлению потоков, .«-» - встречному направлению. 
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Полные потокосцепления первого и второго контуров 

  =    =  (   ±   )=     ±     =    ±            (2.5)  

  =    =  (   ±   )=     ±     =    ±            (2.6) 

        Отношение потокосцепления взаимной индукции в одной цепи к току в другой 

называют взаимной индуктивностью 

    = 
   

  
 = 

     

  
 ;     = 

   

  
 = 

     

   
               (2.7) 

 

Для линейных электрических цепей всегда выполняется равенство 

   =   =M    (2. 8) 

и поэтому индексы у взаимной индуктивности могут быть опущены. 

Справедливость последнего равенства можно доказать на примере кольцевого 

неферромагнитного магнитопровода (рис. 2) с площадью поперечного сечения s, на 

котором намотаны две катушки. При токе    = 0 

 
Рис.2  

    
   

  
 

     

  
 

      

  
 

       

 
              (2.9) 

гдеВ,Н - магнитная индукция и напряженность магнитного поля, вызванные  

током    (при   = 0); l - длина средней магнитной линии;   = 
 

 
   абсолютная магнитная 

проницаемость среды. 

Аналогично при токе   = 0 взаимная индуктивность второй и первой катушек 

    
   

  
 

     

  
 

      

  
 

       

 
              ( 2.10)       

Сравнение (2. 9) и (2. 10) показывает, что    =           

Таким образом, справедливость равенства (2.8) доказана. Кроме того, взаимная индук-

тивность двух катушек зависит от числа витков, геометрических размеров 

магнитопровода и взаимного расположения катушек, а также от абсолютной магнитной 

проницаемости среды (материала магнитопровода). Индуктивную связь двух катушек 

характеризуют коэффициентом связи 

K = 
 

       
                                          (2.11) 

Этот коэффициент всегда меньше единицы, так как магнитный поток взаимной 

индукции всегда меньше потока самоиндукции и может быть увеличен за счет 

уменьшения потоков рассеяния бифилярной намоткой катушек (двойным проводом) или 

применением для магнитопровода материала с высокой абсолютной магнитной 

проницаемостью. 

 

ЭДС взаимной индукции 
ЭДС, индуктируемые в первом и втором контурах, с учетом (2. 5), (2. 6) можно записать в 

виде 

   
   

  
    

   

  
  

   

  
        (2.12) 

   
   

  
    

   

  
  

   

  
                    (2.13) 
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Таким образом, ЭДС каждой катушки определяется алгебраической суммой ЭДС 

самоиндукции и взаимной индукции. Для определения знака ЭДС взаимной индукции 

размечают зажимы индуктивно связанных элементов цепи. 

Два зажима называют одноименными, если при одинаковом направлении токов 

относительно этих зажимов магнитные потоки самоиндукции и взаимной индукции 

складываются. Такие выводы обозначают на схемах одинаковыми условными знаками, 

например, точками или звездочками (рис.3 а, б). Одинаково направленные токи          и    

(рис.3 а) относительно зажимов а и с вызывают совпадающие по направлению потоки 

самоиндукции          и взаимной индукции        . 

 
Рис.3(а, б) 

 

 
Рис.3(в, г) 

Следовательно, зажимыа и сявляются одноименными. Одноименной является и 

другая пара зажимовb  иd,  но условными знаками обозначают только одну пару 

одноименных выводов, например, а и с (рис.3 а). 

Если токи    и   направлены неодинаково относительно одноименных зажимов 

(рис.3 б), то это приводит к встречному направлению потоков самоиндукции и взаимной 

индукции. 

На схемах магнитопроводы, как правило, не показывают и ограничиваются только 

обозначением одноименных зажимов (рис.3 в, г). 

Одноименные зажимы можно определить опытным путем. Для этого одна из катушек 

включается в цепь источника постоянного тока, а к другой присоединяется вольтметр 

постоянного тока (рис.4). 

 
Рис. 4 



11 

 

Если в момент подключения источника стрелка измерительного прибора 

отклоняется, то зажимы индуктивно связанных катушек, подключенные к 

положительному полюсу источника и положительному зажиму измерительного прибора, 

являются одноименными. 

Определим знаки ЭДС и напряжения взаимной индукции. Допустим, первая катушка 

(рис. 3 а) разомкнута, а во второй протекает ток    Выберем положительные направления 

для     ,    ,    одинаковыми относительно одноименных зажимов. ЭДС и напряжение 

взаимной индукции равны, но противоположны по знаку. Действительно, когда    > 0, 

потенциал зажимаb больше потенциала зажима а, следовательно,    < 0. 

По правилу Ленца знаки    и 
   

  
 всегда противоположны, поэтому  

          
   
  

 

В комплексной форме получим 

                   (2.14) 

 

При встречном включении катушек (рис. 4) 

                                          (2.15) 

Из (2.14) и (2.15) видно, что вектор напряжения на взаимной индуктивности    сдвинут 

по фазе относительно вектора тока     на угол ±90°.   

Сопротивление       называется сопротивлением взаимной индуктивности, 

a       - комплексным сопротивлением.  

Таким образом, при согласном направлении токов падение напряжения на взаимной 

индуктивности имеет знак «плюс», при встречном - знак «минус». 

 

Цепь переменного тока с последовательным включением катушек . 

         Рассмотрим две катушки, соединенные последовательно и имеющие активные 

сопротивления   ,   индуктивности      и взаимную индуктивность М. Возможны два 

вида их включения: согласное (рис. 5 а) и встречное (рис. 5 б). 

 
Рис.5(а, б) 

При согласном включении ток в обеих катушках направлен одинаково относительно 

одноименных зажимов, поэтому падение напряжения на взаимной индуктивности в 

уравнениях Кирхгофа для мгновенных значений запишем со знаком «плюс»: 

         
  

  
  

  

  
;         

  

  
  

  

  
 

 

                           
  

  
 

 

 

Эти же уравнения в комплексной форме 

   =     +     I +  ωMI ;   =     +     I +  ωMI 

 

U=   +   = I(      )+jωI(   +   +2M) =I     (2.16) 

 



12 

 

Полное сопротивление цепи при согласном включении 

      
 

 
                   (2.17) 

При встречном включении (рис. 5 б) ток в катушках направлен противоположно 

относительно одноименных зажимов, поэтому напряжения на взаимной индуктивности 

будем записывать со знаком «минус». В этом случае уравнения Кирхгофа в комплексной 

форме имеют вид 

  =     +    I -   ωMI ;    =     +     I -  ωMI 

 

U=   +   = I(      )+jωI(   +   - 2M) =I     (2.18) 

Полное сопротивление цепи при встречном включении 

      
 

 
                    (2.19) 

Полное сопротивление цепи при согласном включении больше, чем при встречном. 

Этим можно пользоваться для определения опытным путем одноименных зажимов 

индуктивно связанных катушек. 

На рис. 6  построены векторные диаграммы для согласного и встречного включения 

катушек. Начальная фаза вектора тока, являющегося, общим для всех элементов цепи 

принята равной 0. По вектору тока сориентированы в порядке записи все слагаемые 

напряжений    и   (2.16), (2.18). Упрощает выбор направления векторов правило о том, 

что умножение комплекса на±  соответствует его повороту на ± 90°. Многоугольники 

векторов      ,U построенные на диаграмме соответственно с законом Кирхгофа, 

заштрихованы. 

 
Рис.6(а, б) 

Векторная диаграмма (рис. 6 б) при встречном включении катушек построена в 

предположении, что   <M<  . При таком соотношении параметров в первой катушке 

наблюдается емкостный эффект, т. к. напряжение   отстает от тока   .  В цепи нет 

конденсаторов, но индуктивность первой катушки   
 =  -M получается отрицательной, 

что эквивалентно включению конденсатора. Однако в целом цепь всегда имеет 

индуктивный характер, т. к. вектор тока отстает от вектора напряжения на входе, потому 

что (  +   - 2M)>0 

При согласном включении катушек емкостный эффект невозможен. 

 

Определение взаимной индуктивности опытным путем 

Последовательное соединение индуктивно связанных катушек может быть 

использовано для опытного определения взаимной индуктивностиМ  

 

(рис. 7а). Для этого проделаем два опыта. В первом опыте включим катушки по-

следовательно и согласно. Измерим ток      , напряжениеU  и активную мощность       По 

результатам опыта определим активное, полноеи реактивное сопротивления цепи  

      
     

     
 ;      
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Рис.7(а, б) 

Поменяв местами, зажимы одной из катушек, повторим измерения при том же 

напряжении. По результатам опыта определим сопротивление цепи для встречного 

включения катушек: 

 

      
     

     
 ;       

 

     
 ;             

        
  

Из (2.16), (2.18) имеем 

                   ;                     

Их разность                , следовательно 

 

  
           

  
 (2.20) 

Взаимную индуктивность можно определить и более простым способом. Подключим 

первую катушку к источнику через амперметр (рис. 7 б), к зажимам второй катушки 

подключим вольтметр с большим внутренним сопротивлением. Измерим ток   и 

напряжение   . Так как     
   

  
то  действующее значение        . Следовательно 

  
  

   
(2.21) 

 

  Цепь переменного тока с параллельным включением катушек. Предположим, 

что две катушки с сопротивлениями      > индуктивностями       и взаимной 

индуктивностью М соединены параллельно. Возможны два вида их включения: подклю-

чением одноименных зажимов к одному и тому же узлу (рис. 8а) и подключением их к 

разным узлам (рис. 8 б). 

 
Рис. 8 

При выбранных положительных направлениях токов первая схема соответствует со-

гласному включению, вторая - встречному.  

Составим уравнения по второму закону Кирхгофа для каждой из параллельных 

ветвей в комплексной форме: 

 

 
                   
                   

                                     (2.22) 

 

Обозначив           ,          ,        получим систему уравнений 
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                                       (2.23) 

 

в которой знак «плюс» соответствует согласному включению катушек (рис. 8 а), знак 

«минус» - встречному (рис. 78 б). 

 

 

Решим систему уравнений (2. 23) относительно токов: 

   
  

 
 

     

       
   ;    

  

 
 

     

       
   

По первому закону Кирхгофа ток в неразветвленной части цепи 

        
         

       
                               (2.24) 

откуда входное сопротивление цепи 

  
 

 
 

       
 

         
                                     (2.25) 

 

где «минус» относится к согласному включению, «плюс» - к встречному. 

При ZM = 0, т.е. при отсутствии индуктивной связи между ветвями, формулу (2.25) 

приведем к известному виду 

  
    

     
 

На рис. 9  построены векторные диаграммы цепи (рис. 8) при согласном и встречном 

включении катушек в соответствии с уравнениями (2.22) и (2.24). При построении 

начальная фаза вектора напряжения источника U принята равной нулю. 

 
Рис. 9 

Построив многоугольник токов по первому закону Кирхгофа (2.24), можно построить 

на плоскости все векторы напряжений. Рассмотрим построение составляющих вектораU  

по первому уравнению системы (2.22) при согласном включении катушек (рис. 9 а). 

Вектор       проводим параллельно вектору тока   . Из конца вектора      строим вектор 

напряжения на индуктивности        ,опережающий ток   на 90°. Третий вектор       

строим из конца второго. Он опережает ток   на угол 90°, так как получается умножением 

   наj, что означает его поворот в положительном направлении на 90°. Аналогично строим 

составляющие вектораU  по второму уравнению системы (2.22) для встречного включения 

катушек. 

 

Расчет разветвленных индуктивно связанных цепей 

      Расчет разветвленных цепей можно вести с помощью уравнений Кирхгофа или 

методом контурных токов. При составлении уравнений по второму закону Кирхгофа 

следует учитывать следующие правила для определения знаков напряжения на взаимной 

индуктивности: если направление обхода в одном контуре и положительное направление 

тока в другом контуре совпадают относительно одноименных зажимов, то напряжение 

взаимной индуктивности берется со знаком «плюс». При несовпадении этих направлений 

относительно одноименных зажимов напряжение записывается со знаком «минус». 
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Выбрав положительные направления токов в ветвях и направления обхода контуров, 

запишем уравнения по законам Кирхгофа для схемы, представленной на рис. 10: 

 
Рис. 10 

           

    
 

   
                                          

 

   
          

               

    
 

   
                                                        

       
Решая эту систему уравнений при известных параметрах цепи, находим токи в 

ветвях. 

При расчете таких цепей можно применять метод эквивалентного генератора, если 

выделенная ветвь не имеет индуктивных связей с той частью цепи, которая входит в 

состав активного двухполюсника. 

При расчете таких цепей не используют преобразование треугольника 

сопротивлений в эквивалентную звезду и обратно. 

Метод узловых потенциалов в данном случае непосредственно применять 

невозможно, т.к. токи в ветвях зависят не только от напряжений между узлами, к 

которым присоединены эти ветви, но и от токов в других ветвях, с которыми они связаны 

через взаимную индуктивность. 

Чтобы применить наиболее рациональный метод расчета, в ряде случаев 

целесообразно в цепи исключить индуктивные связи. 

 

Эквивалентная замена (развязка) индуктивных связей 

Расчет электрических цепей можно упростить, если часть схемы, содержащую 

индуктивные связи, заменить эквивалентной схемой без индуктивных связей. Этот прием 

называют эквивалентной заменой или развязкой индуктивных связей. 

Построим схему без индуктивных связей, эквивалентную двум индуктивно связанным 

элементам цепи  и   присоединенным к общему узлус (рис.11 а, б). Рассмотрим два 

возможных случая, когда в узлесэлементы цепи соединены одноименными (рис. 11а) и 

разноименными (рис. 11 б) зажимами. 
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Рис.11 

 

Напряжения на индуктивных элементах цепи 

              ;                  

Пользуясь уравнением Кирхгофа           , исключим из первого уравнения 

ток   , а из второго уравнения ток   . Получим 

                    ;                     

Этим уравнениям удовлетворяет эквивалентная схема замещения без индуктивных 

связей (рис. 11 в). 

Знаки «минус» у сопротивления   соответствуют соединению ветвей с 

одноименными зажимами. Заметим, что узел из точкиcпереместился в точку   (рис. 11 в). 

Между этими точками включено дополнительное сопротивление    

 

                 3.2 Линейные электрические цепи при несинусоидальных периодических 

токах 

При изучении вопроса необходимо обратить внимание на следующие особенности 

               До сих пор мы рассматривали цепи с синусоидально изменяющимися ЭДС, 

напряжением и токами. На практике часто форма кривых тока и напряжения в той или 

иной степени отличается от синусоиды. В электронных устройствах, в электросвязи и пр. 

широко используются сигналы несинусоидальной формы 

Форма кривой тока и напряжения может отличаться от синусоидальной по нескольким 

причинам: 

а) Кривая распределения магнитной индукции вдоль воздушного зазора в генераторе 

переменного тока отлична от синусоиды в силу несовершенства его конструкции 

б) Наличие в цепи нелинейных элементов: катушек с магнитопроводом, конденсаторов, 

ламп накаливания, выпрямительных устройств и т.п. 

в) Намеренное использование генераторов сигналов несинусоидальной формы 

г) работа в общей сети генераторов с разными частотами 

 

Разложение периодических несинусоидальных кривых в ряд Фурье.  

Расчет цепей с несинусоидальными напряжениями и токами ведется теми же методами, 

что и синусоидальные. При этом периодическая несинусоидальная функция 

раскладывается в тригонометрический ряд (ряд Фурье) 

                                                        

               

 

   

 

1. Где                              

2.                                    
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3.                                   

4.                         

Сочетание амплитуды, частот, начальных фаз гармоник определяет спектральный 

состав исследуемой функции. 

Гармоники с четным номером k называют четными гармониками 

Если k – нечетные – нечетными гармониками. 

Таким образом, разложение несинусоидальной периодической функции в ряд Фурье 

сводится к определению амплитуд и начальных фаз каждой из гармоник. 

Если кривая функции имеет правильную геометрическую форму (треугольную, 

прямоугольную, пилообразную и т.д.), то она может быть разложена в ряд аналитически. 

Кривые произвольной формы задаются, как правило, в виде графиков и разлагаются в ряд 

Фурье графоаналитическими методами. 

2. Характеристики несинусоидальной периодической функции. 

Любая периодическая функция может характеризоваться: 

5. 1) Амплитудным значением   ; 

6. 2) Действующим (среднеквадратичным) значением А; 

7. 3) Средним значением     

Если функция задана аналитически в виде ряда Фурье, то амплитуды всех гармоник 

присутствуют в выражении функции. 

Действующее значение функции, согласно определению – это среднеквадратичное 

значение за период, т.е. 

   
 

 
     

 

 

  
 

 
                  

 

 

      
    

      
  

Действующее значение несинусоидальной функции равно корню квадратному из суммы 

квадратов действующих значений всех гармоник, включая постоянную составляющую. 

Оно не зависит от начальных фаз отдельных гармоник 

Так может быть определено действующее значение несинусоидального тока и напряжения 

в цепи 

Под средним значением функции понимается среднее значение модуля этой функции за 

период: 

    
 

 
       

 

 

   

Если кривая симметрична относительно оси абсцисс, то ее среднее значение определяют 

за половину периода: 

    
 

 
       

   

 

   

Для количественной оценки степени отличия исследуемой функции от синусоидальной 

используются следующие коэффициенты: 

1. Коэффициент амплитуды        
  

       
 

2. Коэффициент формы                 
 

   
 

3. Коэффициент искажений         
  

 
 

Для идеальной синусоиды эти коэффициенты имеют значения: 

1. Коэффициент амплитуды     
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2. Коэффициент формы         
 

   
 

 

   
      

3. Коэффициент искажений         
  

 
     

         

3  Мощность цепей несинусоидального тока 

Под активной мощностью электрической цепи понимают среднее значение мощности за 

период: 

                  
 

 
      

 

 

 

Для несинусоидальной функции напряжения и тока имеют вид (нагрузка индуктивная): 

                                      

 

   

 

                                          

 

   

 

Подставим эти ряды под знак интеграла 

   
 

 
                  

 

   

 
 

 

                    

 

   

   

                                        

    

 

   

 

Таким образом, активная мощность несинусоидального тока равна сумме активных 

мощностей отдельных гармоник. 

Аналогичное соотношение можно получить и для реактивной мощности: 

Q=                                              
 
    

Реактивная мощность постоянной составляющей равна нулю. 

Полная мощность цепи определяется выражением S=UI, 

где                        

I                     

Это действующее значение тока и напряжения 

Так как, в общем случае, кривая тока может по форме отличаться от кривой напряжения, 

то  

         

Для количественной оценки степени отличия форм кривых тока и напряжения вводится 

понятие мощности искажений Т: 

            

4 . Основные положения для расчета цепи 

В основе расчета цепи несинусоидального тока лежит принцип наложения. Согласно 

этому принципу, мгновенное значение тока в любой ветви равно сумме мгновенных 

значений токов отдельных гармоник. Расчет производится для каждой из гармоник в 

отдельности любым известным методом расчета. (как правило в комплексной форме) 

 
 

                3.3 Цепи с распределенными параметрами 

При изучении вопроса необходимо обратить внимание на следующие особенности. 
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            В предыдущих лекциях рассматривались электрические цепи, геометрические 

размеры которых, а также входящих в них элементов не играли роли, т.е. электрические и 

магнитные поля были локализованы соответственно в пределах конденсатора и катушки 

индуктивности, а потери мощности – в резисторе. Однако на практике часто приходится 

иметь дело с цепями (линии электропередачи, передачи информации, обмотки 

электрических машин и аппаратов и т.д.), где электромагнитное поле и потери равномерно 

или неравномерно распределены вдоль всей цепи. В результате напряжения и токи на 

различных участках даже неразветвленной цепи отличаются друг от друга, т.е. являются 

функциями двух независимых переменных: времени t и пространственной координаты x.                         

Такие цепи называются цепями с распределенными параметрами.  

             Смысл данного названия заключается в том, что у цепей данного класса каждый 

бесконечно малый элемент их длины характеризуется сопротивлением, индуктивностью, а 

между проводами – соответственно емкостью и проводимостью. 

Для оценки, к какому типу отнести цепь: с сосредоточенными или распределенными 

параметрами – следует сравнить ее длину l с длиной электромагнитной волны . 

Если , то линию следует рассматривать как цепь с распределенными 

параметрами. Например, для , т.е. при , и 

. Для , т.е. уже при  к 

линии следует подходить как к цепи с распределенными параметрами. 

Для исследования процессов в цепи с распределенными параметрами (другое название – 

длинная линия) введем дополнительное условие о равномерности распределения вдоль 

линии ее параметров: индуктивности, сопротивления, емкости и проводимости. Такую 

линию называют однородной. Линию с неравномерным распределением параметров 

часто можно разбить на однородные участки. 

 Под первичными параметрами линии будем понимать сопротивление , индуктивность 

, проводимость  и емкость , отнесенные к единице ее длины. Для получения 

уравнений однородной линии разобьем ее на отдельные участки бесконечно малой длины 

 со структурой, показанной на рис. 1. 

Пусть напряжение и ток в начале такого 

элементарного четырехполюсника равны u и i, 

а в конце соответственно  и 

. 

Разность напряжений в начале и конце 

участка определяется падением напряжения на резистивном и индуктивном элементах, а 

изменение тока на участке равно сумме токов утечки и смещения через проводимость и 

емкость. Таким образом, по законам Кирхгофа 
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или после сокращения на  

;     
(1) 

.      
(2) 

Теорию цепей с распределенными параметрами в установившихся режимах будем 

рассматривать для случая синусоидального тока. Тогда полученные соотношения при 

 можно распространить  и на цепи постоянного тока, а воспользовавшись 

разложением в ряд Фурье – на линии периодического несинусоидального тока. 

Вводя комплексные величины и заменяя  на , на основании (1) и (2) получаем 

; 
(3) 

,  
(4) 

где  и  - соответственно комплексные сопротивление  

и проводимость на единицу длины линии. 

Продифференцировав (3) по х и подставив выражение  из (4), запишем 

. 

Характеристическое уравнение  

, 

откуда 

. 

Таким образом, 
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, (5) 

где  - постоянная распространения;  - коэффициент затухания;  - 

коэффициент фазы. 

Для тока согласно уравнению (3) можно записать 

, 

(6) 

где  - волновое сопротивление. 

Волновое сопротивление  и постоянную распространения  называют вторичными 

параметрами линии, которые характеризуют ее свойства как устройства для передачи 

энергии или информации. 

Определяя  и , на основании (5) запишем 

. (7) 

Аналогичное уравнение согласно (6) можно записать для тока. 

Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая 

движется и затухает в направлении возрастания х, вторая – убывания. Действительно, в 

фиксированный момент времени каждое из слагаемых представляет собой затухающую 

(вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной 

точке – синусоидальную функцию времени. 

Волну, движущую от начала линии в 

сторону возрастания х, называют 

прямой, а движущуюся от конца линии 

в направлении убывания х – обратной. 

На рис. 2 представлена затухающая 

синусоида прямой волны для моментов 

времени  и   . 

Перемещение волны характеризуется 

фазовой скоростью. Это скорость 

перемещения по линии неизменного 

фазового состояния, т.е. скорость, с 

которой нужно перемещаться вдоль линии, чтобы наблюдать одну и ту же фазу волны: 

. (8) 



22 

 

Продифференцировав (8) по времени, получим 

. 

(9) 

Длиной волны  называется расстояние между двумя ее ближайшими точками, 

различающимися по фазе на  рад. В соответствии с данным определением 

, 

откуда  

 

и с учетом (9) 

. 

        В соответствии с введенными понятиями прямой и обратной волн распределение 

напряжения вдоль линии в любой момент времени можно трактовать как результат 

наложения двух волн: прямой и обратной, - перемещающихся вдоль линии с одинаковой 

фазовой скоростью, но в противоположных направлениях: 

, 
(10) 

где в соответствии с (5)  и . 

          Представление напряжения в виде суммы прямой и обратной волн согласно (10) 

означает, что положительные направления напряжения для обеих волн выбраны 

одинаково: от верхнего провод а к нижнему. 

Аналогично для тока на основании (6) можно записать 

, 
(11) 

где  и . 

           Положительные направления прямой и обратной волн тока в соответствии с (11) 

различны: положительное направление прямой волны совпадает с положительным 
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направлением тока  (от начала к концу линии), а положительное направление обратной 

волны ему противоположно. 

На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется 

закон Ома 

 

; 

. 

  

            Рассмотрим теоретически важный случай бесконечно длинной однородной 

линии. 

Бесконечно длинная однородная линия. Согласованный режим работы 

В случае бесконечно длинной линии в выражениях (5) и (6) для напряжения и тока 

слагаемые, содержащие , должны отсутствовать, т.к. стремление  лишает эти 

составляющие физического смысла. Следовательно, в рассматриваемом случае . 

Таким образом, в решении уравнений линии бесконечной длины отсутствуют обратные 

волны тока и напряжения. В соответствии с вышесказанным 

 

; 

 

. (12) 

На основании соотношений (12) можно сделать важный вывод, что для бесконечно 

длинной линии в любой ее точке, в том числе и на входе, отношение комплексов 

напряжения и тока есть постоянная величина, равная волновому сопротивлению: 

. 

Таким образом, если такую линию мысленно рассечь в любом месте и вместо откинутой 

бесконечно длинной части подключить сопротивление, численно равное волновому, то 

режим работы оставшегося участка конечной длины не изменится. Отсюда можно сделать 

два вывода: 

Уравнения бесконечно длинной линии распространяются на линию конечной длины, 

нагруженную на сопротивление, равное волновому. В этом случае также имеют место 

только прямые волны напряжения и тока. 

У линии, нагруженной на волновое сопротивление, входное сопротивление также равно 

волновому. 

Режим работы длинной линии, нагруженной на сопротивление, равное волновому, 

называется согласованным, а сама линия называется линией с согласованной 

нагрузкой. 
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Отметим, что данный режим практически важен для передачи информации, поскольку 

характеризуется отсутствием отраженных (обратных) волн, обусловливающих помехи. 

Согласованная нагрузка полностью поглощает мощность волны, достигшей конца линии. 

Эта мощность называется натуральной. Поскольку в любом сечении согласованной линии 

сопротивление равно волновому, угол сдвига  между напряжением и током неизменен. 

Таким образом, если мощность, получаемая линией от генератора, равна 

, то мощность в конце линий длиной  в данном случае  

, 

откуда КПД линии 

 

и затухание 

. 

Как указывалось при рассмотрении четырехполюсников, единицей затухания является 

непер, соответствующий затуханию по мощности в  раз, а по напряжению или току – в 

 раз. 

4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ  

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

4.1 Практическое занятие 1 (ПЗ-1) Расчет сложных цепей с 

взаимоиндуктивностью. 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

Цепи, в которых наводятся ЭДС взаимной индукции, называют индуктивно 

связанными цепями. 

Рассмотрим два контура, удаленных друг от друга на некоторое расстояние (рис. 1). 

Контуры представляют собой плоские тонкие катушки с числами витков    и   

 
Рис. 1 
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Поток самоиндукции   , созданный током   , может быть представлен в виде потока 

рассеяния   , пронизывающего только первый контур, и потока    , пронизывающего 

второй контур     

                                                   (2.1) 

       Аналогично определяем поток самоиндукции второго контура 

                                      (2.2) 

Потоки     и    называют потоками взаимной индукции. Их принято обозначать двумя 

индексами: первый индекс указывает, с каким контуром сцепляется поток, второй - номер 

тока, вызвавшего данный поток. Например, поток     вызван током   , сцепляется с 

первым контуром. Если направление потока взаимной индукции совпадает с 

направлением потока самоиндукции данного контура, то говорят, что магнитные потоки и 

токи контуров направлены согласно. В случае противоположного направления говорят о 

встречном направлении потоков. Суммарные потоки, пронизывающие первый и второй 

контуры, 

          ;                                   (2.4)  

где «+» соответствует согласному направлению потоков, .«-» - встречному направлению. 

Полные потокосцепления первого и второго контуров 

  =    =  (   ±   )=     ±     =    ±            (2.5)  

  =    =  (   ±   )=     ±     =    ±            (2.6) 

        Отношение потокосцепления взаимной индукции в одной цепи к току в другой 

называют взаимной индуктивностью 

    = 
   

  
 = 

     

  
 ;     = 

   

  
 = 

     

   
               (2.7) 

 

Для линейных электрических цепей всегда выполняется равенство 

   =   =M    (2. 8) 

и поэтому индексы у взаимной индуктивности могут быть опущены. 

Справедливость последнего равенства можно доказать на примере кольцевого 

неферромагнитного магнитопровода (рис. 2) с площадью поперечного сечения s, на 

котором намотаны две катушки. При токе    = 0 

 
Рис.2  

    
   

  
 

     

  
 

      

  
 

       

 
              (2.9) 

гдеВ,Н - магнитная индукция и напряженность магнитного поля, вызванные  

током    (при   = 0); l - длина средней магнитной линии;   = 
 

 
   абсолютная магнитная 

проницаемость среды. 

Аналогично при токе   = 0 взаимная индуктивность второй и первой катушек 

    
   

  
 

     

  
 

      

  
 

       

 
              ( 2.10)       

Сравнение (2. 9) и (2. 10) показывает, что    =           

Таким образом, справедливость равенства (2.8) доказана. Кроме того, взаимная индук-

тивность двух катушек зависит от числа витков, геометрических размеров 

магнитопровода и взаимного расположения катушек, а также от абсолютной магнитной 
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проницаемости среды (материала магнитопровода). Индуктивную связь двух катушек 

характеризуют коэффициентом связи 

K = 
 

       
                                          (2.11) 

Этот коэффициент всегда меньше единицы, так как магнитный поток взаимной 

индукции всегда меньше потока самоиндукции и может быть увеличен за счет 

уменьшения потоков рассеяния бифилярной намоткой катушек (двойным проводом) или 

применением для магнитопровода материала с высокой абсолютной магнитной 

проницаемостью. 

 

ЭДС взаимной индукции 
ЭДС, индуктируемые в первом и втором контурах, с учетом (2. 5), (2. 6) можно записать в 

виде 

   
   

  
    

   

  
  

   

  
        (2.12) 

   
   

  
    

   

  
  

   

  
                    (2.13) 

 

Таким образом, ЭДС каждой катушки определяется алгебраической суммой ЭДС 

самоиндукции и взаимной индукции. Для определения знака ЭДС взаимной индукции 

размечают зажимы индуктивно связанных элементов цепи. 

Два зажима называют одноименными, если при одинаковом направлении токов 

относительно этих зажимов магнитные потоки самоиндукции и взаимной индукции 

складываются. Такие выводы обозначают на схемах одинаковыми условными знаками, 

например, точками или звездочками (рис.3 а, б). Одинаково направленные токи          и    

(рис.3 а) относительно зажимов а и с вызывают совпадающие по направлению потоки 

самоиндукции          и взаимной индукции        . 

 
Рис.3(а, б) 

 

 
Рис.3(в, г) 

Следовательно, зажимыа и сявляются одноименными. Одноименной является и 

другая пара зажимовb  иd,  но условными знаками обозначают только одну пару 

одноименных выводов, например, а и с (рис.3 а). 



27 

 

Если токи    и   направлены неодинаково относительно одноименных зажимов 

(рис.3 б), то это приводит к встречному направлению потоков самоиндукции и взаимной 

индукции. 

На схемах магнитопроводы, как правило, не показывают и ограничиваются только 

обозначением одноименных зажимов (рис.3 в, г). 

Одноименные зажимы можно определить опытным путем. Для этого одна из катушек 

включается в цепь источника постоянного тока, а к другой присоединяется вольтметр 

постоянного тока (рис.4). 

 
Рис. 4 

Если в момент подключения источника стрелка измерительного прибора 

отклоняется, то зажимы индуктивно связанных катушек, подключенные к 

положительному полюсу источника и положительному зажиму измерительного прибора, 

являются одноименными. 

Определим знаки ЭДС и напряжения взаимной индукции. Допустим, первая катушка 

(рис. 3 а) разомкнута, а во второй протекает ток    Выберем положительные направления 

для     ,    ,    одинаковыми относительно одноименных зажимов. ЭДС и напряжение 

взаимной индукции равны, но противоположны по знаку. Действительно, когда    > 0, 

потенциал зажимаb больше потенциала зажима а, следовательно,    < 0. 

По правилу Ленца знаки    и 
   

  
 всегда противоположны, поэтому  

          
   
  

 

В комплексной форме получим 

                   (2.14) 

 

При встречном включении катушек (рис. 4) 

                                          (2.15) 

Из (2.14) и (2.15) видно, что вектор напряжения на взаимной индуктивности    сдвинут 

по фазе относительно вектора тока     на угол ±90°.   

Сопротивление       называется сопротивлением взаимной индуктивности, 

a       - комплексным сопротивлением.  

Таким образом, при согласном направлении токов падение напряжения на взаимной 

индуктивности имеет знак «плюс», при встречном - знак «минус». 

 

Цепь переменного тока с последовательным включением катушек . 

         Рассмотрим две катушки, соединенные последовательно и имеющие активные 

сопротивления   ,   индуктивности      и взаимную индуктивность М. Возможны два 

вида их включения: согласное (рис. 5 а) и встречное (рис. 5 б). 
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Рис.5(а, б) 

При согласном включении ток в обеих катушках направлен одинаково относительно 

одноименных зажимов, поэтому падение напряжения на взаимной индуктивности в 

уравнениях Кирхгофа для мгновенных значений запишем со знаком «плюс»: 

         
  

  
  

  

  
;         

  

  
  

  

  
 

 

                           
  

  
 

 

 

Эти же уравнения в комплексной форме 

   =     +     I +  ωMI ;   =     +     I +  ωMI 

 

U=   +   = I(      )+jωI(   +   +2M) =I     (2.16) 

 

Полное сопротивление цепи при согласном включении 

      
 

 
                   (2.17) 

При встречном включении (рис. 5 б) ток в катушках направлен противоположно 

относительно одноименных зажимов, поэтому напряжения на взаимной индуктивности 

будем записывать со знаком «минус». В этом случае уравнения Кирхгофа в комплексной 

форме имеют вид 

  =     +    I -   ωMI ;    =     +     I -  ωMI 

 

U=   +   = I(      )+jωI(   +   - 2M) =I     (2.18) 

Полное сопротивление цепи при встречном включении 

      
 

 
                    (2.19) 

Полное сопротивление цепи при согласном включении больше, чем при встречном. 

Этим можно пользоваться для определения опытным путем одноименных зажимов 

индуктивно связанных катушек. 

На рис. 6  построены векторные диаграммы для согласного и встречного включения 

катушек. Начальная фаза вектора тока, являющегося, общим для всех элементов цепи 

принята равной 0. По вектору тока сориентированы в порядке записи все слагаемые 

напряжений    и   (2.16), (2.18). Упрощает выбор направления векторов правило о том, 

что умножение комплекса на±  соответствует его повороту на ± 90°. Многоугольники 

векторов      ,U построенные на диаграмме соответственно с законом Кирхгофа, 

заштрихованы. 
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Рис.6(а, б) 

Векторная диаграмма (рис. 6 б) при встречном включении катушек построена в 

предположении, что   <M<  . При таком соотношении параметров в первой катушке 

наблюдается емкостный эффект, т. к. напряжение   отстает от тока   .  В цепи нет 

конденсаторов, но индуктивность первой катушки   
 =  -M получается отрицательной, 

что эквивалентно включению конденсатора. Однако в целом цепь всегда имеет 

индуктивный характер, т. к. вектор тока отстает от вектора напряжения на входе, потому 

что (  +   - 2M)>0 

При согласном включении катушек емкостный эффект невозможен. 

 

Определение взаимной индуктивности опытным путем 

Последовательное соединение индуктивно связанных катушек может быть 

использовано для опытного определения взаимной индуктивностиМ  

Цепь переменного тока с параллельным включением катушек. Предположим, 

что две катушки с сопротивлениями      > индуктивностями       и взаимной 

индуктивностью М соединены параллельно. Возможны два вида их включения: подклю-

чением одноименных зажимов к одному и тому же узлу (рис. 8а) и подключением их к 

разным узлам (рис. 8 б). 

 
Рис. 8 

При выбранных положительных направлениях токов первая схема соответствует со-

гласному включению, вторая - встречному.  

Составим уравнения по второму закону Кирхгофа для каждой из параллельных 

ветвей в комплексной форме: 

 

 
                   
                   

                                     (2.22) 

 

Обозначив           ,          ,        получим систему уравнений 

 
           

            
                                       (2.23) 

 

в которой знак «плюс» соответствует согласному включению катушек (рис. 8 а), знак 

«минус» - встречному (рис. 78 б). 
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Решим систему уравнений (2. 23) относительно токов: 

   
  

 
 

     

       
   ;    

  

 
 

     

       
   

По первому закону Кирхгофа ток в неразветвленной части цепи 

        
         

       
                               (2.24) 

откуда входное сопротивление цепи 

  
 

 
 

       
 

         
                                     (2.25) 

 

где «минус» относится к согласному включению, «плюс» - к встречному. 

При ZM = 0, т.е. при отсутствии индуктивной связи между ветвями, формулу (2.25) 

приведем к известному виду 

  
    

     
 

На рис. 9  построены векторные диаграммы цепи (рис. 8) при согласном и встречном 

включении катушек в соответствии с уравнениями (2.22) и (2.24). При построении 

начальная фаза вектора напряжения источника U принята равной нулю. 

 
 

4.2 Практическое занятие 2 (ПЗ-2) Расчет двух и четырехполюсников 

При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

Двухполюсник, не содержащий источников энергии или содержащий скомпенсированные 

источники (суммарное действие которых равно нулю), называется пассивным. Если в 

схеме двухполюсника имеются нескомпенсированные источники, он называется 

активным. На схеме двухполюсник обозначают прямоугольником с двумя выводами (рис. 

1.14). Это обозначение можно условно рассматривать как коробку, внутри которой 

находится электрическая цепь. 
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    Пассивный двухполюсник является потребителем энергии и может быть заменен 

эквивалентным сопротивлением, величина которого равна входному сопротивлению 

двухполюсника (см., например, рис. 1.15). 

 

    Активный двухполюсник ведет себя как генератор. Находящиеся внутри него 

нескомпенсированные источники отдают энергию во внешнюю цепь (рис. 1.16, а). Можно 

попытаться подобрать источник энергии с ЭДС ЕЭ и внутренним сопротивлением RЭ, 

который будет эквивалентен двухполюснику, то есть будет создавать во внешней цепи тот 

же самый ток (рис. 1.16, б). 

    Полученный генератор должен быть эквивалентен двухполюснику в любом режиме, в 

том числе и в режимах холостого хода и короткого замыкания. Источники энергии, 

входящие в состав активного двухполюсника, в режиме холостого хода создают на его 

зажимах напряжение UХ (рис. 1.17, а), а при коротком замыкании вызывают ток IK (рис. 

1.17, б). 

 

    Из схем, приведенных на рис. 1.17, следует:
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    Итак, любой активный двухполюсник может быть заменен эквивалентным генератором, 

ЭДС которого ЕЭ равна напряжению холостого хода двухполюсника, а внутреннее 

сопротивление RЭ напряжению холостого хода, деленному на ток короткого замыкания. 

    Это утверждение и есть теорема об активном двухполюснике (эквивалентном 

генераторе). 

 

 

 

 

2. Пассивные четырехполюсники. Характеристическое сопротивление и 

коэффициент распространения симметричного четырехполюсника.  

 

Четырехполюсником называется часть электрической цепи или схемы, содержащая 

два входных вывода  

 

(полюса) для подключения источника энергии и два выходных вывода для 

подключения нагрузки. К четырехполюсникам можно отнести различные по назначению 

технические устройства: двухпроводную линию, двухобмоточный трансформатор, 

фильтры частот, усилители сигналов и др. 

Теория четырехполюсников устанавливает связь между режимными параметрами 

на входе (U1, I1) и режимными параметрами на его выходе (U2, I2), при этом процессы, 

происходящие внутри четырехполюсника, не рассматриваются. Таким образом, единая 

теория четырехполюсника позволяет анализировать различные по структуре и 

назначению электрические цепи, которые могут быть отнесены к классу 

четырехполюсников. 

Если четырехполюсник не содержит внутри себя источников энергии, то 

он называется пассивным (обозначается буквой П), если внутри четырехполюсника 

имеются источники, то он называется активным (обозначается буквой А). 

В линейном режиме при гармонических входных и выходных напряжениях и токах 

их комплексы связаны линейными зависимостями. 

Например, уравнениями типа А: 

 

 

Где комплексные коэффициенты А11, А12 (Ом), А21 (1/Ом), А22 постоянны и 

определяются внутренней структурой четырехполюсника, параметрами его элементов и 

частотой. 
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Различают активные и пассивные четырехполюсники, причем для пассивных 

четырехполюсников выполняется равенство 

А11А22 - А12А21=1. 

Примерами пассивных четырехполюсников могут быть двух обмоточные 

трансформаторы и двух проводные линии. 

Активные четырехполюсники содержат источники ЭДС и тока. 

Коэффициенты А11, А12 ,А21, А22 можно определить при помощи расчета или 

эксперимента, используя режимы холостого хода (I2=0) и короткого замыкания (U2=0). 

Так 

 

 

 

Пассивный четырехполюсник может быть представлен ―Т – образной‖ и ―П – 

образной‖ схемами. 

а) ―Т – образная‖ схема 

 

 

 

 

 

 

 
б) ―П – образная‖ схема 
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Для пассивного симметричного четырехполюсника нет разницы между входными 

и выходными зажимами, причем  

А11=А22, Z1=Z2 (―Т‖- схема), Y1=Y2 (―П‖- схема). 

Комплекс входного сопротивления четырехполюсника равен. 

 

 

 

 

 

 

Или 

 

 

 

Где       - комплекс выходного сопротивления или комплекс 

сопротивления нагрузки. 

Для четырехполюсников могут быть следующие режимы: 

 

 

 

 

 

 

 

 

 

 

 

Для симметричного пассивного четырехполюсника вводится понятие режима 

согласованной нагрузки, когда: 

 

 

 

где Zc – характеристическое сопротивление. 

В этом режиме используются постоянная передачи: 

 

 

 

 

 

 

Где                                          - коэффициент затухания, Нп (непер); 
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- коэффициент фазы, радиан. 

При изменении модуля сопротивления нагрузки Zн= 0и  н=const   годограф 

тока   I1 представляет собой дугу окружности (круговая диаграмма). 

Например: 

 Активные четырехполюсники характеризуются теми же уравнениями типа A , но 

с дополнительными слагаемыми M и N . 

Так 

 

 

 

 

 

 

4.3 Практическое занятие 3 (ПЗ-3) Основные методы расчета переходных 

процессов. Классический метод 

 При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

ЗАКОНЫ КОММУТАЦИИ И НАЧАЛЬНЫЕ УСЛОВИЯ 

Высказанные выше положения о том, что запас энергии магнитного или 

электрического поля может изменяться только плавно, без скачков, выражают принцип 

непрерывности во времени потокосцепления индуктивности и электрического заряда 

емкости и называются законами коммутации. 

Невозможность скачкообразного изменения потокосцепления следует из того, что в 

противном случае на индуктивности появилось бы бесконечно большое напряжение   

  

  
  , что лишено физического смысла. Ввиду равенства  принцип 

непрерывности потокосцепления означает, что при неизменном L тoк i не может 

изменяться скачком. Итак, в начальный момент после коммутации ток в индуктивности 

остается таким же, каким он был непосредственно перед коммутацией, а затем плавно 

изменяется. 

Аналогично невозможность скачкообразного изменения электрического заряда q следует 

из того, что в противном случае через емкость проходил бы бесконечно большой ток 

   
  

  
  , что также лишено физического смысла. Ввиду равенства q=C·uc принцип 

непрерывности электрического заряда означает, что ,при неизменном С напряжение uс не 

может изменяться скачком. Итак, в начальный момент после коммутации напряжение на 

емкости остается таким же, каким оно было непосредственно перед коммутацией, а 

затем плавно изменяется. 


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При этом следует отметить, что в цепях с идеализированными сосредоточенными 

параметрами скачкообразно могут изменяться: 1) токи в сопротивлениях и емкостях и 2) 

напряжения на сопротивлениях и индуктивностях 

Значения тока в индуктивности и напряжения на емкости в момент коммутации 

называются независимыми начальными условиями. 

Обычно принимают, что коммутация происходит в момент времени t = 0; тогда ток в 

индуктивности и напряжение на емкости в момент времени непосредственно перед ком-

мутацией обозначаются через iL(0—) и uс(0—), а в начальный момент переходного 

процесса после коммутации—через iL(0) и uc(0). 

На оснований законов коммутации: 

 

Эти равенства выражают начальные условия цепи, в которых происходит 

коммутация. 

При нулевых начальных условиях, т. е. когда iL(0—) = 0 и uс (0—) = 0, 

индуктивность в начальный момент после коммутации равносильна разрыву цепи, а 

емкость равносильна короткому замыканию. 

В случае ненулевых начальных условий, т. е. когда iL(0) ≠ 0 и uс (0) ≠ 0, 

индуктивность в первый момент равносильна источнику тока iL(0), а емкость равносильна 

источнику э. д. с. uс (0). 

Независимые начальные условия характеризуют энергию магнитного и 

электрического полей, запасенную к моменту коммутации, и для расчета переходного 

процесса обязательно требуется знание этих начальных условий, причем совершенно 

безразлично, каким образом эти условия в цепи были созданы. 

При расчете переходных процессов в разветвленных электрических цепях наряду с 

независимыми начальными условиями используются так называемые зависимые 

начальные условия, а именно: значения токов, напряжений и их производных в начальный 

момент времени (t=0).  

До сих пор нами исключались из рассмотрения случаи коммутации, при которых 

неизбежно между контактами возникает искра или дуга. Один из таких случаев показан на 

рис. 1,а. До коммутации ток проходит через индуктивность L1 и контакт, шунтирующий 

индуктивность L2; ток в L2 равен- нулю. В момент t = 0 контакт размыкается и 

индуктивности L1 и L2 оказываются включенными последовательно; ток в них 

принудительно становится одинаковым. Поскольку в момент коммутации ток не из-
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меняется, а ток в L2 равен нулю, в силу первого закона Кирхгофа ток должен замкнуться 

через дугу, образовавшуюся между контактами. Кроме того, если под L2 подразумевать 

реальную индуктивную катушку, то ток может частично замкнуться и через межвитковую 

емкость. После быстрого погасания дуги токи в L1 и L2 уравниваются. Эта начальная 

стадия переходного процесса протекает столь быстро, что ею практически можно 

пренебречь, считая, что токи в L1и L2 уравниваются мгновенно. Именно в этом смысле 

можно условно говорить о скачкообразном 

 

Рисунок1. Случаи размыкания (а) 

или замыкания (б) при частичной потере энергии. 

изменении токов в индуктивностях, которое предшествует исследуемому переходному 

процессу в цепи. При этом для расчета переходного процесса используется принцип 

непрерывности суммарного потокосцепления при коммутации, т. е. L1·i(0—)  = 

(L1+L2)·i(0) Скачкообразное изменение токов и соответствующих им потоков в L1 и L2 в 

момент коммутации не сопряжено в данном случае с наведением бесконечно большой 

суммарной э. д. с. самоиндукции, поскольку суммарное потокосцепление не претерпевает 

скачкообразного изменения. При новых значениях токов в L1 и L2 магнитная энергия, 

запасенная в катушках, будет меньше энергии, запасенной в первой катушке до 

коммутации. Часть энергии превратится в тепло в искре, а также излучится. 

Найденный таким образом ток i(0) в L1 и L2 может рассматриваться как независимое 

начальное условие для расчета переходного процесса во всей цепи на рисунке 1,а после 

разрыва дуги. 

При коммутациях в цепях с емкостями  при отсутствии сопротивлений также 

возможны весьма быстрые перераспределения зарядов, условно рассматриваемые как 

мгновенные. В этом случае применим принцип непрерывности суммарного заряда. По-

лученные при этом значения зарядов и напряжений на отдельных емкостях используются 

в расчете последующего переходного процесса как независимые начальные условия. 

Например, в случае схемы на рисунке 1,б принцип непрерывности суммарного 

заряда до и после коммутации выражается равенством 



38 

 

 

 

При сделанном допущении в остальной электрической цепи, соединенной с 

емкостями, не возникает бесконечно большого тока', так как суммарный заряд не 

изменяется скачкообразно при t = 0. 

В процессе рассматриваемой коммутации энергия электрического поля уменьшится, 

так как часть ее превратится в тепло в очень малом сопротивлении проводника при очень 

большом' токе, а также сможет выделиться в. искре и излучиться. 

 

ПРИНУЖДЕННЫЙ И СВОБОДНЫЙ РЕЖИМЫ 

В общем случае анализ переходного процесса в линейной цепи с сосредоточенными 

параметрами r, L, С и М сводится к решению обыкновенных линейных неоднородных 

дифференциальных уравнений, выражающих законы Кирхгофа. Эти уравнения 

представляют собой линейную комбинацию напряжений, токов, их первых производных и 

интегралов по времени. 

Например, если какая-нибудь э. д. с. e(t) включается в цепь, состоящую из 

последовательно соединенных r, L и С, то интегродифференциальное уравнение имеет 

вид: 

 

Это уравнение после дифференцирования приводится к неоднородному 

дифференциальному уравнению второго порядка 

 

Как известно, общий интеграл такого уравнения равен сумме частного решения 

неоднородного уравнения и общего решения однородного уравнения. 

Частное решение выражает принужденный режим, задаваемый источником. Если 

воздействующая функция, стоящая в правой части уравнения, постоянна или является 

периодической функцией времени, то принужденный ток будет одновременно и 

установившимся.  

Общее решение физически определяет поведение цепи при отсутствии внешних 

источников электрической энергии и заданных начальных условиях, Функции, определяе-
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мые общим решением, называются свободными составляющими (токов, напряжений и 

пр.). 

 

и соответствующее ему характеристическое уравнение 

 

Если корни характеристического уравнения обозначить через р1 и р2, то общее 

решение запишется в виде: 

 

В случае, рассмотренном выше, однородное уравнение имеет вид: 

где А1 и А2 — постоянные интегрирования, которые определяются из начальных 

условий. 

Полный переходный ток в цепи равен сумме принужденного и свободного токов: 

 

Аналогично напряжение, заряд, магнитный поток и другие функции на любом 

участке цепи в переходном режиме состоят из принужденной и свободной составляющих. 

На основании законов коммутации (см. § 14-2) можно найти начальные независимые 

условия/'l(o) и нс(0). После этого можно написать согласно 

 

откуда 

 

Итак, начальные значения свободных функций iLсв(0) и uСсв(0) определяются 

изменениями в момент коммутации соответствующих принужденных функций. 

В частном случае при нулевых начальных условиях: 
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В зависимости от порядка дифференциальных уравнений, описывающих 

исследуемые переходные процессы, различают цепи первого, второго и более высокого 

порядков. 

В цепях первого порядка накопление энергии происходит только в одном элементе, 

L или С в форме магнитной энергии (в цепи с индуктивностью), или электрической 

энергии (в цепи с емкостью). Одноконтурная цепь, содержащая элементы, в которых 

накапливается энергия обоих видов — магнитная и электрическая, представляет собой 

цепь второго порядка (цепь r, L, С). Разветвленные цепи могут быть более высокого 

порядка. 

 

 

Переходные процессы в RL – цепи. 

Включение RL – цепи на постоянное напряжение. 

Рассмотрим переходный процесс при подключении индуктивности к источнику 

постоянного напряжения. 

 
Запишем уравнение контура по второму закону Кирхгофа: 

 
отсюда: 

 
Решение этого уравнения имеет вид: 

i = iy + iсв 

Установившийся ток в этой цепи: 

 
Так как в установившемся режиме ХL= 0 

Определим свободную составляющую тока: 

 
 

Решение этого уравнения имеет вид:  

 
Корень характеристического уравнения Р:  
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Lp + R = 0, откуда  P=                             

 

 

Постоянную интегрирования А определим, используя первый закон коммутации. Так как, 

до коммутации ток в цепи был равен нулю, следовательно, в начальный момент времени 

после коммутации он также равен нулю.  

i(0-) = i(0+) = iУ(0) + iсв(0) = 0 

 

или 

                                                                 

 откуда   А =  

 

Окончательное выражение для переходного тока:  

 
Напряжение на индуктивности определяется выражением:  

 
Законы изменения переходного тока и напряжения можно представить графиками: 

 
 

        Из полученных выражений следует, что ток в цепи с индуктивностью при включении 

еѐ на постоянное напряжение, плавно возрастает от нуля до I=U/R. Напряжение же 

наоборот, плавно уменьшается от  U до нуля. Реально ток и напряжение достигают 

установившихся значений по истечении времени t=(4%5)τ. 

 

     Включение RL-цепи на синусоидальное напряжение. 

 
 

Пусть напряжение источника в момент включения U=Umsin(ωt + Ѱ) 

Тогда установившийся ток катушки  
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где  

 

 
 

Свободная составляющая: 

  
 

Переходный ток: 

 
  или 

 
Используя первый закон коммутации, получим:  

 

i(0-) = i(0+) = 0,   или 

 

 
 

 
Тогда переходный ток: 

 

 
 

 

 

Выводы: 

8. Если в момент включения установившийся ток равен нулю, или  

Ѱ-ϕ=0, то свободный ток не возникает и в цепи сразу наступает установившийся режим.  

9. Если в момент включения установившийся ток имеет наибольшее значение  Ѱ – 

ϕ = 
 

 
, то переходящий ток достигает максимального значения через  четверть периода.  

 

 

 

Переходные процессы в RC – цепи.  

1. Короткое замыкание в RC – цепи.(Разряд конденсатора)
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Будем считать, что до коммутации конденсатор заряжен до напряжения 

Uc(0_) = U0 = E. 

Установившийся ток и напряжение в цепи после коммутации равны нулю(конденсатор 

полностью разряжен) 

Уравнение свободных составляющих имеет вид: 

Riсв + Ucсв = 0 

 

 
Решение этого уравнения имеет вид: 

. 

Решаем характеристическое уравнение и определяем Р. 

   ,       

 
 

Используя второй закон коммутации определяем постоянную интегрирования: 

 

Uc(0_) = Uc(0+) = U0 ,    ноUcсв(0) = A 

следовательно А = U0 . 

 

Запишем выражение переходного напряжения на конденсаторе: 

 
Переходный ток в цепи конденсатора: 

 
 

График изменения напряжения и тока: 

 
С энергетической точки зрения, переходный процесс характеризует переход энергии 

электрического поля конденсатора в тепловую энергию, выделяемую на резисторе. При 

этом, сопротивление на резисторе не влияет на количество выделяемого тепла, а 

определяет лишь длительность разряда и начальный ток. 

Включение RC – цепи на постоянное напряжение. 

 

Рассмотрим переходный процесс при подключении конденсатора к источнику 

постоянного напряжения. 
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Из приведѐнной схемы следует, что установвшееся напряжение на конденсаторе: 

Ucy = U 

 

Свободная составляющая напряжения: 

, 

Согласно второму закону коммутации: 

Uc(0-) = Uc(0+) = 0 

Следовательно:  

Uc(0) = Ucy(0) + Ucсв(0) = U + A = 0 

Постоянная интегрирования: 

A = -U 

Переходное напряжение на конденсаторе: 

 
Переходный ток в цепи конденсатора: 

 
 

 

 

 

Представим ток и напряжение графиками: 

 
Из полученных выражений и графиков видно, что напряжение на конденсаторе 

возрастает по экспоненте от нуля до напряжения источника U, а ток уменьшается от 

начального максимального значения до нулевого. 

 

Включение RC – цепи на синусоидальное напряжение. 
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Пусть напряжение источника в момент включения ключа: 

U = Umsin (ωt + Ѱ). 

 

Тогда установившийся ток цепи определяется выражением: 

 

 

 
Установившееся напряжение на конденсаторе: 

 
 

Свободная составляющая напряжения на конденсаторе: 

 
 

Переходное напряжение на конденсаторе: 

 
 

Согласно второму закону коммутации: 

Uc(0_) = Uc(0+) = U0 

 

Следовательно: 

Uc(0) = Ucy(0) + Ucсв(0) 

 

Отсюда:  

 
 

 

Окончательное переходное напряжение на конденсаторе: 

 
 

Ток цепи определяется: 
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Анализ полученных выражений позволяет сделать следующие выводы: 

 

10. Если в момент включения установившееся напряжение на конденсаторе равно 

нулю, т.е. (Ѱ + ϕ - 
 

 
 = 0), то свободное напряжение равно нулю, и в цепи сразу 

наступает установившийся режим. 

11. Если в момент включения установившееся напряжение имеет наибольшее 

значение, т.е. (Ѱ + ϕ - 
 

 
= 

 

 
), то переходное напряжение достигает наибольшего 

значения через четверть периода. 

12. Расчет переходных процессов в разветвлѐнных цепях. 

В разветвлѐнной цепи, содержащей одновременно параметры  R, L и С расчѐт 

усложняется из-за увеличения числа неизвестных и повышения порядка 

дифференциального уравнения. 

 

Последовательность расчѐта: 

13. Рассчитать цепь до коммутации с целью определения независимых начальных 

условий. 

14. Рассчитать цепь после коммутации с целью определения установившихся 

составляющих токов и напряжений. 

15. Составить систему уравнений по законам Кирхгофа для свободных 

составляющих токов и напряжений. 

16. Решить систему уравнений с целью расчѐта корней характеристического 

уравнения. 

17. По полученным корням найти общее решение для свободных составляющих и 

записать решение как сумму установившихся и свободных составляющих. 

18. Найти постоянную интегрирования. 

19. Записать переходные напряжения и токи. 

 

4.4 Практическое занятие 4 (ПЗ-4) Операторный метод расчета переходных 

процессов 

При подготовки к занятию необходимо обратить внимание на следующие 

моменты. 

Операторный метод также основан на использовании понятия об изображении  функций 

времени . В операторном методе    каждой функции времени соответствует функция новой 

комплексной переменной р, и наоборот – функции  переменной р отвечает определѐнная 

функция времени t. Переход от функции t к функции р осуществляется при помощи 

прямого преобразования Лапласа.    

Таким образом ,операторный метод расчѐта позволяет  свести операцию  

дифференцирования,   при решении дифференциального уравнения , к операции 

умножения, а операцию интегрирования к делению. Это облегчает процесс решения 

дифференциального уравнения, описывающих переходные процессы в электрических 

цепях. 

Преобразование Лапласа 
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1. Допустим ,что p – комплексное число p=a+jb. Договоримся функцию времени 

f(t) (ток , напряжение , эдс , заряд ) называть оригиналом . Ей соответствует 

функция F(p), называется изображением ,которая определяется следующим 

выражением  

 Прямое преобразование Лапласа   

 

 

 

 

Соответствие между функцией F(p) и функцией f(t) записывают так    F(p)  f(t) 

                     где        - знак соответствия  

   Интеграл с бесконечным верхним пределом называется несобственным . Если в  

результате интегрирования получается конечное число , то интеграл сходится . 

Практически для всех функций , с которыми имеют дело электрики , имеются 

изображения, т.е. интеграл в преобразовании Лапласа сходится.  

Определим изображение простейших функций времен . 

Изображение постоянной f(t)=A.   Используем прямое преобразование Лапласа : 

F(p)=     
 

 
-pt

dt =A(  
 

 
 )     

 

 
-pt

 =- 
     

 



0 =  
 

 
 

Следовательно   A
 

 
 

2.2 Изображение показательной функции. 

f(t) =е
αt

 ; F(p)=   
 

 
αt

е
-pt

dt=   
 

 
-t(p-α)

dt=(  
  

   
  )   

 

 
-t(p-α)

 

d[ -t(p- α) ]= 
  

   
  е

 –t(p-α )



0
= 

 

=        

   

   (0-1)=  

   
 

Таким образоме
αt  

   
   (1) 

Аналогично можно получить изображение функции  

е
-αt

 : 

2. е
-αt  

   
 

Приняв в выражении (1) α=jω , получим 

е
jωt  

    
 

Умножив в выражении (2) обе части на комплекс амплитуды тока  I˙m   , получим 

изображение комплекса синусоидального тока :  

dtetfpF pt





0

)()(
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I˙mе
jωt

I˙m
 

    
 

Аналогично , изображение комплекса синусо- 

идальногонапряжения  : 

U˙mе
jωt

U˙m
 

    
 

2.3.Изображение первой производной. 

Допустим , функции f(t)  соответствует  изображение  F(p) . Требуется найти изображение  

первой производной     
 

     

  
  зная , что значение функции f(t) при t=0 равно f(0).

 

Используем преобразование Лапласа: 

 
     

  

 

 
 е

-pt
dt=  

 

 
-pt

d[f(t)].  

Выполним интегрирование по частям , обозначив   е
-pt

=u  ; f(t)=v 

Тогда   
 

 
dv = uv-   

 

 
du 

Следовательно  

  
 

 
-pt

d[f(t)] = е
-pt

f(t)



0   -  
 

 
(t) d (е

-pt
). 

е
-pt

f(t) 



0 = 0 – f(0) = - f(0) 

-    
 

 
(t)d(е

-pt
) = P  

 

 
(t) е

-pt
dt = PF(p) 

Таким образом 

 
     

  

 

 
 е

-pt
dt = PF(p)- f(0)  

или  
     

  
PF(P)- f(0)  

2.4 Изображение напряжения на индуктивности .Допустим , изображение тока катушки 

i(t) равно I (P) . Запишем изображение напряжения на катушке:  

UL = L
  

  
 

но   
  

  
PI(p) – i(0) , где i(0) – значение тока i при t=0 ,  т.е. i(0_)   .Это значение 

положительно  , если направление тока совпадает с положительным направлением тока 

катушки после коммутации. 

Следовательно  L
  

  
LPI(p) – Li(0 

Если i(0)=0 ,  то          UL = L
  

  
LPI(p)  

Изображение второй производной. 

 
      

   
= P

2
F(p) – Pf(0) – f '(0)  

Изображение интеграла.  

Требуется найти изображение функции  
 

 
(t)dt 

Если изображение функции f(t) равно F(p): 

Тогда    
 

 
(t)dt

    

 
 

Изображение напряжения на конденсаторе. 
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Полная форма записи выражения , определяющая значение напряжения  на 

конденсаторе  имеет вид: 

Uc= Uc(0)+
 

 
  

 

 
dt 

В этом выражении учитывается , что в момент времени t напряжение на конденсаторе   

определяется не только током , протекающим  через конденсатор в интервале времени от 

0 до t , но и напряжением Uc(0) ,которое на нѐм было при t=0. Если изображение тока 

конденсатора I (р)  т.е.i(t)          I (р)и используя формулы изображений постоянной и интеграла 

, имеем следующий вид изображения  напряжения на конденсаторе  

Uс
    

  
      +  

     

 
 

 

 Закон Ома в операторной форме. 

Рассмотрим одну из ветвей электрической цепи , содержащую источник эдс . 

 
В цепи замыкается ключ S , что приводит к переходному процессу . Непосредственно 

до коммутации  i = i(o-) , напряжение на конденсаторе  uc = uc(0-) . Выразим потенциал 

точки а через потенциал точки в после коммутации 

φa = φв + uc – e(t)+ uL + uR ,  

       тогда uав = φa – φв = uR + uL + uc – e(t)  

Учтѐм что uL = L
  

  
  , а  uc = uc(0) + 

 

 
  

 

 
dt 

uав = iR + L  
  

  
 + uc(0) + uc(0) + 

 

 
  

 

 
dt - e(t)               (1) 

Применим к уравнению (1) прямое преобразованиеЛапласа , заменив каждое 

слагаемое в нѐм его изображением: 

iR RI(p) ; uав  Uав(p) ; e(t) E(p) 

     L 
  

  
LPI(p) –Li(p) ; uc(0)

     

 
 

 

 
  

 

 
dt

    

  
 

Получим 

uав = I(p)R + LPI(p) –Li(0)  +  
     

 
 + 

+  
    

  
  - E(p) = I(p) ( R+ LP +   

 

  
  ) - Li(0) +  

     

 
 - 

3. E(p).                                                                                (2). 

Вместо дифференциального уравнения (1) 

получим  алгебраическое уравнение (2). 

 

Из уравнения (2) следует , что I(p)=          (3)                                                

 

где Z(p)= R + LP + 
 

  
 .  
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Z(p) представляет собой операторное сопротивление участка цепи ав . Структура  

егоаналогичка структуре комплекса сопротивления того же участка цепи 

переменному току , если   j
ω
  заменить на Р , действительно : 

Ẕ=R+j(xL – xc)=R+j(ωL -   
 

  
   )= R + j

ω
L -    

 

  
    = 

= R + j
ω
L - 

  

   
  = R + j

ω 
L +  

 

   
   . 

Уравнение (3) называется закон Ома участка цепи в операторной форме . Оно 

записано при ненулевых  начальных условиях . Слагаемое  Li(0) представляет собой 

внутреннюю эдс ,    обусловленную  запасом энергии в магнитном поле катушки . 

Слагаемое 
     

 
 это внутренняя эдс , обусловлена запасом энергии в  

электрическом  поле конденсатора , если он до  коммутации заряжен. В частном 

случае , когда на участке цепи отсутствует эдс e(t)  и когда в момент коммутации 

i(0)  и uc(0) =0 , уравнение приобретает вид:  

I(P)=
     

 
 

 

( Закон Ома для участка без эдс при нулевых 

начальных  условиях). 

 

Первый закон Кирхгофа в операторной форме. 

Составим уравнение для узла а участка цепи по первому закону Кирхгофа : 

i1+ i + i2=0  

Применим к этому уравнению преобразование  Лапласа,  с учѐтом , что 

изображение суммы  равно сумме изображений : 

 I1(p) + I(p) + I2(p)=0 

               В общем случае ƩI(p)=0. 

Это выражение определяет первый закон Кирхгофа в операторной форме. 

3.Второй закон Кирхгофа в операторной форме .Составим уравнение по второму 

закону Кирхгофа для некоторого контура электрической  цепи:

 
Проставим произвольно положительные направления  токов ветвей и обходим контур 

по часовой  стрелке: 

L1  
   

  
 + uc3(0) +  

 

  
  

 

 
3dt -i2R2 – L2  

   

  
  = e1(t) – 

- e3(t)                                                                                  (1). 

uc3(0) – начальное напряжение на конденсаторе в момент времени t = 0. 

Каждое из слагаемых заменим операторным изображением : 

L1  
   

  
L1PI1(p)  - L1i1(0) ; 

uc3(0)
      

 
  ; 

 

  
  

 

 
3dt 

     

   
    ;  
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i2R2   R2I2(p) ; 

L2  
   

  
L2PI2(p) – L2i2(0)  ; 

e1(t)   E1(p) ;  

e3(t) E3(p) .   

Заменим  в уравнении (1) слагаемые их изображениями  , перенеся в правую часть все 

внутренние эдс : 

L1PI1(p) +  
     

   
 - R2I2 - L2PI2(p) = E1(p) - E3(p) +   

+ L1i1(0) -   
      

 
  - L2i2(0)  

L1PI1(p) – (R2 + L2P)I2(p) +  
 

   
 I3(p)=E1(p)-E3(p)+ 

+ Eвн(p) 

I1(p)Z1(p) – I2(p)Z2(p) + I3(p)Z3(p)=E1(p) – E2(p) – Eвн(p) 

Здесь     Z1(p) = L1P 

Z2(p)= R2 + L2P 

Z3(p)=  
 

   
 

Eвн(p)= L1i1(0) - L2i2(0) –
     

 
 

В более общем виде это уравнение можно записать так : 

ƩIk(p)Zk(p)=ƩEk(p) 

Уравнение представляет собой запись второго закона Кирхгофа в операторной форме. 

Как следует из выше изложенного  , уравнениям  , составленным по законам Кирхгофа 

для мгновенных значений , соответствуют аналогичные  уравнения , составленные по 

тем же законам в операторной форме. 

4.Последовательность расчѐта операторным методом. 

Расчѐт состоит из двух основных этапов : 

4. Составление уравнений изображений искомых функций времени ; 

5. Переход от изображений к функциям времени . 

 

4.5 Практическое занятие 5 (ПЗ-5) Разложение периодических 

несинусоидальных кривых в ряд Фурье  

 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

В электронных устройствах, в электросвязи и пр. широко используются сигналы 

несинусоидальной формы 

Форма кривой тока и напряжения может отличаться от синусоидальной по нескольким 

причинам: 

а) Кривая распределения магнитной индукции вдоль воздушного зазора в генераторе 

переменного тока отлична от синусоиды в силу несовершенства его конструкции 

б) Наличие в цепи нелинейных элементов: катушек с магнитопроводом, конденсаторов, 

ламп накаливания, выпрямительных устройств и т.п. 

в) Намеренное использование генераторов сигналов несинусоидальной формы 

г) работа в общей сети генераторов с разными частотами 
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Разложение периодических несинусоидальных кривых в ряд Фурье.  

Расчет цепей с несинусоидальными напряжениями и токами ведется теми же методами, 

что и синусоидальные. При этом периодическая несинусоидальная функция 

раскладывается в тригонометрический ряд (ряд Фурье) 

                                                        

               

 

   

 

20. Где                              

21.                                    

22.                                   

23.                         

Сочетание амплитуды, частот, начальных фаз гармоник определяет спектральный 

состав исследуемой функции. 

Гармоники с четным номером k называют четными гармониками 

Если k – нечетные – нечетными гармониками. 

Таким образом, разложение несинусоидальной периодической функции в ряд Фурье 

сводится к определению амплитуд и начальных фаз каждой из гармоник. 

Если кривая функции имеет правильную геометрическую форму (треугольную, 

прямоугольную, пилообразную и т.д.), то она может быть разложена в ряд аналитически. 

Кривые произвольной формы задаются, как правило, в виде графиков и разлагаются в ряд 

Фурье графоаналитическими методами. 

 

4.6 Практическое занятие 6 (ПЗ-6) Расчет цепей с несинусоидальными 

периодическими токами. 

 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

Характеристики несинусоидальной периодической функции. 

Любая периодическая функция может характеризоваться: 

24. 1) Амплитудным значением   ; 

25. 2) Действующим (среднеквадратичным) значением А; 

26. 3) Средним значением     

Если функция задана аналитически в виде ряда Фурье, то амплитуды всех гармоник 

присутствуют в выражении функции. 

Действующее значение функции, согласно определению – это среднеквадратичное 

значение за период, т.е. 

   
 

 
     

 

 

  
 

 
                  

 

 

      
    

      
  

Действующее значение несинусоидальной функции равно корню квадратному из суммы 

квадратов действующих значений всех гармоник, включая постоянную составляющую. 

Оно не зависит от начальных фаз отдельных гармоник 
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Так может быть определено действующее значение несинусоидального тока и напряжения 

в цепи 

Под средним значением функции понимается среднее значение модуля этой функции за 

период: 

    
 

 
       

 

 

   

Если кривая симметрична относительно оси абсцисс, то ее среднее значение определяют 

за половину периода: 

    
 

 
       

   

 

   

Для количественной оценки степени отличия исследуемой функции от синусоидальной 

используются следующие коэффициенты: 

1. Коэффициент амплитуды        
  

       
 

2. Коэффициент формы                 
 

   
 

3. Коэффициент искажений         
  

 
 

Для идеальной синусоиды эти коэффициенты имеют значения: 

1. Коэффициент амплитуды     
  

       
    

2. Коэффициент формы         
 

   
 

 

   
      

3. Коэффициент искажений         
  

 
     

         

4  Мощность цепей несинусоидального тока 

Под активной мощностью электрической цепи понимают среднее значение мощности за 

период: 

                  
 

 
      

 

 

 

Для несинусоидальной функции напряжения и тока имеют вид (нагрузка индуктивная): 

                                      

 

   

 

                                          

 

   

 

Подставим эти ряды под знак интеграла 

   
 

 
                  

 

   

 
 

 

                    

 

   

   

                                        

    

 

   

 

Таким образом, активная мощность несинусоидального тока равна сумме активных 

мощностей отдельных гармоник. 

Аналогичное соотношение можно получить и для реактивной мощности: 

Q=                                              
 
    

Реактивная мощность постоянной составляющей равна нулю. 

Полная мощность цепи определяется выражением S=UI, 
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где                        

I                     

Это действующее значение тока и напряжения 

Так как, в общем случае, кривая тока может по форме отличаться от кривой напряжения, 

то  

         

Для количественной оценки степени отличия форм кривых тока и напряжения вводится 

понятие мощности искажений Т: 

            

4 . Основные положения для расчета цепи 

В основе расчета цепи несинусоидального тока лежит принцип наложения. 

Согласно этому принципу, мгновенное значение тока в любой ветви равно сумме 

мгновенных значений токов отдельных гармоник. Расчет производится для каждой из 

гармоник в отдельности любым известным методом расчета. (как правило в комплексной 

форме 

4.7 Практическое занятие 7 (ПЗ-7) Расчет цепей с нелинейными элементами. 

При подготовки к занятию необходимо обратить внимание на следующие моменты. 

В зависимости от условий работы нелинейного резистора и характера задачи различают 

статическое, дифференциальное и динамическое сопротивления. 

Если нелинейный элемент является безынерционным, то он характеризуется первыми 

двумя из перечисленных параметров. 

Статическое сопротивление равно отношению 

напряжения на резистивном элементе к 

протекающему через него току. В частности для 

точки 1 ВАХ на рис. 1  

. 

Под дифференциальным сопротивлением 

понимается отношение бесконечно малого 

приращения напряжения к соответствующему приращению тока 

. 

Следует отметить, что у неуправляемого нелинейного резистора  всегда, а 

 может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1). 
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В случае инерционного нелинейного резистора вводится понятие динамического 

сопротивления  

, 

определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, 

например тока, может меняться не только величина, но и знак . 

  

Методы расчета нелинейных электрических цепей постоянного тока 

Электрическое состояние нелинейных цепей описывается на основании законов 

Кирхгофа, которые имеют общий характер. При этом следует помнить, что для 

нелинейных цепей принцип наложения неприменим. В этой связи методы расчета, 

разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в 

общем случае не распространяются на нелинейные цепи.  

Общих методов расчета нелинейных цепей не существует. Известные приемы и способы 

имеют различные возможности и области применения. В общем случае при анализе 

нелинейной цепи описывающая ее система нелинейных уравнений может быть решена 

следующими методами:  

27. графическими; 

28. аналитическими; 

29. графо-аналитическими; 

30. итерационными. 

  

Графические методы расчета 

При использовании этих методов задача решается путем графических построений на 

плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного 

общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному 

уравнению с одним неизвестным. Формально при расчете различают цепи с 

последовательным, параллельным и смешанным соединениями. 

а) Цепи с последовательным соединением резистивных элементов. 

При последовательном соединении нелинейных резисторов в качестве общего аргумента 

принимается ток, протекающий через последовательно соединенные элементы. Расчет 

проводится в следующей последовательности. По заданным ВАХ  отдельных 

резисторов в системе декартовых координат  строится результирующая 

зависимость . Затем на оси напряжений откладывается точка, 

соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, 

из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из 
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точки пересечения перпендикуляра с кривой  опускаетсяортогональ на ось токов – 

полученная точка соответствует искомому току в цепи, по найденному значению которого 

с использованием зависимостей  определяются напряжения  на отдельных 

резистивных элементах. 

Применение указанной методики иллюстрируют графические построения на рис. 2,б, со

ответствующие цепи на рис. 2,а. 

 

Графическое решение для 

последовательной нелинейной цепи с 

двумя резистивными элементами может 

быть проведено и другим методом – 

методом пересечений. В этом случае один 

из нелинейных резисторов, например, с 

ВАХ  на рис.2,а, считается 

внутренним сопротивлением источника с 

ЭДС Е, а другой – нагрузкой. Тогда на 

основании соотношения 

 точка а (см. рис. 3) 

пересечения кривых  и  определяет режим работы цепи. Кривая 

 строится путем вычитания абсцисс ВАХ  из ЭДС Е для различных 

значений тока. 

Использование данного метода наиболее рационально при последовательном соединении 

линейного и нелинейного резисторов. В этом случае линейный резистор принимается за 

внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум 

точкам. 

б) Цепи с параллельным соединением резистивных элементов. 

           При параллельном соединении нелинейных резисторов в качестве общего 

аргумента принимается напряжение, приложенное к параллельно соединенным 

элементам. Расчет проводится в следующей последовательности. По заданным ВАХ 
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 отдельных резисторов в системе декартовых координат  строится 

результирующая зависимость . Затем на оси токов откладывается точка, 

соответствующая в выбранном масштабе заданной величине тока источника на входе 

цепи (при наличии на входе цепи источника напряжения задача решается сразу путем 

восстановления перпендикуляра из точки, соответствующей заданному напряжению 

источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр 

до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой 

 опускаетсяортогональ на ось напряжений – полученная точка соответствует 

напряжению на нелинейных резисторах, по найденному значению которого с 

использованием зависимостей  определяются токи  в ветвях с отдельными 

резистивными элементами. 

              Использование данной методики иллюстрируют графические построения на рис. 

4,б, соответствующие цепи на рис. 4,а. 

 

в) Цепи с последовательно-параллельным (смешанным) соединением резистивных 

элементов. 

1. Расчет таких цепей производится в следующей последовательности: 

Исходная схема сводится к цепи с последовательным соединением резисторов, для чего 

строится результирующая ВАХ параллельно соединенных элементов, как это показано в 

пункте б). 

2. Проводится расчет полученной схемы с последовательным соединением резистивных 

элементов (см. пункт а), на основании которого затем определяются токи в исходных 

параллельных ветвях. 

  

Метод двух узлов 

           Для цепей, содержащих два узла или сводящихся к таковым, можно применять 

метод двух узлов. При полностью графическом способе реализации метода он 

заключается в следующем: 
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          Строятся графики зависимостей  токов во всех i-х ветвях в функции общей 

величины – напряжения  между узлами m и n, для чего каждая из исходных кривых 

 смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало 

находилось в точке, соответствующей ЭДС  в i-й ветви, а затем зеркально отражается 

относительно перпендикуляра, восстановленного в этой точке. 

Определяется, в какой точке графически реализуется первый закон Кирхгофа 

. Соответствующие данной точке токи являются решением задачи. 

Метод двух узлов может быть реализован и 

в другом варианте, отличающемся от 

изложенного выше меньшим числом 

графических построений. 

В качестве примера рассмотрим цепь на 

рис. 5. Для нее выражаем напряжения на 

резистивных элементах в функции : 

 

 

;     (1) 

;        (2) 

.     (3) 

           Далее задаемся током, протекающим через один из резисторов, например во второй 

ветви , и рассчитываем , а затем по  с использованием (1) и (3) находим 

 и  и по зависимостям  и  - соответствующие им токи  и  и т.д. 

Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму 

токов 

. 

  

Таблица 1.  Таблица результатов расчета методом двух узлов 
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Алгебраическая сумма токов в соответствии с первым законом Кирхгофа должна равнять 

нулю, поэтому получающаяся в последней колонке табл. 1 величина  указывает, 

каким значением  следует задаваться на следующем шаге. 

В осях  строим кривую зависимости  и по точке ее пересечения с 

осью напряжений определяем напряжение  между точками m и n. Для найденного 

значения  по (1)…(3) рассчитываем напряжения на резисторах, после чего по 

заданным зависимостям  определяем токи в ветвях схемы. 

1. Особенности нелинейных цепей при переменных токах 

              Наиболее существенная особенность расчета нелинейных цепей  при переменных 

токах заключается в необходимости учета  в общем случае динамических свойств 

нелинейных элементов, т.е. их анализ следует осуществлять на основе динамических 

вольт-амперных, вебер-амперных, и кулон-вольтных характеристик.  

            Если нелинейный элемент является безынерционным, то его характеристики в 

динамических и статических режимах совпадают, что существенно упрощает расчет. 

Однако на практике идеально безынерционных элементов не существует. Отнесение 

нелинейного элемента к классу безынерционных определяется скоростью изменения 

входных воздействий: если период Т переменного воздействия достаточно мал по 

сравнению с постоянной времени , характеризующей динамические свойства 

нелинейного элемента, последний рассматривается как безынерционный; если это не 

выполняется, то необходимо учитывать инерционные свойства нелинейного элемента. 

 
          В качестве примера можно рассмотреть цепь на рис.1 с нелинейным резистором  

(термистором), имеющим вольт-амперную характеристику (ВАХ), представленную на 

рис. 2, и характеризующимся постоянной времени нагрева .  

   Если , то изображающая точка  перемещается по прямой 1 и 

нелинейный резистор характеризуется сопротивлением   . 

При  изображающая точка перемещается по кривой 2, и свойства нелинейного 

резистора определяются сопротивлением . Когда постоянная времени 

нагрева t НР одного порядка с Т, соотношения между переменными составляюшими 

напряжения и тока являются более сложными, определяющими сдвиг по фазе между 

ними. 
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           Другой важной особенностью нелинейных элементов в цепи переменного тока 

является вызываемое ими появление высших гармоник даже при наличии в цепи только 

источников синусоидального напряжения и (или) тока. На этом принципе строится, 

например, ряд умножителей частоты, а также преобразователей формы тока или 

напряжения. 

  

Основные типы характеристик нелинейных элементов в цепях переменного тока 

Использование динамических характеристик нелинейных элементов позволяет 

осуществлять расчет нелинейных цепей для мгновенных значений переменных, т.е. 

проводить принципиально ее наиболее точный и полный анализ. Однако в целом ряде 

случаев такой расчет может оказаться достаточно трудоемким или избыточным по своей 

глубине. Поэтому в зависимости от цели решаемой задачи, а также от требований к 

точности получаемых результатов, помимо динамической характеристики, могут 

использоваться нелинейные характеристики по первым гармоникам и для действующих 

значений. 

 

 


