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1. ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ 

 

1.1.  Организационно-методические данные дисциплины 
 

№ 

п.п. 
Наименование темы 

Общий объем часов по видам самостоятельной работы  

(из табл. 5.1 РПД) 

подготовка 

курсового 

проекта 

(работы) 

подготовка 

реферата/эссе 

индивидуальные 

домашние 

задания (ИДЗ) 

самостоятельное 

изучение 

вопросов (СИВ) 

подготовка 

к занятиям 

(ПкЗ) 

1 2 3 4 5 6 7 

1 Введение в анализ    2 4 

2 

Предел и 

непрерывность 

функций 

   2 4 

3 

Дифференциальное 

исчисление функций 

одной переменной 

   5 10 

4 

Интегральное 

исчисление 

функций одной 

переменной 

    14 

5 

Дифференциальное 

исчисление 

функции 

нескольких 

переменных 

   32 20 

6 

Интегральное 

исчисление функций 

нескольких 

переменных 

   16 6 

7 
Числовые и 

степенные ряды 
    18 

8 

Обыкновенные 

дифференциальные 

уравнения 

   16 13 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО 

САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ ВОПРОСОВ 
 

2.1. Действительные числа, их свойства. Обозначения для сумм и произведений. Декартовы 

координаты на плоскости. 

Из элементарной математики известно, что действительные числа можно складывать, 

вычитать, умножать, делить и сравнивать по величине. Перечислим основные свойства, которыми 

обладают эти операции. Множество всех действительных чисел будем обозначать через  R, а его 

подмножества называть числовыми множествами. 

I. Операция сложения. Для любой пары действительных чисел  a и b определено единственное 

число, называемое их суммой и обозначаемое a + b, так, что при этом выполняются следующие 

условия:  

I1. a + b = b + a,   a, b  R.  

I2. a + (b + c) = (a + b) + c,   a, b, c  R. 

I3  Существует такое число, называемое нулем и обозначаемое  0, что для любого  a 

 R выполняется условие  a + 0 = a. 
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I3. Для любого числа  a  R существует число, называемое ему противоположным и обозначаемое  

-a, для которого  a + (-a) = 0. 

Число  a + (-b) = 0, a, b  R, называется разностью чисел  a и b и обозначается  a - b. 

II. Операция умножения. Для любой пары действительных чисел a и b определено единственное 

число, называемое их произведением и обозначаемое  ab, такое, что выполняются следующие 

условия:  

II1. ab = ba, a, b  R. 

II2. a(bc) = (ab)c, a, b, c  R. 

II3.Существует такое число, называемое единицей и обозначаемое  1, что для любого a 

 R выполняется условие a 1 = a. 

II4. Для любого числа   a 0  существует число, называемое ему обратным и обозначаемое   или 

1/a, для которого  a =1. Число a , b  0, называется частным от деления   a  на  b и 

обозначается  a:b  или    или a/b. 

III. Связь операций сложения и умножения:  для любых a, b, c  R выполняется условие 

(ac+b)c = ac + bc. 

IV. Упорядоченность. Для действительных чисел определено отношение порядка. Оно состоит в 

следующем. Для любых двух различных чисел a и b имеет место одно из двух соотношений: 

либо a < b (читается "a меньше b"), или, что то же самое, b > a (читается "b больше a"), либо a > b, 

или, что то же самое,  b < a. При этом предполагается, что выполняются следующие условия:  

IV1. Транзитивность. Если a < b и b < c, то a < c. 

IV2. Если a < b, то для любого числа  c имеет место a + c < b + c. 

IV3. Если a > b и c < 0, то ac > bc. 

    Соотношения порядка называют также сравнением действительных чисел по величине 

или неравенствами. Запись  a < b, равносильная записи b > a, означает, что либо a < b, либоa = b.  

    Из выполнения условий  IV2 и IV3 вытекает одно важное свойство, называемое плотностью 

действительных чисел: для любых двух различных действительных чисел a и b, например, таких, 

что a < b, существует такое число c, что a < c < b. В самом деле, сложив каждое из 

равенств a = a, b = b с неравенством  a < b, получим 2a < a + b < 2b, откуда a < (a + b)/2 < b, т. е. в 

качестве числа c можно взять (a + b)/2. 

    Множество действительных чисел обладает еще свойством непрерывности. 

V. Непрерывность. Для любых непустых числовых множеств  X и Y таких, что для каждой пары 

чисел x  X и y  Y выполняется неравенство x <  y, существует число  a, удовлетворяющее условию  

x < a <  y,  x X,  y Y 

(рис. 2).  

    Перечисленные свойства полностью определяют 

множество действительных чисел в том смысле, что из этих 

свойств следуют и все остальные его свойства. Поэтому 

можно дать аксиоматическое определение множества действительных чисел следующим образом.  

    Определение 1. Множество элементов, обладающих свойствами I-V, содержащее более одного 

элемента, называется множеством действительных чисел, а каждый его элемент -действительным 

числом. Это определение однозначно задает множество действительных чисел с точностью до 

конкретной природы его элементов. Оговорка о том, что в множестве содержится более одного 

элемента, необходима потому, что множество, состоящее из одного только нуля, очевидным 

образом удовлетворяет условиям I-V.  

    Числа 1, 2 1 + 1, 3 2 + 1, ... называются натуральными числами, и их множество 

обозначается  N. Из определения множества натуральных чисел вытекает, что оно обладает 

следующим характеристическим свойством: если  

1) A  N,  

2) 1   A,  

3) если для каждого элемента x  A имеет место включение x + 1  A, то A = N.  

 
Рис. 2 
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    На этом свойстве натуральных чисел основан принцип доказательства методом математической 

индукции. Если имеется множество утверждений, каждому из которых приписано натуральное 

число (его номер) n = 1, 2, ..., и если доказано, что:  

1) справедливо утверждение с номером 1;  

2) из справедливости утверждения с любым номером n N следует справедливость утверждения с 

номером   n + 1;  

то тем самым доказана справедливость всех утверждений, т. е. любого утверждения с 

произвольным номером n N.  

    Числа 0, +1, +2, ... называют целыми числами, их множество обозначают Z. 

    Числа вида m/n, где m и n целые, а n 0, называются рациональными числами. Множество всех 

рациональных чисел обозначают Q, т. е. 

Q = {x  R:   x = m/n, m  Z, n  Z, n 0 }. 

    Действительные числа, не являющиеся рациональными, называются иррациональными, их 

множество обозначается I. Кроме четырех арифметических действий над числами 

можно производить действия возведения в степень и извлечения корня.     Для любого числа a  R и 

натурального n степень a
n
 определяется как произведение n сомножителей, равных a: 

 
   По определению a

0 
 1, a > 0, a

-n 
 1/n, a 0, n - натуральное число. 

    Пусть a > 0,  n - натуральное число. Число b называется корнем   n-й степени из числа a, 

если b
n
 = a. В этом случае пишется . 

    Корень четной степени , a  0, имеет два значения: если b = , k N, то и -b = . 

Действительно, из b
2k

 = a следует, что (-b)
2k

 = ((-b)
2
)
k
 = (b

2
)
k
 = b

2k
 

    Неотрицательное значение  называется его арифметическим значением. 

Если r = p/q, где p и q целые, q  0, т. е. r - рациональное число, то для  a > 0    

    Таким образом, степень a
r
 определена для любого рационального числа r. Из ее определения 

следует, что для любого рационального r имеет место равенство    a
-r 

= 1/a
r
. 

Степень a
x
 (число x называется показателем степени) для любого действительного 

числа x получается с помощью непрерывного распространения степени с рациональным 

показателем (см. об этом в п. 8.2). Для любого числа a  R неотрицательное число 

 
называется его абсолютной величиной или модулем. Для абсолютных величин чисел справедливы 

неравенства |a + b| < |a| + |b|,      ||a - b|| < |a - b|,      a, b  R 

 

2.2 Характеристики функций: четность и нечетность, периодичность, монотонность, 

ограниченность. 

Если для  любого  x  из области определения функции имеет место:  f ( - x ) =  f ( x ), то функция 

называется  чётной; если же имеет место: f ( - x ) = - f ( x ), то функция называется  нечётной. 

График чётной функции симетричен относительно оси Y  (рис.5), a график нечётной 

функции симметричен относительно начала координат ( рис.6 ). 
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Периодическая функция. Функция  f ( x ) - периодическая, если существует такое отличное от 

нуля число T , что для любого  x  из области определения функции имеет место:   f ( x + T ) 

=  f ( x ). Такое наименьшее число называется периодом функции. Все тригонометрические функции 

являются периодическими. 

Монотонная функция. Если для любых двух значений аргумента  x1  и  x2 из 

условия  x2 > x1 следует  f ( x2 ) > f ( x1 ), то функция  f ( x )называется возрастающей; если для 

любых  x1  и  x2  

из условия  x2 > x1 следует  f ( x2 ) < f ( x1 ), то функция  f ( x ) называется убывающей. Функция, 

которая только возрастает или только убывает, называется монотонной. 

Ограниченная и неограниченная функции. Функция называется  ограниченной, если существует 

такое положительное число M, что |  f( x ) |   M  для всех значений  x . Если такого числа не 

существует, то функция - неограниченная. 

 

2.3. Степенная, показательная и логарифмическая функции. Тригонометрические функции и 

обратные к ним.  

Степенной функцией с вещественным показателем a называется функция y = x 
n 

, x > 0. 

Заметим, что для натуральных n степенная функция определена на всей числовой оси.  

Для произвольных вещественных n это невозможно, поэтому степенная функция с вещественным 

показателем определена только для положительных x . 

 
При a > 0, a ≠≠ 1, определена функция y = a 

x 
, отличная от постоянной. Эта функция 

называется показательной функцией с основанием a.  

 
Функция y = loga х (где а > 0, а ≠1) называется логарифмической. 

Построение графиков. График логарифмической функции logaх можно построить, 

воспользовавшись тем, что функция logaх обратна показательной функции y = a
x
. Поэтому 

достаточно построить график функции y = a
x
, а затем отобразить его симметртрично относительно 

прямой у = х. 

Обратные тригонометрические функции это математические функции, являющиеся обратными к 

тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть 

функций: 

 арксинус (обозначение: arcsin) 

 арккосинус (обозначение: arccos) 

 арктангенс (обозначение: arctg) 

 арккотангенс (обозначение: arcctg) 

 арксеканс (обозначение: arcsec) 
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 арккосеканс (обозначение: arccosec) 

Название обратной тригонометрической функции образуется от названия соответствующей ей 

тригонометрической функции добавлением приставки «арк-» (от лат. arc — дуга).  

Это связано с тем, что геометрически значение обратной тригонометрической функции можно 

связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), 

соответствующей тому или иному отрезку.  

 

2.4.Свойства основных элементарных функций. 

Таблица основных свойств элементарных функций (везде n∈Z ) 

 
 

2.5. Прогрессии. Формула сложных процентов. 

Арифмети́ческая прогре́ссия (алгебраическая) — числовая последовательность вида 

, то есть последовательность чисел 

(членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего 

добавлением к нему постоянного числа  (шага, или разности прогрессии):   

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:  

Арифметическая прогрессия является монотонной последовательностью . При  она 

является возрастающей, а при  — убывающей. Если , то последовательность будет 

стационарной. Эти утверждения следуют из соотношения  для членов 

арифметической прогрессии. 

Геометри́ческая прогре́ссия — последовательность чисел  (членов прогрессии), в 

которой каждое последующее число, начиная со второго, получается из предыдущего умножением 

его на определённое число  (знаменатель прогрессии), где , 

:  

Любой член геометрической прогрессии может быть вычислен по формуле:  

Если  и , прогрессия является возрастающей последовательностью, если 

, — убывающей последовательностью, а при  — знакочередующейся. 

Своё название прогрессия получила по своему характеристическому свойству:  

то есть каждый член равен среднему геометрическому его соседей. 

Капитализация процентов — причисление процентов к сумме вклада, позволяет в дальнейшем 

осуществлять начисление процентов на проценты. Начисление процентов на проценты, 

используемое в некоторых видах банковских вкладов, или при наличии долга проценты, которые 

включаются в сумму основного долга, и на них также начисляются проценты. То же, что и сложный 

процент. Проценты по вкладу с капитализацией могут начисляться ежедневно, 

ежемесячно, ежеквартально и ежегодно. Если их не выплачивают, то прибавляют к сумме вклада. И 

в следующем периоде проценты будут начислены уже на большую сумму. 

https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BD%D0%BE%D1%82%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B5%D0%B4%D0%BD%D0%B5%D0%B5_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D0%B2%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%91%D0%B0%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D0%B2%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D0%B2%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C_%D0%B3%D0%BE%D0%B4%D0%B0
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Общая сумма, которую получит вкладчик, при расчёте по сложному проценту будет 

равна , где x — начальная сумма вложенных средств, 0 < a < 1 — годовая процентная 

ставка, n — срок вклада в годах. При вкладе по ставке s% годовых, после первого года хранения 

капитал составил бы x плюс s% от неё, то есть возрос бы в  раза. На второй год s% 

рассчитывались бы уже не от одной копейки, а от величины, большей её в (1 + s/100) раза. И, в свою 

очередь, данная величина увеличилась бы тоже за год в (1 + s/100) раза. Значит, по сравнению с 

первичной суммой вклад за два года возрос бы в  раз. За три года — 

в  раз. 

К году N первичный вклад вырос бы до величины в  раз больше первоначальной. 

В применении к ежемесячной капитализации формула сложного процента имеет вид: 

 
где x — начальная сумма вклада, s — годовая ставка в процентах, m — срок вклада в месяцах. 

 

2.6. Свойства пределов, связанные с арифметическими действиями. 

 Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют 

конечные пределы при ха. 

 Теорема. )(lim)(lim))()((lim xgxfxgxf
axaxax 

  

Теорема. )(lim)(lim)]()([lim xgxfxgxf
axaxax 

  

 Следствие. )(lim)(lim xfCxfC
axax 

  

 Теорема. 
)(lim

)(lim

)(

)(
lim

xg

xf

xg

xf

ax

ax

ax






     при 0)(lim 


xg

ax
 

 

2.7. Монотонные последовательности. Теорема Вейерштрасса о существовании предела 

монотонной ограниченной последовательности. Число е. 

Монотонные последовательности. 

 Определение. 1) Если xn+1 > xn для всех n, то последовательность возрастающая. 

                         2)Если xn+1  xn для всех n, то последовательность неубывающая. 

     3)Если xn+1 < xn для всех n, то последовательность убывающая. 

                        4)Если xn+1  xn для всех n, то последовательность невозрастающая 

Все эти последовательности называются монотонными. Возрастающие и убывающие 

последовательности называются строго монотонными. 

 Пример. {xn} = 1/n – убывающая и ограниченная 

     {xn} = n – возрастающая и неограниченная. 

 Пример. Доказать, что последовательность {xn}=
12 n

n
 монотонная возрастающая. 

 Найдем член последовательности {xn+1}= 
32

1

122

1










n

n

n

n
 

Найдем знак разности: {xn}-{xn+1}= 










 )32)(12(

12232

32

1

12

22

nn

nnnnn

n

n

n

n
 

0
)32)(12(

1







nn
, т.к. nN, то знаменатель положительный при любом n. 

Таким образом, xn+1 > xn. Последовательность возрастающая, что и следовало доказать. 

Следует отметить, что монотонные последовательности ограничены по крайней мере с одной 

стороны. 

 Теорема. Монотонная ограниченная последовательность имеет предел. 

 Доказательство. Рассмотрим монотонную неубывающую последовательность 

х1  х2  х3  …  хn  xn+1  … 
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Эта последовательность ограничена сверху: xn  M, где М – некоторое число. 

Т.к. любое, ограниченное сверху, числовое множество имеет четкую верхнюю грань, то для 

любого >0 существует такое число N, что xN > a - , где а – некоторая верхняя грань множества. 

Т.к. {xn}- неубывающая последовательность, то при N > n  а -  < xN  xn,  

xn > a - . 

Отсюда a -  < xn < a +  

- < xn – a <     или    xn - a< ,    т.е. lim xn = a. 

Для остальных монотонных последовательностей доказательство аналогично. Теорема доказана. 

Число е. 

Рассмотрим последовательность {xn} = 

n

n









1

1 . 

Если последовательность {xn} монотонная и ограниченная, то она имеет конечный предел.  

По формуле бинома Ньютона: 
nn

nn

nnnnn

n

nnn

n

nn

n

n

n


















































1

321

)]1()...[2)(1(
...

1

321

)2)(1(1

21

)1(1

1
1

1
1

32

или, что 

то же самое 








 


























 





























n

n

nnnn

k

nnkn
xn

1
1...

2
1

1
1

!

1
...

1
1...

2
1

1
1

!

1
...

1
1

!2

1
11  

Покажем, что последовательность {xn} – возрастающая. Действительно, запишем выражение xn+1 и 

сравним его с выражением xn: 

.
1

1...
1

1
1

)!1(

1

1

1
1...

...
1

2
1

1

1
1

!

1
...

1

1
1...

1

2
1

1

1
1

!

1
...

1

1
1

!2

1
111













































































































n

n

nnn

n

nnnn

k

nnkn
xn

 Каждое слагаемое в выражении xn+1 больше соответствующего значения xn, и, кроме того, у 

xn+1 добавляется еще одно положительное слагаемое. Таким образом, последовательность {xn} 

возрастающая. 

 Докажем теперь, что при любом n ее члены не превосходят трех: xn < 3. 

прогрессиягеометр

n
x

n

nn

.

3

2

1
1

1
1

2

1
1

2

1
1

1
2

1
...

2

1

2

1
11

!

1
...

!3

1

!2

1
11

12











  

Итак, последовательность 






















n

n

1
1 - монотонно возрастающая и ограниченная сверху, т.е. имеет 

конечный предел. Этот предел принято обозначать буквой е. 

e
n

n

n













1
1lim  

Из неравенства 3
1

1 









n

n
 следует, что е  3. Отбрасывая в равенстве для {xn} все члены, начиная 

с четвертого, имеем: 




















nn

n
1

1
2

1
2

1
1  

переходя к пределу, получаем 

5,2
2

1
2 e  
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 Таким образом, число е заключено между числами 2,5 и 3. Если взять большее количество 

членов ряда, то можно получить более точную оценку значения числа е. 

Можно показать, что число е иррациональное и его значение равно 2,71828… 

Аналогично можно показать, что e
x

x

x













1
1lim , расширив требования к х до любого 

действительного числа: 

Предположим:                                  1 nxn  

1

111



nxn

 

1

1
1

1
1

1
1



nxn

 

nxn

nxn
































1

1
1

1
1

1
1

1

 

Найдем e
x

e
e

n
ee

n

x

x

n

n

n

n





































1
1lim;

11

1
1lim;1

1
1lim

1

  

Число е является основанием натурального логарифма. 

...,lnlog xeетyxx y

e   

 

2.8. Теорема Кантора о стягивающихся отрезках. Точные границы числового множества. 

Предел функции (по Гейне). 

Определение. Последовательность вложенных отрезков  называется 

последовательностью стягивающихся отрезков, если   :  . 

Теорема. 

Если  - последовательность стягивающихся отрезков, то ! точка, 

принадлежащая всем этим отрезкам. 

Доказательство теоремы. 

, . 

Множество  ограничено сверху  

Множество  ограничено снизу  

, ; ; . 

Покажем, что . 

Предположим, что . Тогда  чего быть не может. 

Предположим, что . Тогда . Положим  

  . 

:   . (*) 

Значит,  

Предположим, что  другая точка , общая для всех отрезков: 1)  ;2)  ;3)  . Но 

пункты 2), 3) невозможны, т.к. (*). 

Точная верхняя граница (верхняя грань) и точная нижняя граница (нижняя грань) — 

обобщение понятий максимума и минимума множества  

Мажоранта или верхняя грань (граница) числового множества  — число , такое 

что . 

Миноранта или нижняя грань (граница) числового множества  — число , такое 

что . 

Точной (наименьшей) верхней гранью (границей), или супре́мумом (лат. supremum — самый 

высокий) подмножества  упорядоченного множества(или класса) , называется наименьший 

https://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%BE_%D1%83%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D1%87%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)
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элемент , который равен или больше всех элементов множества . Другими словами, 

супремум — это наименьшая из всех верхних граней. Обозначается . 

Более формально: 

 — множество верхних граней , то есть элементов , 

равных или больших всех элементов  

 
Точной (наибольшей) нижней гранью (границей), или инфи́мумом (лат. infimum — самый 

низкий) подмножества  упорядоченного множества (иликласса) , называется наибольший 

элемент , который равен или меньше всех элементов множества . Другими словами, 

инфимум — это наибольшая из всех нижних граней. Обозначается . 

Замечание Эти определения ничего не говорят о том, принадлежит ли  и 

 множеству  или нет. 

В случае , говорят, что  является максимумом , то есть . 

В случае , говорят, что  является минимумом , то есть . 

Рассмотрим функцию , определённую на некотором множестве , которое имеет предельную 

точку  (которая, в свою очередь, не обязана ему принадлежать). 

Предел функции по  Гейне. Значение    называется  пределом  (предельным значением) 

функции    в точке  ,  если для любой  последовательности  точек  ,  

сходящейся к  , но не содержащей    в качестве одного из своих элементов (то есть в 

проколотой окрестности  ), последовательность значений функции  сходится 

к . 

 

2.9. Бесконечно малые и бесконечно большие функции, их свойства. 

Определение.  Функция f(x) называется бесконечно малой при ха, где а может быть числом или 

одной из величин , + или -, если 0)(lim 


xf
ax

. 

 Бесконечно малой функция может быть только если указать к какому числу стремится 

аргумент х. При различных значениях а функция может быть бесконечно малой или нет. 

 Пример. Функция f(x) = x
n
 является бесконечно малой при х0 и не является бесконечно 

малой при х1, т.к. 1)(lim
1




xf
x

. 

 Теорема. Для того, чтобы функция f(x) при ха имела предел, равный А, необходимо и 

достаточно, чтобы вблизи точки х = а выполнялось условие           f(x) = A + (x), где (х) – 

бесконечно малая при х  а ((х)0 при х  а).  

 Свойства бесконечно малых функций: 

1) Сумма фиксированного числа бесконечно малых функций при ха тоже бесконечно малая 

функция при ха. 

2) Произведение фиксированного числа бесконечно малых функций при ха тоже бесконечно 

малая функция при ха. 

3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а 

является бесконечно малой функцией при ха. 

4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть 

величина бесконечно малая. 

Определение. Предел функции f(x) при ха, где а- число, равен бесконечности, если для любого 

числа М>0 существует такое число >0, что неравенство f(x)>M 

выполняется при всех х, удовлетворяющих условию     0 < x - a <     Записывается 


)(lim xf
ax

. 

Собственно, если в приведенном выше определении заменить условие f(x)>M на f(x)>M, то 

получим: ,)(lim 


xf
ax

    а если заменить на f(x)<M, то:        .)(lim 


xf
ax

 

https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%BE_%D1%83%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D1%87%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)
https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE
https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D1%87%D0%BA%D0%B0
https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%B9%D0%BD%D0%B5,_%D0%AD%D0%B4%D1%83%D0%B0%D1%80%D0%B4
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C
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Определение. Функция называется бесконечно большой при ха, где а – чосли или одна из 

величин , + или -, если Axf
ax




)(lim , где А – число или одна из величин , + или -. 

 Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со 

следующей теоремой. 

 Теорема. Если f(x)0 при ха (если х ) и не обращается в ноль, то     
)(

1

xf
y  

 

2.10. Основные свойства пределов функции: арифметические действия над пределами, 

ограниченность, переход к пределам в неравенствах. Предел сложной функции. 

 Теорема 1. CC
ax



lim , где С = const. 

 Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют 

конечные пределы при ха. 

 Теорема 2. )(lim)(lim))()((lim xgxfxgxf
axaxax 

  

Доказательство этой теоремы будет приведено ниже. 

 Теорема 3. )(lim)(lim)]()([lim xgxfxgxf
axaxax 

  

 Следствие. )(lim)(lim xfCxfC
axax 

  

 Теорема 4. 
)(lim

)(lim

)(

)(
lim

xg

xf

xg

xf

ax

ax

ax






     при 0)(lim 


xg

ax
 

 Теорема 5. Если f(x)>0 вблизи точки х = а и Axf
ax




)(lim , то А>0. 

Аналогично определяется знак предела при f(x) < 0, f(x)  0, f(x)  0. 

 Теорема 6. Если g(x)  f(x)  u(x) вблизи точки х = а и Axuxg
axax




)(lim)(lim , то и A
ax



lim . 

 Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует 

такое число М>0, что f(x)<M вблизи точки х = а. 

 Теорема 7. Если функция f(x) имеет конечный предел при ха, то она ограничена вблизи 

точки х = а. 

 Доказательство. Пусть Axf
ax




)(lim , т.е.  Axf )( , тогда 

AAxfAAxfxf  )()()(  или 

Axf  )( , т.е. 

,)( Mxf  где М =  + А   Теорема доказана. 

 

2.11. Первый и второй замечательные пределы. Формула непрерывных процентов. 

Первый замечательный предел. 
)(

)(
lim

xQ

xP

x 
, где P(x) = a0x

n
 + a1x

n-1
 +…+an,   

Q(x) = b0x
m

 + b1xm-1 +…+bm - многочлены. 

m

m

n

n

mn

m

mm

n

nn

x

b

x

b
b

x

a

x

a
a

x

x

b

x

b
bx

x

a

x

a
ax

xQ

xP











 

...

...

)....(

)...(

)(

)(

1
0

1
0

1
0

1
0

 

0

0

1
0

1
0

...

...

lim
b

a

x

b

x

b
b

x

a

x

a
a

m

m

n

n

x







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Итого: 






















mnпри

mnпри
b

a

mnпри

xQ

xP

x

,

,

,0

)(

)(
lim

0

0  

Второй замечательный предел. 1
sin

lim
0


 x

x

x
 

Третий замечательный предел. e
x

x

x













1
1lim  

 Часто если непосредственное нахождение предела какой – либо функции представляется 

сложным, то можно путем преобразования функции свести задачу к нахождению замечательных 

пределов. 

 Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике 

соотношения: .
1)1(

lim;ln
1

lim;1
)1ln(

lim
000

m
x

x
a

x

a

x

x m

x

x

xx











 

При многократном начислении простых процентов начисление делается по отношению к исходной

 сумме ипредставляет собой каждый раз одну и ту же величину. Иначе говоря, 

, 

где       P — исходная сумма 

 S — наращенная сумма (исходная сумма вместе с начисленными процентами) 

 i — процентная ставка, выраженная в долях 

 n — число периодов начисления 

В этом случае говорят о простой процентной ставке. 

При многократном начислении сложных процентов начисление каждый раз делается по отношени

ю к суммес уже начисленными ранее процентами. Иначе говоря, 

S = (1 + i)
n
P 

(при тех же обозначениях). 

В этом случае говорят о сложной процентной ставке. 

Часто рассматривается следующая ситуация. Годовая процентная ставка составляет j, а процентына

числяются m раз в году по сложной процентной ставке равной j / m (например, поквартально, тогда 

m = 4или ежемесячно, тогда m = 12). Тогда формула для наращенной суммы будет выглядеть: 

 
В  этом  случае  говорят  о  номинальной  процентной  ставке.  Сравнение  сложных  процентных  

ставок  с разными  интервалами начисления  производят  при  помощи  показателя  годовая  

процентная доходность. 

Наконец, иногда рассматривают ситуацию так называемых непрерывно начисляемых процентов, т

о естьгодовое число периодов начисления m устремляют к бесконечности. Процентную ставку обоз

начают δ, аформула для наращенной суммы:   S = e
δn

P. 

В этом случае номинальную процентную ставку δ называют сила роста. 

Наращение и дисконтирование. Наращенная сумма в случае непрерывного начисления процентов 

по ставке j:  S = Pe 
jn    

 Для того чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее 

называют силой роста и обозначают символом δ. С учетом введенного обозначения равенство (4.1) 

принимает вид   S = Pe 
δn

   Сила роста представляет собой номинальную ставку процентов при 

 m→∞.  

Задача Сила роста банковского вклада δ=0,03. Найти сумму на счете через 2 года, если 

первоначальная сумма вклада составляет 9000 руб.  

Р е ш е н и е.  S = 9000е
0,03*2 

= 9000е
0,06 

= 9556,38 руб. 

Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле P=Se
-δn

 

Связь дискретных и непрерывных процентных ставок. Дискретные и непрерывные процентные 

ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход 

http://dic.academic.ru/dic.nsf/ruwiki/872490
http://dic.academic.ru/dic.nsf/ruwiki/872490
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от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от 

одних ставок к другим можно получить, приравнивая соответствующие множители наращения   (1 

+ i)
n
 =

 
e 

δn
  (Из записанного равенства следует, что δ = ln (1 + i ), откуда   i = e 

δ
 – 1   

Задача. Годовая ставка сложных процентов равна 15%. Чему равна эквивалентная сила роста? 

Р е ш е н и е. Воспользуемся формулой: δ = ln (1 + i ) = ln (1 + 0,15) = 0,13976, т.е. эквивалентная 

сила роста равна 13,976%. 

 

2.12. Свойства функций, непрерывных на отрезке: теоремы о существовании корня, о 

промежуточных значениях, об ограниченности функции, о достижении наибольшего и 

наименьшего значений. Равномерная непрерывность. 

 

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий 

математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] 

выполняется условие –M  f(x)  M. 

Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, 

ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество 

отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0. 

Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и 

наименьшее значения. 

Т.е. существуют такие значения х1 и х2, что f(x1) = m,  f(x2) = M, причем          m  f(x)  M 

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и 

несколько раз (например – f(x) = sinx). 

Разность между наибольшим и наименьшим значением функции на отрезке называется 

колебанием функции на отрезке. 

Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], 

принимает на этом отрезке все значения между двумя произвольными величинами. 

Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая 

окрестность точки х0, в которой функция сохраняет знак. 

Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- 

непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то 

существует такая точка внутри этого отрезка, где f(x) = 0. 

Т.е. если sign(f(a))  sign(f(b)), то  х0: f(x0) = 0. 

Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если 

для любого >0 существует >0 такое, что для любых точек х1[a,b] и x2[a,b] таких, что 

х2 – х1<  

верно неравенство                                    f(x2) – f(x1) <  

 Отличие равномерной непрерывности от “обычной” в том, что для любого  существует свое 

, не зависящее от х, а при “обычной” непрерывности  зависит от  и х. 

 Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, 

непрерывная на отрезке, равномерно непрерывна на нем. 

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.) 

 Пример. 
x

y
1

sin  

- 3 - 2 - 1 1 2 3

- 1

- 0. 5

0. 5

1
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 Функция 
x

y
1

sin  непрерывна на интервале (0, а), но не является на нем равномерно 

непрерывной, т.к. существует такое число >0 такое, что существуют значения х1 и х2 такие, 

чтоf(x1) – f(x2)>,  - любое число при условии, что х1 и х2 близки к нулю. 

 Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором 

промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна. 

 

2.13. Паутинные модели рынка. 

Паутинообразная модель рынка — это динамическая модель рынка, показывающая способность 

рынка к самостоятельному установлению равновесия в результате взаимодействия спроса и 

предложения. 

В данной модели предложение реагирует на изменение спроса не сразу, а с запозданием, что 

приводит к возникновению ценовых колебаний. В экономической теории 

различают затухающие, усиливающиеся и равномерные колебания цены. 

 
Паутинообразная модель рынка с 

затухающими колебаниями цен 

На первом графике представлена паутинообразная модель рынка с затухающими колебаниями цен. 

Эти колебания происходят когда кривая предложения более крутая, чем кривая спроса. В 

результате этих затухающих колебаний на рынке восстанавливается равновесие. Первоначально на 

рынке сложилась ситуация когда продавцы предлагают свой товар по цене Р0 и в объеме Q0, т.е. на 

уровне ниже равновесного состояния рынка. При данной цене на рынке возникает дефицит товара, 

из-за которого цена начинает повышаться до уровня P1 и у производителей возникнет желание 

увеличить производство товара до уровня Q1. Естественно, что рано или поздно при повышенной 

цене спрос неминуемо сократится и окажется меньше предложения. На рынке возникнет избыток 

товара, что подтолкнет продавца снизить цену до уровня P2и снизить предложение товара до уровня 

Q2. В результате дальнейших подобных колебаний рынок рано или поздно найдет тот равновесный 

уровень, который будет отвечать требованиям продавца и покупателя. 

На втором графике представлена противоположная первой паутинообразная модель рынка с 

усиливающимися колебаниями цен, которые свойственны в случае когда кривая спроса имеет более 

крутой наклон, чем кривая предложения. В этом случае цена будет все дальше отдаляться от 

равновесного уровня. Теоретически при таких колебаниях и все большего отдаления от 

равновесного уровня рынок может разрушиться. 

http://www.economicportal.ru/img/facts/pautinoobraznaya-model.jpg
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Паутинообразная модель рынка с 

усиливающимися колебаниями цен 

На третьем графике представлена паутинообразная модель рынка с равномерными колебаниями 

цен. Еще одна возможная ситуация на рынке, которая может возникнуть в случае когда кривая 

спроса и предложения имеет одинаковый наклон. 

 
Паутинообразная модель рынка с 

равномерными колебаниями цен 

В этом случае цена колеблется в определенном диапазоне не приближаясь к равновесному уровню, 

а рынок находится либо в состоянии дефицита, либо в состоянии избытка товара. 

Подводя итог, можно сказать, что паутинообразная модель рынка показывает, что: 

 колебания цен возникают в результате запоздалой реакции продавца на изменение спроса; 

 не во всех случаях равновесие на рынке достигается самостоятельно. 

 

2.14. Непрерывность дифференцируемой функции. Производные основных элементарных 

функций. 

ТЕОРЕМА:  Если функция  )(xf  является дифференцируемой в точке 0x , то она непрерывна в этой 

точке. 

Заметим,  что обратная теорема не верна. 

Пример: Доказать, что функция  xy    не дифференцируема  в точке  0x . 

 

http://www.economicportal.ru/img/facts/pautinoobraznaya-model2.jpg
http://www.economicportal.ru/img/facts/pautinoobraznaya-model3.jpg
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Решение: 
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, т.е. не имеет предела при  0x . Данная функция непрерывна в точке 

0x , но не дифференцируема  в точке  0x .  Заметим, что геометрически это означает отсутствие 

касательной к кривой в точке  0x . 

  Таким образом непрерывность функции – необходимое, но не достаточное условие 

дифференцируемости функции. 

Таблица  производных. 

Простейшие элементарные функции Сложные функции  (u=u(x)- некоторая функция) 
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2.15. Уравнение касательной к графику функции. 

Пусть задана функция  )(xfy  , определенная   на промежутке  Х. 

 
  Возьмем  любую точку  ))(;( 00 xfxM  принадлежащую графику функции. Зададим приращение 

аргумента  x .  Получим новую точку  ))(;( 00 xxfxxN  . 

  Проведем секущую  MN.  Обозначим  XPN . 

  Будем приближать точку  N   к точке   M,  двигаясь по кривой, тогда положение секущей будет 

меняться. Когда точки   N  и  M  совместятся, секущая превратится в касательную. 
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  В этом случае:  если   NM  , то   0x ,     ,   т.е.   
MN

lim ,  где    - угол наклона 

касательной к оси  Ох.               

Найдем   tg .  Проведем дополнительные построения:  OxMC ,  MCN  - прямоугольный:  

CMN . 

x

xfxxf

x

y

MC

NC
tg










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)lim(lim
00

    (**) 

Подставим  в  (**)  вместо  tg   значение  из  (*), то     

)(
)()(

lim 0
00

0
xftg

x

xfxxf

x







  - по определению производной.   

)( 0xftg   

Тангенс угла наклона касательной  к графику функции  )(xfy    в точке  0x  равен значению 

производной функции в этой точке. 

    Вспомним  ktg   - угловой коэффициент касательной, т.е.  )( 0xfk  .  Касательная проходит 

через точку  ))(;( 00 xfxM   и имеет угловой коэффициент   )( 0xfk   

 )( 11 xxkyy   - уравнение прямой с начальной точкой и угловым коэффициентом.  Значит: 

  )())(( 000 xfxxxfy   - уравнение касательной к графику функции  )(xfy   в точке 

))(;( 00 xfxM  

 

2.16. Применение дифференциала в приближенных вычислениях.   

Рассмотрим разность  xxxfxxxxfxxfxxxAdyy  )()()()()())(( 000   - 

бесконечно малая при   0x . 

dyy

dyy



 0
 

При этом абсолютная погрешность равна   dyy  . 

Пример 1:   2xy  . Найти приближенно изменение  у, когда  х  меняется от  2  до  2,01. 

 Пример 2:  Найти приближенное значение функции  
3 2 1683)(  xxxf  при  94,3x , исходя из 

ее точного значения  при  х0=4. 

 

2.17. Задача о распределении налогового бремени. 

Распределение налогового бремени между покупателями и продавцами зависит от соотношения 

наклонов линий спроса и предложения. В зависимости от эластичности спроса и предложения на 

отдельные виды товаров и услуг налоговое бремя будет распределяться по-разному между 

производителями и потребителями продукции. 

Распределение налогового бремени при эластичном и неэластичном спросе на 

продукцию (эластичность предложения принимается постоянной). На рис. 1 показано, как 

изменятся цена и объем продаж после введения налога. 

График спроса D на рис. 1,а показывает, что он имеет высокую эластичность, а на рис. 1,б — 

относительно неэластичен. График предложения S0 — предложение до введения налога. 

Соответственно P0 и Q0— равновесные цена и объем производства до введения налога. 
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Рис. 1. Распределение налогового бремени при эластичном (а) и неэластичном (б) спросе: D — 

спрос; S0, S1 — предложение до и после введения налога 

В случае, если спрос эластичен, потери производителя будут выше, бремя налога ляжет в 

основном на него. На рис. 1,а выделенный прямоугольник показывает величину налога, его часть 

ниже пунктирной линии — потери производителя от налога. Кроме того, производитель будет 

вынужден сократить производство до Q1, потеряв часть покупателей своей продукции за счет более 

высокой цены на нее. 

В случае, если спрос неэластичен, налоговое бремя ляжет преимущественно на потребителя. 

Кроме того, абсолютный размер налога также будет выше при неэластичном спросе. Именно 

поэтому государство облагает акцизными и другими косвенными налогами товары, спрос на 

которые неэластичен (сигареты, алкогольные напитки и т.п.). 

Распределение налогового бремени от эластичности предложения (эластичность спроса примем 

постоянной). Рис. 2 иллюстрирует ситуацию до и после введения налога. 

При эластичном предложении налоговое бремя ляжет в основном на потребителя, рост цены и 

сокращение объема производства будут значительными, сумма налога будет относительно меньше, 

чем при неэластичном предложении, потери общества — выше. При неэластичном 

предложении наблюдается обратная картина. 

 
Рис. 2. Распределение налогового бремени при эластичном (а) и неэластичном (б) предложении: D 

— спрос;S0,S1) — предложение до и после введения налога 

 

2.18. Локальный экстремум функции, теорема Ферма. Теоремы Ролля, Лагранжа и Коши. 

Теорема Ферма. Пусть функция    определена в некотором промежутке; имеет локальный 

экстремум во внутренней точке    этого промежутка; дифференцируема в окрестности точки  . 

Если    – точка локального максимума, то при переходе через эту точку производная    

меняет свой знак с плюса на минус: 

  
  

 

 (10)   
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Если    – точка локального минимума, то при переходе через точку    производная    

меняет свой знак с минуса на плюс: 

  
  

 

 (11)   

Если функция    дифференцируема в точке  , то     

    (12)   

      Доказательство. Предположим, что    является точкой локального максимума функции  . 

Тогда эта функция является возрастающей для значений  x, расположенных на малых расстояниях 

слева от точки    и, следовательно,    при  .  

      Поскольку функция    является убывающей для значений  x, достаточно близких к точке    

и расположенных справа, то    при  . Таким образом, утверждение (10) доказано. 

Аналогичным образом устанавливается справедливость утверждения (11).  

      Теперь предположим, что функция    дифференцируема в точке    и  . 

Поскольку функция    имеет экстремум в точке  , то справа и слева от точки    разность 

  принимает значения противоположных знаков. Если  , то функция    

возрастает в окрестности точки  ; если  , то функция    убывает в окрестности 

точки  . В обоих случаях    не является точкой экстремума и, таким образом, допущение 

   приводит к противоречию с условиями теоремы. 

 Рис. 1. Касательная к графику функции    в точке 

экстремума параллельна оси 0x.  

 Рис. 2. Если функция принимает свое наибольшее (или 

наименьшее) значение не во внутренней точке промежутка, а на одном из его концов, то 

производная этой функции в точке экстремума не обязательно равна нулю. 

Теорема Ролля. (Ролль (1652-1719)- французский математик)  Если функция f(x) непрерывна на 

отрезке [a, b], дифференцируема на интервале (а, b)  и значения функции на концах отрезка равны 

f(a) = f(b), то на интервале (а, b) существует точка , a <  < b, в которой производная функция 

f(x) равная нулю,  f() = 0. 

 Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы 

на интервале (a, b) существует точка  такая, что в соответствующей точке кривой y = f(x) 

касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема 

утверждает существование по крайней мере одной такой точки. 

 Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, 

b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. 

Возможны два различных случая М = m и M  m. 

 Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой 

точке интервала ее производная равна нулю. В этом случае за  можно принять любую точку 

интервала. 
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 Пусть М = m. Так значения на концах отрезка равны, то  хотя бы одно из значений М или m 

функция принимает внутри отрезка [a, b]. Обозначим , a <  < b точку, в которой f() = M. Так как 

М- наибольшее значение функции, то для любого х ( будем считать, что точка  + х находится 

внутри рассматриваемого интервала) верно неравенство:   f() = f( + x) – f()  0 

При этом 
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 Но так как по условию производная в точке  существует, то существует и предел 
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Теорема доказана. 

 Теорема Ролля имеет несколько следствий: 

1) Если функция f(x)  на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то 

существует по крайней мере одна точка , a <  < b, такая, что f() = 0. Т.е. между двумя нулями 

функции найдется хотя бы одна точка, в которой производная функции равна нулю. 

2) Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n 

раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором 

производная (n – 1) – го порядка равна нулю.  

Теорема Лагранжа.      (Жозеф Луи Лагранж (1736-1813) французский математик)   Если 

функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом 

интервале найдется по крайней мере одна точка   a <  < b, такая, что )(
)()(

f
ab

afbf





. 

 Это означает, что если на некотором промежутке выполняются условия теоремы, то 

отношение приращения функции к приращению аргумента на этом отрезке равно значению 

производной в некоторой промежуточной точке. 

 Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа. 

 Отношение
ab

afbf



 )()(
 равно угловому коэффициенту секущей АВ. 

                                              у 

 

 

     

                                                     В 

 

 

                                                   А 

 

                                               0     а                          b            x 

 Если  функция f(x) удовлетворяет условиям теоремы, то на интервале (а, b) существует точка 

 такая, что в соответствующей точке кривой y = f(x) касательная параллельна секущей, 

соединяющей точки А и В. Таких точек может быть и несколько, но одна существует точно. 

 Доказательство.  Рассмотрим некоторую вспомогательную функцию  F(x) = f(x) – yсек АВ 

Уравнение секущей АВ можно записать в виде: 

)(
)()(

)()()(

)(
)()(

)(

ax
ab

afbf
afxfxF

ax
ab

afbf
afy













 

Функция F(x) удовлетворяет теореме Ролля. Действительно, она непрерывна на отрезке [a, b] и 

дифференцируема на интервале (а, b). По теореме Ролля существует хотя бы одна точка , a <  < b, 

такая что F() = 0.  
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Т.к.     
ab

afbf
xfxF






)()(
)()( , то  0

)()(
)()( 






ab

afbf
fF  , следовательно 

ab

afbf
f






)()(
)(      Теорема доказана. 

 Определение. Выражение ))(()()( abfbfaf    называется формулой Лагранжа или 

формулой конечных приращений. 
В дальнейшем эта формула будет очень часто применяться  для доказательства самых 

разных теорем. 

Иногда формулу Лагранжа записывают в несколько другом виде: xxxfy  )(  , где 0 <  < 1,  

x = b – a,   y = f(b) – f(a). 

Теорема Коши. ( Коши (1789-1857)- французский математик)  Если функции f(x) и g(x) 

непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g(x)  0 на интервале (a, b), 

то существует по крайней мере одна точка , a <  < b, такая, что   
)(

)(

)()(

)()(





g

f

agbg

afbf









. 

 Т.е. отношение приращений функций на данном отрезке равно отношению производных в 

точке . 

 Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой 

Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг 

на друга. Однако, это представление ошибочно, т.к. точка  для каждой из функции в общем случае 

различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой 

для обеих функций, но это- очень редкое совпадение, а не правило, поэтому не может быть 

использовано для доказательства теоремы. 

 Доказательство. Рассмотрим вспомогательную функцию  

))()((
)()(

)()(
)()()( agxg

agbg

afbf
afxfxF 




 , 

которая на интервале [a, b] удовлетворяет условиям теоремы Ролля. Легко видеть, что при х = а и х 

= b F(a) = F(b) = 0. Тогда по теореме Ролля существует такая точка ,  

a <  < b, такая, что F() = 0. Т.к.  )(
)()(

)()(
)()( xg

agbg

afbf
xfxF 




 , то         

)(
)()(

)()(
)(0)(  g

agbg

afbf
fF 




     А т.к. 0)(  g , то 

)(

)(

)()(

)()(

xg

xf

agbg

afbf









 Теорема доказана. 

Следует отметить, что рассмотренная выше теорема Лагранжа является частным случаем 

(при g(x) = x) теоремы Коши. Доказанная нами теорема Коши очень широко используется для 

раскрытия так называемых неопределенностей. Применение полученных результатов позволяет 

существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено 

ниже. 

 

2.19. Отыскание наибольшего и наименьшего значений функции на отрезке. 

Рассмотрим функцию  )(xfy   непрерывную на отрезке    ba; .  

 
  Может случиться так, что значения функции на концах отрезка больше максимума  или меньше 

минимума.        (max))((min),)( fbffaf  .   Поэтому находить наибольшее и наименьшее 

значения функции  )(xfy    на отрезке   ba;   нужно находить следующим образом. 
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План нахождения  наибольшего и наименьшего значений функции  )(xfy    на отрезке   ba;  

1) Находим область определения функции. Проверяем, принадлежит ли отрезок   ba;  области 

определения. 

2) Находим точки экстремума функции и выбираем те из них, которые принадлежат отрезку   ba; . 

3) Находим значения функции на концах отрезка  ))()(( bfuaf  и значения функции в точках 

экстремума. 

4) Выбираем из всех полученных значений наибольшее и наименьшее. 

Пример: Найти  наибольшее и наименьшее значения функции  
x

x
y






1

)3( 2

  на отрезке   0;4  

Ответ: 
5

4
9)4( y - наибольшее значение, 8)1( y - наименьшее значение. 

Пример:  Найти  наибольшее и наименьшее значения функции  xxy 2cossin2    на отрезке  










2
;0


 

Решение:   yD :  Rx      








2
;0


 yD  

xxy 2sin2cos2   

0)sin21(cos20  xxnpuy  
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






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



2
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2

,2
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




x

Zkkx

x

              















2
;0

6

,
6

)1(

2

1
sin






x

Znnx

x

n  

110)0( y   - наименьшее      112)
2

( 


y  - наименьшее     5,1)
6

( 


y  - наибольшее 

 

2.20. Достаточные условия выпуклости функции. Необходимый и достаточный признаки точки 

перегиба. 

Еще одной важной характеристикой функции является характер её выпуклости. 

ОПР: График дифференцируемой функции называется   выпуклым  [ вогнутым ]  в  интервале  

);( ba ,  если он расположен ниже  [ выше ] любой своей касательной в этом интервале. 

                                        
Пример:  Функция   2xy   имеет вогнутый график на всей оси  R. 

                 Полуокружность  21 xy    имеет выпуклый график на   1;1  

                                               
  За выпуклость и вогнутость графика функции  «отвечает»  вторая производная. 
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ТЕОРЕМА:  Если функция  )(xfy   имеет вторую производную во всех точках интервала  );( ba  и 

если во всех точках этого интервала  0)(  xf , то график функции вогнутый в интервале  );( ba , 

если же  0)(  xf , то  график функции выпуклый в интервале  );( ba . 

ОПР:  Точка  ))(;( 000 xfxM   называется точкой перегиба графика функции  )(xfy  , если проходя 

через эту точку функция  меняет характер выпуклости / вогнутости. 

ТЕОРЕМА ( необходимое условие точки перегиба):  Пусть график функции  )(xfy    имеет 

перегиб в точке  ))(;( 000 xfxM , то вторая производная в этой точке равна нулю или не существует. 

Доказательство:  Метод от противного. Пусть   0)( 0xf   0)(  xf   или  0)(  xf .  Значит в  

точке    ))(;( 000 xfxM   функция имеет определенное направление выпуклости / вогнутости, а это 

противоречит наличию перегиба в точке  ))(;( 000 xfxM . 

Замечание:  Обратное утверждение не верно.  Не всякая точка, в которой   0)(  xf   или  )(xf    

является точкой перегиба. 

Пример:  4xy   

                 004 3  xnpuyxy  

  Тем не менее, в точке  (0,0)  нет  перегиба, поэтому точки, в которых вторая производная равна 

нулю или не существует, называют точками возможного перегиба  (стационарными  точками), а 

условие 0)(  xf    или  )(xf    является лишь необходимым.  Сформулируем достаточный 

признак  точки перегиба. 

ТЕОРЕМА ( достаточное условие точки перегиба):  Пусть  0x  - стационарная точка. Если проходя 

через стационарную точку вторая производная меняет знак, то график функции  )(xfy   имеет 

перегиб в точке  ))(;( 000 xfxM . 

 

2.21. Пространство   R
n
.   Свойства  расстояния. Окрестность  точки. Внутренние и граничные 

точки множества. Открытые и замкнутые множества. Изолированные и предельные точки 

множества. Ограниченные множества. 

Определение. Пространством R
n
 мы будем называть множество точек      x = (x1,...,xn),  где  xi∈R      

(i = 1,...,n), снабженное расстоянием, т. е. функцией  

Иногда вместо ρ(x, y) будем писать |x − y|.  

Основные свойства расстояния в Rn:  

1) ρ(x, y)=0 ⇐⇒ x = y (т. е. x1 = y1,...,xn = yn);  

2) ρ(x, y) = ρ(y, x) для любых x и y;  

3)  для любых x, y и z (так называемое неравенство треугольника) 

Отметим, что расстояние, удовлетворяющее свойствам 1)–3), можно задать и другими формулами, 

например ρ˜(x, y) = |x1 − y1| + ··· + |xn − yn|. Легко проверить, что все эти свойства выполнены. 

Определение. ε-окрестностью точки a ∈ Rn называется множество Oε(a)={x ∈ Rn : ρ(x, a)<ε} 

(|x−a|<ε). 

Определение. Шаром радиуса r с центром в точке a называется множество 

 
Определение. Множество M называется ограниченным в R

n
, если существует шар Br(а), который 

целиком его содержит: Br ⊃ M. Иными словами, если существует такое r > 0, что  для всех 

точек x ∈ M.  

Лемма  (Больцано–Вейерштрасса). Ограниченная в R
n
 последовательность {x

(k)
} имеет сходящуюся 

в R
n
 подпоследовательность {x

(km)
 } 

Определение. a) Точка x ∈ M называется внутренней точкой множества M, если эта точка входит в 

множество M с некоторой своей ε-окрестностью: Oε(x) ⊂ M.  
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б) Точка  называется внешней точкой множества M, если некоторая ее ε-окрестность не имеет 

с этим множеством общих точек: Oε(x) ∩ M = ∅. 

 в) Точка x называется граничной точкой множества M, если она не является для этого множества 

ни внутренней, ни внешней. Иными словами, любая ее ε-окрестность содержит как точки, 

принадлежащие M, так и точки, не принадлежащие этому множеству.  

Обозначения: Int M — множество внутренних точек множества M;  

Ext M — множество внешних точек множества M;  

∂M — множество граничных точек множества M.  

Из определения видно, что Rn = Int M + ExtM + ∂M.  

Здесь знак «+» вместо знака объединения означает, что эти множества попарно не пересекаются. 

Определение. Множество M называется открытым в R
n
, если всего его точки являются 

внутренними: M = Int M.  

Множество M называется замкнутым в R
n
, если все его граничные точки входят в M: ∂M ⊂ M.  В 

этом случае M = Int M + ∂M. 

Пример. a) Окрестность Oε(a) является открытым множеством.  

б) Шар Br(a) является замкнутым множеством.  

в) Отрезок на плоскости R
2
 является замкнутым множеством, поскольку ∂M ⊂ M.  

г) ∅ является открытым и замкнутым одновременно.  

д) R
n
 является открытым и замкнутым одновременно. 

Можно показать, что только два множества ∅ и R
n
 являются одновременно открытыми и 

замкнутыми.  

Дополнение к открытому множеству в R
n
 замкнуто, а к замкнутому множеству — открыто. 

Любое объединение и конечное пересечение открытых множеств открыто.  

Любое пересечение и конечное объединение замкнутых множеств замкнуто. 

Утверждения типа «любое объединение замкнутых множеств является замкнутым» или «любое 

пересечение открытых множеств является открытым» ложны. 

Определение. Точка x называется предельной точкой множества M, если существует такая 

последовательность {x
(k)

 } точек из M, что x
(k)

≠ x, но x
(k)

 → x при k → ∞. 

Иными словами, точка x называется предельной точкой множества M, если в любой проколотой 

окрестности Oε(x) существует хотя бы одна точка множества M. 

Определение. Точка x множества M называется изолированной точкой множества M, если 

существует такая проколотая окрестность O(x), что M ∩ O(x) = ∅ или, что то же M ∩ O(x) = {x}. 

Утверждение. 1) Любая внутренняя точка является предельной точкой для M.  

2) Любая граничная точка множества M является либо предельной точкой, либо изолированной 

точкой для M.  

3) Внешняя точка множества не может быть ни предельной, ни изолированной. 

 

2.22. Сходимость последовательности точек в R
n
, ее эквивалентность покоординатной 

сходимости. 

Определение. Рассмотрим последовательность x
(k)

 ∈ R
n
, k = 1, 2,... . Будем говорить, что x

(k)
 → a при 

k → ∞ или 

  
Теорема (об эквивалентности сходимости в R

n
 покоординатной сходимости). Последовательность 

x
(k)

 сходится в R
n
 к a тогда и только тогда, когда x

(k)
i сходится к ai для каждого i = 1,...,n:  

 

Пример 1) В R
3
 последовательность  

2) В R
2
 последовательность  не имеет предела, так как вторая координата x

(k)
2 = k не 

имеет (конечного) предела.  
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Определение Последовательность x
(k)

 называется последовательностью Коши (или 

последовательностью, сходящейся в себе, или фундаментальной), если для любого ε > 0 существует 

такое N = N(ε), что для всех  

Теорема (о полноте R
n
). Любая фундаментальная последовательность в R

n
 сходится.  

Замечание. Каждая сходящаяся последовательность в R
n
 является фундаментальной.  

 

2.23. Однородные функции нескольких переменных. Формула Эйлера. 

Функция одного или нескольких переменных f(x1, x2, …, xn) называется однородной степени k, если 

существует такое (постоянное) число k, что при любых значениях λ выполняется тождество  

f(λx1, λx2, …, λxn) = λ
k
∙f(x1, x2, …, xn). 

Указанное число k называется степенью (показателем) однородности функции. 

Пример 

Однородные функции обладают рядом интересных свойств. Одно из них – так называемое 

тождество Эйлера для однородной функции f(x1, x2, …, xn) степени однородности k: 

;     

здесь – частная производная функции f по переменной хi, i = 1, 2, …, n. 

 

2.24. Выпуклые множества в R
n
. Выпуклые (вогнутые) и строго выпуклые (вогнутые) функции 

нескольких переменных. Неравенство Йенсена для выпуклых функций 

Будем рассматривать отрезок ,  набор чисел    и коэффициенты 

   такие, что  . 

Определение: Выпуклая комбинация чисел  — это  

Частный случай — . В этом случае  — среднее арифметическое. 

Обозначим за , а . Тогда , а так 

как  и . 

В этом смысле отрезок — выпуклое множество, так как он содержит выпуклую комбинацию любых 

своих чисел. 

Выпуклое множество вместе с парой своих точек содержит отрезок, их соединяющий. 

Определение: Пусть функция  задана на . Тогда она выпукла вверх на этом отрезке, если 

. 

Если же всё время неравенство противоположно, то функция называется выпуклой вниз. 

В силу того, что было сказано о выпуклой комбинации, определение корректно: 

 . 

Геометрической смысл этого факта состоит в том, что для выпуклой вверх функции её график будет 

лежать выше хорды. 

Замечание: если  выпукла вниз, то  выпукла вверх. 

Теорема (Неравенство Йенсена): Пусть  выпукла вверх на . Тогда  и 

их выпуклой комбинации выполнено неравенство . 

 Определение  Пусть   -- выпуклое множество, на котором задана функция  . 

Функция  называется выпуклой (или выпуклой книзу) на множестве  , если для любых двух 

точек  функция  , служащая ограничением функции  на отрезок, 

javascript:hide1()
http://neerc.ifmo.ru/wiki/index.php?title=%D0%9E%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F
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соединяющий точки  и  , является выпуклой (книзу) функцией одного переменного 

(здесь, как и выше,  ). 

 
Рис.1. 

Функция  называется вогнутой (или выпуклой кверху) в  , если функция 

 вогнута. 

Таким образом, функция  вогнута в том и только том случае, когда функция 

 выпукла.      

Выпуклость функции  в  означает, что для любого отрезка  с концами  и 

параметризация этого отрезка в виде  задаёт 

композицию  , являющуюся выпуклой функцией параметра  . Ввиду выпуклости 

области  , любые точки  и  отрезка  лежат в  , и их снова можно взять в качестве 

концов отрезка. Поэтому для выпуклости функции  в области  необходимо и достаточно, чтобы 

неравенство 

 

выполнялось при всех  и  . 

Если при этом при всех  и  выполняется строгое неравенство 

 

то функцию  будем называть строго выпуклой в  . 

Наконец, функция  называется строго вогнутой, если функция  строго выпукла; это 

означает выполнение строгого неравенства 

 

при всех  и  . 

Геометрически (в случае  ) строгая выпуклость означает, что для любой хорды 

графика  точки дуги графика с теми же концами, что у хорды, лежащие в вертикальном 

сечении, проходящем через эту хорду, располагаются ниже точек хорды. Строгая вогутость 
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означает, что в любом вертикальном сечении график проходит выше любого отрезка, 

соединяющего две точки графика. 

 
Рис. 2. 

Заметим, что понятия выпуклой и вогнутой функций (а также строго выпуклой и строго 

вогнутой функций) в области  определены только для выпуклых областей  . 

Пример  Линейная функция   где   -- 

постоянные, является выпуклой функцией во всём пространстве  (но не является строго 

выпуклой функцией). Действительно, как легко проверить, при всех  и  имеем 

 

Поскольку функция  , очевидно, также линейна, линейная функция  является 

одновременно и вогнутой (но не строго вогнутой).      

Если о некоторых функциях известно, что они выпуклы в области  , то из них можно 

сконструировать другие выпуклые функции, используя следующие свойства выпуклых функций. 

        Теорема    Пусть   -- выпуклая область и функции  и  выпуклы в  . Тогда сумма 

этих функций  также выпукла в  . 

 

2.25. Использование полярных координат для вычисления двойных интегралов. Интеграл 

Эйлера-Пуассона. 

Если область, по которой вычисляется интеграл, является кругом или его частью, то интеграл 

проще вычислять в полярных координатах.  

При интегрировании с использованием прямоугольных координат для определения пределов 

интегрирования мы проводили прямые, отвечающие постоянным значениям одной или другой 

переменной интегрирования. При интегрировании в полярных координатах мы должны проводить 

линии, соответствующие постоянным значениям расстояния до начала координат (окружности) и 

полярного угла (прямые, проходящие через начало координат). Снова проследим это на конкретных 

примерах. В этих примерах мы не проводим интегрирования, ограничиваясь расстановкой пределов 

интегрирования. Связано это с некоторой спецификой интегрирования в полярных координатах, 

которая будет пояснена позже. Кроме того, ничего нового по сравнению с уже приведёнными выше 

примерами проведение повторного интегрирования не даст.  

Пример 1. Кольцевая область интегрирования. 

Расставить пределы интегрирования в полярных координатах в интеграле , где 

область интегрирования – кольцо . 
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Это простейший случай интегрирования в полярных координатах. Границу области интегрирования 

образуют координатные линии полярной системы координат (см. рис. 7). Поэтому пределы 

интегрирования расставляются элементарно:  

Так как подынтегральная функция не конкретизирована, то за порядком интегрирования не следим: 

если повторные интегралы существуют, то они равны. При конкретных вычислениях, разумеется, 

выбирается тот порядок интегрирования, при котором вычисления проще.  

Пример 2. Квадратная область интегрирования. 

Расставить пределы интегрирования в полярных координатах в интеграле , где 

область интегрирования –  квадрат . 

При интегрировании в прямоугольных координатах этот пример был простейшим. Теперь он 

несколько усложнился. Мы расставим пределы для обоих порядков интегрирования. Но сначала 

запишем уравнения сторон квадрата    в полярных координатах: 

. 

 
Первым рассмотрим случай, когда внутреннее интегрирование выполняется по переменной , 

тогда полярный угол фиксирован, т.е. для определения пределов интегрирования следует проводить 

лучи, исходящие из начала координат (см. рис. 8). Полярный угол в целом будет  изменяться от 

нуля до . Но заметьте, что прямые могут «выходить» из вертикальной прямой, а могут – из 

горизонтальной. В связи с этим  интеграл распадётся на два:  

 
Теперь проведём интегрирование в другом порядке: внутреннее интегрирование проведём по 

полярному углу, тогда переменная  считается константой. Для определения пределов 

интегрирования проводим дуги окружностей (см. рис. 9). Как видно, до некоторого значения 

радиуса окружности она пересекает стороны квадрата, соответствующие значениям полярного угла 

0 (горизонтальная сторона) и  (вертикальная сторона). Когда радиус окружности становится 

равным единице, то она начинает пересекать две другие стороны. Наконец, после достижения 

радиусом окружности значения  окружность вообще перестаёт пересекать стороны квадрата. 

Таким образом, расстановка пределов интегрирования следующая:  
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В полярных координатах можно вычислить важный для теории вероятностей и уравнений 

математической физики интеграл Эйлера-Пуассона: 

 
Так как интеграл не зависит от обозначения переменной интегрирования, то записывается также: 

 
Умножая почленно последние равенства, придем к двойному интегралу: 

, 

где       D:  (рис. 1.18). 

 

В полярных координатах: 

 
Отсюда, учитывая, что J > 0, находим: 

 

В силу четности функции , получим: 

 
 

2.26. Автономные уравнения и их свойства. Модели естественного и логистического роста. 

Автономной системой дифференциальных уравнений n –го порядка называется система, которая в 

нормальной форме записывается в виде 

 
В векторной форме автономная система имеет вид x' = F(x) (не зависит от t), где 
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Название автономная система связано с тем, что поскольку производная  x' зависит только от x и не 

зависит от t, то решение само управляет своим изменением. Автономные системы называют 

также динамическими системами. 

Любую систему дифференциальных уравнений, записанную в нормальной форме, можно свести к 

автономной системе, увеличив число неизвестных функций на единицу: 

 
Будем полагать, что для рассматриваемых автономных систем выполнены условия теоремы 

существования и единственности решения задачи Коши. 

Пусть x = φ(t) — решение автономной системы, определенное на отрезке [a, b]. Множество точек 

 x = φ(t) ,   t ∈ [a, b] — кривая в пространстве Rx
n
 . Эту кривую называют фазовой траекторией или 

просто траекторией системы, а пространство Rx
n
 , в котором расположены фазовые траектории, 

называют фазовым пространством автономной системы. 

Точка a называется положением равновесия  (точкой покоя) автономной системы, если F(a) = 0 . 

Равенство x = φ(t) ,   t ∈ [a, b] — параметрические уравнения фазовой траектории. 

Интегральная кривая системы изображается в (n + 1) –мерном пространстве Rx, t
n+1

 и может быть 

определена уравнениями 

 
Ясно, что соответствующая фазовая траектория — проекция интегральной кривой на 

пространство Rx. 

На рисунке приведено изображение интегральной кривой автономной системы и соответствующей 

фазовой траектории. 

 

http://twt.mpei.ac.ru/math/ode/ODEsys/ODEsysup_08030000.html
http://twt.mpei.ac.ru/math/ode/ODEsys/ODEsysup_08030000.html
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Модель естественного роста в условиях конкуренции с учетом издержек 

Более реалистической является модель, в которой скорость выпуска продукции зависит не от 

дохода, а от прибыли. Пусть  nymyC )( , где )(yC - издержки, при этом 0m и 0n ;  

aybyp )( , где )(yp - доход, при этом 0a , 0b .  

Тогда дифференциальное уравнение, описывающее модель роста с учетом издержек,  примет 

вид: ))((' nmyyaybky  , 

)( 2' nmyaybyky  , 

 ))(( 2' nymbayky  .    (1) 

Таким образом, правая часть уравнения (1) представляет собой квадратный трехчлен 

относительно y  с отрицательным коэффициентом перед 2y . В этом случае возможны три варианта  

решения при 0;0;0  DDD : 

 а) рассмотрим случай, когда дифференциальное уравнение (1) не имеет стационарного 

решения ( 0D ). Пусть, для примера, 1a , 2b , 6m , 8n , 1k , подставив  исходные данные в 

уравнение (1), получим 842'  yyy , 16D . 

Так как 0D , следовательно, 0' y . Издержки настолько велики, что это приводит к 

постоянному падению уровня производства и,  в конце концов, к банкротству. Подставим исходные 

данные в дифференциальное уравнение  и решим его: 
2222 )2()2(y    ,4)2(y    ,84  yyyyy , 

.2)2(2)(

),2(
2

2

,2
2

2

,
2

2

2

1

,
4)2( 2


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





 
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
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
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 




 

cttgty

cttg
y

ct
y

arctg

ct
y

arctg

dt
y

dy

 

Построим интегральные кривые:  

2)29,19(2)(  ttgty  (на рисунке 1 ряд1); 

2)28,19(2)(  ttgty  (на рисунке 1 ряд 2). 

 
Рисунок 1- Интегральные кривые для случая  0D  

б)  рассмотрим случай, когда уравнения (1)  имеет единственное стационарное  решение 

( D =0). Пусть, для примера, 1a , 6b , 2m , 4n , 1 k . Подставив эти данные в уравнение 

))(( 2' nymbayky  , получим уравнение  442'   yyy .        (2) 

0 
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 В этом случае D =0, и при 0y  уравнение (2) имеет единственное стационарное решение  

2* y .  

Решим дифференциальное уравнение (2): 

2)2(  y
dt

dy
,  


dt

y

dy
2)2(

, ct
y





2

1
 или  ct

y


 2

1
, тогда  2

1
)( 




ct
ty . 

Зададим начальные  условия: пусть в начальный момент времени )0(y 7, то есть больше, 

чем стационарное значение 2* y , тогда с 0,2, а 2
2,0

1
)( 




t
ty  (на рисунке 2 ряд 2).  

Интегральные кривые асимптотически приближаются к единственному стационарному 

решению 2* y . В этом случае выпуск падает, приближаясь к равновесному решению. 

Пусть )0(y 1,5, то есть меньше, чем стационарное  значение 2* y , тогда с -2 и 

2
2

1
)( 




t
ty  (на рисунке  2  ряд 1). Интегральные кривые, удовлетворяющие условию  yy )0( , 

асимптотически приближаются  к равновесному решению при 0t .  

 
Рисунок 2 - Интегральные кривые для случая  0D  

в) рассмотрим случай, когда уравнение (3.16) имеет два  стационарных решения 
*

1
y и

*

2
y  

)0(
21

  yy , при этом 0D , 0k . Общее решение дифференциального уравнения       

))(( 2' nymbayky    имеет вид: 

ktce

yy
yty

2

12

1

1
)(








 ,  
kteyy

yy
c

2
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20

)( 


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
 ,  )0(

0
yy  . 

 Если  начальное значение  объема производства )0(y  окажется меньше первого 

равновесного значения 


1
y , то есть   


1

)0( yy , то с течением времени объем производства будет 

монотонно убывать.  

Если 
*

1
)0( yy  , то   с течением времени объем производства увеличивается, приближаясь к 

равновесному значению 
*

2
y . Если 


2

)0( yy , то есть начальный объем производства оказывается 

больше первого равновесного значения, но меньше второго равновесного значения, тогда  объем 

производства будет расти, приближаясь к равновесному значению 


2
y .  

Пусть yycyyp  3)( ,5)( , то есть 3 ,1 ,5 ,1  nmba . Подставим эти  значения в 

уравнение ))(( 2' nymbayky  , полагая, 1k . В результате  получим  дифференциальное 

уравнение    342'  yyy . 

 В этом случае 04 D ,  и существуют два ненулевых стационарных  (равновесных) 

решения 1*

1
y  и 3*

2
y . На рисунке 3   ряд 1 задает равновесную прямую 3*

2
y , а  ряд  5 задает 

равновесную прямую 1*

1
y . 
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Общее решение дифференциального уравнение 342'  yyy   имеет вид: 

ktce
ty

21

2
1)(


 ,  

ktey

y
c

2

0

0

)1(

3




 , где  )0(

0
yy  . 

 Рассмотрим пример, когда  начальное значение  объема производства )0(y  окажется меньше 

первого равновесного решения 


1
y , то есть   5,0)0( y . В этом случае 5c  и решение 

дифференциального  уравнения имеет вид: 

kte
ty

251

2
1)(


 . 

 Данная интегральная кривая на рисунке 3 представлена  рядом 2. С течением времени объем 

производства будет монотонно убывать.  

 
Рисунок 3- Интегральные кривые для случая  0D  

Рассмотрим пример, при  2)0( y   (
 
21

)0( yyy ). 

При этом 1c   и решение дифференциального  уравнения имеет вид: 
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
 . 

Данная интегральная кривая на рисунке 3 представлена рядом 3. С течением времени объем 

производства увеличивается, приближаясь к равновесному решению 3*

2
y .  

Если  в начальный момент времени объем производства превышает второе равновесное 

значение, то есть, например, при 5)0( y , (

2

)0( yy ) 5,0c , то решение дифференциального  

уравнения имеет вид: 
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2
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
 . 

Данная интегральная кривая на рисунке 3 представлена рядом 4. С течением времени объем 

производства уменьшается, приближаясь к равновесному решению 3
2
y . 

Итак, 3
2
y  - устойчивое равновесие, 1

1
y - неустойчивое равновесие. Это означает, что 

существует критический порог объема производства, равный 


1
y . Если начальное значение объема 

производства )0(y окажется больше 


1
y , то с течением времени этот уровень приблизится к 

равновесному  значению 


2
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монотонно убывать до нуля. Таким образом, любое снижение производства ниже критического 

уровня чревато банкротством предприятия. 

Логистическое уравнение, также известное, как уравнение Ферхюльста (по имени впервые 

сформулировавшего его бельгийского математика), изначально появилось при рассмотрении 

модели роста численности населения. 

Исходные предположения для вывода уравнения при рассмотрении популяционной динамики 

выглядят следующим образом: 

 скорость размножения популяции пропорциональна её текущей численности, при прочих 

равных условиях 

 скорость размножения популяции пропорциональна количеству доступных ресурсов, при 

прочих равных условиях. Таким образом, второй член уравнения отражает конкуренцию за 

ресурсы, которая ограничивает рост популяции. 

Обозначая через  численность популяции (в экологии часто используется обозначение ), а 

время — , модель можно свести к дифференциальному уравнению: , 

где параметр  характеризует скорость роста (размножения), а  — поддерживающую ёмкость 

среды (то есть, максимально возможную численность популяции). Исходя из названия 

коэффициентов, в экологии часто различают
[уточнить]

 две стратегии поведения видов: 

 -стратегия предполагает бурное размножение и короткую продолжительность жизни 

особей 

 а -стратегия — низкий темп размножения и долгую жизнь. 

 
Логистическая кривая для K=1 иP0=0,5 

Точным решением уравнения (где  — начальная численность популяции) 

является логистическая функция, S-образная кривая, (логистическая кривая): 

 где    

Ясно, что в ситуации «достаточного объёма ресурсов», то есть пока P(t) много меньше K, 

логистическая функция поначалу растёт приблизительно экспоненциально: 

 

Аналогично, при «исчерпании ресурсов» (t → ∞) разность  экспоненциально убывает с 

таким же показателем. 

Почему Ферхюльст назвал уравнение логистическим, остается неизвестным. 

 

 

3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 

ПО ПОДГОТОВКЕ К ЗАНЯТИЯМ 

 

3.1 Практические занятия по теме «Введение в анализ».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Действительные числа, их свойства. 

2. Действия над множествами. 

3. Окрестность точки. Ограниченные множества. Обозначения для сумм и произведений. 

4. Способы задания функций. Область определения и множество значений функции. График 

функции. 

https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%85%D1%8E%D0%BB%D1%8C%D1%81%D1%82,_%D0%9F%D1%8C%D0%B5%D1%80_%D0%A4%D1%80%D0%B0%D0%BD%D1%81%D1%83%D0%B0
https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%BC%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%8B%D0%BA%D0%BD%D0%BE%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%90%D0%B2%D1%82%D0%BE%D1%80%D0%B8%D1%82%D0%B5%D1%82%D0%BD%D1%8B%D0%B5_%D0%B8%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg?uselang=ru
https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D1%80%D0%BE%D1%81%D1%82
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5. Характеристики функций: четность и нечетность, периодичность, монотонность, ограниченность. 

6. Сложная и обратная функции. 

7. Степенная, показательная и логарифмическая функции.  

8. Тригонометрические функции и обратные к ним.  

 

3.2 Практические занятия по теме «Предел и непрерывность функций».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Способы задания последовательностей.  

2. Прогрессии.  Формула сложных процентов. 

3. Предел последовательности. Бесконечно малые и бесконечно большие последовательности, их 

свойства.  

4. Свойства пределов, связанные с арифметическими действиями. 

5. Монотонные последовательности. Теорема Вейерштрасса о существовании предела 

монотонной ограниченной последовательности. Число е. 

6. Теорема Кантора о стягивающихся отрезках.   Точные границы числового множества. Предел 

функции (по Гейне). 

7. Различные типы пределов: односторонние пределы, пределы в бесконечности, бесконечные 

пределы. Сравнение бесконечно малых функций: эквивалентные функции. 

8.  Первый и второй замечательные пределы.  

9. Формула непрерывных процентов. 

10. Непрерывность функции в точке. Непрерывность суммы, разности, произведения и частного 

непрерывных функций.  Непрерывность сложной и обратной функции. Непрерывность элементарных 

функций. Теорема о сохранении знака непрерывной функции. Точки разрыва функции, их 

классификация. 

11. Свойства функций, непрерывных на отрезке: теоремы о существовании корня, о промежуточных 

значениях, об ограниченности функции, о достижении наибольшего и наименьшего значений. 

Равномерная непрерывность. 

12. Паутинные модели рынка. 

 

3.3 Практические занятия по теме «Дифференциальное исчисление функций одной 

переменной».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Производная функции. Дифференцируемость и дифференциал функции. 

2. Непрерывность дифференцируемой функции. 

3. Правила дифференцирования суммы, разности, произведения и частного двух функций. сложной и 

обратной  функций. 

4. Производные основных элементарных функций. 

5. Производная  сложной и обратной функции. 

6. Геометрический смысл производной. Уравнение касательной к графику функции.   

7. Геометрический смысл дифференциала функции. 

8. Применение дифференциала в приближенных вычислениях. 

9. Эластичность функции, ее свойства и геометрический смысл. 

10. Производные и дифференциалы высших порядков. 

11. Локальный экстремум функции, теорема Ферма.  

12. Теоремы Ролля, Лагранжа и Коши. 

13. Правило Лопиталя для раскрытия неопределенностей. 

14. Признак монотонности функции на интервале.  

15. Достаточные условия локального экстремума. 

16. Выпуклые (вогнутые) функции. Достаточные условия выпуклости функции. Необходимый и 

достаточный признаки точки перегиба. 

17. Асимптоты графика функции. 

18. Общая схема исследования функции и построения ее графика. 
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3.4 Практические занятия по теме «Интегральное исчисление функций одной переменной».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Первообразная и неопределенный интеграл. Таблица неопределенных интегралов. 

2. Свойства неопределенного интеграла. 

3. Замена переменной в неопределенном интеграле, интегрирование по частям. 

4. Интегрирование рациональных функций. 

5. Задача о вычислении площади криволинейной трапеции.  

6. Определенный интеграл (по Риману) и его свойства.  

7. Интеграл с переменным верхним пределом. Существование первообразной для непрерывной 

функции.  

8. Формула Ньютона-Лейбница. 

9. Замена переменной в определенном интеграле, интегрирование по частям. 

10. Геометрические приложения определенного интеграла: вычисление площади криволинейной 

трапеции и объема тела вращения. 

11. Несобственные интегралы с бесконечными пределами и от неограниченных функций. Признаки 

сходимости несобственных интегралов. 

12. Приближенное вычисление определенных интегралов. Формулы прямоугольников и Симпсона. 

 

3.5 Практические занятия по теме «Дифференциальное исчисление функции нескольких 

переменных».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Функции нескольких переменных. Поверхности (линии) уровня функции. Элементарные функции 

нескольких переменных. 

2. Частные  производные, дифференцируемость, дифференциал функции нескольких переменных.  

3. Достаточное условие дифференцируемости.   Непрерывность дифференцируемой функции. 

4. Производная сложной функции.  

5. Производная по направлению, градиент. Свойства градиента. 

6. Эластичность функции нескольких переменных. 

7. Частные производные высших порядков. Теорема о равенстве смешанных производных. 

8. Локальный экстремум функции нескольких переменных. Необходимое условие первого порядка. 

Достаточные условия существования локального экстремума. 

9. Условный экстремум функции нескольких переменных. 

10.  Метод исключения переменных. Метод множителей Лагранжа. 

11. Нахождение глобальных экстремумов дифференцируемой функции на замкнутом ограниченном 

множестве. 

 

3.6 Практические занятия по теме «Интегральное исчисление функций нескольких переменных».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Кратные интегралы (двойные и тройные), их свойства. Геометрический смысл двойного интеграла. 

Сведение кратного интеграла к повторному. 

2. Формула замены переменных в двойном интеграле.  

3. Несобственные кратные интегралы.  

 

3.7 Практические занятия по теме «Числовые и степенные ряды».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Числовые ряды. Сходимость и сумма ряда. Необходимый признак сходимости. 

2. Числовые ряды с положительными членами: критерий сходимости. 

3. Достаточные признаки сходимости: первый и второй признаки сравнения, признак Даламбера и 

Коши в предельной форме, интегральный признак Коши. 

4. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда.  

5. Абсолютно сходящиеся ряды и их свойства.  
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6. Условно сходящиеся ряды. 

7. Степенные ряды. Теорема Абеля.  Область, интервал и радиус сходимости степенного ряда.  

8. Ряд Маклорена. Достаточные условия разложимости функции в ряд Маклорена.  

9. Разложения функций   е
х
,  sin х,   cos x,   (1 + Х)

K
,   ln (1 + Х)   И arctg x в ряд Маклорена. 

 

3.8 Практические занятия по теме «Обыкновенные дифференциальные уравнения».   

При подготовке к занятиям необходимо обратить внимание на следующие моменты. 

1. Дифференциальные уравнения первого порядка, нормальная форма.  

2. Задача Коши. Теорема о существовании и единственности решения задачи Коши для уравнения 

первого порядка в нормальной форме.  

3. Общее и частное решения уравнения. Общий интеграл. Особые решения. 

4. Уравнения с разделяющимися переменными, алгоритм решения. 

5. Однородные уравнения, алгоритм решения. 

6. Уравнения в полных дифференциалах, алгоритм решения. 

7. Линейные уравнения и уравнения Бернулли, алгоритм решения. 

8. Линейные дифференциальные уравнения с постоянными коэффициентами (на примере 

уравнений второго порядка). Характеристическое уравнение и фундаментальная система решений 

однородного уравнения.  

9. Построение частного решения неоднородного уравнения с правой частью специального вида 

методом неопределенных коэффициентов. 

 

 


